1
|
Shibata I, Sugawara-Narutaki A, Takahashi R. Polymerization-induced self-assembly enables access to diverse highly ordered structures through kinetic and thermodynamic pathways. Chem Sci 2025; 16:7921-7928. [PMID: 40191129 PMCID: PMC11969376 DOI: 10.1039/d5sc01703c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 03/31/2025] [Indexed: 04/09/2025] Open
Abstract
Polymerization-induced self-assembly (PISA) has emerged as a powerful technique for generating microphase-separated structures, but research has primarily focused on systems exhibiting "disordered" structures. Here, we demonstrate the facile construction of various highly ordered microphase-separated structures via PISA, with and without kinetic control through manipulation of the glass transition temperature (T g) of the core-forming blocks. We synthesized diblock copolymers in an ionic liquid (40 wt% solute) by polymerizing styrene or 2-hydroxyethyl acrylate from one end of poly(ethylene glycol). When using polystyrene as the core-forming block, its high T g relative to the polymerization temperature resulted in the formation of kinetically trapped structures, including pure hexagonal close-packed (HCP) spheres exhibiting X-ray diffraction peaks up to the 17th-order. Conversely, lower-T g core-forming block [poly(2-hydroxyethyl acrylate)] led to thermodynamically stable, highly ordered structures, including a double-gyroid morphology. These results highlight the efficacy of PISA for generating diverse, highly ordered microphase-separated structures from simple diblock copolymers and demonstrate its potential to access structures unattainable through conventional ex situ polymerization.
Collapse
Affiliation(s)
- Ibuki Shibata
- Department of Energy Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-8603 Japan
| | - Ayae Sugawara-Narutaki
- Department of Energy Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-8603 Japan
- Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo 2-3-10, Kanda-Surugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Rintaro Takahashi
- Department of Macromolecular Science, Graduate School of Science, The University of Osaka 1-1 Machikaneyama-cho Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
2
|
Jia H, Mu M, Hou Y, Pan Y, Liu C, Shen C, Liu X. Template-Thermally Induced Phase Separation-Assisted Microporous Regulation in Poly(lactic acid) Aerogel for Sustainable Radiative Cooling. Biomacromolecules 2025; 26:1184-1194. [PMID: 39846394 DOI: 10.1021/acs.biomac.4c01515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Herein, an eco-friendly and degradable poly(lactic acid) aerogel was prepared by combining a poly(ethylene glycol) template material with thermally induced phase separation. Due to the tailored pore size introduced by the template material, the aerogel exhibits high solar reflectance (92.0%), excellent thermal emittance (90.5%), low thermal conductivity (52.0 mW m-1 K-1), and high compressive strength (0.15 MPa). Cooling tests demonstrate that the aerogel can achieve temperature drops of 3.7 °C during the day and of 6.2 °C at night. Furthermore, simulations of building cooling energy systems reveal that the aerogel can reduce energy consumption by 2.2 to 10.2 MJ m-2 per year in various cities, achieving energy savings ranging from 8.2 to 24.3%. Meanwhile, the aerogel cooler demonstrates excellent self-cleaning performance (WCA = 149.1°) and cyclic compression performance. This research will promote the field of passive radiative cooling toward a greener and more sustainable direction.
Collapse
Affiliation(s)
- Han Jia
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Mulan Mu
- School of Mechanical and Material Engineering, North China University of Technology, Beijing 100144, China
| | - Yangzhe Hou
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Yamin Pan
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Chuntai Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment (Zhengzhou University), Zhengzhou 450002, China
| | - Changyu Shen
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment (Zhengzhou University), Zhengzhou 450002, China
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment (Zhengzhou University), Zhengzhou 450002, China
| |
Collapse
|
3
|
Ren M, Zhang M, Hou Z, Yan X, Zhang L, Xu J, Zhu J. Bicontinuous Block Copolymer Microparticles through Hydrogen-Bonding-Mediated Dual Phase Separation between Polymer Segments and Fluorinated Additives. ACS NANO 2025; 19:1159-1166. [PMID: 39711067 DOI: 10.1021/acsnano.4c13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Bicontinuous microparticles have advanced transport, mechanical, and electrochemical properties and show promising applications in energy storage, catalysis, and other fields. However, it remains a great challenge to fabricate bicontinuous microparticles of block copolymers (BCPs) by controlling the microphase separation due to the extremely narrow region of a bicontinuous structure in the phase diagram. Here, we demonstrate a strategy to balance the phase separation of BCPs and fluorinated additives at different length scales in emulsion droplets, providing a large window to access bicontinuous microparticles. The key point is to simultaneously introduce contradictory attractive-repulsive interactions between poly(4-vinylpyridine)-containing BCPs and carboxylated perfluorinated additives. Hydrogen bonding between poly(4-vinylpyridine) and carboxyl groups, as an attractive interaction, directs the microphase separation between BCPs and additives. Meanwhile, the repulsive interaction due to the high immiscibility between perfluoroalkyl residues and BCPs induces macrophase separation. The compromise of attractive-repulsive interactions triggers the formation of bicontinuous microparticles in a large phase space. In addition, the vulnerable nature of hydrogen bonding provides a flexible route for reversibly shaping BCP assemblies. This work establishes a platform for fabricating structured BCP microparticles of which the structures are hardly accessible through traditional solution self-assembly.
Collapse
Affiliation(s)
- Min Ren
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Mengmeng Zhang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Zaiyan Hou
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Xinghao Yan
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Lianbin Zhang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jiangping Xu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
4
|
Lu D, Bobrin VA. Scalable Macroscopic Engineering from Polymer-Based Nanoscale Building Blocks: Existing Challenges and Emerging Opportunities. Biomacromolecules 2024; 25:7058-7077. [PMID: 39470717 DOI: 10.1021/acs.biomac.4c01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Natural materials exhibit exceptional properties due to their hierarchical structures spanning from the nano- to the macroscale. Replicating these intricate spatial arrangements in synthetic materials presents a significant challenge as it requires precise control of nanometric features within large-scale structures. Addressing this challenge depends on developing methods that integrate assembly techniques across multiple length scales to construct multiscale-structured synthetic materials in practical, bulk forms. Polymers and polymer-hybrid nanoparticles, with their tunable composition and structural versatility, are promising candidates for creating hierarchically organized materials. This review highlights advances in scalable techniques for nanoscale organization of polymer-based building blocks within macroscopic structures, including block copolymer self-assembly with additive manufacturing, polymer brush nanoparticles capable of self-assembling into larger, ordered structures, and direct-write colloidal assembly. These techniques offer promising pathways toward the scalable fabrication of materials with emergent properties suited for advanced applications such as bioelectronic interfaces, artificial muscles, and other biomaterials.
Collapse
Affiliation(s)
- Derong Lu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Valentin A Bobrin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
5
|
Wu D, Dev V, Bobrin VA, Lee K, Boyer C. Nanostructure design of 3D printed materials through macromolecular architecture. Chem Sci 2024:d4sc05597g. [PMID: 39502506 PMCID: PMC11533054 DOI: 10.1039/d4sc05597g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024] Open
Abstract
Polymerization-induced microphase separation (PIMS) has been previously combined with 3D printing to develop customized nanostructured materials with a wide range of functional applications. In traditional PIMS, monofunctional, linear macromolecular chain transfer agents (macroCTAs) are used to develop macroCTA-b-P(monomer-stat-crosslinker) networks that self-assemble into unique disordered nanostructures. In this work, we designed a significantly altered network structure by utilizing linear macroCTAs with pendant CTA groups, which provides a novel network upon polymerization (i.e., branched copolymers, [macroCTA-graft-[P(monomer-stat-crosslinker)] n ]-b-P(monomer-stat-crosslinker)). Intriguingly, this method leads to the development of alternative disordered morphologies where the internal nanostructure can be precisely controlled. By systematically varying the number of pendant CTA groups, we demonstrate controlled transitions in macroCTA domain continuity, nanodomain size, and phase interface sharpness. These tunable properties translate to adjustable mechanical and swelling behaviors in the resulting 3D printed objects, ultimately enabling the fabrication of smart 4D materials (swelling-induced actuators and temperature-responsive shape-morphing objects). This research significantly expands the design toolbox for 3D printed PIMS materials, providing increased flexibility in the development of advanced materials with specific nanostructures and functionalities.
Collapse
Affiliation(s)
- Di Wu
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales Sydney NSW 2052 Australia
| | - Vaibhav Dev
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales Sydney NSW 2052 Australia
| | - Valentin A Bobrin
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales Sydney NSW 2052 Australia
| | - Kenny Lee
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales Sydney NSW 2052 Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for Nanomedicine, School of Chemical Engineering, University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
6
|
Shi X, Yao Y, Zhang J, Corrigan N, Boyer C. Polymerization Induced Microphase Separation of ABC Triblock Copolymers for 3D Printing Nanostructured Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305268. [PMID: 37661582 DOI: 10.1002/smll.202305268] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/01/2023] [Indexed: 09/05/2023]
Abstract
Polymerization-induced microphase separation (PIMS) is a versatile technique for producing nanostructured materials. In previous PIMS studies, the predominant approach involved employing homopolymers as macromolecular chain transfer agents (macroCTAs) to mediate the formation of nanostructured materials. In this article, the use of AB diblock copolymers as macroCTAs to design PIMS systems for 3D printing of nanostructured materials is investigated. Specifically, the influence of diblock copolymer composition and block sequence on the resulting nanostructures, and their subsequent impact on bulk properties is systematically investigated. Through careful manipulation of the A/B block ratios, the morphology and size of the nanodomains are successfully controlled. Remarkably, the sequence of A and B blocks significantly affects the microphase separation process, resulting in distinct morphologies. The effect can be attributed to changes in the interaction parameters (χAB, χBC, χAC) between the different block segments. Furthermore, the block sequence and composition exert profound influence on the thermomechanical, tensile, and swelling properties of 3D printed nanostructured materials. By leveraging this knowledge, it becomes possible to design advanced 3D printable materials with tailored properties, opening new avenues for material engineering.
Collapse
Affiliation(s)
- Xiaobing Shi
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yin Yao
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jin Zhang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
7
|
Yamanaka R, Sugawara-Narutaki A, Takahashi R. Microphase Separation and Gelation through Polymerization-Induced Self-Assembly Using Star Polyethylene Glycols. ACS Macro Lett 2024; 13:1050-1055. [PMID: 39083349 PMCID: PMC11340017 DOI: 10.1021/acsmacrolett.4c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/17/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Polymerization-induced self-assembly (PISA) during the synthesis of diblock copolymers has garnered considerable interest; however, architectures beyond diblock copolymers have scarcely been explored. Here, we studied PISA using 4- and 8-arm star polyethylene glycol (PEG), as well as 2-arm (linear) PEG, wherein each terminus of PEG was functionalized with a chain-transfer agent, holding a constant molar mass for each arm. Styrene was polymerized from each PEG terminus through reversible addition-fragmentation chain-transfer (RAFT) polymerization in an ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate, [BMIM][PF6]), with a total solute concentration of 40 wt %. While the styrene monomer is soluble in [BMIM][PF6], polystyrene is not; thus, self-assembly and cross-linking (gelation) occur. Structural analysis by small-angle X-ray scattering revealed that a relatively ordered microphase-separated structure for PISA was observed. Two-arm PEG-PS formed hexagonally packed cylinders, whereas 4- and 8-arm PEG-PS exhibited hexagonal close-packed spheres and disordered spheres. The dynamics, studied by oscillatory rheology, were also influenced by the number of arms; the 4-arm star block copolymers showed the highest plateau modulus. This study demonstrates that the topology is an important factor in controlling the microphase-separated structure and mechanical properties when preparing gels through PISA.
Collapse
Affiliation(s)
- Riku Yamanaka
- Department
of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Ayae Sugawara-Narutaki
- Department
of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- Institute
of Biomaterials and Bioengineering, Tokyo
Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Rintaro Takahashi
- Department
of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
8
|
Maciejewska M. Influence of the Polymerization Parameters on the Porosity and Thermal Stability of Polymeric Monoliths. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2860. [PMID: 38930229 PMCID: PMC11204994 DOI: 10.3390/ma17122860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Rigid porous polymeric monoliths are robust, highly efficient, versatile stationary phases. They offer simple preparation and convenient modification provided by a whole range of synthesis factors, e.g., starting monomers, cross-linkers, initiators, porogens, polymerization techniques, and temperature. The main aim of this study was to synthesize polymeric monoliths and determine the correlation between polymerization parameters and the porosity and thermal stability of the obtained materials. Polymeric monoliths were synthesized directly in HPLC columns using N-vinyl-2-pyrrolidone (NVP) and 4-vinylpiridine (4VP) as functional monomers, with trimethylolpropane trimethacrylate (TRIM) serving as the cross-linking monomer. During copolymerization a mixture of cyclohexanol/decane-1-ol was used as the pore-forming diluent. Polymerization was carried out at two different temperatures: 55 and 75 °C. As a result, monoliths with highly developed internal structure were synthesized. The value of their specific surface area was in the range of 92 m2/g to 598 m2/g, depending on the monomer composition and polymerization temperature. Thermal properties of the obtained materials were investigated by means of thermogravimetry (TG). Significant differences in thermal behavior were noticed between monoliths synthesized at 55 and 75 °C. Additionally, the poly(NVP-co-TRIM) monolith was successfully applied in GC analyses.
Collapse
Affiliation(s)
- Małgorzata Maciejewska
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Gliniana 33, 20-614 Lublin, Poland
| |
Collapse
|
9
|
Xiu Y, Bobrin VA, Corrigan N, Zhang J, Boyer C. Effect of Macromolecular Structure on Phase Separation Regime in 3D Printed Materials. Macromol Rapid Commun 2023; 44:e2300236. [PMID: 37289980 DOI: 10.1002/marc.202300236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/02/2023] [Indexed: 06/10/2023]
Abstract
In this study, the fabrication of 3D-printed polymer materials with controlled phase separation using polymerization induced microphase separation (PIMS) via photoinduced 3D printing is demonstrated. While many parameters affecting the nanostructuration in PIMS processes are extensively investigated, the influence of the chain transfer agent (CTA) end group, i.e., Z-group, of macromolecular chain transfer agent (macroCTA) remains unclear as previous research has exclusively employed trithiocarbonate as the CTA end group. Herein, the effect of macroCTAs containing four different Z-groups on the formation of nanostructure of 3D printed materials is explored. The results show that the different Z-groups lead to distinct network formation and phase separation behaviors between the resins, influencing both the 3D printing process and the resulting material properties. Specifically, less reactive macroCTAs toward acrylic radical addition, such as O-alkyl xanthate and N-alkyl-N-aryl dithiocarbamate, result in translucent and brittle materials with macrophase separation morphology. In contrast, more reactive macroCTAs such as S-alkyl trithiocarbonate and 4-chloro-3,5-dimethylpyrazo dithiocarbamate produce transparent and rigid materials with nano-scale morphology. Findings of this study provide a novel approach to manipulate the nanostructure and properties of 3D printed PIMS materials, which can have important implications for materials science and engineering.
Collapse
Affiliation(s)
- Yuan Xiu
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Valentin A Bobrin
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jin Zhang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
10
|
Bobrin VA, Hackbarth HG, Yao Y, Bedford NM, Zhang J, Corrigan N, Boyer C. Customized Nanostructured Ceramics via Microphase Separation 3D Printing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304734. [PMID: 37750431 PMCID: PMC10646229 DOI: 10.1002/advs.202304734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 09/27/2023]
Abstract
To date, the restricted capability to fabricate ceramics with independently tailored nano- and macroscopic features has hindered their implementation in a wide range of crucial technological areas, including aeronautics, defense, and microelectronics. In this study, a novel approach that combines self- and digital assembly to create polymer-derived ceramics with highly controlled structures spanning from the nano- to macroscale is introduced. Polymerization-induced microphase separation of a resin during digital light processing generates materials with nanoscale morphologies, with the distinct phases consisting of either a preceramic precursor or a sacrificial polymer. By precisely controlling the molecular weight of the sacrificial polymer, the domain size of the resulting material phases can be finely tuned. Pyrolysis of the printed objects yields ceramics with complex macroscale geometries and nanoscale porosity, which display excellent thermal and oxidation resistance, and morphology-dependent thermal conduction properties. This method offers a valuable technological platform for the simplified fabrication of nanostructured ceramics with complex shapes.
Collapse
Affiliation(s)
- Valentin A. Bobrin
- Cluster for Advanced Macromolecular DesignSchool of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Haira G. Hackbarth
- School of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Yin Yao
- Electron Microscope UnitMark Wainwright Analytical CentreUniversity of New South WalesSydneyNSW2052Australia
| | - Nicholas M. Bedford
- School of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Jin Zhang
- School of Mechanical and Manufacturing EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular DesignSchool of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular DesignSchool of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Australian Centre for NanomedicineSchool of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
11
|
Lee K, Corrigan N, Boyer C. Polymerization Induced Microphase Separation for the Fabrication of Nanostructured Materials. Angew Chem Int Ed Engl 2023; 62:e202307329. [PMID: 37429822 DOI: 10.1002/anie.202307329] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
Polymerization induced microphase separation (PIMS) is a strategy used to develop unique nanostructures with highly useful morphologies through the microphase separation of emergent block copolymers during polymerization. In this process, nanostructures are formed with at least two chemically independent domains, where at least one domain is composed of a robust crosslinked polymer. Crucially, this synthetically simple method is readily used to develop nanostructured materials with the highly coveted co-continuous morphology, which can also be converted into mesoporous materials by selective etching of one domain. As PIMS exploits a block copolymer microphase separation mechanism, the size of each domain can be tightly controlled by modifying the size of block copolymer precursors, thus providing unparalleled control over nanostructure and resultant mesopore sizes. Since its inception 11 years ago, PIMS has been used to develop a vast inventory of advanced materials for an extensive range of applications including biomedical devices, ion exchange membranes, lithium-ion batteries, catalysis, 3D printing, and fluorescence-based sensors, among many others. In this review, we provide a comprehensive overview of the PIMS process, summarize latest developments in PIMS chemistry, and discuss its utility in a wide variety of relevant applications.
Collapse
Affiliation(s)
- Kenny Lee
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
12
|
Bagheri A. Application of RAFT in 3D Printing: Where Are the Future Opportunities? Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Ali Bagheri
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
13
|
ALTİNTAS O. Novel Well-defined Polystyrene-block-Poly(lactide-co-glycolide) Block Copolymers. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2023. [DOI: 10.18596/jotcsa.1184492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
A facile preparation of polystyrene-block-poly(lactide-co-glycolide) PS-b-PLGA block copolymers was reported in detail. Well-defined PS-b-PLGA block copolymers were successfully obtained via living anionic polymerization and ring-opening polymerization. First, hydroxyl-terminated linear polystyrenes were prepared by living anionic polymerization. The resulting polymers were used as macroinitiators for ring-opening copolymerization of lactide and glycolide in the presence of the 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as a catalyst in dichloromethane at ambient temperature. Transesterification and formation of DBU-initiated polymers were minimized by optimizing the catalyst concentration. Three block copolymers were synthesized in various molecular weights from 5000 g/mol to 33600 g/mol with low polydispersity. The formation of well-defined PS-b-PLGA block copolymers was followed by nuclear magnetic resonance spectroscopy and size-exclusion chromatography. Thermal properties of the block copolymers were investigated by thermal gravimetric analysis and differential scanning calorimetry. The morphology of the block copolymers was investigated using small-angle X-ray scattering in the bulk and via grazing incidence small-angle X-ray scattering as well as atomic force microscopy in thin film demonstrating organized nanostructures with uniform domain sizes. Overall, this manuscript describes an expanded polymer toolbox for PLGA-based polymers for next-generation lithography applications.
Collapse
|
14
|
Foudazi R, Zowada R, Manas-Zloczower I, Feke DL. Porous Hydrogels: Present Challenges and Future Opportunities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2092-2111. [PMID: 36719086 DOI: 10.1021/acs.langmuir.2c02253] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this feature article, we critically review the physical properties of porous hydrogels and their production methods. Our main focus is nondense hydrogels that have physical pores besides the space available between adjacent cross-links in the polymer network. After reviewing theories on the kinetics of swelling, equilibrium swelling, the structure-stiffness relationship, and solute diffusion in dense hydrogels, we propose future directions to develop models for porous hydrogels. The aim is to show how porous hydrogels can be designed and produced for studies leading to the modeling of physical properties. Additionally, different methods that are used for making hydrogels with physically incorporated pores are briefly reviewed while discussing the potentials, challenges, and future directions for each method. Among kinetic methods, we discuss bubble generation approaches including reactions, gas injection, phase separation, electrospinning, and freeze-drying. Templating approaches discussed are solid-phase, self-assembled amphiphiles, emulsion, and foam methods.
Collapse
Affiliation(s)
- Reza Foudazi
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, Oklahoma73069, United States
| | - Ryan Zowada
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, New Mexico88003, United States
| | | | | |
Collapse
|
15
|
Wu H, Huang H, Zhang Y, Lu X, Majewski PW, Feng X. Stabilizing Differential Interfacial Curvatures by Mismatched Molecular Geometries: Toward Polymers with Percolating 1 nm Channels of Gyroid Minimal Surfaces. ACS NANO 2022; 16:21139-21151. [PMID: 36516967 DOI: 10.1021/acsnano.2c09103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Soft materials with self-assembled networks possess saddle-shaped interfaces with distributed negative Gaussian curvatures. The ability to stabilize such a geometry is critically important for various applications but can be challenging due to the possibly "deficient" packing of the building blocks. This nontrivial challenge has been manifested, for example, by the limited availability of cross-linkable bicontinuous cubic (Q) liquid crystals (LCs), which can be utilized to fabricate compelling polymers with networked nanochannels uniformly sized at ∼1 nm. Here, we devise a facile approach to stabilizing cross-linkable Q mesophases by leveraging the synergistic self-assembly from pairs of scalably synthesized polymerizable amphiphiles. Hybridization of the molecular geometries by mixing significantly increases the propensity of the local deviations in the interfacial curvature specifically required for Q assemblies. "Normal" (type 1) double gyroid LCs possessing 1 nm ionic channels conforming to minimal surfaces can be formulated by simultaneous hydration of the amphiphile mixtures, as opposed to the formation of hexagonal or lamellar mesophases exhibited by the single-amphiphile systems, respectively. Fixation of the bicontinuous network in polymers via radical polymerization has been efficaciously facilitated by the presence of the bifunctional polymerizable groups in one of the employed amphiphiles. High-fidelity lock-in of the ordered continuous 1 nm channels has been unambiguously confirmed by the observation of single-crystal-like diffraction patterns from synchrotron small-angle X-ray scattering and large-area periodicities by transmission electron microscopy. The produced polymeric materials exhibit the required mechanical integrity as well as chemical robustness in a variety of organic solvents that benefit their practical applications for selective transport of ions and molecules.
Collapse
Affiliation(s)
- Hanyu Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai201620, People's Repubic of China
| | - Hairui Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai201620, People's Repubic of China
| | - Yizhou Zhang
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, and School of Environmental and Chemical Engineering, Shanghai University, Shanghai200444, People's Repubic of China
| | - Xinglin Lu
- CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, Anhui230026, People's Repubic of China
| | - Pawel W Majewski
- Department of Chemistry, University of Warsaw, Warsaw02089, Poland
| | - Xunda Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai201620, People's Repubic of China
| |
Collapse
|
16
|
Shi X, Bobrin VA, Yao Y, Zhang J, Corrigan N, Boyer C. Designing Nanostructured 3D Printed Materials by Controlling Macromolecular Architecture. Angew Chem Int Ed Engl 2022; 61:e202206272. [PMID: 35732587 PMCID: PMC9544629 DOI: 10.1002/anie.202206272] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 11/23/2022]
Abstract
Nanostructured polymeric materials play important roles in many advanced applications, however, controlling the morphologies of polymeric thermosets remains a challenge. This work uses multi-arm macroCTAs to mediate polymerization-induced microphase separation (PIMS) and prepare nanostructured materials via photoinduced 3D printing. The characteristic length scale of microphase-separated domains is determined by the macroCTA arm length, while nanoscale morphologies are controlled by the macroCTA architecture. Specifically, using 2- and 4- arm macroCTAs provides materials with different morphologies compared to analogous monofunctional linear macroCTAs at similar compositions. The mechanical properties of these nanostructured thermosets can also be tuned while maintaining the desired morphologies. Using multi-arm macroCTAs can thus broaden the scope of accessible nanostructures for extended applications, including the fabrication of actuators and potential drug delivery devices.
Collapse
Affiliation(s)
- Xiaobing Shi
- Cluster for Advanced Macromolecular Design and Australian Centre for NanomedicineSchool of Chemical EngineeringUniversity of New South WalesSydneyNSW 2052Australia
| | - Valentin A. Bobrin
- Cluster for Advanced Macromolecular Design and Australian Centre for NanomedicineSchool of Chemical EngineeringUniversity of New South WalesSydneyNSW 2052Australia
| | - Yin Yao
- Electron Microscope UnitMark Wainwright Analytical CentreUniversity of New South WalesSydneyNSW 2052Australia
| | - Jin Zhang
- School of Mechanical and Manufacturing EngineeringUniversity of New South WalesSydneyNSW 2052Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design and Australian Centre for NanomedicineSchool of Chemical EngineeringUniversity of New South WalesSydneyNSW 2052Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design and Australian Centre for NanomedicineSchool of Chemical EngineeringUniversity of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
17
|
Takase H, Suga K, Matsune H, Umakoshi H, Shiomori K. Preferential adsorption of L-tryptophan by L-phospholipid coated porous polymer particles. Colloids Surf B Biointerfaces 2022; 216:112535. [PMID: 35594752 DOI: 10.1016/j.colsurfb.2022.112535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 11/28/2022]
Abstract
Chiral selective adsorption of L-amino acid, tryptophan (Trp) was achieved using phospholipid membrane-coated porous polymer particles (PPPs). PPPs with numerous pores were prepared by in situ polymerization of divinylbenzene, and then coated with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC, L-phospholipid) via the impregnation method. Elemental mapping of energy dispersive X-ray (EDX) analysis revealed that DPPC molecules were distributed to the surface and the inner part of PPPs, where almost all the DPPC molecules applied for impregnation were deposited on PPPs. The phospholipid membrane properties of DPPC-PPPs were characterized using the fluorescence probe 6-lauroyl-2-dimethylaminonaphthalene (Laurdan). The results show that DPPC-PPPs possessed a lipid membrane-like environment similar to pure DPPC liposomes, especially at temperatures below 35 °C. DPPC-PPPs slightly adsorbed L-Trp and D-Trp at 45 °C, while DPPC-PPPs significantly adsorbed L-Trp but not D-Trp at 30 °C: enantio excess (e.e.) was 75.0%. The time course of Trp adsorption was investigated: for both enantiomers, similar adsorption behaviors were observed for 30 h, thus suggesting surface adsorption onto DPPC-PPPs. L-Trp adsorption continued after 30 h, suggesting that L-Trp could be distributed in the inner part of DPPC-PPPs. Interestingly, the reused DPPC-PPPs featured improved adsorption performance, suggesting that the deposited DPPC membranes on PPPs could act as chiral selectors for L-Trp. The optical resolution of L-/D-Trp was performed using DPPC-PPPs, resulting in the e.e. of D-Trp was > 60%. Thus, DPPC-PPPs have the potential of chiral selective adsorption of L-amino acid, which can be used as chiral separation materials.
Collapse
Affiliation(s)
- Hayato Takase
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan; Department of Chemical Engineering, Tohoku University, 6-6-07 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Hideki Matsune
- Department of Applied Chemistry, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 899-2192, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
| | - Koichiro Shiomori
- Department of Applied Chemistry, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 899-2192, Japan.
| |
Collapse
|
18
|
Lin J, Xia X, Liu Y, Luan Z, Chen Y, Ma K, Geng B, Li H. Fabrication of hierarchical porous
fluoro‐PolyHIPE
materials with ultra‐high specific surface area via hypercrosslinking knitting technique. J Appl Polym Sci 2022. [DOI: 10.1002/app.52914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Junzhi Lin
- School of Chemistry and Chemical Engineering University of Jinan Jinan China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials University of Jinan Jinan China
| | - Xianger Xia
- School of Chemistry and Chemical Engineering University of Jinan Jinan China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials University of Jinan Jinan China
| | - Yifei Liu
- School of Materials Science and Engineering University of Jinan Jinan China
| | - Zhenchao Luan
- School of Chemistry and Chemical Engineering University of Jinan Jinan China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials University of Jinan Jinan China
| | - Yezhen Chen
- School of Chemistry and Chemical Engineering University of Jinan Jinan China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials University of Jinan Jinan China
| | - Kunkai Ma
- School of Chemistry and Chemical Engineering University of Jinan Jinan China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials University of Jinan Jinan China
| | - Bing Geng
- School of Chemistry and Chemical Engineering University of Jinan Jinan China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials University of Jinan Jinan China
| | - Hui Li
- School of Chemistry and Chemical Engineering University of Jinan Jinan China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials University of Jinan Jinan China
| |
Collapse
|
19
|
Shi X, Bobrin VA, Yao Y, Zhang J, Corrigan N, Boyer CAJM. Designing Nanostructured 3D Printed Materials by Controlling Macromolecular Architecture. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaobing Shi
- UNSW: University of New South Wales Chemical Engineering 2031 Sydney AUSTRALIA
| | - Valentin A. Bobrin
- UNSW: University of New South Wales Chemical Engineering School of Chemical Engineering 2031 Sydney AUSTRALIA
| | - Yin Yao
- UNSW: University of New South Wales Mark Wainwright Analytical Centre 2031 Sydney AUSTRALIA
| | - Jin Zhang
- UNSW: University of New South Wales School of Mechanical and Manufacturing Engineering 2031 Sydney AUSTRALIA
| | - Nathaniel Corrigan
- UNSW: University of New South Wales School of Chemical Engineering UNSWSchool of Chemical Engineering 2031 Sydney AUSTRALIA
| | - Cyrille Andre Jean Marie Boyer
- University of New South Wales Chemical Engineering and Australian Centre for Nanomedicine and Centre for Advanced Macromolecular Design High streetApplied science building 2052 Sydney AUSTRALIA
| |
Collapse
|
20
|
Nano- to macro-scale control of 3D printed materials via polymerization induced microphase separation. Nat Commun 2022; 13:3577. [PMID: 35732624 PMCID: PMC9217958 DOI: 10.1038/s41467-022-31095-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/02/2022] [Indexed: 11/09/2022] Open
Abstract
Although 3D printing allows the macroscopic structure of objects to be easily controlled, controlling the nanostructure of 3D printed materials has rarely been reported. Herein, we report an efficient and versatile process for fabricating 3D printed materials with controlled nanoscale structural features. This approach uses resins containing macromolecular chain transfer agents (macroCTAs) which microphase separate during the photoinduced 3D printing process to form nanostructured materials. By varying the chain length of the macroCTA, we demonstrate a high level of control over the microphase separation behavior, resulting in materials with controllable nanoscale sizes and morphologies. Importantly, the bulk mechanical properties of 3D printed objects are correlated with their morphologies; transitioning from discrete globular to interpenetrating domains results in a marked improvement in mechanical performance, which is ascribed to the increased interfacial interaction between soft and hard domains. Overall, the findings of this work enable the simplified production of materials with tightly controllable nanostructures for broad potential applications.
Collapse
|
21
|
Li T, He M, Zhang P, Yu Z, Liu J, Liu Y, Wang Y, Wang A. Fabrication of a Monolith Reactor in a Copper Tube by Polymerization of Acetylene for Flow Catalysis. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tiefu Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Ming He
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Peng Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhiquan Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jiaming Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yingya Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yao Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, P. R. China
| | - Anjie Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
22
|
Ahmadi Y, Kim KH. Recent Progress in the Development of Hyper-Cross-Linked Polymers for Adsorption of Gaseous Volatile Organic Compounds. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2082470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Younes Ahmadi
- Department of Analytical Chemistry, Kabul University, Kabul, Afghanistan
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, Korea
| |
Collapse
|
23
|
Seitzinger CL, Hall CC, Lodge TP. Photoreversible Order–Disorder Transitions in Block Copolymer/Ionic Liquid Solutions. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Claire L. Seitzinger
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Cecilia C. Hall
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy P. Lodge
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
24
|
Fresco-Cala B, Cárdenas S. Advanced polymeric solids containing nano- and micro-particles prepared via emulsion-based polymerization approaches. A review. Anal Chim Acta 2022; 1208:339669. [DOI: 10.1016/j.aca.2022.339669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022]
|
25
|
Bobrin VA, Lee K, Zhang J, Corrigan N, Boyer C. Nanostructure Control in 3D Printed Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107643. [PMID: 34742167 DOI: 10.1002/adma.202107643] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Currently, there are no straightforward methods to 3D print materials with nanoscale control over morphological and functional properties. Here, a novel approach for the fabrication of materials with controlled nanoscale morphologies using a rapid and commercially available Digital Light Processing 3D printing technique is demonstrated. This process exploits reversible deactivation radical polymerization to control the in-situ-polymerization-induced microphase separation of 3D printing resins, which provides materials with complex architectures controllable from the macro- to nanoscale, resulting in the preparation of materials with enhanced mechanical properties. This method does not require specialized equipment or process conditions and thus represents an important development in the production of advanced materials via additive manufacturing.
Collapse
Affiliation(s)
- Valentin A Bobrin
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Kenny Lee
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Jin Zhang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
- Australian Centre for Nanomedicine, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
- Australian Centre for Nanomedicine, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
26
|
Jana R, Ramakrishnan S. Direct Generation of Internally Functionalized Nanoporous Polymers: Design of Polymerizable Porogens. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rounak Jana
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - S. Ramakrishnan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
27
|
Wang S, Zhang C, Liu Q, Tan B. Unprecedented processable hypercrosslinked polymers with controlled knitting. Macromol Rapid Commun 2021; 43:e2100449. [PMID: 34624165 DOI: 10.1002/marc.202100449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/30/2021] [Indexed: 11/07/2022]
Abstract
Processable microporous organic polymers (MOPs) attract incomparable research interests becuase their vairous types such as monoliths and membranes are for practical application. Most of processable MOPs usually need the harsh conditions such as the use of expensive metal catalysts, specialized stereospecific monomers etc., which restrict the sustainable and real applications of processable MOPs. Therefore, the economical mass production of processable MOPs remains a formidable challenge. Herein, we report that a novel strategy for constructing processable hypercrosslinked polymers (HCPs) need two steps synthesis of pre-crosslinking and deep-crosslinking using divinylbenzene (DVB) as self-crosslinking monomer under the catalysis of a small amount of FeCl3 . The resulting HCPs monoliths possess high BET surface area of 1033-1056 m2 g-1 with hierarchical porosity, and show excellent mechanical strength up to 65 MPa. It is, to the best of our knowledge, the first report of using aromatic vinyl monomers as self-crosslinking monomers to generate HCPs monoliths with high surface area, yielding no by-products and high mechanical strength. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shaolei Wang
- Key Laboratory for Materials Chemistry for Energy Conversion Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chengxin Zhang
- Key Laboratory for Materials Chemistry for Energy Conversion Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qingsong Liu
- Key Laboratory for Materials Chemistry for Energy Conversion Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bien Tan
- Key Laboratory for Materials Chemistry for Energy Conversion Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
28
|
Khodabandeh A, Arrua RD, Thickett SC, Hilder EF. Utilizing RAFT Polymerization for the Preparation of Well-Defined Bicontinuous Porous Polymeric Supports: Application to Liquid Chromatography Separation of Biomolecules. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32075-32083. [PMID: 34190530 DOI: 10.1021/acsami.1c03542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polymer-based monolithic high-performance liquid chromatography (HPLC) columns are normally obtained by conventional free-radical polymerization. Despite being straightforward, this approach has serious limitations with respect to controlling the structural homogeneity of the monolith. Herein, we explore a reversible addition-fragmentation chain transfer (RAFT) polymerization method for the fabrication of porous polymers with well-defined porous morphology and surface chemistry in a confined 200 μm internal diameter (ID) capillary format. This is achieved via the controlled polymerization-induced phase separation (controlled PIPS) synthesis of poly(styrene-co-divinylbenzene) in the presence of a RAFT agent dissolved in an organic solvent. The effects of the radical initiator/RAFT molar ratio as well as the nature and amount of the organic solvent were studied to target cross-linked porous polymers that were chemically bonded to the inner wall of a modified silica-fused capillary. The morphological and surface properties of the obtained polymers were thoroughly characterized by in situ nuclear magnetic resonance (NMR) experiments, nitrogen adsorption-desorption experiments, elemental analyses, field-emission scanning electron microscopy (FESEM), scanning electron microscopy-energy-dispersive X-ray (SEM-EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS) as well as time-of-flight secondary ion mass spectrometry (ToF-SIMS) revealing the physicochemical properties of these styrene-based materials. When compared with conventional synthetic methods, the controlled-PIPS approach affects the kinetics of polymerization by delaying the onset of phase separation, enabling the construction of materials with a smaller pore size. The results demonstrated the potential of the controlled-PIPS approach for the design of porous monolithic columns suitable for liquid separation of biomolecules such as peptides and proteins.
Collapse
Affiliation(s)
- Aminreza Khodabandeh
- UniSA STEM, Future Industries Institute, University of South Australia, Adelaide, SA 5000, Australia
| | - R Dario Arrua
- UniSA STEM, Future Industries Institute, University of South Australia, Adelaide, SA 5000, Australia
| | - Stuart C Thickett
- School of Natural Sciences (Chemistry), University of Tasmania, Hobart, TAS 7005, Australia
| | - Emily F Hilder
- UniSA STEM, Future Industries Institute, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
29
|
Shieh P, Hill MR, Zhang W, Kristufek SL, Johnson JA. Clip Chemistry: Diverse (Bio)(macro)molecular and Material Function through Breaking Covalent Bonds. Chem Rev 2021; 121:7059-7121. [PMID: 33823111 DOI: 10.1021/acs.chemrev.0c01282] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the two decades since the introduction of the "click chemistry" concept, the toolbox of "click reactions" has continually expanded, enabling chemists, materials scientists, and biologists to rapidly and selectively build complexity for their applications of interest. Similarly, selective and efficient covalent bond breaking reactions have provided and will continue to provide transformative advances. Here, we review key examples and applications of efficient, selective covalent bond cleavage reactions, which we refer to herein as "clip reactions." The strategic application of clip reactions offers opportunities to tailor the compositions and structures of complex (bio)(macro)molecular systems with exquisite control. Working in concert, click chemistry and clip chemistry offer scientists and engineers powerful methods to address next-generation challenges across the chemical sciences.
Collapse
Affiliation(s)
- Peyton Shieh
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Megan R Hill
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Wenxu Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Samantha L Kristufek
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
30
|
Peng WS, Lin YY, Sun YJ, Zhu BQ, Li SH, Li J, Qu JB. One-Pot Fabrication of Hierarchically Bicontinuous Polystyrene Monoliths with Homogeneous Skeletons and Glycopolymer Surfaces. Macromol Rapid Commun 2021; 42:e2100154. [PMID: 34142406 DOI: 10.1002/marc.202100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/05/2021] [Indexed: 11/12/2022]
Abstract
The hierarchically bicontinuous polystyrene monoliths (HBPMs) with homogeneous skeletons and glycopolymer surfaces are fabricated for the first time based on the medium internal phase emulsion (MIPE) templating method via activator generated by electron transfer for atom transfer radical polymerization (AGET ATRP). The synergistic self-assembly of amphiphilic diblock glycopolymer (ADG) and Pluronic F127 (PF127) at the oil/water interface via hydrogen bonding interaction contributes to the formation of bicontinuous MIPE with deformed neighboring water droplets, resulting in the highly interconnected HBPM after polymerization. There is a bimodal pore size distribution in the HBPM, that is, through pores (150-5000 nm) and mesopores (10-150 nm). The HBPMs as prepared show excellent biocompatibility, homogeneous skeletons, strong mechanical strength, and high bed permeability, overcoming the practical limitations of the second generation of polystyrene (PS) monoliths. Glycoprotein concanavalin A (Con A) can be easily and quickly separated by the HBPM in hydrophilic interaction chromatography (HILIC) mode. These results suggest the HBPMs have great potentials in catalysis, separations, and biomedical applications.
Collapse
Affiliation(s)
- Wen-Shu Peng
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Yang-Yang Lin
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Yong-Jun Sun
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Bing-Qi Zhu
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Shi-Hai Li
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Jing Li
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Jian-Bo Qu
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| |
Collapse
|
31
|
Rymaruk MJ, O'Brien CT, György C, Darmau B, Jennings J, Mykhaylyk OO, Armes SP. Small-Angle X-Ray Scattering Studies of Block Copolymer Nano-Objects: Formation of Ordered Phases in Concentrated Solution During Polymerization-Induced Self-Assembly. Angew Chem Int Ed Engl 2021; 60:12955-12963. [PMID: 33725372 PMCID: PMC8252599 DOI: 10.1002/anie.202101851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/12/2021] [Indexed: 01/13/2023]
Abstract
We report that polymerization-induced self-assembly (PISA) can be used to prepare lyotropic phases comprising diblock copolymer nano-objects in non-polar media. RAFT dispersion polymerization of benzyl methacrylate (BzMA) at 90 °C using a trithiocarbonate-capped hydrogenated polybutadiene (PhBD) steric stabilizer block in n-dodecane produces either spheres or worms that exhibit long-range order at 40 % w/w solids. NMR studies enable calculation of instantaneous copolymer compositions for each phase during the BzMA polymerization. As the PBzMA chains grow longer when targeting PhBD80 -PBzMA40 , time-resolved small-angle X-ray scattering reveals intermediate body-centered cubic (BCC) and hexagonally close-packed (HCP) sphere phases prior to formation of a final hexagonal cylinder phase (HEX). The HEX phase is lost on serial dilution and the aligned cylinders eventually form disordered flexible worms. The HEX phase undergoes an order-disorder transition on heating to 150 °C and a pure HCP phase forms on cooling to 20 °C.
Collapse
Affiliation(s)
- Matthew J. Rymaruk
- Dainton BuildingDepartment of ChemistryThe University of SheffieldSheffieldS3 7HFUK
- Present address: SyngentaJealott's HillBracknellBerkshireRG42 6EYUK
| | - Cate T. O'Brien
- Dainton BuildingDepartment of ChemistryThe University of SheffieldSheffieldS3 7HFUK
| | - Csilla György
- Dainton BuildingDepartment of ChemistryThe University of SheffieldSheffieldS3 7HFUK
| | - Bastien Darmau
- Dainton BuildingDepartment of ChemistryThe University of SheffieldSheffieldS3 7HFUK
| | - James Jennings
- Dainton BuildingDepartment of ChemistryThe University of SheffieldSheffieldS3 7HFUK
| | | | - Steven P. Armes
- Dainton BuildingDepartment of ChemistryThe University of SheffieldSheffieldS3 7HFUK
| |
Collapse
|
32
|
Rymaruk MJ, O'Brien CT, György C, Darmau B, Jennings J, Mykhaylyk OO, Armes SP. Small‐Angle X‐Ray Scattering Studies of Block Copolymer Nano‐Objects: Formation of Ordered Phases in Concentrated Solution During Polymerization‐Induced Self‐Assembly. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Matthew J. Rymaruk
- Dainton Building Department of Chemistry The University of Sheffield Sheffield S3 7HF UK
- Present address: Syngenta Jealott's Hill Bracknell Berkshire RG42 6EY UK
| | - Cate T. O'Brien
- Dainton Building Department of Chemistry The University of Sheffield Sheffield S3 7HF UK
| | - Csilla György
- Dainton Building Department of Chemistry The University of Sheffield Sheffield S3 7HF UK
| | - Bastien Darmau
- Dainton Building Department of Chemistry The University of Sheffield Sheffield S3 7HF UK
| | - James Jennings
- Dainton Building Department of Chemistry The University of Sheffield Sheffield S3 7HF UK
| | - Oleksandr O. Mykhaylyk
- Dainton Building Department of Chemistry The University of Sheffield Sheffield S3 7HF UK
| | - Steven P. Armes
- Dainton Building Department of Chemistry The University of Sheffield Sheffield S3 7HF UK
| |
Collapse
|
33
|
Naga N, Ito M, Mezaki A, Tang HC, Chang TFM, Sone M, Nageh H, Nakano T. Morphology Control and Metallization of Porous Polymers Synthesized by Michael Addition Reactions of a Multi-Functional Acrylamide with a Diamine. MATERIALS (BASEL, SWITZERLAND) 2021; 14:800. [PMID: 33572043 PMCID: PMC7915525 DOI: 10.3390/ma14040800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/02/2022]
Abstract
Porous polymers have been synthesized by an aza-Michael addition reaction of a multi-functional acrylamide, N,N',N″,N‴-tetraacryloyltriethylenetetramine (AM4), and hexamethylene diamine (HDA) in H2O without catalyst. Reaction conditions, such as monomer concentration and reaction temperature, affected the morphology of the resulting porous structures. Connected spheres, co-continuous monolithic structures and/or isolated holes were observed on the surface of the porous polymers. These structures were formed by polymerization-induced phase separation via spinodal decomposition or highly internal phase separation. The obtained porous polymers were soft and flexible and not breakable by compression. The porous polymers adsorbed various solvents. An AM4-HDA porous polymer could be plated by Ni using an electroless plating process via catalyzation by palladium (II) acetylacetonate following reduction of Ni ions in a plating solution. The intermediate Pd-catalyzed porous polymer promoted the Suzuki-Miyaura cross coupling reaction of 4-bromoanisole and phenylboronic acid.
Collapse
Affiliation(s)
- Naofumi Naga
- Department of Applied Chemistry, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan;
- Graduate School of Engineering and Science, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan;
| | - Minako Ito
- Graduate School of Engineering and Science, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan;
| | - Aya Mezaki
- Department of Applied Chemistry, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan;
| | - Hao-Chun Tang
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan; (H.-C.T.); (T.-F.M.C.); (M.S.)
| | - Tso-Fu Mark Chang
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan; (H.-C.T.); (T.-F.M.C.); (M.S.)
| | - Masato Sone
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan; (H.-C.T.); (T.-F.M.C.); (M.S.)
| | - Hassan Nageh
- Institute for Catalysis and Graduate, School of Chemical Sciences and Engineering, Hokkaido University, N 21, W 10, Kita-ku, Sapporo 001-0021, Japan; (H.N.); (T.N.)
| | - Tamaki Nakano
- Institute for Catalysis and Graduate, School of Chemical Sciences and Engineering, Hokkaido University, N 21, W 10, Kita-ku, Sapporo 001-0021, Japan; (H.N.); (T.N.)
- Integrated Research Consortium on Chemical Sciences, Institute for Catalysis, Hokkaido University, N 21, W 10, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
34
|
Kim D, Chang JY. Photocatalytic Microporous Polymer-Hydrogel Composites for the Removal of a Dye in Water. Macromol Res 2021. [DOI: 10.1007/s13233-020-8171-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Lequieu J, Magenau AJD. Reaction-induced phase transitions with block copolymers in solution and bulk. Polym Chem 2021. [DOI: 10.1039/d0py00722f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reaction-induced phase transitions use chemical reactions to drive macromolecular organisation and self-assembly. This review highlights significant and recent advancements in this burgeoning field.
Collapse
Affiliation(s)
- Joshua Lequieu
- Department of Chemical and Biological Engineering
- Drexel University
- Philadelphia
- USA
| | | |
Collapse
|
36
|
Hampu N, Werber JR, Chan WY, Feinberg EC, Hillmyer MA. Next-Generation Ultrafiltration Membranes Enabled by Block Polymers. ACS NANO 2020; 14:16446-16471. [PMID: 33315381 DOI: 10.1021/acsnano.0c07883] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reliable and equitable access to safe drinking water is a major and growing challenge worldwide. Membrane separations represent one of the most promising strategies for the energy-efficient purification of potential water sources. In particular, porous membranes are used for the ultrafiltration (UF) of water to remove contaminants with nanometric sizes. However, despite exhibiting excellent water permeability and solution processability, existing UF membranes contain a broad distribution of pore sizes that limit their size selectivity. To maximize the potential utility of UF membranes and allow for precise separations, improvements in the size selectivity of these systems must be achieved. Block polymers represent a potentially transformative solution, as these materials self-assemble into well-defined domains of uniform size. Several different strategies have been reported for integrating block polymers into UF membranes, and each strategy has its own set of materials and processing considerations to ensure that uniform and continuous pores are generated. This Review aims to summarize and critically analyze the chemistries, processing techniques, and properties required for the most common methods for producing porous membranes from block polymers, with a particular focus on the fundamental mechanisms underlying block polymer self-assembly and pore formation. Critical structure-property-performance metrics will be analyzed for block polymer UF membranes to understand how these membranes compare to commercial UF membranes and to identify key research areas for continued improvements. This Review is intended to inform readers of the capabilities and current challenges of block polymer UF membranes, while stimulating critical thought on strategies to advance these technologies.
Collapse
Affiliation(s)
- Nicholas Hampu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jay R Werber
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Wui Yarn Chan
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Elizabeth C Feinberg
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
37
|
Curing behavior, chain dynamics, and microstructure of high Tg thiol-acrylate networks with systematically varied network heterogeneity. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
38
|
Esmaeili AR, Mir N, Mohammadi R. A facile, fast, and low-cost method for fabrication of micro/nano-textured superhydrophobic surfaces. J Colloid Interface Sci 2020; 573:317-327. [PMID: 32289627 DOI: 10.1016/j.jcis.2020.04.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 01/19/2023]
Abstract
HYPOTHESIS Alkyl ketene dimer (AKD) is frequently used in paper industry as an inexpensive sizing agent. The formation of a porous structure after curing the solidified AKD for an extra-long time (4-6 days) results in superhydrophobicity. In this study, a facile and low-cost method was utilized to turn the surface of AKD superhydrophobic in a very short period of time. EXPERIMENTS We fabricated superhydrophobic coatings by dipping glass and paper substrates in molten AKD and then treating them with ethanol after solidification. The samples were characterized by X-ray diffraction, Scanning electron microscopy, Fourier transform-infrared spectroscopy, X-ray photoelectron spectroscopy, Confocal laser scanning microscopy, and dynamic contact angle goniometry. FINDINGS The results show that briefly treating the coatings, obtained from isothermally heated AKD melt at 40 °C for 3 min, with ethanol leads to superhydrophobicity with advancing and receding contact angles of 158.7 ± 1.4° and 156.8 ± 0.9°, respectively. By increasing the melt temperature to 70 °C and its heating time to 6 h followed by ethanol treatment, the advancing and receding contact angles increased to 163.7 ± 1.3° and 162.6 ± 1.2°, respectively. This enhancement in superhydrophobicity is due to the formation of porous, entangled irregular micro/nano textures that create air cushions on the surface resulting in droplet state transition from Wenzel to Cassie.
Collapse
Affiliation(s)
- Amir R Esmaeili
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Noshin Mir
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Reza Mohammadi
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| |
Collapse
|
39
|
Cao Y, Han W, Pu Z, Wang X, Wang B, Liu C, Uyama H, Shen C. Fabrication of hierarchically porous superhydrophilic polycaprolactone monolith based on nonsolvent-thermally induced phase separation. RSC Adv 2020; 10:26319-26325. [PMID: 35519741 PMCID: PMC9055430 DOI: 10.1039/d0ra04687f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/08/2020] [Indexed: 12/01/2022] Open
Abstract
Monoliths with a continuous porous structure are of great interest due to high transfer efficiency and large surface area in environmental and tissue engineering fields. This study demonstrated a facile method to prepare PCL monoliths with hierarchically porous structure by nonsolvent-thermally induced phase separation. A suitable mixed solvent mixture using ethanol as nonsolvent reduced the amount of dioxane and provided PCL monoliths with three levels of structures. The monolith structure was easily controlled by changing the fabrication parameters, such as the nonsolvent, the temperature of phase separation, the concentration of the PCL. Finally, the superhydrophilic monolith was easily obtained by polydopamine surface modification. The easy way of fabrication of a hierarchically porous PCL monolith with superhydrophilicity will find applications such as in tissue engineering and purification.
Collapse
Affiliation(s)
- Yu Cao
- School of Materials Science & Engineering, Zhengzhou University Zhengzhou 450001 China
| | - Wenjuan Han
- School of Materials Science & Engineering, Zhengzhou University Zhengzhou 450001 China
| | - Ziyang Pu
- School of Materials Science & Engineering, Zhengzhou University Zhengzhou 450001 China
| | - Xiaofeng Wang
- School of Mechanics and Engineering Science, National Center for International Research of Micro-Nano Molding Technology, Key Laboratory of Henan Province for Micro Molding Technology Zhengzhou 450001 China
| | - Bo Wang
- School of Materials Science & Engineering, Zhengzhou University Zhengzhou 450001 China
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold, Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University Zhengzhou 450001 China
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita 565-0871 Japan
| | - Changyu Shen
- Key Laboratory of Materials Processing and Mold, Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
40
|
Kim D, Kim H, Chang JY. Designing Internal Hierarchical Porous Networks in Polymer Monoliths that Exhibit Rapid Removal and Photocatalytic Degradation of Aromatic Pollutants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907555. [PMID: 32348034 DOI: 10.1002/smll.201907555] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 05/14/2023]
Abstract
This paper describes the preparation of 3D polymer monoliths containing internal hierarchical porosity. The porous networks are fabricated based on Pickering high-internal-phase emulsions (HIPEs) stabilized by microporous β-cyclodextrin-based polymer particles (CDPs) as the emulsifier; CDPs are facilely synthesized by the polyaddition reactions without the need for catalysts. The designed Pickering agents enable to form a bicontinuous internal phase in 8:2 cyclohexane-water v/v, and the oil droplets in the continuous water phase is found to be fairly stable up to 1 month. Furthermore, the addition of acrylamide and N,N'-methylenebis(acrylamide) results in polymer networks after in situ thermal polymerization at 60 °C in the water phase, and the monoliths include both interconnected macropores from the HIPE template and micro- and mesopores from the CDPs embedded at the interface. The porous monoliths rapidly absorb a variety of solvents taking advantage of multiscale porosity and amphiphilicity. Furthermore, the materials can be efficiently used for the removal of aromatic pollutants and then reused after washing and drying without the deterioration of performance. Also, they exhibit high photocatalytic capability and good recyclability as being used as a catalytic support when embedded with titanium dioxide (TiO2 ).
Collapse
Affiliation(s)
- Doyeon Kim
- Department of Materials Science and Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Hyungwoo Kim
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Korea
| | - Ji Young Chang
- Department of Materials Science and Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| |
Collapse
|
41
|
Hattori H, Matsumoto H, Hoshino Y, Miura Y. Development of Macroporous Polymer Monolith Immobilizing L-Proline-Based Organocatalyst and Application to Flow Asymmetric Aldol Addition Reaction. KAGAKU KOGAKU RONBUN 2020. [DOI: 10.1252/kakoronbunshu.46.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Haruka Hattori
- Faculty of Engineering Department of Chemical Engineering, Kyushu University
| | - Hikaru Matsumoto
- Faculty of Engineering Department of Chemical Engineering, Kyushu University
| | - Yu Hoshino
- Faculty of Engineering Department of Chemical Engineering, Kyushu University
| | - Yoshiko Miura
- Faculty of Engineering Department of Chemical Engineering, Kyushu University
| |
Collapse
|
42
|
Shen Z, Chen JL, Vernadskaia V, Ertem SP, Mahanthappa MK, Hillmyer MA, Reineke TM, Lodge TP, Siepmann JI. From Order to Disorder: Computational Design of Triblock Amphiphiles with 1 nm Domains. J Am Chem Soc 2020; 142:9352-9362. [PMID: 32392052 DOI: 10.1021/jacs.0c01829] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using molecular dynamics simulations and transferable force fields, we designed a series of symmetric triblock amphiphiles (or high-χ block oligomers) comprising incompatible sugar-based (A) and hydrocarbon (B) blocks that can self-assemble into ordered nanostructures with sub-1 nm domains and full domain pitches as small as 1.2 nm. Depending on the chain length and block sequence, the ordered morphologies include lamellae, perforated lamellae, and hexagonally perforated lamellae. The self-assembly of these amphiphiles bears some similarities, but also some differences, to those formed by symmetric triblock polymers. In lamellae formed by ABA amphiphiles, the fraction of B blocks "bridging" adjacent polar domains is nearly unity, much higher than that found for symmetric triblock polymers, and the bridging molecules adopt elongated conformations. In contrast, "looping" conformations are prevalent for A blocks of BAB amphiphiles. Above the order-disorder transition temperature, the disordered states are locally well-segregated yet the B blocks of ABA amphiphiles are significantly less stretched than in the lamellar phases. Analysis of both hydrogen-bonded and nonpolar clusters reveals the bicontinuous nature of these network phases. This simulation study furnishes detailed insights into structure-property relationships for mesophase formation on the 1 nm length scale that will aid further miniaturization for numerous applications.
Collapse
Affiliation(s)
- Zhengyuan Shen
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States.,Chemical Theory Center, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| | - Jingyi L Chen
- Chemical Theory Center, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States.,Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| | - Viktoriia Vernadskaia
- Chemical Theory Center, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| | - S Piril Ertem
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| | - Mahesh K Mahanthappa
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| | - Timothy P Lodge
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States.,Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| | - J Ilja Siepmann
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States.,Chemical Theory Center, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States.,Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
43
|
Xie Y, Hillmyer MA. Nanostructured Polymer Monoliths for Biomedical Delivery Applications. ACS APPLIED BIO MATERIALS 2020; 3:3236-3247. [PMID: 35025366 DOI: 10.1021/acsabm.0c00228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Drug delivery systems are designed to control the release rate and location of therapeutic agents in the body to achieve enhanced drug efficacy and to mitigate adverse side effects. In particular, drug-releasing implants provide sustained and localized release. We report nanostructured polymer monoliths synthesized by polymerization-induced microphase separation (PIMS) as potential implantable delivery devices. As a model system, free poly(ethylene oxide) homopolymers were incorporated into the nanoscopic poly(ethylene oxide) domains contained within a cross-linked polystyrene matrix. The in vitro release of these poly(ethylene oxide) molecules from monoliths was investigated as a function of poly(ethylene oxide) loading and molar mass as well as the molar mass and weight fraction of poly(ethylene oxide) macro-chain transfer agent used in the PIMS process for forming the monoliths. We also developed nanostructured microneedles targeting efficient and long-term transdermal drug delivery by combining PIMS and microfabrication techniques. Finally, given the prominence of poly(lactide) in drug delivery devices, the degradation rate of microphase-separated poly(lactide) in PIMS monoliths was evaluated and compared with bulk poly(lactide).
Collapse
Affiliation(s)
- Yihui Xie
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
44
|
Yang T, Wang M, Wang X, Di X, Wang C, Li Y. Fabrication of a waterborne, superhydrophobic, self-cleaning, highly transparent and stable surface. SOFT MATTER 2020; 16:3678-3685. [PMID: 32227009 DOI: 10.1039/c9sm02473e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Superhydrophobic surfaces have received tremendous attention worldwide. However, the synthesis of a superhydrophobic surface possessing two paradoxical characteristic properties - stability and transparency, is a vital aspect that has been addressed in this paper. The surface was fabricated by an environmentally friendly process, which used distilled water for the dissolution of SiO2 nanoparticles in the presence of surfactants, instead of organic solvents. Moreover, the surface was transparent and had self-cleaning properties and stability. The optimal balance of roughness and multi-porous structure imparted excellent transparency to this surface. Importantly, both the conformal coating and the SiO2 nanoparticles embedded in the half solidified conformal coating contributed to the excellent stability, thus overcoming the paradox. The surface could withstand a temperature of 150 °C for 24 h and also different temperature regimes between 0-200 °C for 2 h. In addition, this surface could resist repeated scratches and abrasion as well as strong acids and alkali. The surface achieved its self-cleaning ability due to the introduction of surfactants containing the F element. This simple but novel strategy and surface have the advantages of high safety, low cost and environmental-friendliness.
Collapse
Affiliation(s)
- Tinghan Yang
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, No. 26, Hexing Road, Harbin, China.
| | - Meng Wang
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, No. 26, Hexing Road, Harbin, China.
| | - Xin Wang
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, No. 26, Hexing Road, Harbin, China.
| | - Xin Di
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, No. 26, Hexing Road, Harbin, China.
| | - Chengyu Wang
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, No. 26, Hexing Road, Harbin, China.
| | - Yudong Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, No. 26, Hexing Road, Harbin, China.
| |
Collapse
|
45
|
Zofchak ES, LaNasa JA, Torres VM, Hickey RJ. Deciphering the Complex Phase Behavior during Polymerization-Induced Nanostructural Transitions of a Block Polymer/Monomer Blend. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b01695] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
46
|
Yan D, Guo DC, Lu AH, Dong XL, Li WC. One-pot synthesis of unique skin-tissue-bone structured porous carbons for enhanced supercapacitor performance. J Colloid Interface Sci 2019; 557:519-527. [PMID: 31546117 DOI: 10.1016/j.jcis.2019.09.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 01/11/2023]
Abstract
Introduction of hierarchical porous structure and heteroatom in porous carbons are always effective approaches to improve the capacitive performance for supercapacitor. However, it is still a challenge to achieve the desired structure characteristics by a convenient one-step synthesis. Herein, C16mimPF6, an ionic liquid, was introduced in the self-assembly process of poly-benzoxazine to obtain a unique skin-tissue-bone structured hierarchical porous carbon with homogeneous N, P co-doping after carbonization. As the key component, C16mimPF6 works not only as a structure-directing agent to form a hierarchical structure through microphase separation mechanism, thereby promoting the transfer of ion and electron, but also as a heteroatom precursor to contribute an additional pseudocapacitance by doping phosphorus atoms on carbon matrix. The obtained porous carbon displays a high gravimetric capacitance (Cg) of 209 F g-1 (especially in the carbons prepared without corrosive activation step), a good volumetric capacitance (Cv) of 132 F cm-3 and an excellent area-normalized capacitance (Ca) of 35 μF cm-2. Overall, this work opens a new way to design the polymer-derived carbons with easy heteroatoms doping and hierarchical porous structure.
Collapse
Affiliation(s)
- Dong Yan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - De-Cai Guo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - An-Hui Lu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Xiao-Ling Dong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Wen-Cui Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|
47
|
Liang Y, Zhang L, Zhang Y. Well-Defined Materials for High-Performance Chromatographic Separation. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:451-473. [PMID: 30939031 DOI: 10.1146/annurev-anchem-061318-114854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chromatographic separation has been widely applied in various fields, such as chemical engineering, precision medicine, energy, and biology. Because chromatographic separation is based on differential partitioning between the mobile phase and stationary phase and affected by band dispersion and mass transfer resistance from these two phases, the materials used as the stationary phase play a decisive role in separation performance. In this review, we discuss the design of separation materials to achieve the separation with high efficiency and high resolution and highlight the well-defined materials with uniform pore structure and unique properties. The achievements, recent developments, challenges, and future trends of such materials are discussed. Furthermore, the surface functionalization of separation ma-terials for further improvement of separation performance is reviewed. Finally, future research directions and the challenges of chromatographic separation are presented.
Collapse
Affiliation(s)
- Yu Liang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| | - Lihua Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| | - Yukui Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| |
Collapse
|
48
|
Nanoporous polymer networks of N − vinylpyrrolidone with dimethacrylates of various polarity. Synthesis, structure, and properties. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1817-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Zhang H, Ma S, Li Y, Ou J, Wei Y, Ye M. Thiol-ene polymerization for hierarchically porous hybrid materials by adding degradable polycaprolactone for adsorption of bisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2019; 367:465-472. [PMID: 30616196 DOI: 10.1016/j.jhazmat.2018.12.113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/28/2018] [Accepted: 12/29/2018] [Indexed: 06/09/2023]
Abstract
Hierarchically porous materials with multiple pore structures have the potential application in catalysis, separation or bioengineering. A concept was introduced to design and fabricate hierarchically porous hybrid materials (HPHMs) simultaneously containing mesopores and macropores. The proof-of-concept design was demonstrated by fabrication of several kinds of hybrid materials by adding degradable polycaprolactone (PCL) additive, which was simple and easy-operating. The specific surface areas of HPHMs prepared with polyhedral oligomeric vinylsilsesquioxanes (vinylPOSS) and 1,4-dithiothreitol (DTT) could reach 727 m2/g by adding 25% PCL additive, while the HPHMs were imperforate prior to degradation of PCL. The characterization further indicated that the macropores could be controlled by the amount of PCL additive. Moreover, the porous properties of HPHMs were influenced by the molecular weight of PCL. Other dithiols compounds were also successful in preparing HPHMs with high specific surface areas over 400 m2/g. Due to hydrophobic interaction and hydrogen bond interaction, the HPHM exhibited good adsorption ability for bisphenol A (BPA) in aqueous solution. Adsorption equilibrium could be achieved within 30 min, and the adsorption capacity was up to 157.4 mg/g. Meanwhile, the removal efficiency was found to be 95.37% for BPA.
Collapse
Affiliation(s)
- Haiyang Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China; Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Shujuan Ma
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China; Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Ya Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China; Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Junjie Ou
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China.
| | - Mingliang Ye
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
50
|
Xie Y, Huang W, Zheng B, Li S, Liu Q, Chen Z, Mai W, Fu R, Wu D. All-in-One Porous Polymer Adsorbents with Excellent Environmental Chemosensory Responsivity, Visual Detectivity, Superfast Adsorption, and Easy Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900104. [PMID: 30838718 DOI: 10.1002/adma.201900104] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/01/2019] [Indexed: 05/28/2023]
Abstract
It remains a formidable challenge to construct advanced adsorbents with superb adsorption, environmental stimuli response, and real-time detection capability for efficiently treating contaminants from complex environmental systems. A novel class of an all-in-one microporous adsorbent that simultaneously has excellent environmental chemosensory responsivity, visual detectivity, superfast micropollutant adsorption, as well as easy regeneration is reported herein. The advanced microporous adsorbent discussed in this study presents a hairy nanospherical morphology composed of a hairy stimuli-responsive polymeric shell and a shell-assisted superadsorptive microporous core. The adsorbent not only exhibits a valuable capability of pollutant detection by visible fluorescence quenching, but can also remove organic micropollutants from polluted water with super-rapid speed (79%, 98%, and 100% of its equilibrium uptake in 7 s, 10 s, and 2 min, respectively) and excellent recyclability (>96%). More importantly, the adsorbent still shows unimpeded adsorption performance in the flow-through adsorption tests (15 mL min-1 ), indicating a very appealing application prospect.
Collapse
Affiliation(s)
- Yiming Xie
- Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Wen Huang
- Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Bingna Zheng
- Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Shimei Li
- Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Qiantong Liu
- Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zirun Chen
- Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Weicong Mai
- Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Ruowen Fu
- Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Dingcai Wu
- Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|