1
|
Yu Y, Li Y, Lou Y, Chen M, Liu Y, Yu H. Tunable Transfer-Hydrodeoxygenated Upgrading of Lignin-Derived Propylphenols to Versatile Value-Added Alkane-Based Chemicals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500687. [PMID: 40068114 PMCID: PMC12061236 DOI: 10.1002/advs.202500687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/23/2025] [Indexed: 05/10/2025]
Abstract
Catalytic refining of lignin holds promise for producing sustainable platform chemicals. In this work, a gaseous hydrogen-free catalytic hydrodeoxygenation system is developed for upgrading lignin-derived phenols to alkane chemicals. Commercially available Raney Ni and HZSM-5 are used as a combinational catalyst, with isopropanol serving as the hydrogen-donating solvent. By modifying the temperature and the ratio of Raney Ni to HZSM-5, the reaction pathways for hydrogenation and deoxygenation can be tailored to specific requirements. As a result, a 97.1% yield of alkane fuels is achieved, with 64.4% propylcyclohexane and 32.7% propylbenzene obtained in one-pot reaction from the hydrodeoxygenation of 2-methoxy-4-propylphenol using a 3:1 mass ratio of Ni to HZSM-5, further increasing the ratio of HZSM-5 leads to a selectively production of propylbenzene in 62.0% yield. Through careful regulation of the catalytic system and the design of hydrogenation-deoxygenation pathways, excellent yields of 4-propylcyclohexanol (92.2%), propylcyclohexene (93.3%), and propylcyclohexane (93.2%) are directionally achieved. The catalyst maintained a conversion rate of over 99% after five cycles, demonstrating excellent robustness. This study offers a strategic system that expedites the selective upgrading of lignin-derived chemicals, heralding a pathway toward sustainable fuels and chemicals.
Collapse
Affiliation(s)
- Yanyan Yu
- Key Laboratory of Bio‐based Material Science and Technology of Ministry of EducationState Key Laboratory of Utilization of Woody Oil ResourceNortheast Forestry UniversityHarbin150040P. R. China
| | - Yilin Li
- Key Laboratory of Bio‐based Material Science and Technology of Ministry of EducationState Key Laboratory of Utilization of Woody Oil ResourceNortheast Forestry UniversityHarbin150040P. R. China
| | - Yuhan Lou
- Key Laboratory of Bio‐based Material Science and Technology of Ministry of EducationState Key Laboratory of Utilization of Woody Oil ResourceNortheast Forestry UniversityHarbin150040P. R. China
| | - Mengyuan Chen
- Key Laboratory of Bio‐based Material Science and Technology of Ministry of EducationState Key Laboratory of Utilization of Woody Oil ResourceNortheast Forestry UniversityHarbin150040P. R. China
| | - Yongzhuang Liu
- Key Laboratory of Bio‐based Material Science and Technology of Ministry of EducationState Key Laboratory of Utilization of Woody Oil ResourceNortheast Forestry UniversityHarbin150040P. R. China
| | - Haipeng Yu
- Key Laboratory of Bio‐based Material Science and Technology of Ministry of EducationState Key Laboratory of Utilization of Woody Oil ResourceNortheast Forestry UniversityHarbin150040P. R. China
| |
Collapse
|
2
|
Li H, Liang J, Ren M, Wahia H, Chen L, Yagoub AEA, Zhou C. Modification of walnut shell lignin nanoparticles through deep eutectic solvent for application in active food packaging films. Int J Biol Macromol 2025; 309:143046. [PMID: 40216128 DOI: 10.1016/j.ijbiomac.2025.143046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/13/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
The depletion and polluting nature of fossil fuels, coupled with the threat to human health posed by microplastics generated from plastic packaging, have underscored the significance of renewable resources in addressing environmental degradation. Among these, biomass has emerged as a prominent contender. The complex molecular structure of lignocellulose and limitations of conventional pretreatments hinder its efficient utilization. To address this, a ternary deep eutectic solvent (DES) was developed to extract bioactive lignin nanoparticles (LNPs) from walnut shells. Employing a continuous processing platform, 56.84 % of the lignin was converted into LNPs via DES and anti-solvent precipitation. Ethylene glycol in the DES preserved lignin's side-chain functionality, yielding LNPs with a ζ-potential of -28.29 mV, a particle size of 203.48 nm, and superior antioxidant activity compared to LNPs prepared by traditional DES. Electrostatic and non-covalent interactions between LNPs and ε-polylysine (ε-PL) within a polyvinyl alcohol (PVA) matrix produced a composite film with a tensile strength of 33.32 MPa, 90 % UV-blocking efficiency, and 60 % microbial growth inhibition. When applied to fresh walnut packaging, the film's gradual release of LNPs suppressed mold proliferation via phenolic hydroxyl groups, reduced oxidative degradation of nutrients, and extended shelf life. This study introduces a scalable, circular approach to repurposing agricultural waste into biodegradable active packaging, aligning lignin valorization with sustainable food preservation strategies.
Collapse
Affiliation(s)
- Haoxin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Jiakang Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Manni Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Chen
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Abu ElGasim Ahmed Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Ma Z, Chen Z, Yuan Z, Ren C, Zhang B, Cui Y, Li X, Jagadeesh RV, Beller M. Synthesis of aromatic amides from lignin and its derivatives. Nat Commun 2025; 16:3476. [PMID: 40216764 PMCID: PMC11992226 DOI: 10.1038/s41467-025-58559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Benzamides constitute an important class of bulk and fine chemicals as well as essential parts of many life science molecules. Currently, all these compounds are majorly produced from petrochemical-based feedstocks. Notably the selective aerobic oxidative conversion of lignin and lignin-derived compounds to primary, secondary, and tertiary amides and phenols offers the potential for a more sustainable synthesis of valuable building blocks for fine chemicals, monomers for polymers, biologically active molecules, and diverse consumer products. Here we present the concept of "lignin to amides" which is demonstrated by a one-pot, multi-step oxidation process utilizing molecular oxygen and a 3d-metal catalyst with highly dispersed and stable cobalt species (Co-SACs) supported on nitrogen-doped carbon in water as solvent. Moreover, our cobalt-based methodology allows for the cost-efficient transformation of a lignin and its variety of derivates simply using O2 and organic amines. Mechanistic investigations and control experiments suggest that the process involves an initial dehydrogenation of Cα-OH, cleavage of the Cβ-O as well as C(O)-C bond and condensation of the resulting carboxylic acids with amines. Spectroscopic studies indicate that the formation of superoxide species (O2●-) and specific Co-nitrogen sites anchored on mesoporous carbon sheets are key for the success of this transformation.
Collapse
Affiliation(s)
- Zhuang Ma
- Leibniz-Institut für Katalyse e.V., Rostock, Germany
| | - Zupeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China
| | - Zeli Yuan
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Changyue Ren
- Leibniz-Institut für Katalyse e.V., Rostock, Germany
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Binyu Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yanbin Cui
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Xinmin Li
- Leibniz-Institut für Katalyse e.V., Rostock, Germany.
- School of Pharmacy, Zunyi Medical University, Zunyi, China.
| | - Rajenahally V Jagadeesh
- Leibniz-Institut für Katalyse e.V., Rostock, Germany.
- Nanotechnology Centre, Centre for Energy and Environmental Technologies (CEET), VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic.
- Department of Chemistry, REVA University, Bangalore, India.
| | | |
Collapse
|
4
|
Seidi F, Liu Y, Huang Y, Xiao H, Crespy D. Chemistry of lignin and condensed tannins as aromatic biopolymers. Chem Soc Rev 2025; 54:3140-3232. [PMID: 39976198 DOI: 10.1039/d4cs00440j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Aromatic biopolymers are the second largest group of biopolymers after polysaccharides. Depolymerization of aromatic biopolymers, as cheap and renewable substitutes for fossil-based resources, has been used in the preparation of biofuels, and a range of aromatic and aliphatic small molecules. Additionally, these polymers exhibit a robust UV-shielding function due to the high content of aromatic groups. Meanwhile, the abundance of phenolic groups in their structures gives these compounds outstanding antioxidant capabilities, making them well-suited for a diverse array of anti-UV and medical applications. Nevertheless, these biopolymers possess inherent drawbacks in their pristine states, such as rigid structure, low solubility, and lack of desired functionalities, which hinder their complete exploitation across diverse sectors. Thus, the modification and functionalization of aromatic biopolymers are essential to provide them with specific functionalities and features needed for particular applications. Aromatic biopolymers include lignins, tannins, melanins, and humic acids. The objective of this review is to offer a thorough reference for assessing the chemistry and functionalization of lignins and condensed tannins. Lignins represent the largest and most prominent category of aromatic biopolymers, typically distinguishable as either softwood-derived or hardwood-derived lignins. Besides, condensed tannins are the most investigated group of the tannin family. The electron-rich aromatic rings, aliphatic hydroxyl groups, and phenolic groups are the main functional groups in the structure of lignins and condensed tannins. Methoxy groups are also abundant in lignins. Each group displays varying chemical reactivity within these biopolymers. Therefore, the selective and specific functionalization of lignins and condensed tannins can be achieved by understanding the chemistry behavior of these functional groups. Targeted applications include biomedicine, monomers and surface active agents for sustainable plastics.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
5
|
Miao G, Wong JL, Chew JJ, Khaerudini DS, Sunarso J, Xu F. Deep eutectic solvent pretreatment of oil palm biomass: Promoted lignin pyrolysis and enzymatic digestibility of solid residues. Int J Biol Macromol 2025; 293:138847. [PMID: 39725101 DOI: 10.1016/j.ijbiomac.2024.138847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/25/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Herein, choline chloride/oxalic acid (ChCl/OA) and choline chloride/oxalic acid/ethylene glycol (ChCl/OA/EG) pretreatments of oil palm empty fruit bunches (EFB) and mesocarp fibers (MSF) were conducted to achieve protection of the lignin structure, while improving the enzymatic efficiency of the solid residues. Under the operating conditions of 90 °C and 6 h, ChCl/OA/EG demonstrated a higher lignin extraction selectivity and obtained solid residues with higher hemicellulose content compared to ChCl/OA. The digestibility of glucan and xylan in solid residues obtained using ChCl/OA/EG achieved 98.56 % and 95.63 %, respectively, for EFB and 75.95 % and 88.60 %, for MSF. Uncondensed lignin enriched with 71.79-81.61 % of β-O-4 bonds was obtained from EFB and MSF using ChCl/OA/EG. 2D HSQC NMR and the density functional theory calculation confirmed that substituting the lignin Cα position by ethylene glycol changed the local potentials of the β-O-4 bonds, impeding the attack of protons (H+). The higher β-O-4 linkage content in ChCl/OA/EG-Ls led to the formation of several oxygenated alkyl methoxy phenols and alkyl methoxy phenols were promoted during the pyrolysis. Moreover, molecular dynamics simulations showed that the main factor affecting lignin extraction and dissolution in this study was the diffusion coefficient of lignin in DESs.
Collapse
Affiliation(s)
- Guohua Miao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Jung Lin Wong
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching 93350, Sarawak, Malaysia
| | - Jiuan Jing Chew
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching 93350, Sarawak, Malaysia
| | - Deni Shidqi Khaerudini
- Research Center for Advanced Materials, National Research and Innovation Agency, Bld. 440 Kawasan Puspiptek Serpong, South Tangerang 15314, Banten, Indonesia
| | - Jaka Sunarso
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching 93350, Sarawak, Malaysia.
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
6
|
Dunås P, Paterson AJ, Lewis SE, Kann N. Carbon-carbon bond formation using aromatics from biomass. Chem Commun (Camb) 2024; 60:14885-14895. [PMID: 39611735 PMCID: PMC11606386 DOI: 10.1039/d4cc05664g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
The transition to a circular economy requires that we adapt currently used chemical processes to the structurally diverse and often highly oxygenated precursors that are accessible from biomass. In this review, we highlight different examples of carbon-carbon bond formation using aromatics derived from bio-based sources, reported during 2015-2024. Examples of sustainable biomass building blocks include heterocycles such as furfural and hydroxymethylfurfural, obtained from carbohydrates, as well as lignin-based aromatics such as vanillin and eugenol. These have subsequently been applied in a variety of different types of carbon-carbon bond formation, including more classical methods such as aldol condensation and Morita-Baylis-Hillman reactions, but also employing transition metal catalysis, electrochemistry or photochemistry to create new C-C bonds.
Collapse
Affiliation(s)
- Petter Dunås
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden.
| | - Andrew J Paterson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden.
| | - Simon E Lewis
- Department of Chemistry, University of Bath, Convocation Avenue, Bath BA2 7AY, UK.
- Institute of Sustainability and Climate Change, University of Bath, Bath, BA2 7AY, UK
| | - Nina Kann
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden.
| |
Collapse
|
7
|
Dolan D, Brucato R, Reid C, Lee AF, Wilson K, Voutchkova-Kostal AM. Selective lignin depolymerization via transfer hydrogenolysis using Pd/hydrotalcite catalysts: model compounds to whole biomass. Chem Sci 2024; 15:20223-20239. [PMID: 39600500 PMCID: PMC11587535 DOI: 10.1039/d4sc03942d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Cleavage of lignin ether bonds via transfer hydrogenolysis is a promising route to valorize lignin, thus processes that use mild reaction conditions and exploit renewable hydrogen donor solvents (rather than molecular hydrogen) are economically advantageous. Herein we demonstrate the efficient catalytic transfer hydrogenolysis and tandem decarbonylation of lignin model compounds possessing aromatic ether bonds (α-O-4, β-O-4 and 4-O-5 linkages), over transition metal-modified Pd hydrotalcite catalysts with ethanol as the hydrogen donor and solvent. Quantitative conversions and yields were attained for all model compounds, except for 4-O-5 models, which possess inherently strong sp2 C-O bonds. The latter demonstrates the utility of Pd hydrotalcite catalysts for transfer hydrogenolysis of model compounds. This process was employed to achieve whole pine biomass delignification with 97% yield and a 22% phenolic monomer yield, with 64% selectivity for 4-(3-hydroxypropyl)-2-methoxyphenol.
Collapse
Affiliation(s)
- Darren Dolan
- Chemistry Department, The George Washington University 800 22nd St NW Washington D.C. 20910 USA
| | - Rebekah Brucato
- Chemistry Department, The George Washington University 800 22nd St NW Washington D.C. 20910 USA
| | - Christopher Reid
- Chemistry Department, The George Washington University 800 22nd St NW Washington D.C. 20910 USA
| | - Adam F Lee
- Centre for Catalysis and Clean Energy, Griffith University Gold Coast QLD 4222 Australia
| | - Karen Wilson
- Centre for Catalysis and Clean Energy, Griffith University Gold Coast QLD 4222 Australia
| | | |
Collapse
|
8
|
Zhang Z, Guo G, Yang H, Csechala L, Wang Z, Cziegler C, Zijlstra DS, Lahive CW, Zhang X, Bornscheuer UT, Deuss PJ. One-Pot Catalytic Cascade for the Depolymerization of the Lignin β-O-4 Motif to Non-phenolic Dealkylated Aromatics. Angew Chem Int Ed Engl 2024; 63:e202410382. [PMID: 39083320 DOI: 10.1002/anie.202410382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Indexed: 11/03/2024]
Abstract
Aromatic monomers obtained by selective depolymerization of the lignin β-O-4 motif are typically phenolic and contain (oxygenated) alkyl substitutions. This work reveals the potential of a one-pot catalytic lignin β-O-4 depolymerization cascade strategy that yields a uniform set of methoxylated aromatics without alkyl side-chains. This cascade consists of the selective acceptorless dehydrogenation of the γ-hydroxy group, a subsequent retro-aldol reaction that cleaves the Cα-Cβ bond, followed by in situ acceptorless decarbonylation of the formed aldehydes. This three-step cascade reaction, catalyzed by an iridium(I)-BINAP complex, resulted in 75 % selectivity for 1,2-dimethoxybenzene from G-type lignin dimers, alongside syngas (CO : H2≈1.4 : 1). Applying this method to a synthetic G-type polymer, 11 wt % 1,2-dimethoxybenzene was obtained. This versatile compound can be easily transformed into 3,4-dimethoxyphenol, a valuable precursor for pharmaceutical synthesis, through an enzymatic catalytic approach. Moreover, the hydrodeoxygenation potential of 1,2-dimethoxybenzene offers a pathway to produce valuable cyclohexane or benzene derivatives, presenting enticing opportunities for sustainable chemical transformations without the necessity for phenolic mixture upgrading via dealkylation.
Collapse
Affiliation(s)
- Zhenlei Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum (Beijing), 102249, Beijing, China
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ge Guo
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Huaizhou Yang
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Lina Csechala
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Zhiwen Wang
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Institute of Chemistry, Organic and Bioorganic Chemistry, University of Graz, 8010, Graz, Austria
| | - Clemens Cziegler
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Douwe S Zijlstra
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ciaran W Lahive
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Xiangping Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum (Beijing), 102249, Beijing, China
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Peter J Deuss
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
9
|
Webber MS, Watson J, Zhu J, Jang JH, Çağlayan M, Heyne JS, Beckham GT, Román-Leshkov Y. Lignin deoxygenation for the production of sustainable aviation fuel blendstocks. NATURE MATERIALS 2024; 23:1622-1638. [PMID: 39592761 DOI: 10.1038/s41563-024-02024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 09/06/2024] [Indexed: 11/28/2024]
Abstract
Lignin is an abundant source of renewable aromatics that has long been targeted for valorization. Traditionally, the inherent heterogeneity and reactivity of lignin has relegated it to direct combustion, but its higher energy density compared with polysaccharides makes it an ideal candidate for biofuel production. This Review critically assesses lignin's potential as a substrate for sustainable aviation fuel blendstocks. Lignin can generate the necessary cyclic compounds for a fully renewable, sustainable aviation fuel when integrated with current paraffinic blends and can meet the current demand 2.5 times over. Using an energy-centric analysis, we show that lignin conversion technologies have the near-term potential to match the enthalpic yields of existing commercial sustainable aviation fuel production processes. Key factors influencing the viability of technologies for converting lignin to sustainable aviation fuel include lignin structure, delignification extent, depolymerization performance, and the development of stable and tunable deoxygenation catalysts.
Collapse
Affiliation(s)
- Matthew S Webber
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jamison Watson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jie Zhu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jun Hee Jang
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
- Center for Bioenergy Innovation, Oak Ridge, TN, USA
| | - Mustafa Çağlayan
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Joshua S Heyne
- Bioproduct Sciences and Engineering Laboratory, School of Engineering and Applied Science, Washington State University, Richland, WA, USA
- Energy and Environment Directorate, Energy Processes and Materials Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA.
- Center for Bioenergy Innovation, Oak Ridge, TN, USA.
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
10
|
Li H, Sun X, Li T, Zhao Z, Wang H, Yang X, Zhang C, Wang F. Photothermal catalytic transfer hydrogenolysis of protolignin. Nat Commun 2024; 15:10176. [PMID: 39580480 PMCID: PMC11585588 DOI: 10.1038/s41467-024-54664-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
Photothermal catalysis is a promising strategy to combine the advantages of both thermal-catalysis and photocatalysis. Herein we achieve the protolignin conversion to aromatics via the photothermal catalytic transfer hydrogenolysis process intensified by the in-situ protection strategy. The Pd/TiO2 at 140 °C with UV irradiation can catalyze the reforming of primary alcohols to aldehydes and active H* species, which further participate in the acetalation protection of the 1,3-diol group of β-O-4 linkage and mediate the hydrogenolysis of Cβ-OAr bonds, respectively. The conversion of birch sawdust with ethanol as the hydrogen donor provides a 40 wt% yield of phenolic monomers, compared with an 11 wt% monomer yield obtained from the conversion of extracted 1,3-diol-protected lignin under the same conditions. The synergistic effect of photocatalysis and thermal-catalysis contributes to the prior cleavage of the Cβ-OAr bond before other C-O bonds. The feasibility of solar-light-driven photothermal catalytic system is demonstrated.
Collapse
Affiliation(s)
- Hongji Li
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, China.
| | - Xiaotong Sun
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, China
| | - Ting Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, 159 LongPan Road, Nanjing, China
| | - Zhitong Zhao
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Hui Wang
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, China
| | - Xiaomei Yang
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, China
| | - Chaofeng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, 159 LongPan Road, Nanjing, China.
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Qi S, Zhang T, Zhang C, Jiang B, Huang C, Yong Q, Jin Y. Sucrose-derived porous carbon catalyzed lignin depolymerization to obtain a product with application in type 2 diabetes mellitus. Int J Biol Macromol 2024; 279:135170. [PMID: 39214225 DOI: 10.1016/j.ijbiomac.2024.135170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
As the most important phenolic biopolymer in nature, lignin shows promising application potentialities in various bioactivities in vivo and in vitro, mainly including antioxidant, anti-inflammatory, hypolipidemic, and antidiabetic control. In this work, several carbon-based solid acids were synthesized to catalyze the fragmentation of organosolv lignin (OL). The generated lignin fragments, with controllable molecular weight and functional groups, were further evaluated for their application in the prevention and treatment of type 2 diabetes mellitus (T2DM). The results suggested that the urea-doped catalyst (SUPC) showed a more excellent catalytic performance in producing diethyl ether insoluble lignin (DEIL) and diethyl ether soluble lignin (DESL). In addition, the lignin fragments have a good therapeutic effect on the cell model of T2DM. Compared with the insulin resistance model, DEIL obtained by catalytic depolymerization of OL with SUPC could improve the glucose consumption of insulin-resistant cells. Moreover, low-concentration samples (50 μg/mL) can promote glucose consumption (19.7 mM) more than the traditional drug rosiglitazone (17.5 mM). This work demonstrates the prospect of depolymerized lignin for the prevention and treatment of T2DM and provides a new application field for lignin degradation products.
Collapse
Affiliation(s)
- Shuang Qi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tingwei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Chaofeng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Yong
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
12
|
Palumbo CT, Ouellette ET, Zhu J, Román-Leshkov Y, Stahl SS, Beckham GT. Accessing monomers from lignin through carbon-carbon bond cleavage. Nat Rev Chem 2024; 8:799-816. [PMID: 39367248 DOI: 10.1038/s41570-024-00652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/06/2024]
Abstract
Lignin, the heterogeneous aromatic macromolecule found in the cell walls of vascular plants, is an abundant feedstock for the production of biochemicals and biofuels. Many valorization schemes rely on lignin depolymerization, with decades of research focused on accessing monomers through C-O bond cleavage, given the abundance of β-O-4 bonds in lignin and the large number of available C-O bond cleavage strategies. Monomer yields are, however, invariably lower than desired, owing to the presence of recalcitrant C-C bonds whose selective cleavage remains a major challenge in catalysis. In this Review, we highlight lignin C-C cleavage reactions, including those of linkages arising from biosynthesis (β-1, β-5, β-β and 5-5) and industrial processing (5-CH2-5 and α-5). We examine multiple approaches to C-C cleavage, including homogeneous and heterogeneous catalysis, photocatalysis and biocatalysis, to identify promising strategies for further research and provide guidelines for definitive measurements of lignin C-C bond cleavage.
Collapse
Affiliation(s)
- Chad T Palumbo
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Erik T Ouellette
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Jie Zhu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Shannon S Stahl
- Department of Chemistry. Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA.
- Center for Bioenergy Innovation, Oak Ridge, TN, USA.
| |
Collapse
|
13
|
Rahman MU, Ullah MW, Alabbosh KF, Shah JA, Muhammad N, Zahoor, Shah SWA, Nawab S, Sethupathy S, Abdikakharovich SA, Khan KA, Elboughdiri N, Zhu D. Lignin valorization through the oxidative activity of β-etherases: Recent advances and perspectives. Int J Biol Macromol 2024; 281:136383. [PMID: 39395522 DOI: 10.1016/j.ijbiomac.2024.136383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
The increasing interest in lignin, a complex and abundant biopolymer, stems from its ability to produce environmentally beneficial biobased products. β-Etherases play a crucial role by breaking down the β-aryl ether bonds in lignin. This comprehensive review covers the latest advancements in β-etherase-mediated lignin valorization, focusing on substrate selectivity, enzymatic oxidative activity, and engineering methods. Research on the microbial origin, protein modification, and molecular structure determination of β-etherases has improved our understanding of their effectiveness. Furthermore, the use of these enzymes in biorefinery processes is promising for enhancing lignin breakdown and creating more valuable products. The review also discusses the challenges and future potential of β-etherases in advancing lignin valorization for biorefinery applications that are economically viable and environmentally sustainable.
Collapse
Affiliation(s)
- Mujeeb Ur Rahman
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Wajid Ullah
- Department of Pulp & Paper Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | | | - Junaid Ali Shah
- Department of Molecular Biology and Biochemistry, College of Life Sciences, China Normal University, Shanghai 200241, PR China
| | - Nizar Muhammad
- COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Zahoor
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Syed Waqas Ali Shah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Said Nawab
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | | | - Khalid Ali Khan
- Applied College & Center of Bee Research and its Products (CBRP), King Khalid University, Abha 61413, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia
| | - Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
14
|
Zheng S, Zhang Z, He S, Yang H, Atia H, Abdel-Mageed AM, Wohlrab S, Baráth E, Tin S, Heeres HJ, Deuss PJ, de Vries JG. Benzenoid Aromatics from Renewable Resources. Chem Rev 2024; 124:10701-10876. [PMID: 39288258 PMCID: PMC11467972 DOI: 10.1021/acs.chemrev.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
In this Review, all known chemical methods for the conversion of renewable resources into benzenoid aromatics are summarized. The raw materials that were taken into consideration are CO2; lignocellulose and its constituents cellulose, hemicellulose, and lignin; carbohydrates, mostly glucose, fructose, and xylose; chitin; fats and oils; terpenes; and materials that are easily obtained via fermentation, such as biogas, bioethanol, acetone, and many more. There are roughly two directions. One much used method is catalytic fast pyrolysis carried out at high temperatures (between 300 and 700 °C depending on the raw material), which leads to the formation of biochar; gases, such as CO, CO2, H2, and CH4; and an oil which is a mixture of hydrocarbons, mostly aromatics. The carbon selectivities of this method can be reasonably high when defined small molecules such as methanol or hexane are used but are rather low when highly oxygenated compounds such as lignocellulose are used. The other direction is largely based on the multistep conversion of platform chemicals obtained from lignocellulose, cellulose, or sugars and a limited number of fats and terpenes. Much research has focused on furan compounds such as furfural, 5-hydroxymethylfurfural, and 5-chloromethylfurfural. The conversion of lignocellulose to xylene via 5-chloromethylfurfural and dimethylfuran has led to the construction of two large-scale plants, one of which has been operational since 2023.
Collapse
Affiliation(s)
- Shasha Zheng
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Zhenlei Zhang
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering
and Environment, China University of Petroleum
(Beijing), 102249 Beijing, China
| | - Songbo He
- Joint International
Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing 211816, PR China
| | - Huaizhou Yang
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hanan Atia
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Ali M. Abdel-Mageed
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sebastian Wohlrab
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Eszter Baráth
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Hero J. Heeres
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Peter J. Deuss
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Johannes G. de Vries
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
15
|
Pei Z, Liu X, Chen J, Wang H, Li H. Research Progress on Lignin Depolymerization Strategies: A Review. Polymers (Basel) 2024; 16:2388. [PMID: 39274021 PMCID: PMC11397036 DOI: 10.3390/polym16172388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
As the only natural source of aromatic biopolymers, lignin can be converted into value-added chemicals and biofuels, showing great potential in realizing the development of green chemistry. At present, lignin is predominantly used for combustion to generate energy, and the real value of lignin is difficult to maximize. Accordingly, the depolymerization of lignin is of great significance for its high-value utilization. This review discusses the latest progress in the field of lignin depolymerization, including catalytic conversion systems using various thermochemical, chemocatalytic, photocatalytic, electrocatalytic, and biological depolymerization methods, as well as the involved reaction mechanisms and obtained products of various protocols, focusing on green and efficient lignin depolymerization strategies. In addition, the challenges faced by lignin depolymerization are also expounded, putting forward possible directions of developing lignin depolymerization strategies in the future.
Collapse
Affiliation(s)
- Zhengfei Pei
- Key Laboratory of Surveillance and Management, Invasive Alien Species in Guizhou Education Department, College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Xiaofang Liu
- Key Laboratory of Surveillance and Management, Invasive Alien Species in Guizhou Education Department, College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Jiasheng Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Huan Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Hu Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
16
|
Subbotina E, Souza LR, Zimmerman J, Anastas P. Room temperature catalytic upgrading of unpurified lignin depolymerization oil into bisphenols and butene-2. Nat Commun 2024; 15:5892. [PMID: 39003256 PMCID: PMC11246530 DOI: 10.1038/s41467-024-49812-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024] Open
Abstract
Lignin is the largest source of renewable aromatics on earth. Despite numerous techniques for lignin depolymerization into mixtures of valuable monomers, methods for their upgrading into final products are scarce. The state of the art upgrading methods generally rely on catalytic funneling, requiring high temperatures, catalyst loadings and hydrogen pressure, and lead to the loss of functionality and bio-based carbon content. Here an alternative approach is presented, whereby the target monomers are selectively converted in unpurified mixtures into easily separable final products under mild conditions. We use reductive catalytic fractionation of wood to convert lignin into iso-eugenol and propenyl syringol enriched oil followed by an olefin metathesis to yield bisphenols and butene-2, thus, valorizing all bio-based carbons. To further demonstrate the synthetic utility of the obtained bisphenols we converted them into polyesters with a high glass transition temperature (Tg = 140.3 °C) and thermal stability (Td50% = 330 °C).
Collapse
Affiliation(s)
- Elena Subbotina
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA.
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56, 100 44, Stockholm, Sweden.
- Center for Green Chemistry & Green Engineering at Yale, 370 Prospect St, New Haven, CT, USA.
| | - Layra Rodrigues Souza
- Center for Green Chemistry & Green Engineering at Yale, 370 Prospect St, New Haven, CT, USA
| | - Julie Zimmerman
- Center for Green Chemistry & Green Engineering at Yale, 370 Prospect St, New Haven, CT, USA
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave, New Haven, CT, USA
- Yale School of the Environment, 195 Prospect St, New Haven, CT, USA
| | - Paul Anastas
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA.
- Center for Green Chemistry & Green Engineering at Yale, 370 Prospect St, New Haven, CT, USA.
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave, New Haven, CT, USA.
- Yale School of the Environment, 195 Prospect St, New Haven, CT, USA.
- Yale School of Public Health, 60 College St, New Haven, CT, USA.
| |
Collapse
|
17
|
De Smet G, Bai X, Maes BUW. Selective C(aryl)-O bond cleavage in biorenewable phenolics. Chem Soc Rev 2024; 53:5489-5551. [PMID: 38634517 DOI: 10.1039/d3cs00570d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Biorefining of lignocellulosic biomass via a lignin first approach delivers a range of products with high oxygen content. Besides pulp, a lignin oil rich in guaiacols and syringols is obtained bearing multiple C(aryl)-OH and C(aryl)-OMe groups, typically named phenolics. Similarly, technical lignin can be used but is generally more difficult to process providing lower yields of monomers. Removal of the hydroxy and methoxy groups in these oxygenated arenes is challenging due to the inherently strong C-O bonds, in addition to the steric and electronic deactivation by adjacent -OH or -OMe groups. Moreover, chemoselective removal of a specific group in the presence of other similar functionalities is non-trivial. Other side-reactions such as ring saturation and transalkylation further complicate the desired reduction process. In this overview, three different selective reduction reactions are considered. Complete hydrodeoxygenation removes both hydroxy and methoxy groups resulting in benzene and alkylated derivatives (BTX type products) which is often complicated by overreduction of the arene ring. Hydrodemethoxylation selectively removes methoxy groups in the presence of hydroxy groups leading to phenol products, while hydrodehydroxylation only removes hydroxy groups without cleavage of methoxy groups giving anisole products. Instead of defunctionalization via reduction transformation of C(aryl)-OH, albeit via an initial derivatization into C(aryl)-OX, into other functionalities is possible and also discussed. In addition to methods applying guaiacols and syringols present in lignin oil as model substrates, special attention is given to methods using mixtures of these compounds obtained from wood/technical lignin. Finally, other important aspects of C-O bond activation with respect to green chemistry are discussed.
Collapse
Affiliation(s)
- Gilles De Smet
- Organic Synthesis Division (ORSY), Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Xingfeng Bai
- Organic Synthesis Division (ORSY), Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Bert U W Maes
- Organic Synthesis Division (ORSY), Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| |
Collapse
|
18
|
Peng J, Lei L, Hou Y, Chen S. Study on cultivation of aerobic granular sludge and its application in degrading lignin models in the sequencing batch biofilter granular reactor. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2907-2920. [PMID: 38877621 DOI: 10.2166/wst.2024.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/07/2024] [Indexed: 06/16/2024]
Abstract
In this study, three sequencing batch biofilter granular reactors (SBBGRs) were employed to treat model lignin wastewater containing different lignin models (2,6-dimethoxyphenol, 4-methoxyphenol, and vanillin). After 40 days of cultivation, uniform-shaped aerobic granular sludge (AGS) was successfully developed through nutrient supplementation with synthetic wastewater. During the acclimation stage, the chemical oxygen demand (COD) reduction efficiencies of the three reactors showed a trend of initial decreasing (5-20%) and then recovering to a high reduction efficiency (exceeding 90%) in a short period of time. During the stable operation stage, all three reactors achieved COD reduction efficiencies exceeding 90%. These findings indicated the cultivated AGS's robust resistance to changes in lignin models in water. UV-Vis spectra analysis confirmed the effective degradation of the three lignin models. Microbiological analysis showed that Proteobacteria and Bacteroidetes were always the dominant phyla. At the genus level, while Acinetobacter (15.46%) dominated in the inoculation sludge, Kapabacteriales (7.93%), SBR1031 (11.77%), and Chlorobium (25.37%) were dominant in the three reactors (for 2,6-dimethoxyphenol, 4-methoxyphenol, and vanillin) after degradation, respectively. These findings demonstrate that AGS cultured with SBBGR effectively degrades lignin models, with different dominant strains observed for various lignin models.
Collapse
Affiliation(s)
- Jingran Peng
- College of Light Industry Science and Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lirong Lei
- College of Light Industry Science and Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China E-mail:
| | - Yi Hou
- College of Light Industry Science and Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuangshuang Chen
- College of Light Industry Science and Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
19
|
Li Q, Peng W, Sun Y, Cai C, Tang F, Liu Y, Hu Q, Zhou Z, Li X, Nie S. A super-hydrophilic graphite directly from lignin enabled by a room-temperature cascade catalytic carbonization. BIORESOURCE TECHNOLOGY 2024; 402:130802. [PMID: 38718902 DOI: 10.1016/j.biortech.2024.130802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 05/27/2024]
Abstract
A cost-effective, and low-energy room-temperature cascade catalytic carbonization strategy is demonstrated for converting lignin into graphite with a high yield of 87 %, a high surface potential of -37 eV and super-hydrophilicity. This super-hydrophilic feature endows the lignin-derived graphite to be dispersed in a variety of polar solvents, which is important for its future applications. Encapsulating of liquid metals with the graphite for electrical circuit patterning on flexible substrates is also advocated. These written patterns show superb conductivity of 4.9 × 106 S/m, offering good performance stability and reliability while being repeatedly stretched, folded, twisted, and bent. This will offer new designs for flexible electronic devices, sensors, and biomedical devices.
Collapse
Affiliation(s)
- Qiuxian Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Wenxuan Peng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Yue Sun
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chenchen Cai
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Fangyuan Tang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Yongfei Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Qingdi Hu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Zheng Zhou
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Xusheng Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| | - Shuangxi Nie
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
20
|
Bécsy-Jakab VE, Savoy A, Saulnier BK, Singh SK, Hodge DB. Extraction, recovery, and characterization of lignin from industrial corn stover lignin cake. BIORESOURCE TECHNOLOGY 2024; 399:130610. [PMID: 38508284 DOI: 10.1016/j.biortech.2024.130610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Lignin utilization in value-added co-products is an important component of enabling cellulosic biorefinery economics. However, aqueous dilute acid pretreatments yield lignins with limited applications due to significant modification during pretreatment, low solubility in many solvents, and high content of impurities (ash, insoluble polysaccharides). This work addresses these challenges and investigates the extraction and recovery of lignins from lignin-rich insoluble residue following dilute acid pretreatment and enzymatic hydrolysis of corn stover using three extraction approaches: ethanol organosolv, NaOH, and an ionic liquid. The recovered lignins exhibited recovery yields ranging from 30% for the ionic liquid, 44% for the most severe acid ethanol organosolv condition tested, and up to 86% for the most severe NaOH extraction condition. Finally, the fractional solubilities of different recovered lignins were assessed in a range of solvents and these solubilities were used to estimate distributions of Hildebrand and Hansen solubility parameters using a novel approach.
Collapse
Affiliation(s)
- Villő Enikő Bécsy-Jakab
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, Montana 59717, USA
| | - Anthony Savoy
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, Montana 59717, USA
| | - Brian K Saulnier
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, Montana 59717, USA
| | - Sandip K Singh
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, Montana 59717, USA
| | - David B Hodge
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, Montana 59717, USA; Division of Sustainable Process Engineering, Luleå University of Technology, Luleå, Sweden.
| |
Collapse
|
21
|
Rashid GMM, Rivière GN, Cottyn‐Boitte B, Majira A, Cézard L, Sodré V, Lam R, Fairbairn JA, Baumberger S, Bugg TDH. Ether Bond Cleavage of a Phenylcoumaran β-5 Lignin Model Compound and Polymeric Lignin Catalysed by a LigE-type Etherase from Agrobacterium sp. Chembiochem 2024; 25:e202400132. [PMID: 38416537 PMCID: PMC11497285 DOI: 10.1002/cbic.202400132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
A LigE-type beta-etherase enzyme from lignin-degrading Agrobacterium sp. has been identified, which assists degradation of polymeric lignins. Testing against lignin dimer model compounds revealed that it does not catalyse the previously reported reaction of Sphingobium SYK-6 LigE, but instead shows activity for a β-5 phenylcoumaran lignin dimer. The reaction products did not contain glutathione, indicating a catalytic role for reduced glutathione in this enzyme. Three reaction products were identified: the major product was a cis-stilbene arising from C-C fragmentation involving loss of formaldehyde; two minor products were an alkene arising from elimination of glutathione, and an oxidised ketone, proposed to arise from reaction of an intermediate with molecular oxygen. Testing of the recombinant enzyme against a soda lignin revealed the formation of new signals by two-dimensional NMR analysis, whose chemical shifts are consistent with the formation of a stilbene unit in polymeric lignin.
Collapse
Affiliation(s)
- Goran M. M. Rashid
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUnited Kingdom
| | - Guillaume N. Rivière
- Université Paris-SaclayINRAE, AgroParisTechInstitute Jean-Pierre Bourgin (IJPB)78000VersaillesFrance
| | - Betty Cottyn‐Boitte
- Université Paris-SaclayINRAE, AgroParisTechInstitute Jean-Pierre Bourgin (IJPB)78000VersaillesFrance
| | - Amel Majira
- Université Paris-SaclayINRAE, AgroParisTechInstitute Jean-Pierre Bourgin (IJPB)78000VersaillesFrance
| | - Laurent Cézard
- Université Paris-SaclayINRAE, AgroParisTechInstitute Jean-Pierre Bourgin (IJPB)78000VersaillesFrance
| | - Victoria Sodré
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUnited Kingdom
| | - Richard Lam
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUnited Kingdom
| | - Julia A. Fairbairn
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUnited Kingdom
| | - Stéphanie Baumberger
- Université Paris-SaclayINRAE, AgroParisTechInstitute Jean-Pierre Bourgin (IJPB)78000VersaillesFrance
| | - Timothy D. H. Bugg
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUnited Kingdom
| |
Collapse
|
22
|
Agarwal A, Li X. LiCoO 2 impregnated nano-hierarchical ZSM-5 assisted catalytic upgrading of Kraft lignin-derived liquefaction bio-oil. NANOSCALE 2024; 16:7019-7030. [PMID: 38511999 DOI: 10.1039/d4nr00358f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
In this study, Kraft lignin-derived bio-oil was upgraded with LiCoO2 or Co3O4-impregnated hierarchical nano-ZSM-5 catalysts. The synthesized catalysts were characterized by N2-Ads-Des, XRD, XPS, NH3-TPD, FTIR, FESEM and ICP-OES analyses. Upon incorporation of LiCoO2 and Co3O4 onto the HZSM-5 support, the MFI structure of HZSM-5 remained intact. All the catalysts displayed a combination of Type-I and -IV isotherms. The upgraded bio-oil showed a significant increase in the amounts of alkylated guaiacols owing to the reduction in unsubstituted guaiacols, alkenyl guaiacols, and homovanillic acid. Hydrogenation, alkylation, and deoxygenation were the plausible bio-oil upgrading pathways. With the increase in cobalt content, weak acidity decreased through all the catalysts, while LiCoO2 provided supplementary acid sites that increased the total acidity of LiCoO2/HZSM-5 compared to the Co3O4/HZSM-5 catalyst. LiCoO2/HZSM-5 with a low cobalt content (5% and 10% Co) displayed high selectivity for the production of alkylated guaiacols owing to their strong acidity. The upgraded bio-oils showed an increase in carbon and hydrogen followed by a decrease in oxygen content. The maximum higher heating value (∼29.83 MJ kg-1) was obtained for the 10% Co (LiCoO2)/HZSM-5 catalyst. In general, LiCoO2/HZSM-5 outperformed the Co3O4/HZSM-5 catalyst. XRD of the spent 10% Co (LiCoO2)/HZSM-5 suggested the complete loss of lithium from the catalyst with the retention of the MFI structure of the HZSM-5 support. In this study, it was successfully demonstrated that the main constituent of the cathode material of spent lithium-ion batteries i.e. LiCoO2 could be employed to synthesize a novel and cheap catalyst for bio-oil upgrading while addressing the e-waste management issue in a sustainable manner.
Collapse
Affiliation(s)
- Ashutosh Agarwal
- Department of Environment and Energy Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| | - Xue Li
- Department of Materials Science and Engineering, Luoyang Institute of Science and Technology, Louyang, 471023, P.R. China.
| |
Collapse
|
23
|
Wu X, Smet E, Brandi F, Raikwar D, Zhang Z, Maes BUW, Sels BF. Advancements and Perspectives toward Lignin Valorization via O-Demethylation. Angew Chem Int Ed Engl 2024; 63:e202317257. [PMID: 38128012 DOI: 10.1002/anie.202317257] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
Lignin represents the largest aromatic carbon resource in plants, holding significant promise as a renewable feedstock for bioaromatics and other cyclic hydrocarbons in the context of the circular bioeconomy. However, the methoxy groups of aryl methyl ethers, abundantly found in technical lignins and lignin-derived chemicals, limit their pertinent chemical reactivity and broader applicability. Unlocking the phenolic hydroxyl functionality through O-demethylation (ODM) has emerged as a valuable approach to mitigate this need and enables further applications. In this review, we provide a comprehensive summary of the progress in the valorization of technical lignin and lignin-derived chemicals via ODM, both catalytic and non-catalytic reactions. Furthermore, a detailed analysis of the properties and potential applications of the O-demethylated products is presented, accompanied by a systematic overview of available ODM reactions. This review primarily focuses on enhancing the phenolic hydroxyl content in lignin-derived species through ODM, showcasing its potential in the catalytic funneling of lignin and value-added applications. A comprehensive synopsis and future outlook are included in the concluding section of this review.
Collapse
Affiliation(s)
- Xian Wu
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Ewoud Smet
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Francesco Brandi
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Deepak Raikwar
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Zhenlei Zhang
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Bert U W Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Bert F Sels
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| |
Collapse
|
24
|
Cordell GA. The contemporary nexus of medicines security and bioprospecting: a future perspective for prioritizing the patient. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:11. [PMID: 38270809 PMCID: PMC10811317 DOI: 10.1007/s13659-024-00431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Reacting to the challenges presented by the evolving nexus of environmental change, defossilization, and diversified natural product bioprospecting is vitally important for advancing global healthcare and placing patient benefit as the most important consideration. This overview emphasizes the importance of natural and synthetic medicines security and proposes areas for global research action to enhance the quality, safety, and effectiveness of sustainable natural medicines. Following a discussion of some contemporary factors influencing natural products, a rethinking of the paradigms in natural products research is presented in the interwoven contexts of the Fourth and Fifth Industrial Revolutions and based on the optimization of the valuable assets of Earth. Following COP28, bioprospecting is necessary to seek new classes of bioactive metabolites and enzymes for chemoenzymatic synthesis. Focus is placed on those performance and practice modifications which, in a sustainable manner, establish the patient, and the maintenance of their prophylactic and treatment needs, as the priority. Forty initiatives for natural products in healthcare are offered for the patient and the practitioner promoting global action to address issues of sustainability, environmental change, defossilization, quality control, product consistency, and neglected diseases to assure that quality natural medicinal agents will be accessible for future generations.
Collapse
Affiliation(s)
- Geoffrey A Cordell
- Natural Products Inc., 1320 Ashland Avenue, Evanston, IL, 60201, USA.
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
25
|
Xu L, Cao M, Zhou J, Pang Y, Li Z, Yang D, Leu SY, Lou H, Pan X, Qiu X. Aqueous amine enables sustainable monosaccharide, monophenol, and pyridine base coproduction in lignocellulosic biorefineries. Nat Commun 2024; 15:734. [PMID: 38272912 PMCID: PMC10810809 DOI: 10.1038/s41467-024-45073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
Thought-out utilization of entire lignocellulose is of great importance to achieving sustainable and cost-effective biorefineries. However, there is a trade-off between efficient carbohydrate utilization and lignin-to-chemical conversion yield. Here, we fractionate corn stover into a carbohydrate fraction with high enzymatic digestibility and reactive lignin with satisfactory catalytic depolymerization activity using a mild high-solid process with aqueous diethylamine (DEA). During the fractionation, in situ amination of lignin achieves extensive delignification, effective lignin stabilization, and dramatically reduced nonproductive adsorption of cellulase on the substrate. Furthermore, by designing a tandem fractionation-hydrogenolysis strategy, the dissolved lignin is depolymerized and aminated simultaneously to co-produce monophenolics and pyridine bases. The process represents the viable scheme of transforming real lignin into pyridine bases in high yield, resulting from the reactions between cleaved lignin side chains and amines. This work opens a promising approach to the efficient valorization of lignocellulose.
Collapse
Affiliation(s)
- Li Xu
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Meifang Cao
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jiefeng Zhou
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yuxia Pang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zhixian Li
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Dongjie Yang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hongming Lou
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China.
| | - Xuejun Pan
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
26
|
Afanasenko AM, Wu X, De Santi A, Elgaher WAM, Kany AM, Shafiei R, Schulze MS, Schulz TF, Haupenthal J, Hirsch AKH, Barta K. Clean Synthetic Strategies to Biologically Active Molecules from Lignin: A Green Path to Drug Discovery. Angew Chem Int Ed Engl 2024; 63:e202308131. [PMID: 37840425 DOI: 10.1002/anie.202308131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/06/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Deriving active pharmaceutical agents from renewable resources is crucial to increasing the economic feasibility of modern biorefineries and promises to alleviate critical supply-chain dependencies in pharma manufacturing. Our multidisciplinary approach combines research in lignin-first biorefining, sustainable catalysis, and alternative solvents with bioactivity screening, an in vivo efficacy study, and a structural-similarity search. The resulting sustainable path to novel anti-infective, anti-inflammatory, and anticancer molecules enabled the rapid identification of frontrunners for key therapeutic indications, including an anti-infective against the priority pathogen Streptococcus pneumoniae with efficacy in vivo and promising plasma and metabolic stability. Our catalytic methods provided straightforward access, inspired by the innate structural features of lignin, to synthetically challenging biologically active molecules with the core structure of dopamine, namely, tetrahydroisoquinolines, quinazolinones, 3-arylindoles and the natural product tetrahydropapaveroline. Our diverse array of atom-economic transformations produces only harmless side products and uses benign reaction media, such as tunable deep eutectic solvents for modulating reactivity in challenging cyclization steps.
Collapse
Affiliation(s)
- Anastasiia M Afanasenko
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (the, Netherlands
| | - Xianyuan Wu
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (the, Netherlands
| | - Alessandra De Santi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (the, Netherlands
| | - Walid A M Elgaher
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Andreas M Kany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Roya Shafiei
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
- Saarland University, Department of Pharmacy, Campus Building E8.1, 66123, Saarbrücken, Germany
| | | | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, 30625, Hannover, Germany
- Institute of Virology, Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625, Hannover, Germany
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
- Saarland University, Department of Pharmacy, Campus Building E8.1, 66123, Saarbrücken, Germany
- Institute of Virology, Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625, Hannover, Germany
| | - Katalin Barta
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (the, Netherlands
- Institute for Chemistry, University of Graz, Heinrichstrasse 28/II, 8010, Graz, Austria
| |
Collapse
|
27
|
Du F, Xian X, Tang P, Li Y. Catalytic Degradation of Lignin over Sulfonyl-Chloride-Modified Lignin-Based Porous Carbon-Supported Metal Phthalocyanine: Effect of Catalyst Concentrations. Molecules 2024; 29:347. [PMID: 38257260 PMCID: PMC10820591 DOI: 10.3390/molecules29020347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024] Open
Abstract
A sulfonyl-chloride-modified lignin-based porous carbon-supported metal phthalocyanine catalyst was prepared and used to replace the traditional Fenton's reagent for lignin degradation. The catalyst underwent a detailed characterization analysis in terms of functional group distributions, surface area, morphological structure, via FT-IR, XPS, BET, and SEM. The catalyst possessed a specific surface area of 638.98 m2/g and a pore volume of 0.291 cm3/g. The prepared catalyst was studied for its ability of oxidative degradation of lignin under different reaction conditions. By optimizing the reaction conditions, a maximum liquid product yield of 38.94% was obtained at 135 °C with 3.5 wt% of catalyst and 15 × 10-2 mol/L H2O2; at the same time, a maximum phenols selectivity of 32.58% was achieved. The compositions and properties of liquid products obtained from lignin degradation using different catalyst concentrations were studied comparatively via GC-MS, FT-IR, 1H-NMR, and EA. Furthermore, the structure changes of solid residues are also discussed.
Collapse
Affiliation(s)
| | | | | | - Yanming Li
- High Performance Materials Research Institute, Guangxi Academy of Sciences, Nanning 530007, China; (F.D.)
| |
Collapse
|
28
|
Gu NX, Palumbo CT, Bleem AC, Sullivan KP, Haugen SJ, Woodworth SP, Ramirez KJ, Kenny JK, Stanley LD, Katahira R, Stahl SS, Beckham GT. Autoxidation Catalysis for Carbon-Carbon Bond Cleavage in Lignin. ACS CENTRAL SCIENCE 2023; 9:2277-2285. [PMID: 38161372 PMCID: PMC10755848 DOI: 10.1021/acscentsci.3c00813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024]
Abstract
Selective lignin depolymerization is a key step in lignin valorization to value-added products, and there are multiple catalytic methods to cleave labile aryl-ether bonds in lignin. However, the overall aromatic monomer yield is inherently limited by refractory carbon-carbon linkages, which are abundant in lignin and remain intact during most selective lignin deconstruction processes. In this work, we demonstrate that a Co/Mn/Br-based catalytic autoxidation method promotes carbon-carbon bond cleavage in acetylated lignin oligomers produced from reductive catalytic fractionation. The oxidation products include acetyl vanillic acid and acetyl vanillin, which are ideal substrates for bioconversion. Using an engineered strain of Pseudomonas putida, we demonstrate the conversion of these aromatic monomers to cis,cis-muconic acid. Overall, this study demonstrates that autoxidation enables higher yields of bioavailable aromatic monomers, exceeding the limits set by ether-bond cleavage alone.
Collapse
Affiliation(s)
- Nina X. Gu
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Chad T. Palumbo
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Alissa C. Bleem
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Kevin P. Sullivan
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Stefan J. Haugen
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Sean P. Woodworth
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Kelsey J. Ramirez
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Jacob K. Kenny
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lisa D. Stanley
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Rui Katahira
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Shannon S. Stahl
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United
States
| | - Gregg T. Beckham
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
29
|
Wang Z, Deuss PJ. The isolation of lignin with native-like structure. Biotechnol Adv 2023; 68:108230. [PMID: 37558187 DOI: 10.1016/j.biotechadv.2023.108230] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Searching for renewable alternatives for fossil carbon resources to produce chemicals, fuels and materials is essential for the development of a sustainable society. Lignin, a major component of lignocellulosic biomass, is an abundant renewable source of aromatics and is currently underutilized as it is often burned as an undesired side stream in the production of paper and bioethanol. This lignin harbors great potential as source of high value aromatic chemicals and materials. Biorefinery schemes focused on lignin are currently under development with aim of acquiring added value from lignin. However, the performance of these novel lignin-focused biorefineries is closely linked with the quality of extracted lignin in terms of the level of degradation and modification. Thus, the reactivity including the degradation pathways of the native lignin contained in the plant material needs to be understood in detail to potentially achieve higher value from lignin. Undegraded native-like lignin with an as close as possible structure to native lignin contained in the lignocellulosic plant material serves as a promising model lignin to support detailed studies on the structure and reactivity of native lignin, yielding key understanding for the development of lignin-focused biorefineries. The aim of this review is to highlight the different methods to attain "native-like" lignins that can be valuable for such studies. This is done by giving a basic introduction on what is known about the native lignin structure and the techniques and methods used to analyze it followed by an overview of the fractionation and isolation methods to isolate native-like lignin. Finally, a perspective on the isolation and use of native-like lignin is provided, showing the great potential that this type of lignin brings for understanding the effect of different biomass treatments on the native lignin structure.
Collapse
Affiliation(s)
- Zhiwen Wang
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747, AG, Groningen, the Netherlands.
| | - Peter J Deuss
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747, AG, Groningen, the Netherlands.
| |
Collapse
|
30
|
Peng W, Bao H, Wang Y, Cote E, Sagues WJ, Hagelin-Weaver H, Gao J, Xiao D, Tong Z. Selective Depolymerization of Lignin Towards Isolated Phenolic Acids Under Mild Conditions. CHEMSUSCHEM 2023; 16:e202300750. [PMID: 37419862 DOI: 10.1002/cssc.202300750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/09/2023]
Abstract
The selective transformation of lignin to value-added biochemicals (e. g., phenolic acids) in high yields is incredibly challenging due to its structural complexity and many possible reaction pathways. Phenolic acids (PA) are key building blocks for various aromatic polymers, but the isolation of PAs from lignin is below 5 wt.% and requires harsh reaction conditions. Herein, we demonstrate an effective route to selectively convert lignin extracted from sweet sorghum and poplar into isolated PA in a high yield (up to 20 wt.% of lignin) using a low-cost graphene oxide-urea hydrogen peroxide (GO-UHP) catalyst under mild conditions (<120 °C). The lignin conversion yield is up to 95 %, and the remaining low molecular weight organic oils are ready for aviation fuel production to complete lignin utilization. Mechanistic studies demonstrate that pre-acetylation allows the selective depolymerization of lignin to aromatic aldehydes with a decent yield by GO through the Cα activation of β-O-4 cleavage. A urea-hydrogen peroxide (UHP) oxidative process is followed to transform aldehydes in the depolymerized product to PAs by avoiding the undesired Dakin side reaction due to the electron-withdrawing effect of the acetyl group. This study opens a new way to selectively cleave lignin side chains to isolated biochemicals under mild conditions.
Collapse
Affiliation(s)
- Wenbo Peng
- School of Chemical & Biomolecular Engineering Renewable Bioproduct Institute, Georgia Institute of Technology, Atlanta, GA 30318, USA
| | - Hanxi Bao
- Department of Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Raleigh, NC 27695, USA
| | - Yigui Wang
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical Engineering, University of New Haven, West Haven, CT 06516, USA
| | - Elizabeth Cote
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical Engineering, University of New Haven, West Haven, CT 06516, USA
| | - William J Sagues
- Department of Biological & Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Halena Hagelin-Weaver
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Ji Gao
- School of Chemical & Biomolecular Engineering Renewable Bioproduct Institute, Georgia Institute of Technology, Atlanta, GA 30318, USA
| | - Dequan Xiao
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical Engineering, University of New Haven, West Haven, CT 06516, USA
| | - Zhaohui Tong
- School of Chemical & Biomolecular Engineering Renewable Bioproduct Institute, Georgia Institute of Technology, Atlanta, GA 30318, USA
| |
Collapse
|
31
|
Dong L, Wang Y, Dong Y, Zhang Y, Pan M, Liu X, Gu X, Antonietti M, Chen Z. Sustainable production of dopamine hydrochloride from softwood lignin. Nat Commun 2023; 14:4996. [PMID: 37591869 PMCID: PMC10435513 DOI: 10.1038/s41467-023-40702-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
Dopamine is not only a widely used commodity pharmaceutical for treating neurological diseases but also a highly attractive base for advanced carbon materials. Lignin, the waste from the lignocellulosic biomass industry, is the richest source of renewable aromatics on earth. Efficient production of dopamine direct from lignin is a highly desirable target but extremely challenging. Here, we report an innovative strategy for the sustainable production of dopamine hydrochloride from softwood lignin with a mass yield of 6.4 wt.%. Significantly, the solid dopamine hydrochloride is obtained by a simple filtration process in purity of 98.0%, which avoids the tedious separation and purification steps. The approach begins with the acid-catalyzed depolymerization, followed by deprotection, hydrogen-borrowing amination, and hydrolysis of methoxy group, transforming lignin into dopamine hydrochloride. The technical economic analysis predicts that this process is an economically competitive production process. This study fulfills the unexplored potential of dopamine hydrochloride synthesis from lignin.
Collapse
Affiliation(s)
- Lin Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, 210037, Nanjing, China
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Yanqin Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, China.
| | - Yuguo Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, 210037, Nanjing, China
| | - Yin Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, 210037, Nanjing, China
| | - Mingzhu Pan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, 210037, Nanjing, China
| | - Xiaohui Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Xiaoli Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, 210037, Nanjing, China
| | - Markus Antonietti
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Research Campus Golm, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Zupeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, 210037, Nanjing, China.
- Leibniz-Institute for Catalysis, University of Rostock, Albert Einstein Street, 29a, Rostock, 18059, Germany.
| |
Collapse
|
32
|
Suh SM, Jambu S, Chin MT, Diao T. Selective Cleavage of Lignin Model Compounds via a Reverse Biosynthesis Mechanism. Org Lett 2023; 25:4792-4796. [PMID: 37294132 PMCID: PMC10334464 DOI: 10.1021/acs.orglett.3c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 06/10/2023]
Abstract
Selective depolymerization of lignin remains a significant challenge in biomass conversion. The biosynthesis of lignin involves the polymerization of monolignol building blocks through oxidative radical coupling reactions. A strategy for lignin degradation leverages photoredox deoxygenative radical formation to trigger reverse biosynthesis, which cleaves model compounds of the β-O-4 and β-5-β-O-4 linkages to produce monolignols, precursors to flavoring compounds. This mild method preserves important oxygen functionality and serves as a platform for achieving selective lignin depolymerization.
Collapse
Affiliation(s)
- Sang Mi Suh
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Subramanian Jambu
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Mason T. Chin
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Tianning Diao
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
33
|
Terholsen H, Meyer JRH, Zhang Z, Deuss PJ, Bornscheuer UT. Chemoenzymatic Cascade Reaction for the Valorization of the Lignin Depolymerization Product G-C2-Dioxolane Phenol. CHEMSUSCHEM 2023; 16:e202300168. [PMID: 36826410 DOI: 10.1002/cssc.202300168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 05/20/2023]
Abstract
Combining solid acid catalysts with enzyme reactions in aqueous environments is challenging because either very acidic conditions inactivate the enzymes, or the solid acid catalyst is neutralized. In this study, Amberlyst-15 encapsulated in polydimethylsiloxane (Amb-15@PDMS) is used to deprotect the lignin depolymerization product G-C2 dioxolane phenol in a buffered system at pH 6.0. This reaction is directly coupled with the biocatalytic reduction of the released homovanillin to homovanillyl alcohol by recombinant horse liver alcohol dehydrogenase, which is subsequently acylated by the promiscuous acyltransferase/hydrolase PestE_I208A_L209F_N288A in a one-pot system. The deprotection catalyzed with Amb-15@PDMS attains up to 97 % conversion. Overall, this cascade enables conversions of up to 57 %.
Collapse
Affiliation(s)
- Henrik Terholsen
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| | - Jule R H Meyer
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| | - Zhenlei Zhang
- Faculty of Science and Engineering, Chemical Technology, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| | - Peter J Deuss
- Faculty of Science and Engineering, Chemical Technology, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| |
Collapse
|
34
|
Li Y, Meng X, Meng R, Cai T, Pu Y, Zhao ZM, Ragauskas AJ. Valorization of homogeneous linear catechyl lignin: opportunities and challenges. RSC Adv 2023; 13:12750-12759. [PMID: 37101533 PMCID: PMC10124587 DOI: 10.1039/d3ra01546g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
Lignin is the dominant aromatic renewable polymer on earth. Generally, its complex and heterogeneous structure hinders its high-value utilization. Catechyl lignin (C-lignin), a novel lignin discovered in the seed coats of vanilla and several members of Cactaceae, has received increasing attention due to its unique homogeneous linear structure. Obtaining substantial amounts of C-lignin either by gene regulation or effective isolation is essential to advance C-lignin's valorization. Through a fundamental understanding of the biosynthesis process, genetic engineering to promote the accumulation of C-lignin in certain plants was developed to facilitate C-lignin valorization. Various isolation methods were also developed to isolate C-lignin, among which deep eutectic solvents (DESs) treatment is one of the most promising approaches to fractionate C-lignin from biomass materials. Since C-lignin is composed of homogeneous catechyl units, depolymerization to produce catechol monomers demonstrates a promising way for value-added utilization of C-lignin. Reductive catalytic fractionation (RCF) represents another emerging technology for effective depolymerizing C-lignin, leading to a narrow distribution of lignin-derived aromatic products (e.g., propyl and propenyl catechol). Meanwhile, the linear molecular structure predisposes C-lignin as a potential promising feedstock for preparing carbon fiber materials. In this review, the biosynthesis of this unique C-lignin in plants is summarized. C-lignin isolation from plants and various depolymerization approaches to obtaining aromatic products are overviewed with highlights on RCF process. Exploring new application areas based on C-lignin's unique homogeneous linear structure is also discussed with its potential for high-value utilization in the future.
Collapse
Affiliation(s)
- Yibing Li
- School of Ecology and Environment, Inner Mongolia Key Laboratory of Environmental Pollution Control & Wastes Reuse, Inner Mongolia University Hohhot 010021 China
| | - Xianzhi Meng
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville TN 37996 USA
| | - Rongqian Meng
- School of Ecology and Environment, Inner Mongolia Key Laboratory of Environmental Pollution Control & Wastes Reuse, Inner Mongolia University Hohhot 010021 China
| | - Ting Cai
- Inner Mongolia Autonomous Region Agriculture and Animal Husbandry Technology Extension Center Hohhot 010010 China
| | - Yunqiao Pu
- Center for Bioenergy Innovation (CBI), Joint Institute of Biological Science, Biosciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Zhi-Min Zhao
- School of Ecology and Environment, Inner Mongolia Key Laboratory of Environmental Pollution Control & Wastes Reuse, Inner Mongolia University Hohhot 010021 China
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville TN 37996 USA
| | - Arthur J Ragauskas
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville TN 37996 USA
- Center for Bioenergy Innovation (CBI), Joint Institute of Biological Science, Biosciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
- Center for Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture Knoxville TN 37996 USA
| |
Collapse
|
35
|
Sun X, Li Q, Wu H, Zhou Z, Feng S, Deng P, Zou H, Tian D, Lu C. Sustainable Starch/Lignin Nanoparticle Composites Biofilms for Food Packaging Applications. Polymers (Basel) 2023; 15:polym15081959. [PMID: 37112108 PMCID: PMC10141166 DOI: 10.3390/polym15081959] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Construction of sustainable composite biofilms from natural biopolymers are greatly promising for advanced packaging applications due to their biodegradable, biocompatible, and renewable properties. In this work, sustainable advanced food packaging films are developed by incorporating lignin nanoparticles (LNPs) as green nanofillers to starch films. This seamless combination of bio-nanofiller with biopolymer matrix is enabled by the uniform size of nanofillers and the strong interfacial hydrogen bonding. As a result, the as-prepared biocomposites exhibit enhanced mechanical properties, thermal stability, and antioxidant activity. Moreover, they also present outstanding ultraviolet (UV) irradiation shielding performance. As a proof of concept in the application of food packaging, we evaluate the effect of composite films on delaying oxidative deterioration of soybean oil. The results indicate our composite film could significantly decrease peroxide value (POV), saponification value (SV), and acid value (AV) to delay oxidation of soybean oil during storage. Overall, this work provides a simple and effective method for the preparation of starch-based films with enhanced antioxidant and barrier properties for advanced food packaging applications.
Collapse
Affiliation(s)
- Xunwen Sun
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Qingye Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Hejun Wu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zehang Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Shiyi Feng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Pengcheng Deng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Huawei Zou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Dong Tian
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
- Advanced Polymer Materials Research Center, Sichuan University, Shishi 362700, China
| |
Collapse
|
36
|
Li J, Li Z, Dong J, Fang R, Chi Y, Hu C. Hexaniobate as a Recyclable Solid Base Catalyst to Activate C–H Bonds in Lignin Linkage Boosting the Production of Aromatic Monomers. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Jie Li
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhen Li
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jing Dong
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Renbo Fang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yingnan Chi
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Changwen Hu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
37
|
Ortega M, Manrique R, Jiménez R, Parreño M, Domine ME, Arteaga-Pérez LE. Secondary Amines from Catalytic Amination of Bio-Derived Phenolics over Pd/C and Rh/C: Effect of Operation Parameters. Catalysts 2023. [DOI: 10.3390/catal13040654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
The production of renewable chemicals using lignocellulosic biomass has gained significant attention in green chemistry. Among biomass-derived chemicals, secondary amines have emerged as promising intermediates for synthetic applications. Here, we report a systematic study on the reductive amination of phenolics with cyclohexylamine using Pd/C and Rh/C as catalysts. The catalytic tests were performed in batch reactors under different reaction conditions (various: amine concentration (0.1–0.4 mol/L), hydrogen pressure (0–2.5 bar), temperature (80–160 °C), and substituted phenols (phenol, o-cresol, p-cresol, and methoxyphenol)) and using tert-amyl alcohol as a solvent. The experimental observations were consistent with a multi-step mechanism, where hydrogenation of phenol to cyclohexanone is followed by condensation of the ketone with cyclohexylamine to form an imine, which is finally hydrogenated to produce secondary amines. In addition, there was evidence of parallel self-condensation of the cyclohexylamine. The study also supported a limited dehydrogenation capacity of Rh/C, unlike Pd/C, which increases this capacity at higher temperatures generating a higher yield of cyclohexylaniline (up to 15%). The study of the alkylated phenols demonstrated that the nature and propensity of hydrogenation of the phenolic controls their amination. Kinetic analysis revealed reaction orders between 0.4 and 0.7 for H2, indicating its dissociative adsorption. Meanwhile, phenol’s order (between 1–1.8) suggests a single participation of this compound in the hydrogenation step. The order of 0.4 for cyclohexylamine suggests its participation as a surface-abundant species. The apparent activation energies derived from a power law approximation were of 37 kJ/mol and 10 kJ/mol on Pd/C and Rh/C, respectively.
Collapse
|
38
|
Rinken R, Posthuma D, Rinaldi R. Lignin Stabilization and Carbohydrate Nature in H-transfer Reductive Catalytic Fractionation: The Role of Solvent Fractionation of Lignin Oil in Structural Profiling. CHEMSUSCHEM 2023; 16:e202201875. [PMID: 36469562 PMCID: PMC10108069 DOI: 10.1002/cssc.202201875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Reductive Catalytic Fractionation (RCF) of lignocellulosic materials produces lignin oil rich in monomer products and high-quality cellulosic pulps. RCF lignin oil also contains lignin oligomers/polymers and hemicellulose-derived carbohydrates. The variety of components makes lignin oil a complex matrix for analytical methods. As a result, the signals are often convoluted and overlapped, making detecting and quantifying key intermediates challenging. Therefore, to investigate the mechanisms underlining lignin stabilization and elucidate the structural features of carbohydrates occurring in the RCF lignin oil, fractionation methods reducing the RCF lignin oil complexity are required. This report examines the solvent fractionation of RCF lignin oil as a facile method for producing lignin oil fractions for advanced characterization. Solvent fractionation uses small volumes of environmentally benign solvents (methanol, acetone, and ethyl acetate) to produce multigram lignin fractions comprising products in different molecular weight ranges. This feature allows the determination of structural heterogeneity across the entire molecular weight distribution of the RCF lignin oil by high-resolution HSQC NMR spectroscopy. This study provides detailed insight into the role of the hydrogenation catalyst (Raney Ni) in stabilizing lignin fragments and defining the structural features of hemicellulose-derived carbohydrates in lignin oil obtained by the H-transfer RCF process.
Collapse
Affiliation(s)
- Raul Rinken
- Department of Chemical EngineeringImperial College LondonSouth Kensington CampusSW7 2AZLondonUK
| | - Dean Posthuma
- Department of Chemical EngineeringImperial College LondonSouth Kensington CampusSW7 2AZLondonUK
| | - Roberto Rinaldi
- Department of Chemical EngineeringImperial College LondonSouth Kensington CampusSW7 2AZLondonUK
| |
Collapse
|
39
|
Employing Cu(II) complexes of N,O-donor ligand for catalysis in visible light driven cleavage of lignin C-C bonds. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
40
|
Chen M, Li Y, Liu H, Zhang D, Shi QS, Zhong XQ, Guo Y, Xie XB. High value valorization of lignin as environmental benign antimicrobial. Mater Today Bio 2023; 18:100520. [PMID: 36590981 PMCID: PMC9800644 DOI: 10.1016/j.mtbio.2022.100520] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Lignin is a natural aromatic polymer of p-hydroxyphenylpropanoids with various biological activities. Noticeably, plants have made use of lignin as biocides to defend themselves from pathogen microbial invasions. Thus, the use of isolated lignin as environmentally benign antimicrobial is believed to be a promising high value approach for lignin valorization. On the other hand, as green and sustainable product of plant photosynthesis, lignin should be beneficial to reduce the carbon footprint of antimicrobial industry. There have been many reports that make use of lignin to prepare antimicrobials for different applications. However, lignin is highly heterogeneous polymers different in their monomers, linkages, molecular weight, and functional groups. The structure and property relationship, and the mechanism of action of lignin as antimicrobial remains ambiguous. To show light on these issues, we reviewed the publications on lignin chemistry, antimicrobial activity of lignin models and isolated lignin and associated mechanism of actions, approaches in synthesis of lignin with improved antimicrobial activity, and the applications of lignin as antimicrobial in different fields. Hopefully, this review will help and inspire researchers in the preparation of lignin antimicrobial for their applications.
Collapse
Affiliation(s)
- Mingjie Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yan Li
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Huiming Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Dandan Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qing-Shan Shi
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xin-Qi Zhong
- Department of Neonatology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yanzhu Guo
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Xiao-Bao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| |
Collapse
|
41
|
Li S, Park S, Sherman BD, Yoo CG, Leem G. Photoelectrochemical approaches for the conversion of lignin at room temperature. Chem Commun (Camb) 2023; 59:401-413. [PMID: 36519448 DOI: 10.1039/d2cc05491d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The selective cleavage of C-C/C-O linkages represents a key step toward achieving the chemical conversion of biomass to targeted value-added chemical products under ambient conditions. Using photoelectrosynthetic solar cells is a promising method to address the energy intensive depolymerization of lignin for the production of biofuels and valuable chemicals. This feature article gives an in-depth overview of recent progress using dye-sensitized photoelectrosynthetic solar cells (DSPECs) to initiate the cleavage of C-C/C-O bonds in lignin and related model compounds. This approach takes advantage of N-oxyl mediated catalysis in organic electrolytes and presents a promising direction for the sustainable production of chemicals currently derived from fossil fuels.
Collapse
Affiliation(s)
- Shuya Li
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, USA.
| | - Seongsu Park
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, USA.
| | - Benjamin D Sherman
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, USA
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, USA.,The Michael M. Szwarc Polymer Research Institute, Syracuse, New York 13210, USA
| | - Gyu Leem
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, USA. .,The Michael M. Szwarc Polymer Research Institute, Syracuse, New York 13210, USA
| |
Collapse
|
42
|
Alruwaili A, Rashid GMM, Sodré V, Mason J, Rehman Z, Menakath AK, Cheung D, Brown SP, Bugg TDH. Elucidation of microbial lignin degradation pathways using synthetic isotope-labelled lignin. RSC Chem Biol 2023; 4:47-55. [PMID: 36685258 PMCID: PMC9811514 DOI: 10.1039/d2cb00173j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
Pathways by which the biopolymer lignin is broken down by soil microbes could be used to engineer new biocatalytic routes from lignin to renewable chemicals, but are currently not fully understood. In order to probe these pathways, we have prepared synthetic lignins containing 13C at the sidechain β-carbon. Feeding of [β-13C]-labelled DHP lignin to Rhodococcus jostii RHA1 has led to the incorporation of 13C label into metabolites oxalic acid, 4-hydroxyphenylacetic acid, and 4-hydroxy-3-methoxyphenylacetic acid, confirming that they are derived from lignin breakdown. We have identified a glycolate oxidase enzyme in Rhodococcus jostii RHA1 which is able to oxidise glycolaldehyde via glycolic acid to oxalic acid, thereby identifying a pathway for the formation of oxalic acid. R. jostii glycolate oxidase also catalyses the conversion of 4-hydroxyphenylacetic acid to 4-hydroxybenzoylformic acid, identifying another possible pathway to 4-hydroxybenzoylformic acid. Formation of labelled oxalic acid was also observed from [β-13C]-polyferulic acid, which provides experimental evidence in favour of a radical mechanism for α,β-bond cleavage of β-aryl ether units.
Collapse
Affiliation(s)
- Awatif Alruwaili
- Department of Chemistry, University of WarwickCoventryCV4 7ALUK+44(0)-2476-573018
| | - Goran M. M. Rashid
- Department of Chemistry, University of WarwickCoventryCV4 7ALUK+44(0)-2476-573018
| | - Victoria Sodré
- Department of Chemistry, University of WarwickCoventryCV4 7ALUK+44(0)-2476-573018
| | - James Mason
- Department of Chemistry, University of WarwickCoventryCV4 7ALUK+44(0)-2476-573018
| | - Zainab Rehman
- Department of Physics, University of WarwickCoventryCV4 7ALUK
| | | | - David Cheung
- Department of Physics, University of WarwickCoventryCV4 7ALUK
| | - Steven P. Brown
- Department of Physics, University of WarwickCoventryCV4 7ALUK
| | - Timothy D. H. Bugg
- Department of Chemistry, University of WarwickCoventryCV4 7ALUK+44(0)-2476-573018
| |
Collapse
|
43
|
Guo H, Tian L, Wang Y, Zheng K, Hou J, Zhao Y, Zhu T, Liu Y. Enhanced anaerobic digestion of waste activated sludge with periodate-based pretreatment. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 13:100208. [PMID: 36388632 PMCID: PMC9640319 DOI: 10.1016/j.ese.2022.100208] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 05/04/2023]
Abstract
The potential of periodate (PI) in sludge anaerobic digestion is not tapped, although it has recently attracted great research interest in organic contaminants removal and pathogens inactivation in wastewater treatment. This is the first work to demonstrate significant improvement in methane generation from waste activated sludge (WAS) with PI pretreatment and to provide underlying mechanisms. Biochemical methane potential tests indicated that methane yield enhanced from 100.2 to 146.3 L per kg VS (VS, volatile solids) with PI dosages from 0 to 100 mg per g TS (TS, total solids). Electron spin resonance showed PI could be activated without extra activator addition, which might be attributed to the native transition metals (e.g., Fe2+) in WAS, thereby generating hydroxyl radical (•OH), superoxide radicals (•O2 -), and singlet oxygen (1O2). Further scavenging tests demonstrated all of them synergistically promoted WAS disintegration, and their contributions were in the order of •O2 - > •OH > 1O2, leading to the release of substantial biodegradable substances (i.e., proteins and polysaccharides) into the liquid phase for subsequent biotransformation. Moreover, fluorescence and ultraviolet spectroscopy analyses indicated the recalcitrant organics (especially lignocellulose and humus) could be degraded by reducing their aromaticity under oxidative stress of PI, thus readily for methanogenesis. Microbial community analysis revealed some microorganisms participating in hydrolysis, acidogenesis, and acetoclastic methanogenesis were enriched after PI pretreatment. The improved key enzyme activities and up-regulated metabolic pathways further provided direct evidence for enhanced methane production. This research was expected to broaden the application scope of PI and provide more diverse pretreatment choices for energy recovery through anaerobic digestion.
Collapse
|
44
|
Shao L, Wang C, Liu Y, Wang M, Wang L, Xu F. Efficient depolymerization of lignin through microwave-assisted Ru/C catalyst cooperated with metal chloride in methanol/formic acid media. Front Bioeng Biotechnol 2022; 10:1082341. [PMID: 36588935 PMCID: PMC9800509 DOI: 10.3389/fbioe.2022.1082341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Lignin, an abundant aromatic biopolymer, has the potential to produce various biofuels and chemicals through biorefinery activities and is expected to benefit the future circular economy. Microwave-assisted efficient degradation of lignin in methanol/formic acid over Ru/C catalyst cooperated with metal chloride was investigated, concerning the effect of type and dosage of metal chloride, dosage of Ru/C, reaction temperature, and reaction time on depolymerized product yield and distribution. Results showed that 91.1 wt% yield of bio-oil including 13.4 wt% monomers was obtained under the optimum condition. Yields of guaiacol-type compounds and 2,3-dihydrobenzofuran were promoted in the presence of ZnCl2. Formic acid played two roles: (1) acid-catalyzed cleavage of linkages; (2) acted as an in situ hydrogen donor for hydrodeoxygenation in the presence of Ru/C. A possible mechanism for lignin degradation was proposed. This work will provide a beneficial approach for efficient depolymerization of lignin and controllable product distribution.
Collapse
Affiliation(s)
- Lupeng Shao
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology (Ministry of Education), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China,Shandong Chenming Paper Holdings Co., Ltd., Weifang, China
| | - Chao Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology (Ministry of Education), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China,*Correspondence: Chao Wang, ; Yu Liu, ; Feng Xu,
| | - Yu Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology (Ministry of Education), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China,*Correspondence: Chao Wang, ; Yu Liu, ; Feng Xu,
| | - Meng Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology (Ministry of Education), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Luyan Wang
- Shandong Chenming Paper Holdings Co., Ltd., Weifang, China
| | - Feng Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology (Ministry of Education), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China,Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China,*Correspondence: Chao Wang, ; Yu Liu, ; Feng Xu,
| |
Collapse
|
45
|
Gong Z, Shuai L. Lignin condensation, an unsolved mystery. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
46
|
Wan Z, Zhang H, Guo Y, Li H. Advances in Catalytic Depolymerization of Lignin. ChemistrySelect 2022. [DOI: 10.1002/slct.202202582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhouyuanye Wan
- Zhouyuanye Wan Prof. Dr. Yanzhu Guo Prof. Dr. Haiming Li Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery School of Light Industry and Chemical Engineering Dalian Polytechnic University No.1 Qinggongyuan, Ganjingzi District Dalian 116034 China
| | - Hongjie Zhang
- China National Pulp and Paper Research Institute Co. Ltd. Beijing 100102 China
| | - Yanzhu Guo
- Zhouyuanye Wan Prof. Dr. Yanzhu Guo Prof. Dr. Haiming Li Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery School of Light Industry and Chemical Engineering Dalian Polytechnic University No.1 Qinggongyuan, Ganjingzi District Dalian 116034 China
| | - Haiming Li
- Zhouyuanye Wan Prof. Dr. Yanzhu Guo Prof. Dr. Haiming Li Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery School of Light Industry and Chemical Engineering Dalian Polytechnic University No.1 Qinggongyuan, Ganjingzi District Dalian 116034 China
| |
Collapse
|
47
|
Al‐Naji M, Brandi F, Drieß M, Rosowski F. From Lignin to Chemicals: An Expedition from Classical to Modern Catalytic Valorization Technologies. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Majd Al‐Naji
- Technische Universität Berlin BasCat – UniCat BASF JointLab Hardenbergstraße 36, Sekr. EW K-01 10623 Berlin Germany
| | - Francesco Brandi
- KU Leuven Center for Sustainable Catalysis and Engineering Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Matthias Drieß
- Technische Universität Berlin BasCat – UniCat BASF JointLab Hardenbergstraße 36, Sekr. EW K-01 10623 Berlin Germany
- Technische Universität Berlin Department of Chemistry, Metalorganics and Inorganic Materials Straße des 17. Juni 115, Sekr. C2 10623 Berlin Germany
| | - Frank Rosowski
- Technische Universität Berlin BasCat – UniCat BASF JointLab Hardenbergstraße 36, Sekr. EW K-01 10623 Berlin Germany
- BASF SE Process Research and Chemical Engineering 67056 Ludwigshafen Germany
| |
Collapse
|
48
|
Schmid J, Wang M, Gutiérrez OY, Bullock RM, Camaioni DM, Lercher JA. Controlling Reaction Routes in Noble‐Metal‐Catalyzed Conversion of Aryl Ethers. Angew Chem Int Ed Engl 2022; 61:e202203172. [PMID: 35482977 PMCID: PMC9400965 DOI: 10.1002/anie.202203172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Julian Schmid
- Institute for Integrated Catalysis Pacific Northwest National Laboratory (PNNL) P.O. Box 999 Richland WA 99352 USA
| | - Meng Wang
- Institute for Integrated Catalysis Pacific Northwest National Laboratory (PNNL) P.O. Box 999 Richland WA 99352 USA
| | - Oliver Y. Gutiérrez
- Institute for Integrated Catalysis Pacific Northwest National Laboratory (PNNL) P.O. Box 999 Richland WA 99352 USA
| | - R. Morris Bullock
- Institute for Integrated Catalysis Pacific Northwest National Laboratory (PNNL) P.O. Box 999 Richland WA 99352 USA
| | - Donald M. Camaioni
- Institute for Integrated Catalysis Pacific Northwest National Laboratory (PNNL) P.O. Box 999 Richland WA 99352 USA
| | - Johannes A. Lercher
- Institute for Integrated Catalysis Pacific Northwest National Laboratory (PNNL) P.O. Box 999 Richland WA 99352 USA
- Department of Chemistry and Catalysis Research Institute Technische Universität München Lichtenbergstrasse 4 85748 Garching Germany
| |
Collapse
|
49
|
Miroshnikova AV, Kazachenko AS, Kuznetsov BN, Taran OP. Reductive Catalytic Fractionation of Lignocellulosic Biomass: A New Promissing Method for Its Complex Processing. CATALYSIS IN INDUSTRY 2022. [DOI: 10.1134/s2070050422020052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Wang Y, Hou Y, Li H, Wu W, Ren S, Li J. A New Structural Model of Enzymatic Lignin with Multiring Aromatic Clusters. ACS OMEGA 2022; 7:18861-18869. [PMID: 35694518 PMCID: PMC9178751 DOI: 10.1021/acsomega.2c01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Lignin is a natural aromatic compound in plants. Several lignin structural models have been proposed in the past years, but all the models cannot be converted to benzene carboxylic acids (BCAs) for all aromatic rings connected to oxygen. This inspired us to explore the structures of lignin. Based on the yields of BCAs, the results of 13C NMR and ethanolysis residues, and gas chromatography-mass spectrometry and electrospray ionization mass spectrometry of ethanolysis of lignin, we have constructed a structural model of lignin with a formula C6407H6736O2590N147S3. The model not only satisfies the results of analyses, but also explains the generation of BCAs from lignin oxidation and the ethanolysis products. Importantly, double-ring and triple-ring aromatic clusters are found in lignin, and some of them are connected by alkyl bridges, which results in conventional low conversions of lignin. Our findings in the structures of lignin may significantly influence the structures and applications of lignin.
Collapse
Affiliation(s)
- Yupeng Wang
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yucui Hou
- Department
of Chemistry, Taiyuan Normal University, Jinzhong, Shanxi 030619, China
| | - He Li
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weize Wu
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuhang Ren
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianwei Li
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|