1
|
Ansary A, Montesdeoca N, El-Mashtoly SF, Hahn SA, El-Khouly ME, Karges J. Porphyrin-Derived Carbon Dots for Red-Light Activated Photodynamic Therapy of Breast Cancer. ACS APPLIED BIO MATERIALS 2025; 8:4230-4238. [PMID: 40243213 DOI: 10.1021/acsabm.5c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
In recent years, cancer has emerged as a major global health threat, ranking among the top causes of mortality. While treatments such as surgery, immunotherapy, radiation therapy, and chemotherapy remain widely used, photodynamic therapy has been gaining significant interest. Most of the photosensitizing agents employed in clinical settings are derived from tetrapyrrolic frameworks, including porphyrins, chlorins, and phthalocyanines. Although these compounds have demonstrated therapeutic effectiveness, they suffer from critical drawbacks, such as limited solubility in water and inadequate (photo)stability. To address these issues, herein, the formulation of the previously reported and promising photosensitizer tetrakis(4-carboxyphenyl) porphyrin into carbon dots is reported. The carbon dots were found with enhanced aqueous solubility, high (photo)stability, and greater singlet oxygen quantum yield overcoming the limitations of the molecular photosensitizer. While being nontoxic in the dark, the carbon dots induced a phototherapeutic effect in breast cancer cells and multicellular tumor spheroids.
Collapse
Affiliation(s)
- Abeer Ansary
- Biotechnology Program, Institute of Basic and Applied Science, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, 21934, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
- Department of Molecular GI-Oncology, Clinical Research Center, Ruhr-University Bochum, Universitätsstrasse 150, Bochum, 44780, Germany
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, Bochum, 44780, Germany
| | - Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, Bochum, 44780, Germany
| | - Samir F El-Mashtoly
- Leibniz Institute of Photonic, Technology, Albert-Einstein-Straße 9, Jena, 07745, Germany
| | - Stephan A Hahn
- Department of Molecular GI-Oncology, Clinical Research Center, Ruhr-University Bochum, Universitätsstrasse 150, Bochum, 44780, Germany
| | - Mohamed E El-Khouly
- Nanoscience Program, Institute of Basic and Applied Science, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, Bochum, 44780, Germany
| |
Collapse
|
2
|
Saha A, Kundu S, Verma M, Rajput SK, Butcher RJ, Datta A, Patra AK. Fine-Tuning the Excited-State Dynamics of Heteroleptic Ruthenium(II) Polypyridyl Complexes with Systematic Variation of Benzazole-Substituted 8-Hydroxyquinolines. Inorg Chem 2025; 64:8906-8922. [PMID: 40302419 DOI: 10.1021/acs.inorgchem.4c05440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
A series of structurally related bistridentate heteroleptic Ru(II) polypyridyl complexes, [RuII(ttpy)(8-HQLS/N/O)]+ (Ru1-Ru3), were synthesized, where ttpy = p-tolyl terpyridine and 8-HQLS/N/O are monoanionic N^N^O-donor tridentate ligands (8-HQLX), derived from 8-hydroxyquinoline (8-HQ), namely, 8-HQLS = 2-(2'-benzothiazole)-8-hydroxyquinoline, 8-HQLN = 2-(2'-benzimidazole)-8-hydroxyquinoline, and 8-HQLO = 2-(2'-benzoxazole)-8-hydroxyquinoline. The electronic structures of these rigid ligands were systematically tuned by varying the noncoordinating heteroatoms (S, O, NH) in the five-membered heterocyclic ring, impacting the electronic properties, redox potentials, excited-state lifetime/dynamics, and deactivation pathways and photophysical behavior of the corresponding Ru(II) complexes. Notably, [RuII(ttpy)(8HQLN)]+ (Ru2) exhibited an excited-state lifetime (τ > 1 ns in CH3CN at RT) surpassing that of the homoleptic complex [Ru(ttpy)2]2+ (τ ∼ 0.62 ns), despite its more distorted octahedral geometry. These heteroleptic complexes (Ru1-Ru3) showed extended excited-state lifetimes compared to their homoleptic counterpart Ru4. The complexes displayed absorption in the red region, which is favorable for phototherapeutic applications. Their relative singlet oxygen (1O2) quantum yields (ΦΔ) in CH3CN ranged from 0.03 to 0.10. Given their reasonable excited-state lifetimes and 1O2 generation ability, these Ru(II) complexes demonstrated potential as photocatalysts for organic substrates, as evidenced by their effectiveness in the photooxidation of PPh3 to Ph3P=O as a model reaction.
Collapse
Affiliation(s)
- Abhijit Saha
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Sucheta Kundu
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Manav Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Saurabh Kumar Rajput
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ray J Butcher
- Department of Chemistry, Howard University, Washington, D.C. 20059, United States
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ashis K Patra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
3
|
Li X, Zhang H, Cao Z, Xiao H, Weng C, Zheng Q. Mitochondria-targeted and ROS-sensitive main-chain ruthenium polymer overcomes cancer drug resistance. J Control Release 2025; 383:113840. [PMID: 40368191 DOI: 10.1016/j.jconrel.2025.113840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/04/2025] [Accepted: 05/11/2025] [Indexed: 05/16/2025]
Abstract
The clinical efficacy of platinum-based chemotherapeutics, such as cisplatin, has been compromised by the prevalent emergence of drug resistance. This has propelled the search for alternative metal-based anti-tumor agents. Herein, we introduce PolyRu, a novel amphiphilic polymer containing a ruthenium complex and thioketal bonds in its main chain, for lung cancer treatment. PolyRu can self-assemble into nanoparticles (NP@PolyRu) in aqueous solutions and degrade within the reactive oxygen species-rich tumor microenvironment. The ruthenium complex in PolyRu specifically targets mitochondria and induces cancer cell apoptosis. The efficacy of NP@PolyRu was validated in a patient-derived xenograft model of human lung cancer, where NP@PolyRu significantly suppressed tumor progression with favorable biocompatibility,and showed excellent anti-tumor immune effect. NP@PolyRu emerges as a promising candidate for addressing cancer drug resistance, signifying a substantial leap forward in the realm of metal polymer-based cancer therapeutics.
Collapse
Affiliation(s)
- Xuan Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China; Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Zheng Cao
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, 90066, CA, USA
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Chao Weng
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China.
| | - Qingfeng Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
4
|
López-Corrales M, Izquierdo-García E, Bosch M, Das T, Llebaria A, Josa-Culleré L, Marchán V. Exploring the Phototherapeutic Applications of Mitochondria-Targeted COUPY Photocages of Antitumor Drugs. J Med Chem 2025; 68:9741-9754. [PMID: 40293412 DOI: 10.1021/acs.jmedchem.5c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Photocleavable protecting groups hold great promise in photopharmacology to control the release of bioactive molecules from their caged precursors within specific subcellular compartments. Herein, we describe a series of photocages based on a COUPY scaffold, incorporating chlorambucil (CLB) and 4-phenylbutyric acid (4-PBA) as bioactive payloads that can be efficiently activated with visible light. Confocal microscopy confirmed the preferential accumulation of CLB and 4-PBA N-hexyl COUPY photocages in the mitochondria, which exhibited a remarkable phototoxicity against cancer cells upon green-yellow light irradiation, with IC50 values in the nanomolar range. This effect was attributed to a synergistic mechanism involving the photorelease of the bioactive payloads and the intrinsic photogeneration of Type I and Type II ROS by the COUPY scaffold within mitochondria. Thus, COUPY-caged derivatives of CLB and 4-PBA underscore the potential of COUPY-caging groups as a versatile platform to develop innovative light-activated agents operating simultaneously through photodynamic therapy and photoactivated chemotherapy.
Collapse
Affiliation(s)
- Marta López-Corrales
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Eduardo Izquierdo-García
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Manel Bosch
- Unitat de Microscòpia Òptica Avançada, Centres Científics i Tecnològics (CCiTUB), Universitat de Barcelona (UB), Av. Diagonal 643, E-08028 Barcelona, Spain
| | - Tapas Das
- Department of Chemistry, National Institute of Technology Jamshedpur, Jamshedpur, Jharkhand 831014, India
| | - Amadeu Llebaria
- MCS, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Laia Josa-Culleré
- MCS, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Vicente Marchán
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
| |
Collapse
|
5
|
Liu M, Liu H, Yang Y, Xiong X, Zou T. Subcellular Photocatalysis Enables Tumor-Targeted Inhibition of Thioredoxin Reductase I by Organogold(I) Complexes. J Am Chem Soc 2025; 147:15719-15731. [PMID: 40272019 DOI: 10.1021/jacs.5c03186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Selective inhibition of TrxR1 over TrxR2 is a highly sought-after goal, because the two enzymes play distinct roles in cancer progression. However, achieving targeted inhibition is challenging due to their high homology and identical active site sequence. Herein we report a new subcellular photocatalysis approach for targeted inhibition by controllably activating organogold(I) prodrugs within the cytosol, the exclusive location of TrxR1. The NHC-Au(I)-alkynyl complexes are stable and evenly distributed in the cell; they can meanwhile be efficiently transformed into active NHC-Au(I)-L species (L = labile ligands) via a radical mechanism by photocatalysts released into the cytosol (from endosome/lysosome) upon light irradiation, leading to selective inhibition of TrxR1 without affecting TrxR2. This results in strong cytotoxicity to cancer cells with much higher selectivity than auranofin, a pan TrxR inhibitor that cannot discriminate TrxR1/2, along with potent antitumor activities in multiple zebrafish and mouse models. This subcellular prodrug activation may thus suggest a novel approach to precision targeting using the remarkable spatial control of photocatalysis.
Collapse
Affiliation(s)
- Moyi Liu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Haitao Liu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yan Yang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xiaolin Xiong
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Taotao Zou
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
6
|
Liu Y, Wang T, Wang W. Photopharmacology and photoresponsive drug delivery. Chem Soc Rev 2025. [PMID: 40309857 DOI: 10.1039/d5cs00125k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Light serves as an excellent external stimulus due to its high spatial and temporal resolution. The use of light to regulate biological processes has evolved into a vibrant field over the past decade. Employing light on chemical substances such as bioactive molecules and drug delivery systems offers a promising therapeutic approach to achieve precise control over biological processes. In this review, we provide an overview of the advancements in optochemical technologies for controlling bioactive molecules (photopharmacology) and drug delivery systems (photoresponsive drug delivery), with an emphasis on their relationship and biomedical applications. Gaining a deeper understanding of the underlying mechanisms and emerging research will facilitate the development of optochemically controlled bioactive molecules and photoresponsive drug delivery systems, further enhancing light technologies in biomedical applications.
Collapse
Affiliation(s)
- Yuwei Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Tianyi Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Weiping Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
7
|
Zhang Y, Yu Q, Wang Z, Qing L, Mo X, Liu B, Chai Y, Yu B, Dong Y, Pan W, Zhang S, He H. Rational Design of Methylene Blue-Raloxifene Conjugates for Efficient Breast Tumor Elimination Triggered by ERα Degradation. J Med Chem 2025; 68:8861-8872. [PMID: 40213902 DOI: 10.1021/acs.jmedchem.5c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Small molecules capable of degrading estrogen receptor α (ERα) are of significant interest in breast cancer treatment. Herein, we rationally designed a series of ERα degraders (MR1-MR3) by conjugating methylene blue, a bifunctional photosensitizer, with the raloxifene pharmacophore. The lead compound MR3 exhibited high affinity to ERα, and it can induce a complete depletion of ERα in MCF7 breast cancer cells after 660 nm irradiation (0.4 W/cm2) for 1 min. Owing to the ERα degradation merit, MR3 displayed a 45-fold boosted anticancer activity (IC50 = 0.55 μM) after irradiation. In the breast cancer xenograft mouse model, MR3 induced an obvious tumor regression (tumor growth inhibition = 118%), which was superior to that of the FDA-approved ERα degrader Faslodex. These important features make MR3 extremely intriguing for breast cancer treatment.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, P. R. China
| | - Qiying Yu
- Central Laboratory, Tumor Hospital Affiliated to Nantong University, Nantong 226361, Jiangsu, PR China
| | - Ziwei Wang
- Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, P. R. China
| | - Luolong Qing
- Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, P. R. China
| | - Xiaoman Mo
- Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, P. R. China
| | - Bing Liu
- Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, P. R. China
| | - Yue'e Chai
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, P. R. China
| | - Bingqiong Yu
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Yongxi Dong
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, P. R. China
| | - Weidong Pan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, P. R. China
| | - Silong Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, P. R. China
| | - Huan He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
8
|
Lie Q, Jiang H, Lu X, Chen Z, Liang J, Zhang Y, Chao H. Photo-Activated Ferrocene-Iridium(III) Prodrug Induces Immunogenic Cell Death in Melanoma Stem Cells. J Med Chem 2025; 68:8894-8906. [PMID: 40233007 DOI: 10.1021/acs.jmedchem.5c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Cancer stem cells (CSCs) are key contributors to tumor resistance, recurrence, and metastasis. Conventional chemotherapy often fails to target and eradicate CSCs, significantly impairing their therapeutic efficacy. Herein, we design and synthesize a photoactivated ferrocene-iridium(III) complex (Ir-3) to achieve immunotherapy against melanoma cells (including stem cells). In short, Ir-3 effectively targets mitochondria and dissociates under light irradiation to produce a cytotoxic Ir(III) photosensitizer and Fe2+ ions. They can generate reactive oxygen species by the Fenton reaction, robustly induce ferroptosis and autophagy, and eventually trigger immunogenic cell death in melanoma cells (including stem cells). Furthermore, under light exposure, Ir-3 effectively inhibits stem cell-related properties and promotes macrophage-mediated phagocytosis of melanoma stem cells. For in vivo studies, Ir-3 is encapsulated in DSPE-PEG 2000 to form tumor-targeting Ir-3@PEG nanoparticles. After photoactivation, Ir-3@PEG can significantly inhibit primary and distant tumors, effectively inhibit the stemness of melanoma stem cells, and induce innate and adaptive immune responses.
Collapse
Affiliation(s)
- Qiaoshan Lie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Hui Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xiangwan Lu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Zhuoli Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Jinzhe Liang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yan Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 400201, P. R. China
| |
Collapse
|
9
|
Burton ST, Lee G, Moore CE, Sevov CS, Turro C. Cyclometallated Co(III) Complexes with Lowest-Energy Charge Transfer Excited States Accessible with Visible Light. J Am Chem Soc 2025; 147:13315-13327. [PMID: 40207665 DOI: 10.1021/jacs.4c18299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The Co(III) complexes, cis-[Co(ppy)2(L)]PF6, where ppy = 2-phenylpyridine and L = bpy (2,2'-bipyridine; 1), phen (1,10-phenanthroline; 2), and DAP (1,12-diazaperylene; 3), are reported and their photophysical properties were investigated to evaluate their potential as sensitizers for applications that include solar energy conversion schemes and photoredox catalysis. Calculations show that cyclometallation in the cis-[Co(ppy)2(L)]PF6 series affords strong Co(dπ)/ppy(π) orbital interactions that result in a Co/ppy(π*) highest occupied molecular orbital (HOMO) and a lowest unoccupied molecular orbital (LUMO) localized on the diimine ligand, L(π*). Complexes 1-3 exhibit relatively invariant oxidation potentials, whereas the reduction event is dependent on the identity of the diimine ligand, L, consistent with the theoretical predictions. For 3 a broad Co/ppy(π*) → L(π*) metal/ligand-to-ligand charge transfer (ML-LCT) absorption band is observed in CH3CN with a maxima at 507 nm, extending beyond 600 nm. Upon excitation of the 1ML-LCT transition, transient absorption features consistent with the population of a 3ML-LCT excited state with lifetimes, τ, of 3.0 ps, 4.6 and 42 ps for 1, 2 and 3 in CH3CN respectively are observed. Upon irradiation with 505 nm, 3 is able to reduce methyl viologen (MV2+), an electron acceptor commonly in photocatalytic schemes. To our knowledge, 3 represents the first heteroleptic molecular Co(III) complex that combines cyclometallation with a diimine ligand with lowest-lying metal-to-ligand charge transfer excited states able to undergo photoinduced charge transfer with low-energy green light. As such, the structural design of 3 represents an important step toward d6 photosensitizers based on earth abundant metals.
Collapse
Affiliation(s)
- Spencer T Burton
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43214, United States
| | - Gyunhee Lee
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43214, United States
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43214, United States
| | - Christo S Sevov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43214, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43214, United States
| |
Collapse
|
10
|
Servos LM, Tran HM, Montesdeoca N, Papadopoulos Z, Sakong E, Karges J. Functionalization of a Ru(II) polypyridine complex with an aldehyde group as a synthetic precursor for photodynamic therapy. Dalton Trans 2025; 54:6411-6418. [PMID: 40192191 DOI: 10.1039/d5dt00256g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Photodynamic therapy has garnered significant attention over the past decades for its potential in treating various types of cancer, as well as bacterial, fungal, and viral infections. However, current clinically approved photosensitizers based on a tetrapyrrolic scaffold face notable limitations, including low water solubility, slow body clearance, and photobleaching. As a promising alternative, Ru(II) polypyridyl complexes have emerged due to their favorable photophysical and biological properties (i.e., reactive oxygen species generation, high water solubility, and biocompatibility). Despite these attractive properties, the vast majority of compounds are associated with poor tumor accumulation, representing a major hurdle for therapeutic applications. To overcome this limitation, herein, the chemical synthesis and photophysical evaluation of the functionalization of a Ru(II) polypyridyl complex with an aldehyde group, as a synthetic precursor for further conjugation, is reported. To ensure that the intrinsic chemical reactivity of the aldehyde group remains unaffected by the coordination environment to the metal center, a phenyl spacer was strategically introduced between the central ligand framework and the aldehyde functionality. Computational studies indicated that upon excitation of the metal complex, an excited state electron from the ruthenium t2g orbital is transferred to the π* ligand orbital in a metal-to-ligand charge transfer transition. The compound was found to be highly stable under physiological conditions as well as upon irradiation. Upon light exposure, the metal complex was found to efficiently convert molecular oxygen to singlet oxygen. These findings highlight the potential of the aldehyde functionalized Ru(II) polypyridyl complex as a versatile precursor for photodynamic therapy.
Collapse
Affiliation(s)
- Lisa-Marie Servos
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Hung Manh Tran
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Zisis Papadopoulos
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Eun Sakong
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| |
Collapse
|
11
|
Zhang Z, Rana I, Nam J. Metal coordination polymer nanoparticles for cancer therapy. Essays Biochem 2025; 69:EBC20253012. [PMID: 40209056 DOI: 10.1042/ebc20253012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/24/2025] [Indexed: 04/12/2025]
Abstract
Metal ions are essential elements in biological processes and immune homeostasis. They can regulate cancer cell death through multiple distinct molecular pathways and stimulate immune cells implicated in antitumor immune responses, suggesting opportunities to design novel metal ion-based cancer therapies. However, their small size and high charge density result in poor target cell uptake, uncontrolled biodistribution, and rapid clearance from the body, reducing therapeutic efficacy and increasing potential off-target toxicity. Metal coordination polymer nanoparticles (MCP NPs) are nanoscale polymer networks composed of metal ions and organic ligands linked via noncovalent coordination interactions. MCP NPs offer a promising nanoplatform for reshaping metal ions into more drug-like formulations, improving their in vivo pharmacological performance and therapeutic index for cancer therapy applications. This review provides a comprehensive overview of the inherent biological functions of metal ions in cancer therapy, showcasing examples of MCP NP systems designed for preclinical cancer therapy applications where drug delivery principles play a critical role in enhancing therapeutic outcomes. MCP NPs offer versatile metal ion engineering approaches using selected metal ions, various organic ligands, and functional payloads, enabling on-demand nano-drug designs that can significantly improve therapeutic efficacy and reduce side effects for effective cancer therapy.
Collapse
Affiliation(s)
- Zhengzheng Zhang
- College of Pharmacy, Chonnam National University, Gwanju 61186, South Korea
| | - Isra Rana
- College of Pharmacy, Chonnam National University, Gwanju 61186, South Korea
| | - Jutaek Nam
- College of Pharmacy, Chonnam National University, Gwanju 61186, South Korea
| |
Collapse
|
12
|
Negi M, Venkatesh V. Near-infrared light-activatable iridium(iii) complexes for synergistic photodynamic and photochemotherapy. Chem Sci 2025; 16:6376-6382. [PMID: 40092598 PMCID: PMC11907644 DOI: 10.1039/d5sc00156k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
Near-infrared (NIR) light-activatable photosensitizers (PSs) have garnered tremendous interest as PSs for photodynamic therapy (PDT) due to the deeper tissue penetration ability and lower toxicity of NIR radiation. However, the low reactive oxygen species (ROS) production, poor tumor accumulation, and residual toxicity of these PSs pose major challenges for further development in this regime. In this regard, we have meticulously designed and synthesized two novel mitochondria-targeting iridium(iii)-dithiocarbamate-cyanine complexes, Ir1@hcy and Ir2@hcy. In particular, Ir2@hcy exhibited both type I and type II PDT with excellent singlet oxygen (1O2) and hydroxyl radical (˙OH) generation ability under 637 nm/808 nm irradiation, even at an ultra-low power intensity (2 mW cm-2). Under higher-power irradiation (100 mW cm-2), the reactive oxygen species (ROS) production by Ir2@hcy was augmented. The elevated levels of ROS caused the disintegration of Ir2@hcy to produce cytotoxic oxindole scaffolds through the dioxetane mechanism. The synergistic production of ROS and cytotoxic species effectively induced mitochondria-mediated cancer cell death in both in vitro and 3D tumor spheroid models, offering a new avenue to develop combinational phototherapy (PDT + PACT) for cancer treatment with spatio-temporal precision.
Collapse
Affiliation(s)
- Monika Negi
- Department of Chemistry, Indian Institute of Technology Roorkee Roorkee 247667 Uttarakhand India
| | - V Venkatesh
- Department of Chemistry, Indian Institute of Technology Roorkee Roorkee 247667 Uttarakhand India
| |
Collapse
|
13
|
Ganzoni RLZ, Bournons SS, Carreira EM, De Bundel D, Smolders I. A Bright Future for Photopharmaceuticals Addressing Central Nervous System Disorders: State of the Art and Challenges Toward Clinical Translation. Med Res Rev 2025. [PMID: 40186449 DOI: 10.1002/med.22105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 04/07/2025]
Abstract
Photopharmacology is an innovative approach that uses light to activate drugs. This method offers the potential for highly localized and precise drug activation, making it particularly promising for the treatment of neurological disorders. Despite the enticing prospects of photopharmacology, its application to treat human central nervous system (CNS) diseases remains to be demonstrated. In this review, we provide an overview of prominent strategies for the design and activation of photopharmaceutical agents in the field of neuroscience. Photocaged and photoswitchable drugs and bioactive molecules are discussed, and an instructive list of examples is provided to highlight compound design strategies. Special emphasis is placed on photoactivatable compounds for the modulation of glutamatergic, GABAergic, dopaminergic, and serotonergic neurotransmission for the treatment of neurological conditions, as well as various photoresponsive molecules with potential for improved pain management. Compounds holding promise for clinical translation are discussed in-depth and their potential for future applications is assessed. Neurophotopharmaceuticals have yet to achieve breakthrough in the clinic, as both light delivery and drug design have not reached full maturity. However, by describing the current state of the art and providing illustrative case studies, we offer a perspective on future opportunities in the field of neurophotopharmacology focused on addressing CNS disorders.
Collapse
Affiliation(s)
- Rudolf L Z Ganzoni
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Sofie S Bournons
- Department of Pharmaceutical and Pharmacological Sciences, Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Erick M Carreira
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Dimitri De Bundel
- Department of Pharmaceutical and Pharmacological Sciences, Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ilse Smolders
- Department of Pharmaceutical and Pharmacological Sciences, Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
14
|
Dong JH, Chen BH, Jiang S, Wu XY, Feng WW, Li JH, Pan ZY, Liu Y, He L. Phototherapeutic activity of polypyridyl ruthenium(II) complexes through synergistic action of nitric oxide and singlet oxygen. Dalton Trans 2025; 54:5753-5763. [PMID: 40062910 DOI: 10.1039/d5dt00038f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
In recent years, photodynamic therapy (PDT) and gas therapy (GT) have emerged as research hotspots due to their excellent cancer treatment efficacy. By combining the advantages of both, the simultaneous and controllable release of reactive oxygen species (ROS) and nitric oxide (NO) has become a possibility. This paper describes the design of two Ru(II) complexes, [Ru(bpy)2(NFIP)](PF6)2 (Ru1, bpy = 2,2'-bipyridine, NFIP = 4-nitro-3-trifluoromethylaniline-1H-imidazo[4,5-f][1,10]phenanthroline) and [Ru(phen)2(NFIP)](PF6)2 (Ru2, phen = 1,10-phenanthroline), through the integration of the polypyridyl ruthenium structure and a photoresponsive NO donor. The structures and purity of the complexes were confirmed by several methods, including 1H NMR, mass spectrometry, elemental analysis, high performance liquid chromatography (HPLC) and UV-Vis absorption spectra. Both complexes were demonstrated to efficiently generate singlet oxygen (1O2) (ΦΔ = 0.40 and 0.44 in phosphate buffered saline (PBS) for Ru1 and Ru2, respectively) and release NO under visible light irradiation. Upon light exposure, Ru2 exhibited significant phototoxicity against human cervical cancer HeLa cells. In vitro experiments indicated that Ru2 elevated the levels of ROS and NO in HeLa cells when exposed to light, resulting in mitochondrial impairment and caspase-mediated cell death. Overall, Ru2 proves to be a potent phototherapeutic compound, capable of producing ROS and NO, thus providing precision in cancer phototherapy.
Collapse
Affiliation(s)
- Jia-Hao Dong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Bai-Hua Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Shan Jiang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| | - Xiao-Yin Wu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Wen-Wen Feng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Jin-Hao Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Zheng-Yin Pan
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Liang He
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
15
|
Hashim PK, Shaji AT, Amrutha AS, Ahmad S. Conceptual expansion of photomedicine for spatiotemporal treatment methods. RSC Med Chem 2025:d4md01005a. [PMID: 40177642 PMCID: PMC11959407 DOI: 10.1039/d4md01005a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
Photomedicine has evolved from basic phototherapy to a broad range of light-based technologies to achieve precise and minimally invasive therapeutic outcomes. Recent advances in light sources, photochemical reactions, and photoswitches have facilitated the development of light-activated methodologies for modulating biological processes. This review discusses the history of light therapy that leads to the emergence of a new field known as photopharmacology, mode of actions in photopharmacology such as photodynamic, photo-uncaging and photoswitchable methods, a few representative examples in photopharmacology, and a brief overview of its associated challenges. The current developments in photopharmacology hold great promise for the treatment of diseases such as cancer, with enhanced therapeutic precision, and minimal side effects. We foresee further expansion of photomedicine for novel approaches in precision medicine and healthcare, and unprecedented treatment methods.
Collapse
Affiliation(s)
- P K Hashim
- Research Institute for Electronic Science, Hokkaido University Kita20, Nishi 10, Kita-ku Sapporo Hokkaido 001-0020 Japan
- Graduate School of Life Science, Hokkaido University Kita 10, Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Ashwin T Shaji
- Research Institute for Electronic Science, Hokkaido University Kita20, Nishi 10, Kita-ku Sapporo Hokkaido 001-0020 Japan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| | - Ammathnadu S Amrutha
- Research Institute for Electronic Science, Hokkaido University Kita20, Nishi 10, Kita-ku Sapporo Hokkaido 001-0020 Japan
- Graduate School of Life Science, Hokkaido University Kita 10, Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Shifa Ahmad
- Research Institute for Electronic Science, Hokkaido University Kita20, Nishi 10, Kita-ku Sapporo Hokkaido 001-0020 Japan
- Graduate School of Life Science, Hokkaido University Kita 10, Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| |
Collapse
|
16
|
K Amma I, Ingrole RSJ, Venkatesa Prabhu GK, Dominquez R, Kong D, Mangalara SCH, Mckenna GB, Gill HS. Di-Tyrosine Cross-Linking of Elastin-Like Polypeptides through Ruthenium Photoreaction To Form Scaffolds: Fine Tuning Mechanical Properties and Improving Cytocompatibility. Biomacromolecules 2025; 26:1580-1594. [PMID: 39968939 DOI: 10.1021/acs.biomac.4c01376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Ensuring that the mechanical properties of tissue engineering scaffolds align with those of the target tissues is crucial for their successful integration and functional performance. Tyrosine-tyrosine cross-links are found in nature in numerous proteins including resilin that exhibit enhanced toughness and energy storage capacity. Herein, we investigated the potential of tuning the mechanical properties of scaffolds made from elastin-like polypeptides (ELPs) containing tyrosine residues. Ruthenium-based photoreaction was used to form tyrosine cross-links. To enhance the cytocompatibility of the ELP scaffold, a continuous mode of washing was developed to remove residual ruthenium from the scaffolds. The continuous mode of washing was significantly superior in removing ruthenium and did so in a significantly shorter time as compared to batch washing and the conventional semibatch washing (also called dialysis washing). The range of storage moduli of the fabricated scaffolds spanned tens of Pa to hundreds of kPa. Human fibroblast cells were found to grow in the scaffolds and proliferate. Overall, this work offers a rationale for further developing tyrosine cross-linked ELPs for a broad range of tissue engineering applications.
Collapse
Affiliation(s)
- Iyeswaria K Amma
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Rohan S J Ingrole
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Ghanesh Kesav Venkatesa Prabhu
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Raul Dominquez
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Dejie Kong
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | | | - Gregory B Mckenna
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Harvinder Singh Gill
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
17
|
DeWitt CH, Heidbreder AD, Hancock GW, Bhattacherjee A. Investigation of Vibrational Cooling in a Photoexcited Dichloro-Ruthenium Charge Transfer Complex Using Transient Electronic Absorption Spectroscopy. J Phys Chem A 2025; 129:2265-2274. [PMID: 39993167 DOI: 10.1021/acs.jpca.5c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Vibrational cooling of molecules in excited electronic states is ubiquitous in photochemical reactions in solution but challenging to infer in time-resolved electronic absorption experiments. We report the ultrafast photophysics of cis-dichlorobis(2,2'-bipyridine)ruthenium(II), Ru(bpy)2Cl2, a precursor molecule commonly utilized in synthetic modifications of a vast array of ruthenium complexes. Femtosecond time-resolved electronic absorption spectroscopy is used to track an ultrafast spectral narrowing of the excited-state absorptions at 475 nm (21,050 cm-1) and 505 nm (19,800 cm-1) due to the reduced ligand in the photoexcited molecular complex. These sharp features, which overlap with a broader ground-state bleach spanning 450 nm (22,220 cm-1) to 600 nm (16,670 cm-1), evolve rapidly with time constants of 16 ± 5, 15 ± 3, and 18 ± 2 ps, respectively, for ligand-centered (π → π*, 266 nm) and charge-transfer (t2 → π*, 400 and 550 nm) excitations and constitute a direct signature of picosecond vibrational cooling.
Collapse
Affiliation(s)
- Caleb H DeWitt
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Austin D Heidbreder
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Griffin W Hancock
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Aditi Bhattacherjee
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
18
|
Yadav AK, Kushwaha R, Mandal AA, Mandal A, Banerjee S. Intracellular Photocatalytic NADH/NAD(P)H Oxidation for Cancer Drug Development. J Am Chem Soc 2025; 147:7161-7181. [PMID: 39980079 DOI: 10.1021/jacs.4c18328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Photocatalytic cancer therapy (PCT) has emerged as a cutting-edge anticancer mechanism of action, harnessing light energy to mediate the catalytic oxidation of intracellular substrates. PCT is of significant current importance due to its potential to address the limitations of conventional chemotherapy, particularly drug resistance and side effects. This approach offers a noninvasive, targeted cancer treatment option by utilizing metal-based photocatalysts to induce redox and metabolic disorders within cancer cells. The photocatalysts disrupt the cancer cell metabolism by converting NADH/NAD(P)H to NAD+/NAD(P)+ via catalytic photoredox processes, altering intracellular NAD+/NADH or NAD(P)+/NAD(P)H ratios, which are crucial for cellular metabolism. Ir(III), Ru(II), Re(I), and Os(II) photocatalysts demonstrated promising PCT efficacy. Despite these developments, gaps remain in the literature for translating this new anticancer mechanism into clinical trials. This Perspective critically examines the developments in this research area and provides future directions for designing efficient photocatalysts for PCT.
Collapse
Affiliation(s)
- Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Arif Ali Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Apurba Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
19
|
Abad-Montero D, Gandioso A, Izquierdo-García E, Chumillas S, Rovira A, Bosch M, Jordà-Redondo M, Castaño D, Bonelli J, Novikov VV, Deyà A, Hernández JL, Galino J, Alberto ME, Francés-Monerris A, Nonell S, Gasser G, Marchán V. Ruthenium(II) Polypyridyl Complexes Containing COUBPY Ligands as Potent Photosensitizers for the Efficient Phototherapy of Hypoxic Tumors. J Am Chem Soc 2025; 147:7360-7376. [PMID: 39953993 DOI: 10.1021/jacs.4c15036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Hypoxia, a hallmark of many solid tumors, is linked to increased cancer aggressiveness, metastasis, and resistance to conventional therapies, leading to poor patient outcomes. This challenges the efficiency of photodynamic therapy (PDT), which relies on the generation of cytotoxic reactive oxygen species (ROS) through the irradiation of a photosensitizer (PS), a process partially dependent on oxygen levels. In this work, we introduce a novel family of potent PSs based on ruthenium(II) polypyridyl complexes with 2,2'-bipyridyl ligands derived from COUPY coumarins, termed COUBPYs. Ru-COUBPY complexes exhibit outstanding in vitro cytotoxicity against CT-26 cancer cells when irradiated with light within the phototherapeutic window, achieving nanomolar potency in both normoxic and hypoxic conditions while remaining nontoxic in the dark, leading to impressive phototoxic indices (>30,000). Their ability to generate both Type I and Type II ROS underpins their exceptional PDT efficiency. The lead compound of this study, SCV49, shows a favorable in vivo pharmacokinetic profile, excellent toxicological tolerability, and potent tumor growth inhibition in mice bearing subcutaneous CT-26 tumors at doses as low as 3 mg/kg upon irradiation with deep-red light (660 nm). These results allow us to propose SCV49 as a strong candidate for further preclinical development, particularly for treating large hypoxic solid tumors.
Collapse
Affiliation(s)
- Diego Abad-Montero
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Albert Gandioso
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France
| | - Eduardo Izquierdo-García
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France
| | - Sergi Chumillas
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Anna Rovira
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Manel Bosch
- Unitat de Microscòpia Òptica Avançada, Centres Científics i Tecnològics, Universitat de Barcelona, Av. Diagonal 643, E-08028 Barcelona, Spain
| | - Mireia Jordà-Redondo
- Institut Químic de Sarrià, Universitat Ramon Llull, Vía Augusta 390, E-08017 Barcelona, Spain
| | - Davor Castaño
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Joaquín Bonelli
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Valentin V Novikov
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona (UB), and Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Alba Deyà
- Health and Biomedicine Department, Leitat Technological Center, Carrer de la Innovació 2, E-08225 Terrassa, Spain
| | - José Luis Hernández
- Health and Biomedicine Department, Leitat Technological Center, Carrer de la Innovació 2, E-08225 Terrassa, Spain
| | - Jorge Galino
- Health and Biomedicine Department, Leitat Technological Center, Carrer de la Innovació 2, E-08225 Terrassa, Spain
| | - Marta E Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende I-87036, Italy
| | | | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Vía Augusta 390, E-08017 Barcelona, Spain
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France
| | - Vicente Marchán
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
| |
Collapse
|
20
|
Bag SK, Ghosh S, Roy S, Jana S, Thakur A. Group 8 Organometallic Photochromic Compounds: Strategies and Applications. Chem Asian J 2025; 20:e202401384. [PMID: 39665448 DOI: 10.1002/asia.202401384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/13/2024]
Abstract
Stimuli-responsive photochromic units have emerged as one of the key components in the development of multi-responsive switches, optoelectronics, biomedical sciences and many more. The photoswitchability of such compounds depends greatly on the molecular structure, where association of metallic species is found to produce fascinating results. This review is a comprehensive report of all such photoswitchable metal-bounded molecules with group 8 metals within a span of last six years (2018-2024). Apart from the regular photoswitching phenomenon, this review focusses on the enhanced tunability, structural flexibility and perturbation in the photophysical properties of the group 8 metal-based photoswitches. Previous reviews in this field have either focused on some specific applications or have been general with the type of metal incorporations. Herein, we have constructed the review with group 8 organometallic photochromic compounds that possess a wide range of real-life applications. Designing strategies, structure-property relationships and application-oriented approach of the photochromic organometallic compounds have been elucidated categorically for building up a comprehensive idea about this modern developing field of research.
Collapse
Affiliation(s)
- Sayan Kumar Bag
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India Phone
| | - Swapnamoy Ghosh
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India Phone
| | - Subha Roy
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India Phone
| | - Subhendu Jana
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India Phone
| | - Arunabha Thakur
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India Phone
| |
Collapse
|
21
|
Wang W, Xu Y, Tang Y, Li Q. Self-Assembled Metal Complexes in Biomedical Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416122. [PMID: 39713915 DOI: 10.1002/adma.202416122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Indexed: 12/24/2024]
Abstract
Cisplatin is widely used in clinical cancer treatment; however, its application is often hindered by severe side effects, particularly inherent or acquired resistance of target cells. To address these challenges, an effective strategy is to modify the metal core of the complex and introduce alternative coordination modes or valence states, leading to the development of a series of metal complexes, such as platinum (IV) prodrugs and cyclometalated complexes. Recent advances in nanotechnology have facilitated the development of multifunctional nanomaterials that can selectively deliver drugs to tumor cells, thereby overcoming the pharmacological limitations of metal-based drugs. This review first explores the self-assembly of metal complexes into spherical, linear, and irregular nanoparticles in the context of biomedical applications. The mechanisms underlying the self-assembly of metal complexes into nanoparticles are subsequently analyzed, followed by a discussion of their applications in biomedical fields, including detection, imaging, and antitumor research.
Collapse
Affiliation(s)
- Wenting Wang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yang Xu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
22
|
Shi H, Marchi RC, Sadler PJ. Advances in the Design of Photoactivatable Metallodrugs: Excited State Metallomics. Angew Chem Int Ed Engl 2025; 64:e202423335. [PMID: 39806815 DOI: 10.1002/anie.202423335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Indexed: 01/16/2025]
Abstract
Photoactivatable metal complexes offer the prospect of novel drugs with low side effects and new mechanisms of action to combat resistance to current therapy. We highlight recent progress in the design of platinum, ruthenium, iridium, gold and other transition metal complexes, especially for applications as anticancer and anti-infective agents. In particular, understanding excited state chemistry related to identification of the bioactive species (excited state metallomics/pharmacophores) is important. Photoactivatable metallodrugs are classified here as photocatalysts, photorelease agents and ligand-activated agents. Their activation wavelengths, cellular mechanisms of action, experimental and theoretical metallomics of excited states and photoproducts are discussed to explore new strategies for the design and investigation of photoactivatable metallodrugs. These photoactivatable metallodrugs have potential in clinical applications of Photodynamic Therapy (PDT), Photoactivated Chemotherapy (PACT) and Photothermal Therapy (PTT).
Collapse
Affiliation(s)
- Huayun Shi
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Rafael C Marchi
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
23
|
Goetzfried SK, Hakkennes MLA, Busemann A, Bonnet S. Toward the Treatment of Glioblastoma Tumors Using Photoactivated Chemotherapy: In Vitro Evaluation of Efficacy and Safety. ACS Pharmacol Transl Sci 2025; 8:484-498. [PMID: 39974641 PMCID: PMC11833736 DOI: 10.1021/acsptsci.4c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/21/2025]
Abstract
Glioblastoma multiforme (GBM) is highly aggressive, necessitating new therapies. Photoactivated chemotherapy (PACT) offers a promising approach by activating prodrugs with visible light at the tumor site. This study evaluated the anticancer activity of ruthenium-based PACT compounds in U-87MG glioblastoma cells and their safety in SH-SY5Y neuron-like cells. The compound [3](PF6)2 showed promising light-activated anticancer effects in U-87MG cells, while [1](PF6)2 was inactive, and [2](PF6)2 was nonactivated. Interestingly, in SH-SY5Y cells, light-activated [3](PF6)2 increased cell proliferation, similar to donepezil, without causing cell death. Increased Ca2+ uptake was observed, possibly via interaction with the AMPA receptor, as suggested by docking studies. These findings suggest ruthenium-based PACT compounds may serve as potential treatments for GBM, effectively attacking cancer cells while preserving healthy neuronal cells.
Collapse
Affiliation(s)
| | - Matthijs L. A. Hakkennes
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Anja Busemann
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|
24
|
Nsubuga A, Fayad N, Pini F, Natile MM, Hildebrandt N. Small upconversion-ruthenium nanohybrids for cancer theranostics. NANOSCALE 2025; 17:3809-3821. [PMID: 39761019 DOI: 10.1039/d4nr04210g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Photoresponsive drug delivery systems have great potential for improved cancer therapy. However, most of the currently available drug-delivery nanosystems are relatively large and require light excitation with low tissue penetration. Here, we designed a near infrared responsive drug delivery system by loading [Ru(terpyridine)(dipyridophenazine)(H2O)]2+ (Ru(tpy)DPPZ) in azobenzene-modified mesoporous silica coated NaGdF4:Nd0.01/Yb0.2/Tm0.01 upconversion nanoparticles (azo-mSiO2-UCNPs). Upon 808 nm excitation, the generated ultraviolet and blue upconversion luminescence induced a reversible cis-trans isomerization of azobenzene for on-demand release of Ru(tpy)DPPZ. Imaging of both the UCNPs and Ru(tpy)DPPZ revealed targeted drug delivery to the nucleus of MCF-7 breast cancer cells, inducing DNA damage and concomitant cell destruction. Considering that cell nuclei are the core of cellular transcription and the main site of action for multiple chemotherapeutic drugs, our NIR-excitable and small (10 nm diameter) nanohybrids can potentially become highly versatile tools for targeted cancer theranostics.
Collapse
Affiliation(s)
- Anne Nsubuga
- Univ Rouen, CNRS, INSA Rouen, Normandie Université, Laboratoire COBRA, 76000 Rouen, France.
| | - Nour Fayad
- Univ Rouen, CNRS, INSA Rouen, Normandie Université, Laboratoire COBRA, 76000 Rouen, France.
| | - Federico Pini
- Univ Rouen, CNRS, INSA Rouen, Normandie Université, Laboratoire COBRA, 76000 Rouen, France.
- Istituto di Chimica della Materia Condensata e Tecnologie per l'Energia (ICMATE), Consiglio Nazionale delle Ricerche (CNR), Dipartimento di Scienze Chimiche, Università di Padova, 35131 Padova, Italy
| | - Marta M Natile
- Istituto di Chimica della Materia Condensata e Tecnologie per l'Energia (ICMATE), Consiglio Nazionale delle Ricerche (CNR), Dipartimento di Scienze Chimiche, Università di Padova, 35131 Padova, Italy
| | - Niko Hildebrandt
- McMaster University, Department of Engineering Physics, Hamilton, ON M8S 4K1, Canada.
| |
Collapse
|
25
|
Kushwaha R, Banerjee S. Dinuclear Ru(II) Complexes Containing Tetrapyrido[3,2-a : 2,3-c : 3,2-h : 2''',3'''-j]Phenazine Ligand for Biomedical Applications. Chembiochem 2025; 26:e202400931. [PMID: 39663208 DOI: 10.1002/cbic.202400931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/13/2024]
Abstract
Ruthenium complexes are among the most extensively studied and developed luminescent transition-metal complexes for anticancer applications. Dinuclear Ru(II) complexes have caught significant interest for larger size, higher charge, and variable complex shapes. In this concept, we have explored past and recent works on the possible biological applications of versatile tetrapyrido[3,2-a : 2,3-c : 3,2-h : 2''',3'''-j]phenazine (tppz)-based dinuclear Ru(II) complexes with a focus on their use as quadruplex DNA probes, organelle imaging, and phototherapeutic agents. This concept also points out that a particular type of dinuclear Ru(II) complexes can act as multitargeting and multifunctional anticancer agents -making this an exciting research area in which an array of further applications will likely emerge.
Collapse
Affiliation(s)
- Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
26
|
Montesdeoca N, Mohr JM, Kruss S, Karges J. Shift of cell-death mechanisms in primary human neutrophils with a ruthenium photosensitizer. J Biol Inorg Chem 2025; 30:53-60. [PMID: 39673631 PMCID: PMC11914334 DOI: 10.1007/s00775-024-02088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 11/30/2024] [Indexed: 12/16/2024]
Abstract
Primary human neutrophils are the most abundant human white blood cells and are central for innate immunity. They act as early responders at inflammation sites, guided by chemotactic gradients to find infection or inflammation sites. Neutrophils can undergo both apoptosis as well as NETosis. NETosis is a form of neutrophil cell death that releases chromatin-based extracellular traps (NETs) to capture and neutralize pathogens. Understanding or controlling the balance between these cell-death mechanisms is crucial. In this study, the chemical synthesis and biologic assessment of a ruthenium complex as a light-activated photosensitizer that creates reactive oxygen species (ROS) in primary human neutrophils is reported. The ruthenium complex remains non-toxic in the dark. However, upon exposure to blue light at 450 nm, it exhibits potent cytotoxic effects in both cancerous and non-cancerous cell lines. Interestingly, the metal complex shifts the cell-death mechanism of primary human neutrophils from NETosis to apoptosis. Cells irradiated directly by the light source immediately undergo apoptosis, whereas those further away from the light source perform NETosis at a slower rate. This indicates that high ROS levels trigger apoptosis and lower ROS levels NETosis. The ability to control the type of cell death undergone in primary human neutrophils could have implications in managing acute and chronic infectious diseases.
Collapse
Affiliation(s)
- Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Jennifer M Mohr
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Sebastian Kruss
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany.
- Fraunhofer Institute for Microelectronic Circuits and Systems, Duisburg, Germany.
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany.
| |
Collapse
|
27
|
Chatterjee A, Sarkar S, Bhattacharjee S, Bhattacharyya A, Barman S, Pal U, Pandey R, Ethirajan A, Jana B, Das BB, Das A. Microtubule-Targeting NAP Peptide-Ru(II)-polypyridyl Conjugate As a Bimodal Therapeutic Agent for Triple Negative Breast Carcinoma. J Am Chem Soc 2025; 147:532-547. [PMID: 39725612 DOI: 10.1021/jacs.4c11820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Triple-negative breast cancer (TNBC) poses significant treatment challenges due to its high metastasis, heterogeneity, and poor biomarker expression. The N-terminus of an octapeptide NAPVSIPQ (NAP) was covalently coupled to a carboxylic acid derivative of Ru(2,2'-bipy)32+ (Rubpy) to synthesize an N-stapled short peptide-Rubpy conjugate (Ru-NAP). This photosensitizer (PS) was utilized to treat TNBC through microtubule (MT) targeted chemotherapy and photodynamic therapy (PDT). Ru-NAP formed more elaborate molecular aggregates with fibrillar morphology as compared to NAP. A much higher binding affinity of Ru-NAP over NAP toward β-tubulin (KRu-NAP: (6.8 ± 0.55) × 106 M-1; KNAP: (8.2 ± 1.1) × 104 M-1) was observed due to stronger electrostatic interactions between the MT with an average linear charge density of ∼85 e/nm and the cationic Rubpy part of Ru-NAP. This was also supported by docking, simulation, and appropriate imaging studies. Ru-NAP promoted serum stability, specific binding of NAP to the E-site of the βIII-tubulin followed by the disruption of the MT network, and effective singlet oxygen generation in TNBC cells (MDA-MB-231), causing cell cycle arrest in the G2/M phase and triggering apoptosis. Remarkably, MDA-MB-231 cells were more sensitive to Ru-NAP compared to noncancerous human embryonic kidney (HEK293 cells) when exposed to light (LightIC50Ru-NAP[HEK293]: 17.2 ± 2.5 μM, compared to LightIC50Ru-NAP[MDA-MB-231]: 32.5 ± 7.8 nM, DarkIC50Ru-NAP[HEK293]: > 80 μM, compared to DarkIC50Ru-NAP[MDA-MB-231]: 2.9 ± 0.5 μM). Ru-NAP also effectively inhibited tumor growth in MDA-MB-231 xenograft models in nude mice. Our findings provide strong evidence that Ru-NAP has a potential therapeutic role in TNBC treatment.
Collapse
Affiliation(s)
- Atin Chatterjee
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
- Institute for Materials Research (Imo-imomec), Nanobiophysics and Soft Matter Interfaces (NSI) Group, Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium
| | - Sandip Sarkar
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Sangheeta Bhattacharjee
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Arpan Bhattacharyya
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Surajit Barman
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Uttam Pal
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700106, India
| | - Raviranjan Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Anitha Ethirajan
- Institute for Materials Research (Imo-imomec), Nanobiophysics and Soft Matter Interfaces (NSI) Group, Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium
- Imec, Imo-imomec, Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Batakrishna Jana
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Benu Brata Das
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Amitava Das
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
28
|
Mitchell RJ, Havrylyuk D, Hachey AC, Heidary DK, Glazer EC. Photodynamic therapy photosensitizers and photoactivated chemotherapeutics exhibit distinct bioenergetic profiles to impact ATP metabolism. Chem Sci 2025; 16:721-734. [PMID: 39629492 PMCID: PMC11609979 DOI: 10.1039/d4sc05393a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
Energy is essential for all life, and mammalian cells generate and store energy in the form of ATP by mitochondrial (oxidative phosphorylation) and non-mitochondrial (glycolysis) metabolism. These processes can now be evaluated by extracellular flux analysis (EFA), which has proven to be an indispensable tool in cell biology, providing previously inaccessible information regarding the bioenergetic landscape of cell lines, complex tissues, and in vivo models. Recently, EFA demonstrated its utility as a screening tool in drug development, both by providing insights into small molecule-organelle interactions, and by revealing the peripheral and potentially undesired off-target effects small molecules have within cells. Surprisingly, technologies to quantify cellular bioenergetics have not been systematically applied in phototherapy development, leaving open several questions about how the mechanism of action of a compound can impact essential cellular functions. Here, we utilized the Seahorse analyzer to address this question for photosensitizers (PSs) for photodynamic therapy (PDT) and contrast these systems to molecules that photo-release a ligand and thus act as photocages or photoactivated chemotherapeutics (PACT), intending to understand the influence these two classes of compounds have on cellular bioenergetics. EFA results show that acute treatment of A549 lung adenocarcinoma cells with PDT agents induces a quiescent bioenergetic response as a result of mitochondrial respiration shutdown. The loss of oxidative phosphorylation is followed by disruption of glycolysis, which occurs after an initial increase in glycolytic respiration is unable to compensate for the interruption of the electron transport chain (ETC). In contrast, the PACT agents tested had little impact on cellular respiration, and the minor inhibition of these metabolic processes was not related to the mechanism of action, as reflected by a lack of correlation with photoejection efficiency. Notably, a system capable of both generating 1O2 and photo-releasing a ligand exhibited the dominant profile of a PDT agent and induced the quiescent bioenergetic state, indicating potential implications on cellular bioenergetics for so-called dual-action agents. These findings are presented with the aim to provide the necessary groundwork for expanding the application and utility of EFA to phototherapeutics and to highlight the role of metabolic alterations in PDT.
Collapse
|
29
|
Mendez-Arriaga JM. Platinum Group Metals against Parasites: State of the Art and Future Perspectives. Med Chem 2025; 21:2-10. [PMID: 39916434 DOI: 10.2174/0115734064324855240806052735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 05/08/2025]
Abstract
BACKGROUND Globally, parasitic diseases are considered among the neglected diseases. Clinically, several drugs are used in treatment, however due to drug resistance and multidrug resistance and the low investment in new research lines, there has been a failure in the treatment of parasitic illnesses. OBJECTIVES The present mini-review is a comprehensive review of the use of platinum group metals as biological agents. It aims to establish the actual state of the art of these metal elements in the antiparasitic activity-specific area and define the future possibilities of action. METHODS The review comprises more than 100 research works done in this field. The differences between platinum group metals chemistry and their use as metal complexes with biological activity have been discussed. RESULTS This review highlighted the platinum group metal's potential as an antiparasitic agent for different diseases. CONCLUSION The review will be helpful for the researchers involved in targeted drugs for parasitic disease therapy.
Collapse
Affiliation(s)
- Jose Manuel Mendez-Arriaga
- Departamento De Biología y Geología, Física Y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain
| |
Collapse
|
30
|
Shee M, Schleisiek J, Maity N, Das G, Montesdeoca N, Ha-Thi MH, Gore KR, Karges J, Singh NDP. Exploring Excited-State Intramolecular Proton-Coupled Electron Transfer in Dinuclear Ir(III)-Complex via Covalently Tagged Hydroquinone: Phototherapy Through Futile Redox Cycling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408437. [PMID: 39711252 DOI: 10.1002/smll.202408437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/01/2024] [Indexed: 12/24/2024]
Abstract
Anticipating intramolecular excited-state proton-coupled electron transfer (PCET) process within dinuclear Ir2-photocatalytic system via the covalent linkage is seminal, yet challenging. Indeed, the development of various dinuclear complexes is also promising for studying integral photophysics and facilitating applications in catalysis or biology. Herein, this study reports dinuclear [Ir2(bis{imidazo-phenanthrolin-2-yl}-hydroquinone)(ppy)4]2+ (12+) complex by leveraging both ligand-centered redox property and intramolecular H-bonding for exploring dual excited-state proton-transfer assisted PCET process. The vital role of covalently placed hydroquinone in bridged ligand is investigated as electron-proton transfer (ET-PT) mediator in intramolecular PCET and validated from triplet spin density plot. Moreover, bimolecular photoinduced ET reaction is studied in acetonitrile/water medium, forging the lowest energy triplet charge separated (3CSPhen-Im) state of 12+ with methyl viologen via favorably concerted-PCET pathway. The result indicates strong donor-acceptors coupling, which limits charge recombination and enhances catalytic efficiency. To showcase the potential application, this bioinspired PCET-based photocatalytic platform is studied for phototherapeutics, indicating significant mitochondrial localization and leading to programmed cell death (apoptosis) through futile redox cycling. Indeed, the consequences of effective internalization (via energy-dependent endocytosis), better safety profile, and higher photoinduced antiproliferative activity of 12+ compared to Cisplatin, as explored in 3D tumor spheroids, this study anticipates it to be a potential lead compound.
Collapse
Affiliation(s)
- Maniklal Shee
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Julia Schleisiek
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Nishith Maity
- Université Paris-Saclay, CNRS, Institut des Sciences Molécu-laires d'Orsay, Orsay, 91405, France
| | - Gourav Das
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Minh-Huong Ha-Thi
- Université Paris-Saclay, CNRS, Institut des Sciences Molécu-laires d'Orsay, Orsay, 91405, France
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
31
|
Zhang L, Zhao G, Dalrymple T, Husiev Y, Bronkhorst H, Forn-Cuní G, Lopes-Bastos B, Snaar-Jagalska E, Bonnet S. Cyclic Ruthenium-Peptide Prodrugs Penetrate the Blood-Brain Barrier and Attack Glioblastoma upon Light Activation in Orthotopic Zebrafish Tumor Models. ACS CENTRAL SCIENCE 2024; 10:2294-2311. [PMID: 39735314 PMCID: PMC11672551 DOI: 10.1021/acscentsci.4c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/24/2024] [Accepted: 11/18/2024] [Indexed: 12/31/2024]
Abstract
The blood-brain barrier (BBB) presents one of the main obstacles to delivering anticancer drugs in glioblastoma. Herein, we investigated the potential of a series of cyclic ruthenium-peptide conjugates as photoactivated therapy candidates for the treatment of this aggressive tumor. The three compounds studied, Ru-p(HH), Ru-p(MH), and Ru-p(MM) ([Ru(Ph2phen)2 (Ac-X1RGDX2-NH2)]Cl2 with Ph2phen = 4,7-diphenyl-1,10-phenanthroline and X1, X2 = His or Met), include an integrin-targeted pentapeptide coordinated to a ruthenium warhead via two photoactivated ruthenium-X1,2 bonds. Their photochemistry, activation mechanism, tumor targeting, and antitumor activity were meticulously addressed. A combined in vitro and in vivo study revealed that the photoactivated cell-killing mechanism and their O2 dependence were strongly influenced by the nature of X1 and X2. Ru-p(MM) was shown to be a photoactivated chemotherapy (PACT) drug, while Ru-p(HH) behaved as a photodynamic therapy (PDT) drug. All conjugates, however, showed comparable antitumor targeting and efficacy toward human glioblastoma 3D spheroids and orthotopic glioblastoma tumor models in zebrafish embryos. Most importantly, in this model, all three compounds could effectively cross the BBB, resulting in excellent targeting of the tumors in the brain.
Collapse
Affiliation(s)
- Liyan Zhang
- Leiden
Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Gangyin Zhao
- Leiden
Institute of Biology, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Trevor Dalrymple
- Leiden
Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Yurii Husiev
- Leiden
Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Hildert Bronkhorst
- Leiden
Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Gabriel Forn-Cuní
- Leiden
Institute of Biology, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Bruno Lopes-Bastos
- Leiden
Institute of Biology, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Ewa Snaar-Jagalska
- Leiden
Institute of Biology, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Sylvestre Bonnet
- Leiden
Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| |
Collapse
|
32
|
Honda T, Hirake T, Kondo M, Masaoka S, Fujimori K, Moriuchi-Kawakami T, Hirahara M. Photoinduced Self-assembly: An Alternative Strategy for the Construction of Coordination Oligomers and Polymers. Chemistry 2024; 30:e202402993. [PMID: 39400448 DOI: 10.1002/chem.202402993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/01/2024] [Accepted: 10/14/2024] [Indexed: 10/15/2024]
Abstract
Self-assembled oligonuclear and polynuclear complexes have numerous functionalities and potential applications. Generally, such compounds have been constructed by thermal substitution reactions with bridging ligands. Herein, we report bottom-up and photochemical construction of functional coordination oligomers and polymers by photosubstitution-induced self-assembly. The photosubstitution reactions of a ruthenium precursor complex with bridging ligands having pyrazole moieties afford mono-, di-, tri-, tetra-, and pentanuclear ruthenium complexes, Ru1-Ru5, which have one-dimensional architectures. Intramolecular hydrogen bonding between each bridging ligand is a key to construct the molecular nanowires. All the complexes have been isolated and thoroughly characterized. The photochemically synthesized ruthenium complexes act as synthons for longer metal-complex-based nanowires with a length of the order of tens-of nanometers. The multinuclear complexes are generated by photoinduced self-assembly in the presence of a base, and they undergo photoinduced disassembly in the presence of acid.
Collapse
Affiliation(s)
- Takuma Honda
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Takumi Hirake
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Mio Kondo
- Department of Chemistry, School of Science, Institute of Science Tokyo, NE-6, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Shigeyuki Masaoka
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keiichi Fujimori
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Takayo Moriuchi-Kawakami
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Masanari Hirahara
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| |
Collapse
|
33
|
Marco A, Kasparkova J, Bautista D, Kostrhunova H, Cutillas N, Markova L, Novohradsky V, Ruiz J, Brabec V. A Novel Substituted Benzo[ g]quinoxaline-Based Cyclometalated Ru(II) Complex as a Biocompatible Membrane-Targeted PDT Colon Cancer Stem Cell Agent. J Med Chem 2024; 67:21470-21485. [PMID: 39620973 DOI: 10.1021/acs.jmedchem.4c02357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Herein, we describe and investigate biological activity of three octahedral ruthenium(II) complexes of the type [Ru(C∧N)(phen)2]+, RuL1-RuL3, containing a π-expansive cyclometalating substituted benzo[g]quinoxaline ligand (C∧N ligand) (phen = 1,10-phenanthroline). Compounds RuL1-RuL3 in cervical, melanoma, and colon human cancer cells exhibit high phototoxicity after irradiation with light (particularly blue), with the phototoxicity index reaching 100 for the complex RuL2 in most sensitive HCT116 cells. RuL2 accumulates in the cellular membranes. If irradiated, it induces lipid peroxidation, likely connected with photoinduced ROS generation. Oxidative damage to the fatty acids leads to the attenuation of the membranes, the activation of caspase 3, and the triggering of the apoptotic pathway, thus implementing membrane-localized photodynamic therapy. RuL2 is the first photoactive ruthenium-based complex capable of killing the hardly treatable colon cancer stem cells, a highly resilient subpopulation within a heterogeneous tumor mass, responsible for tumor recurrence and the metastatic progression of cancer.
Collapse
Affiliation(s)
- Alicia Marco
- Departamento de Química Inorgánica, Universidad de Murcia and Murcia BioHealth Research Institute (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61 200 Brno, Czech Republic
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, CZ-783 71 Olomouc, Czech Republic
| | | | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61 200 Brno, Czech Republic
| | - Natalia Cutillas
- Departamento de Química Inorgánica, Universidad de Murcia and Murcia BioHealth Research Institute (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Lenka Markova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61 200 Brno, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61 200 Brno, Czech Republic
| | - José Ruiz
- Departamento de Química Inorgánica, Universidad de Murcia and Murcia BioHealth Research Institute (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61 200 Brno, Czech Republic
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, CZ-783 71 Olomouc, Czech Republic
| |
Collapse
|
34
|
Mishra R, Chatterjee P, Butcher RJ, Patra AK. A serendipitous crossed aldol reaction in the ligand periphery of a Ru(II) polypyridyl complex in silica bed: prospects for delivering anticancer agents for photoactivated chemotherapy. Dalton Trans 2024; 53:18484-18493. [PMID: 39466686 DOI: 10.1039/d4dt02337d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The localized drug action in tumors to overcome the side effects of chemotherapy has become an impetus for the development of photoactivated chemotherapy (PACT). As potential PACT agents, ruthenium(II) polypyridyl complexes have emerged as efficient photocages for anticancer agents. Bioactive molecules possessing functional groups such as nitrile, thioether, pyridine, imidazole, etc. are often directly attached to the primary coordination sphere of Ru(II) polypyridyl complexes for this purpose. Herein, we propose an alternative design strategy to attach potential anticancer agents lacking these functional groups with Ru(II) polypyridyl complexes through a pyridyl linker moiety. The proposition is, however, a thoughtful extrapolation of a serendipitous crossed aldol reaction that took place between the Ru(II)-coordinated 4-Pyridinecarboxaldehyde (4-PyCHO) and acetone, discovered while the Ru(II)-complex [Ru(ttp)(dppz)(4-PyCHO)]2+ {[1]} [ttp = p-tolyl terpyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine, 4-PyCHO = 4-Pyridinecarboxaldehyde] was being purified by silica gel column chromatography with acetone/water/saturated aqueous KNO3 solution as the eluent. The resultant pure aldol product [Ru(ttp)(dppz)(4-PyCHAc)]2+ {[1-Ac]} [4-PyCHAc = aldol modified 4-Pyridinecarboxaldehyde, i.e., 4-hydroxy-4-(pyridin-4-yl)butan-2-one)], was unambiguously characterized by a variety of spectroscopic techniques and X-ray crystallography. Furthermore, a 1H NMR study after 470 nm light irradiation and subsequent ESI-MS analysis revealed that 4-PyCHO could be photo-released from [1-Ac] as its in situ generated aldol adduct 4-PyCHAc. Therefore, this finding serves as a proof-of-concept that provides a simpler alternative design strategy for appending cancer-selective agents having carbonyl groups with α-hydrogens to ruthenium(II) polypyridyl complexes and their photorelease for selective and targeted anticancer chemotherapy.
Collapse
Affiliation(s)
- Ramranjan Mishra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.
| | - Pritha Chatterjee
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.
| | - Ray J Butcher
- Department of Chemistry, Howard University, Washington, DC 20059, USA
| | - Ashis K Patra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.
| |
Collapse
|
35
|
Mato M, Fernández-González X, D'Avino C, Tomás-Gamasa M, Mascareñas JL. Bioorthogonal Synthetic Chemistry Enabled by Visible-Light Photocatalysis. Angew Chem Int Ed Engl 2024; 63:e202413506. [PMID: 39135347 DOI: 10.1002/anie.202413506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Indexed: 10/17/2024]
Abstract
The field of bioorthogonal chemistry has revolutionized our ability to interrogate and manipulate biological systems at the molecular level. However, the range of chemical reactions that can operate efficiently in biological environments without interfering with the native cellular machinery, remains limited. In this context, the rapidly growing area of photocatalysis offers a promising avenue for developing new type of bioorthogonal tools. The inherent mildness, tunability, chemoselectivity, and external controllability of photocatalytic transformations make them particularly well-suited for applications in biological and living systems. This minireview summarizes recent advances in bioorthogonal photocatalytic technologies, with a particular focus on their potential to enable the selective generation of designed products within biologically relevant or living settings.
Collapse
Affiliation(s)
- Mauro Mato
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Xulián Fernández-González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Cinzia D'Avino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - María Tomás-Gamasa
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| |
Collapse
|
36
|
Liu W, He S, Ma X, Lv C, Gu H, Cao J, Du J, Sun W, Fan J, Peng X. Near-Infrared Heptamethine Cyanine Photosensitizers with Efficient Singlet Oxygen Generation for Anticancer Photodynamic Therapy. Angew Chem Int Ed Engl 2024; 63:e202411802. [PMID: 39081186 DOI: 10.1002/anie.202411802] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/25/2024] [Indexed: 11/12/2024]
Abstract
Near-infrared photosensitizers are valuable tools to improve treatment depth in photodynamic therapy (PDT). However, their low singlet oxygen (1O2) generation ability, indicated by low 1O2 quantum yield, presents a formidable challenge for PDT. To overcome this challenge, the heptamethine cyanine was decorated with biocompatible S (Scy7) and Se (Secy7) atom. We observe that Secy7 exhibits a redshift in the main absorption to ~840 nm and an ultra-efficient 1O2 generation capacity. The emergence of a strong intramolecular charge transfer effect between the Se atom and polymethine chain considerably narrows the energy gap (0.51 eV), and the heavy atom effect of Se strengthens spin-orbit coupling (1.44 cm-1), both of which greatly improved the high triplet state yield (61 %), a state that determines the energy transfer to O2. Therefore, Secy7 demonstrated excellent 1O2 generation capacity, which is ~24.5-fold that of indocyanine green, ~8.2-fold that of IR780, and ~1.3-fold that of methylene blue under low-power-density 850 nm irradiation (5 mW cm-2). Secy7 exhibits considerable phototoxicity toward cancer cells buried under 12 mm of tissue. Nanoparticles formed by encapsulating Secy7 within amphiphilic polymers and lecithin, demonstrated promising antitumor and anti-pulmonary metastatic effects, exhibiting remarkable potential for advancing PDT in deep tissues.
Collapse
Affiliation(s)
- Wenkai Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Shan He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Xue Ma
- School of Chemical Engineering, Dalian University of Technology, Panjin, 124221, China
| | - Chengyuan Lv
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Hua Gu
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China
| | - Jianfang Cao
- School of Chemical Engineering, Dalian University of Technology, Panjin, 124221, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
- Liaoning Binhai Laboratory, Dalian, 116023, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China
- Liaoning Binhai Laboratory, Dalian, 116023, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China
- Liaoning Binhai Laboratory, Dalian, 116023, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
- Liaoning Binhai Laboratory, Dalian, 116023, China
| |
Collapse
|
37
|
Lee LC, Lo KK. Leveraging the Photofunctions of Transition Metal Complexes for the Design of Innovative Phototherapeutics. SMALL METHODS 2024; 8:e2400563. [PMID: 39319499 PMCID: PMC11579581 DOI: 10.1002/smtd.202400563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/03/2024] [Indexed: 09/26/2024]
Abstract
Despite the advent of various medical interventions for cancer treatment, the disease continues to pose a formidable global health challenge, necessitating the development of new therapeutic approaches for more effective treatment outcomes. Photodynamic therapy (PDT), which utilizes light to activate a photosensitizer to produce cytotoxic reactive oxygen species (ROS) for eradicating cancer cells, has emerged as a promising approach for cancer treatment due to its high spatiotemporal precision and minimal invasiveness. However, the widespread clinical use of PDT faces several challenges, including the inefficient production of ROS in the hypoxic tumor microenvironment, the limited penetration depth of light in biological tissues, and the inadequate accumulation of photosensitizers at the tumor site. Over the past decade, there has been increasing interest in the utilization of photofunctional transition metal complexes as photosensitizers for PDT applications due to their intriguing photophysical and photochemical properties. This review provides an overview of the current design strategies used in the development of transition metal complexes as innovative phototherapeutics, aiming to address the limitations associated with PDT and achieve more effective treatment outcomes. The current challenges and future perspectives on the clinical translation of transition metal complexes are also discussed.
Collapse
Affiliation(s)
- Lawrence Cho‐Cheung Lee
- Department of ChemistryCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
| | - Kenneth Kam‐Wing Lo
- Department of ChemistryCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
- State Key Laboratory of Terahertz and Millimeter WavesCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
| |
Collapse
|
38
|
Ponte F, Belletto D, Leonetti R, Sanna N, Scoditti S, Mazzone G, Sicilia E. DFT Computational Analysis of the Mechanism of Action of Ru(II) Polypyridyl Complexes as Photoactivated Chemotherapy Agents: From Photoinduced Ligand Solvolysis to DNA Binding. Inorg Chem 2024; 63:20643-20653. [PMID: 39392662 DOI: 10.1021/acs.inorgchem.4c03297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Photoactivated chemotherapy (PACT) is a form of target-oriented cancer therapy that exploits light of the proper wavelength to selectively activate the drug. Among the prodrugs used for this purpose, ruthenium-based complexes are particularly interesting, as when irradiated by light, they can release ligands by forming aquo-complexes able to bind DNA in both single and double strand fashions, causing its distortion. Using as model system a Ru(II) polypyridyl complex that has been demonstrated to be a promising photochemotherapeutic agent, all of the key aspects of the photoinduced solvolysis process and subsequent DNA interaction have been scrutinized using density functional theory (DFT) and time-dependent-DFT (TDDFT). Photoexcitation, intersystem crossing, internal conversion, mechanism by which photoinduced ligand release, and subsequent aquation steps occur have been examined. Pathways leading to the formation of both cis and trans biaquated photoproducts have been described, and the formation of the cis form of the biaquated photoproduct being the most favorable one, its reaction with a guanine base has also been reported in order to account for DNA binding.
Collapse
Affiliation(s)
- Fortuna Ponte
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende, CS, Italy
| | - Daniele Belletto
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende, CS, Italy
| | - Roberta Leonetti
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende, CS, Italy
| | - Nico Sanna
- Department for Innovation in Biology, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - Stefano Scoditti
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende, CS, Italy
| | - Gloria Mazzone
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende, CS, Italy
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende, CS, Italy
| |
Collapse
|
39
|
Kuznetsov KM, Cariou K, Gasser G. Two in one: merging photoactivated chemotherapy and photodynamic therapy to fight cancer. Chem Sci 2024:d4sc04608k. [PMID: 39464604 PMCID: PMC11499979 DOI: 10.1039/d4sc04608k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
The growing number of cancer cases requires the development of new approaches for treatment. A therapy that has attracted the special attention of scientists is photodynamic therapy (PDT) due to its spatial and temporal resolution. However, it is accepted that this treatment methodology has limited application in cases of low cellular oxygenation, which is typical of cancerous tissues. Therefore, a strategy to overcome this drawback has been to combine this therapy with photoactivated chemotherapy (PACT), which works independently of the presence of oxygen. In this perspective, we examine compounds that act as both PDT and PACT agents and summarize their photophysical and biological characteristics.
Collapse
Affiliation(s)
- Kirill M Kuznetsov
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France http://www.gassergroup.com/ +33 1 85 78 41 51
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France http://www.gassergroup.com/ +33 1 85 78 41 51
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France http://www.gassergroup.com/ +33 1 85 78 41 51
| |
Collapse
|
40
|
Holden L, Curley RC, Avella G, Long C, Keyes TE. Targeting Mitochondrial Guanine Quadruplexes for Photoactivatable Chemotherapy in Hypoxic Environments. Angew Chem Int Ed Engl 2024; 63:e202408581. [PMID: 39012206 DOI: 10.1002/anie.202408581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/29/2024] [Accepted: 07/14/2024] [Indexed: 07/17/2024]
Abstract
A first example of a mitochondrial G-quadruplex (mitoG4s) targeted Ru(II) photooxidant complex is reported. The complex, Ru-TAP-PDC3 induces photodamage toward guanine quadruplexes (G4s) located in the mitochondrial genome under hypoxic and normoxic conditions. Ru-TAP-PDC3 shows high affinity for mitoG4s and localises within mitochondria of live HeLa cells. Immunolabelling with anti-G4 antibody, BG4, confirms Ru-TAP-PDC3 associates with G4s within the mitochondria of fixed cells. The complex induces depletion of mtDNA in live cells under irradiation at 405 nm, confirmed by loss of PicoGreen signal from mitochondria. Biochemical studies confirm this process induces apoptosis. The complex shows low dark toxicity and an impressive phototoxicity index (PI) of >89 was determined in Hela under very low intensity irradiation, 5 J/cm2. The phototoxicity is thought to operate through both Type II singlet oxygen and Type III pathways depending on normoxic or hypoxic conditions, from live cell assays and plasmid DNA cleavage. Overall, we demonstrate targeting mitoG4s and mtDNA with a photooxidant is a potent route to achieving apoptosis under hypoxic conditions that can be extended to phototherapy.
Collapse
Affiliation(s)
- Lorcan Holden
- School of Chemical Sciences National Center for Sensor Research, Dublin City University, Dublin, 9, Ireland
| | - Rhianne C Curley
- School of Chemical Sciences National Center for Sensor Research, Dublin City University, Dublin, 9, Ireland
| | - Giuseppe Avella
- School of Chemical Sciences National Center for Sensor Research, Dublin City University, Dublin, 9, Ireland
| | - Conor Long
- School of Chemical Sciences National Center for Sensor Research, Dublin City University, Dublin, 9, Ireland
| | - Tia E Keyes
- School of Chemical Sciences National Center for Sensor Research, Dublin City University, Dublin, 9, Ireland
| |
Collapse
|
41
|
Sahoo D, Deb P, Basu T, Bardhan S, Patra S, Sukul PK. Advancements in platinum-based anticancer drug development: A comprehensive review of strategies, discoveries, and future perspectives. Bioorg Med Chem 2024; 112:117894. [PMID: 39214013 DOI: 10.1016/j.bmc.2024.117894] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Platinum-based anticancer drugs have been at the forefront of cancer chemotherapy, with cisplatin emerging as a pioneer in the treatment of various malignancies. This review article provides a comprehensive overview of the evolution of platinum-based anticancer therapeutics, focusing on the development of cisplatin, platinum(IV) prodrugs, and the integration of photodynamic therapy (PDT) for enhanced cancer treatment results. The first section of the review delves into the historical context and molecular mechanisms underlying the success of cisplatin, highlighting its DNA binding properties and subsequent interference with cellular processes. Despite its clinical efficacy, the inherent limitations, including dose-dependent toxicities and acquired resistance, accelerated the exploration of novel platinum derivatives. This led to the emergence of platinum(IV) prodrugs, designed to overcome resistance mechanisms and enhance selectivity through targeted drug delivery. The subsequent section provides an in-depth analysis of the principles of design and structural modifications employed in the development of platinum(IV) prodrugs. The transitions to the incorporation of photodynamic therapy (PDT) stands out as a synergistic approach to platinum-based anticancer treatment. The photophysical properties of platinum complexes are discussed in the context of their potential application in PDT, emphasizing on combined cytotoxic effects of platinum-based drugs and light-induced reactive oxygen species generation. This dual-action approach holds great promise for overcoming the limitations of traditional chemotherapy as well as producing superior therapeutic outcomes. Overall, the present report explores the latest developments in the development and use of platinum complexes, highlighting novel strategies such combination treatments, targeted delivery methods, and the generation of multifunctional complexes. It also provides a comprehensive overview of the current landscape while proposing future directions for the development of next-generation platinum-based anticancer therapeutics.
Collapse
Affiliation(s)
- Debsankar Sahoo
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Action Area-II, Kadampukur, New Town, Rajarhat, Kolkata 700135, India
| | - Priya Deb
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Action Area-II, Kadampukur, New Town, Rajarhat, Kolkata 700135, India
| | - Tamal Basu
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Action Area-II, Kadampukur, New Town, Rajarhat, Kolkata 700135, India
| | - Srishti Bardhan
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Action Area-II, Kadampukur, New Town, Rajarhat, Kolkata 700135, India
| | - Sayan Patra
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Action Area-II, Kadampukur, New Town, Rajarhat, Kolkata 700135, India
| | - Pradip K Sukul
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Action Area-II, Kadampukur, New Town, Rajarhat, Kolkata 700135, India; Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| |
Collapse
|
42
|
Fennes A, Montesdeoca N, Papadopoulos Z, Karges J. Rational design of a red-light absorbing ruthenium polypyridine complex as a photosensitizer for photodynamic therapy. Chem Commun (Camb) 2024; 60:10724-10727. [PMID: 39240534 DOI: 10.1039/d4cc04126g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Herein, the computer-guided design, chemical synthesis, and biological evaluation of a RuC polypyridine complex, that could eradicate cancerous cells upon excitation with red light at 630 nm, is reported.
Collapse
Affiliation(s)
- Alessia Fennes
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Zisis Papadopoulos
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| |
Collapse
|
43
|
He M, Ma Z, Zhang L, Zhao Z, Zhang Z, Liu W, Wang R, Fan J, Peng X, Sun W. Sonoinduced Tumor Therapy and Metastasis Inhibition by a Ruthenium Complex with Dual Action: Superoxide Anion Sensitization and Ligand Fracture. J Am Chem Soc 2024; 146:25764-25779. [PMID: 39110478 DOI: 10.1021/jacs.4c08278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Photoresponsive ruthenium(II) complexes have recently emerged as a promising tool for synergistic photodynamic therapy and chemotherapy in oncology, as well as for antimicrobial applications. However, the limited penetration power of photons prevents the treatment of deep-seated lesions. In this study, we introduce a sonoresponsive ruthenium complex capable of generating superoxide anion (O2•-) via type I process and initiating a ligand fracture process upon ultrasound triggering. Attaching hydroxyflavone (HF) as an "electron reservoir" to the octahedral-polypyridyl-ruthenium complex resulted in decreased highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gaps and triplet-state metal to ligand charge transfer (3MLCT) state energy (0.89 eV). This modification enhanced the generation of O2•- under therapeutic ultrasound irradiation at a frequency of 1 MHz. The produced O2•- rapidly induced an intramolecular cascade reaction and HF ligand fracture. As a proof-of-concept, we engineered the Ru complex into a metallopolymer platform (PolyRuHF), which could be activated by low-power ultrasound (1.5 W cm-2, 1.0 MHz, 50% duty cycle) within a centimeter range of tissue. This activation led to O2•- generation and the release of cytotoxic ruthenium complexes. Consequently, PolyRuHF induced cellular apoptosis and ferroptosis by causing mitochondrial dysfunction and excessive toxic lipid peroxidation. Furthermore, PolyRuHF effectively inhibited subcutaneous and orthotopic breast tumors and prevented lung metastasis by downregulating metastasis-related proteins in mice. This study introduces the first sonoresponsive ruthenium complex for sonodynamic therapy/sonoactivated chemotherapy, offering new avenues for deep tumor treatment.
Collapse
Affiliation(s)
- Maomao He
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiyuan Ma
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Linhao Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiyu Zhao
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Zongwei Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wenkai Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ran Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
44
|
Rapp TL, Kopyeva I, Adhikari A, DeForest CA. Bioluminescence Resonance Energy Transfer (BRET)-Mediated Protein Release from Self-Illuminating Photoresponsive Biomaterials. J Am Chem Soc 2024; 146:25397-25402. [PMID: 39250821 PMCID: PMC11730197 DOI: 10.1021/jacs.4c03361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Phototriggered release of various cargos, including soluble protein factors and small molecules, has the potential to correct aberrant biological events by offering spatiotemporal control over local therapeutic levels. However, the poor penetration depth of light historically limits implementation to subdermal regions, necessitating alternative methods of light delivery to achieve the full potential of photodynamic therapeutic release. Here, we introduce a strategy exploiting bioluminescence resonance energy transfer (BRET)-an energy transfer process between light-emitting Nanoluciferase (NLuc) and a photosensitive acceptor molecule-to drive biomolecule release from hydrogel biomaterials. Through a facile, one-pot, and high-yielding synthesis (60-70%), we synthesized a heterobifunctional ruthenium cross-linker bearing an aldehyde and an azide (CHO-Ru-N3), a compound that we demonstrate undergoes predictable exchange of the azide-bearing ligand under blue-green light irradiation (>550 nm). Following site-specific conjugation to NLuc via sortase-tag enhanced protein ligation (STEPL), the modified protein was covalently attached to a poly(ethylene glycol) (PEG)-based hydrogel via strain-promoted azide-alkyne cycloaddition (SPAAC). Leveraging the high photosensitivity of Ru compounds, we demonstrate rapid and equivalent release of epidermal growth factor (EGF) via either direct illumination or via BRET-based bioluminolysis. As NLuc-originated luminescence can be controlled equivalently throughout the body, we anticipate that this unique protein release strategy will find use for locally triggered drug delivery following systemic administration of a small molecule.
Collapse
Affiliation(s)
- Teresa L. Rapp
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98105, USA
| | - Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle, WA, 98105, USA
| | - Abhinav Adhikari
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98105, USA
| | - Cole A. DeForest
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98105, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98105, USA
- Department of Chemistry, University of Washington, Seattle, WA, 98105, USA
- Molecular Science and Engineering Institute, University of Washington, Seattle, WA, 98105, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98105, USA
| |
Collapse
|
45
|
Scattergood PA, Elliott PIP. Prediction and Rationalization of Different Photochemical Behaviors of mer- and fac-Isomers of [Ru(pyridyltriazole) 3] 2. Inorg Chem 2024; 63:17287-17297. [PMID: 39235265 PMCID: PMC11409217 DOI: 10.1021/acs.inorgchem.4c03154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Facial and meridional isomerism of metal complexes is known to result in fundamental differences in photophysical properties. One may also envisage differences in their photochemical reactivity and therefore predict different outcomes of their light-triggered transformations. The fac- and mer-isomers of the complex [Ru(pytz)3]2+ (fac-1 & mer-1, pytz = 1-benzyl-4-(pyrid-2-yl)-1,2,3-triazole) were separated and isolated. mer-1 undergoes a predicted pytz photodechelation process in acetonitrile to yield trans-[Ru(κ2-pytz)2(κ1-pytz)(NCMe)]2+ (2) whereas unfavorable interligand steric interactions are predicted to, and indeed do prevent comparable photoreactivity for fac-1. Reversible photoisomerization of fac-1 and mer-1 is also observed, however. The differences in photochemical reactivity of the two isomers can be rationalized based on structural programming of the preferential accessibility of particular 3MC excited states due to differences in their interligand steric interactions. Here we present an initial predictive thought experiment, subsequent experimental verification, and computational rationalization of the differences in photochemical reactivity of these two isomeric complexes.
Collapse
Affiliation(s)
- Paul A Scattergood
- Department of Physical and Life Sciences & Centre for Functional Materials, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Paul I P Elliott
- Department of Physical and Life Sciences & Centre for Functional Materials, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| |
Collapse
|
46
|
Rasin P, Surendran SS, K S K, Haribabu J, Sreekanth A. Targeting Glioblastoma: Efficacy of Ruthenium-Based Drugs. Chem Res Toxicol 2024; 37:1453-1455. [PMID: 39163492 DOI: 10.1021/acs.chemrestox.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Ruthenium compounds offer improved selectivity and fewer side effects compared to platinum-based drugs in glioblastoma treatment. Insights into their interactions with transferrin suggest targeted drug delivery, while photoactivated chemotherapy is a novel cytotoxic approach in tumor tissues.
Collapse
Affiliation(s)
- Puthiyavalappil Rasin
- Center for Nonlinear Systems, Chennai Institute of Technology (CIT), Chennai 600069, India
| | - Sravan Sangeeth Surendran
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| | - Karthik K S
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| | - Jebiti Haribabu
- ATACAMA-OMICS, Facultad de Medicine, Universidad de Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
| | - Anandaram Sreekanth
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| |
Collapse
|
47
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
48
|
Kushwaha R, Upadhyay A, Saha S, Yadav AK, Bera A, Dutta A, Banerjee S. Cancer phototherapy by CO releasing terpyridine-based Re(I) tricarbonyl complexes via ROS generation and NADH oxidation. Dalton Trans 2024; 53:13591-13601. [PMID: 39078263 DOI: 10.1039/d4dt01309c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Here, we have synthesized and characterized three visible light responsive terpyridine based-Re(I)-tricarbonyl complexes; [Re(CO)3(ph-tpy)Cl] (Retp1), [Re(CO)3(an-tpy)Cl] (Retp2), and [Re(CO)3(py-tpy)Cl] (Retp3) where ph-tpy = 4'-phenyl-2,2':6',2″-terpyridine; an-tpy = 4'-anthracenyl-2,2':6',2″-terpyridine, py-tpy = 4'-pyrenyl-2,2':6',2″-terpyridine. The structures of Retp1 and Retp2 were confirmed from the SC-XRD data, indicating distorted octahedral structures. Unlike traditional PDT agents, these complexes generated reactive oxygen species (ROS) via type I and type II pathways and oxidized redox crucial NADH (reduced nicotinamide adenine dinucleotide) upon visible light exposure. Retp3 showed significant mitochondrial localization and demonstrated photoactivated anticancer activity (IC50 ∼ 2 µM) by inducing ROS-mediated cell death in cancer cells selectively (photocytotoxicity Index, PI > 28) upon compromising mitochondrial function in A549 cells. Their diagnostic capabilities were ultimately assessed using clinically relevant 3D multicellular tumor spheroids (MCTs).
Collapse
Affiliation(s)
- Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India.
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - Sukanta Saha
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India.
| | - Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
49
|
Chatterjee P, Mishra R, Chawla S, Sonkar AK, De AK, Patra AK. Dual Photoreactive Ternary Ruthenium(II) Terpyridyl Complexes: A Comparative Study on Visible-Light-Induced Single-Step Dissociation of Bidentate Ligands and Generation of Singlet Oxygen. Inorg Chem 2024; 63:14998-15015. [PMID: 39092885 DOI: 10.1021/acs.inorgchem.4c01727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The versatile and tunable ligand-exchange dynamics in ruthenium(II)-polypyridyl complexes imposed by the modulation of the steric and electronic effects of the coordinated ligands provide an unlimited scope for developing phototherapeutic agents. The photorelease of a bidentate ligand from the Ru-center is better suited for potent Ru(II)-based photocytotoxic agents with two available labile sites for cross-linking with biological targets augmented with possible phototriggered 1O2 generation. Herein, we introduced a phenyl-terpyridine (ptpy) ligand in the octahedral Ru(II) core of [Ru(ptpy)(L-L)Cl]+ to induce structural distortion for the possible photorelease of electronically distinct bidentate ligands (L-L). For a systematic study, we designed four Ru(II) polypyridyl complexes: [Ru(ptpy)(L-L)Cl](PF6), ([1]-[4]), where L-L = 1,2-bis(phenylthio)ethane (SPH) [1], N,N,N',N'-tetramethylethylenediamine (TMEN) [2], N1,N2-diphenylethane-1,2-diimine (BPEDI) [3], and bis[2-(diphenylphosphino)phenyl]ether (DPE-Phos) [4]. The detailed photochemical studies suggest a single-step dissociation of L-L from the bis-thioether (SPH) complex [1] and diamine (TMEN) complex [2], while no photosubstitution was observed for [3] and [4]. Complex [1] and [2] demonstrated a dual role, involving both photosubstitution and 1O2 generation, while [3] and [4] solely exhibited poor to moderate 1O2 production. The interplay of excited states leading to these behaviors was rationalized from the lifetimes of the 3MLCT excited states by using transient absorption spectroscopy, suggesting intricate relaxation dynamics and 1O2 generation upon excitation. Therefore, the photolabile complexes [1] and [2] could potentially act as dual photoreactive agents via the phototriggered release of L-L (PACT) and/or 1O2-mediated PDT mechanisms, while [4] primarily can be utilized as a PDT agent.
Collapse
Affiliation(s)
- Pritha Chatterjee
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Ramranjan Mishra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sakshi Chawla
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Avinash Kumar Sonkar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Arijit K De
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Ashis K Patra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
50
|
Zhang H, Zhang Y, Zhang Y, Li H, Ou M, Yu Y, Zhang F, Yin H, Mao Z, Mei L. Catalytic activity of violet phosphorus-based nanosystems and the role of metabolites in tumor therapy. Nat Commun 2024; 15:6783. [PMID: 39117634 PMCID: PMC11310355 DOI: 10.1038/s41467-024-50769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Although nanocatalytic medicine has demonstrated its advantages in tumor therapy, the outcomes heavily relie on substrate concentration and the metabolic pathways are still indistinct. We discover that violet phosphorus quantum dots (VPQDs) can catalyze the production of reactive oxygen species (ROS) without requiring external stimuli and the catalytic substrates are confirmed to be oxygen (O2) and hydrogen peroxide (H2O2) through the computational simulation and experiments. Considering the short of O2 and H2O2 at the tumor site, we utilize calcium peroxide (CaO2) to supply catalytic substrates for VPQDs and construct nanoparticles together with them, named VPCaNPs. VPCaNPs can induce oxidative stress in tumor cells, particularly characterized by a significant increase in hydroxyl radicals and superoxide radicals, which cause substantial damage to the structure and function of cells, ultimately leading to cell apoptosis. Intriguingly, O2 provided by CaO2 can degrade VPQDs slowly, and the degradation product, phosphate, as well as CaO2-generated calcium ions, can promote tumor calcification. Antitumor immune activation and less metastasis are also observed in VPCaNPs administrated animals. In conclusion, our study unveils the anti-tumor activity of VPQDs as catalysts for generating cytotoxic ROS and the degradation products can promote tumor calcification, providing a promising strategy for treating tumors.
Collapse
Affiliation(s)
- Hanjie Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China
| | - Yitong Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China
| | - Yushi Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China
| | - Hanyue Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China
| | - Meitong Ou
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China
| | - Yongkang Yu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Fan Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China
| | - Huijuan Yin
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China
- Integrative regeneration laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China
| | - Zhuo Mao
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China.
| | - Lin Mei
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China.
| |
Collapse
|