1
|
Yuan L, Xue Q, Wang F, Li N, Waterhouse GIN, Brabec CJ, Gao F, Yan K. Perovskite Solar Cells and Light Emitting Diodes: Materials Chemistry, Device Physics and Relationship. Chem Rev 2025. [PMID: 40397873 DOI: 10.1021/acs.chemrev.4c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Solution-processed perovskite solar cells (PSCs) and perovskite light emitting diodes (PeLEDs) represent promising next-generation optoelectronic technologies. This Review summarizes recent advancements in the application of metal halide perovskite materials for PSC and PeLED devices to address the efficiency, stability and scalability issues. Emphasis is placed on material chemistry strategies used to control and engineer the composition, deposition process, interface and micro-nanostructure in solution-processed perovskite films, leading to high-quality crystalline thin films for optimal device performance. Furthermore, we retrospectively compare the device physics of PSCs and PeLEDs, their working principles and their energy loss mechanisms, examining the similarities and differences between the two types of devices. The reciprocity relationship suggests that a great PSC should also be a great PeLED, motivating the search for interconverting photoelectric bifunctional devices with maximum radiative recombination and negligible non-radiative recombination. Specific requirements of PSCs and PeLEDs in terms of bandgap, thickness, band alignment and charge transport to achieve this target are discussed in detail. Further challenges and issues are also illustrated, together with prospects for future development. Understanding these fundamentals, embracing recent breakthroughs and exploring future prospects pave the way toward the rational design and development of high-performance PSC and PeLED devices.
Collapse
Affiliation(s)
- Ligang Yuan
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510000, China
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Key Laboratory of Nondestructive Testing Ministry of Education, School of the Testing and Photoelectric Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Qifan Xue
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510000, China
| | - Feng Wang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden
| | - Ning Li
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510000, China
| | - Geoffrey I N Waterhouse
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510000, China
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-University Erlangen-Nuremberg, Martensstraße 7, Erlangen 91058, Germany
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), Forschungszentrum Jülich (FZJ), Erlangen 91058, Germany
| | - Feng Gao
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden
| | - Keyou Yan
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510000, China
| |
Collapse
|
2
|
Guo F, Yang X, Wang P, Bai X, Kong T, Wang M, Gu Z, Song Y. Advances in Single-Crystal Films: Synergistic Insights from Perovskites and Organic Molecules for High-Performance Optoelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412101. [PMID: 39989101 DOI: 10.1002/smll.202412101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/26/2025] [Indexed: 02/25/2025]
Abstract
Semiconductor single-crystal thin films are crucial for the advancement of high-performance optoelectronic devices. Despite significant progress in fabricating perovskite and organic single-crystal films, interdisciplinary insights between these domains remain unexplored. This review aims to bridge this gap by summarizing recent advances in fabrication strategies for perovskite and organic molecular single-crystal films. Five preparation methods-solution-phase epitaxy, solid-phase epitaxy, meniscus-induced crystallization, antisolvent-induced crystallization, and space-confined growth-are analyzed with a focus on their principles, functional properties, and distinct advantages. By comparing these approaches across material systems, this review identifies transferable insights that can drive the development of large-scale, high-quality single-crystal films. Furthermore, the optoelectronic applications of these films are explored, including solar cells, photodetectors, light-emitting devices, and transistors, while addressing challenges such as scalability, defect control, and integration. This work highlights the importance of cross-disciplinary innovation and provides an effective pathway for integrating perovskite and organic molecular processing to advance the next generation of single-crystal film technologies.
Collapse
Affiliation(s)
- Fengmin Guo
- Henan Institute of Advanced Technology, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450051, China
| | - Xiaodong Yang
- Henan Institute of Advanced Technology, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450051, China
| | - Pengkun Wang
- Henan Institute of Advanced Technology, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450051, China
| | - Xintao Bai
- Henan Institute of Advanced Technology, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450051, China
| | - Tianle Kong
- Henan Institute of Advanced Technology, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450051, China
| | - Mengxuan Wang
- Henan Institute of Advanced Technology, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450051, China
| | - Zhenkun Gu
- Henan Institute of Advanced Technology, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450051, China
| | - Yanlin Song
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Sun J, Li R, Gui Y, Shao X, Xue J, Wang R. Mechanistic insights and optimization strategies for perovskite single-crystal thin film growth. Chem Sci 2025; 16:6188-6202. [PMID: 40134661 PMCID: PMC11931432 DOI: 10.1039/d4sc08145e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/22/2025] [Indexed: 03/27/2025] Open
Abstract
Perovskite materials, with their tunable band gaps, high optical absorption, and excellent carrier mobility, are key candidates for lasers, LEDs, photodetectors, and solar cells. Polycrystalline thin films dominate current applications but suffer from efficiency and stability losses largely due to grain boundaries. Perovskite single-crystal thin films (SCTFs) offer optimized carrier diffusion and reduced recombination losses, though challenges in achieving high-quality SCTFs remain. Fabrication techniques and device applications of SCTFs have been widely explored, yet the crystallization mechanisms that critically influence film quality and device performance offer significant opportunities for further investigation. This review aims to provide a comprehensive analysis of SCTF nucleation, growth dynamics, and structural optimization, highlighting the role of external factors like substrate properties and solution chemistry. By advancing the understanding of these mechanisms, we hope to guide efficient SCTF fabrication and inspire innovations in high-performance, stable perovskite-based optoelectronics.
Collapse
Affiliation(s)
- Jingyi Sun
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Runda Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Yang Gui
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Xinyi Shao
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Jingjing Xue
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University Hangzhou 310027 China
- Shangyu Institute of Semiconductor Materials Shaoxing China
| | - Rui Wang
- School of Engineering, Westlake University and Institute of Advanced Technology, Westlake Institute for Advanced Study Hangzhou 310024 China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co. Ltd Hangzhou China
- Zhejiang Provincial Key Laboratory of Intelligent Low-Carbon Biosynthesis, Westlake University Hangzhou China
| |
Collapse
|
4
|
Jiang S, Xing Y, Ma M, Han Z, Zhu Z, Jiang L, Chen Y. In-liquid Superspreading Space-confined Epitaxy on Superamphiphilic Surfaces for Pt(II) Complex Crystalline Film Growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415811. [PMID: 40095383 DOI: 10.1002/adma.202415811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/27/2025] [Indexed: 03/19/2025]
Abstract
Solution-based method is regarded as a promising approach to fabricate large-area, high-quality crystalline films, owing to its low-cost manufacturing and facile features. However, traditional solution-based methods still suffer from random simultaneous nucleation and uncontrollable crystal growth which result in polycrystalline films and coffee-ring effect. Herein, it is proposed that an in-liquid superspreading space-confined epitaxy approach on a superamphiphilic surface to fabricate crystalline films with controllable initial nucleation and crystal morphology. With delicate control of the liquid environment, concentration, and superspreading space-confined solvent film thickness, planar crystalline films with high crystallinity and smooth morphology are obtained. A controllable dewetting crystallization mechanism is proposed, indicating that the diffusion coefficient, regulated by liquid environment, can control the dewetting process during crystallization. With the balance of solvent diffusion and solute precipitation in crystallization, the ordered in-plane and out-of-plane molecular stacking is achieved. And the as-prepared planar Pt(II) complex crystalline film exhibits multi-signal sensing ability, which can be further used to fabricate the reaffirmed sensing detector for precise gas sensing in complex and unstable conditions. This study demonstrates a facile approach for crystalline film fabrication with controllable nucleation and morphology in a liquid environment, which holds promising applications in the construction of oxygen or water-sensitive organic/inorganic devices.
Collapse
Affiliation(s)
- Shan Jiang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Yun Xing
- School of Nano Science and Technology, Suzhou Institute of Advanced Research, University of Science and Technology of China, Suzhou, 215123, P. R. China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, P. R. China
| | - Mingyu Ma
- School of Nano Science and Technology, Suzhou Institute of Advanced Research, University of Science and Technology of China, Suzhou, 215123, P. R. China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, P. R. China
| | - Zixiao Han
- School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210023, P. R. China
| | - Zhongpeng Zhu
- School of Nano Science and Technology, Suzhou Institute of Advanced Research, University of Science and Technology of China, Suzhou, 215123, P. R. China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, P. R. China
| | - Lei Jiang
- School of Nano Science and Technology, Suzhou Institute of Advanced Research, University of Science and Technology of China, Suzhou, 215123, P. R. China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, P. R. China
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Gandhi MB, Mohan A, Sadasivan SM, Thomas S, Subramanian A, Bernède JC, Louarn G, Cattin L, Padmanabhan P. Graphite-Based Localized Heating Technique for Growing Large Area Methylammonium Lead Bromide Single Crystalline Perovskite Wafers and Their Charge Transfer Characteristics. ACS OMEGA 2025; 10:10220-10229. [PMID: 40124004 PMCID: PMC11923676 DOI: 10.1021/acsomega.4c09505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/25/2025]
Abstract
Development of a reproducible technique to grow large area single crystalline perovskite wafers is an open research gap in the field of single crystalline perovskite solar cells. A graphite-based localized heating technique for growing large area methylammonium lead bromide (CH3NH3PbBr3; MAPBr) single crystalline thin film (SCTF) on different buffer layers, such as glass/indium doped tin oxide (ITO), glass/ITO/poly(triaryl amine) (PTAA), and glancing angle deposition (GLAD) coated glass/ITO/TiO2 substrates is reported, and their charge transport properties are discussed. It is observed that the localized heating technique can confine the supersaturation of the precursor mainly to the center of the substrate, leading to a restricted number of nucleations within a specific area on the substrate. Here, such 2-3 seed crystals obtained initially are allowed to grow to a larger size of up to 65 mm2. The X-ray diffraction (XRD) analysis indicated that the large area SCTF is an actual single crystal and not a heterogeneous group of small crystals merged together with a crystallinity index (CI) of 92.60 ± 0.11% which was comparable to that of the bulk single crystal (97.74 ± 0.47%). The atomic force microscopy (AFM) image depicted a smooth SCTF surface (R a = 4.37 ± 0.01 nm), and the wave-like pattern is attributed to the substrate morphology, implying that the topography of the substrate plays a crucial role in obtaining a planar SCTF. The XRD, UV-visible, photoluminescence (PL), Raman, and FTIR spectra analyses revealed that the large area SCTF is phase pure and free of residual impurities. The charge injection characteristics of the SCTFs grown on different buffer layers were investigated using PL emission (PLE) and PL decay analyses. The decrease in the PLE intensity for the SCTFs grown on PTAA and TiO2 substrates implied exciton quenching behavior, indicating the injection of the photogenerated charge carriers into the charge transfer layers (CTLs). The decrease of the fast decay component from τ1 = 4.77 ± 0.18 ns for glass to τ1 = 3.32 ± 0.07 ns for TiO2 and τ1 = 3.15 ± 0.33 ns for PTAA is ascribed to the interfacial recombination of the charges accumulated at the CTL/perovskite interface. These results propose that the localized heating technique can be employed for growing large area single crystalline perovskite wafers for optoelectronic and photovoltaic device applications.
Collapse
Affiliation(s)
- Mano Balaji Gandhi
- School
of Nanoscience and Nanotechnology, Mahatma
Gandhi University, Kottayam 686560, Kerala, India
- Institut
des Materiaux de Nantes Jean Rouxel (IMN), CNRS, UMR 6502, Nantes Université, CEDEX 03, 2 Rue de la Houssinière, BP 92208, Nantes 44322, France
| | - Aiswarya Mohan
- Department
of Physics, National Institute of Technology
Calicut, Calicut 673603, Kerala, India
| | | | - Sabu Thomas
- School
of Nanoscience and Nanotechnology, Mahatma
Gandhi University, Kottayam 686560, Kerala, India
| | - Angappane Subramanian
- Centre
for Nano and Soft Matter Sciences (CeNS), Shivanapura, Bangalore 562162, Karnataka, India
| | - Jean Christian Bernède
- 2
MOLTECH-Anjou, CNRS, UMR 6200, Nantes Université, 2 Rue de la Houssinière,
BP 92208, Nantes 44322, France
| | - Guy Louarn
- Institut
des Materiaux de Nantes Jean Rouxel (IMN), CNRS, UMR 6502, Nantes Université, CEDEX 03, 2 Rue de la Houssinière, BP 92208, Nantes 44322, France
| | - Linda Cattin
- Institut
des Materiaux de Nantes Jean Rouxel (IMN), CNRS, UMR 6502, Nantes Université, CEDEX 03, 2 Rue de la Houssinière, BP 92208, Nantes 44322, France
| | - Predeep Padmanabhan
- School
of Nanoscience and Nanotechnology, Mahatma
Gandhi University, Kottayam 686560, Kerala, India
| |
Collapse
|
6
|
Dong X, Shen Y, Wang F, He Z, Zhao Y, Miao Z, Wu Z. MAPbX 3 Perovskite Single Crystals for Advanced Optoelectronic Applications: Progress, Challenges, and Perspective. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412809. [PMID: 39895148 DOI: 10.1002/smll.202412809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/23/2025] [Indexed: 02/04/2025]
Abstract
Perovskite single crystals have garnered significant attention due to their impressive properties in optoelectronic applications, including long carrier diffusion lengths, low trap-state densities, and enhanced stability. Methylamino lead halide perovskite (MAPbX3, where X is a halogen such as Cl, Br, or I) is a notable example of a metal halide perovskite with desirable properties and ideal cubic perovskites with a tolerance factor between 0.9 and 1.0. MAPbX3 has adjustable bandgap, high thermal and chemical stability, and excellent light absorption capacity. Here the unique characteristics of MAPbX3, including molecular structure, optical absorption properties, and carrier transport of MAPbX3 single crystals are summarized. Universal growth technologies for MAPbX3 single crystals, including inverse temperature crystallization, anti-solvent evaporation crystallization, solvent evaporation method, and single-crystalline thin film, including epitaxial method and space limiting method, are briefly introduced. Additionally, a comprehensive review of MAPbX3 single crystals in various optoelectronic device applications, including photodetectors, X-ray detectors, light-emitting diodes, lasers, and solar cells is mainly discussed. Finally, the current challenges and future prospects of the large-scale preparation and growth of MAPbX3 single crystals are put forward. With the continuous progress of photoelectric technology, more innovative photoelectric applications in the future are expected to bring more convenience and progress.
Collapse
Affiliation(s)
- Xue Dong
- Technological Institute of Materials & Energy Science (TIMES), School of Electronic Information, Xijing University, Xi'an, 710123, China
| | - Yue Shen
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Fangmin Wang
- Technological Institute of Materials & Energy Science (TIMES), School of Electronic Information, Xijing University, Xi'an, 710123, China
| | - Zemin He
- Technological Institute of Materials & Energy Science (TIMES), School of Electronic Information, Xijing University, Xi'an, 710123, China
| | - Yuzhen Zhao
- Technological Institute of Materials & Energy Science (TIMES), School of Electronic Information, Xijing University, Xi'an, 710123, China
| | - Zongcheng Miao
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Zhongbin Wu
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
7
|
Zhou Y, Liu D, Gui Yang H, Yang S, Hou Y. Preparation Techniques for Perovskite Single Crystal Films: From Nucleation to Growth. Chem Asian J 2024:e202401294. [PMID: 39624991 DOI: 10.1002/asia.202401294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Thickness-controllable perovskite single crystal films exhibit tremendous potential for various optoelectronic applications due to their capacity to leverage the relationship between diffusion length and absorption depth. However, the fabrication processes have suffered from difficulties in large-area production and poor quality with abundant surface defects. While post-treatments, such as passivation and polishing, can provide partial improvement in surface quality, the fundamental solution lies in the direct growth of high-quality single crystal films. In this work, we firstly summarize the basic principles of nucleation and growth phenomenon of crystalline materials. Advanced growth methods of perovskite single crystal films, including solution-based, vapor phase epitaxial growth, and top-down method, are discussed, highlighting their respective advantages and limitations. Finally, we also present future directions and the challenges that lie ahead in perovskite single crystal films.
Collapse
Affiliation(s)
- Yawen Zhou
- East China University of Science and Technology, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, 130 Meilong Road, 200237, Shanghai, China
| | - Da Liu
- East China University of Science and Technology, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, 130 Meilong Road, 200237, Shanghai, China
| | - Hua Gui Yang
- East China University of Science and Technology, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, 130 Meilong Road, 200237, Shanghai, China
| | - Shuang Yang
- East China University of Science and Technology, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, 130 Meilong Road, 200237, Shanghai, China
| | - Yu Hou
- East China University of Science and Technology, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, 130 Meilong Road, 200237, Shanghai, China
| |
Collapse
|
8
|
Li C, Chen C. Single-Crystal Perovskite for Solar Cell Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402759. [PMID: 39301993 DOI: 10.1002/smll.202402759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/21/2024] [Indexed: 09/22/2024]
Abstract
The advent of organic-inorganic hybrid metal halide perovskites has revolutionized photovoltaics, with polycrystalline thin films reaching over 26% efficiency and single-crystal perovskite solar cells (IC-PSCs) demonstrating ≈24%. However, research on single-crystal perovskites remains limited, leaving a crucial gap in optimizing solar energy conversion. Unlike polycrystalline films, which suffer from high defect densities and instability, single-crystal perovskites offer minimal defects, extended carrier lifetimes, and longer diffusion lengths, making them ideal for high-performance optoelectronics and essential for understanding perovskite material behavior. This review explores the advancements and potential of IC-PSCs, focusing on their superior efficiency, stability, and role in overcoming the limitations of polycrystalline counterparts. It covers device architecture, material composition, preparation methodologies, and recent breakthroughs, emphasizing the importance of further research to propel IC-PSCs toward commercial viability and future dominance in photovoltaic technology.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, No. 5340, Xiping Road, Beichen, Tianjin, 300401, China
| | - Cong Chen
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, No. 5340, Xiping Road, Beichen, Tianjin, 300401, China
| |
Collapse
|
9
|
Park SM, Park SW, Jin H, Baek D, Cha J, Chae WS, Lee TK, Kim M. Interfacial Engineering for Controlled Crystal Mosaicity in Single-Crystalline Perovskite Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404958. [PMID: 39136205 DOI: 10.1002/smll.202404958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/31/2024] [Indexed: 11/21/2024]
Abstract
Organic-inorganic hybrid perovskites have attracted significant attention for optoelectronic applications due to their efficient photoconversion properties. However, grain boundaries and irregular crystal orientations in polycrystalline films remain issues. This study presents a method for producing crystalline-orientation-controlled perovskite single-crystal films using retarded solvent evaporation. It is shown that single-crystal films, grown via inverse temperature crystallization within a confined space, exhibit enhanced optoelectronic property. Using interfacial polymer layer, this method produces high-quality perovskite single-crystalline films with varying crystal orientations. Density functional theory calculations confirm favorable adsorption energies for (110) surfaces with methylammonium iodide and PbI2 terminations on poly(3-hexylthiophene), and stronger adsorption for (224) surfaces with I and methylammonium terminations on polystyrene, influenced by repulsive forces between the thiophene group and the perovskite surface. The correlation between charge transport characteristics and perovskite single-crystalline properties highlights potential advancements in perovskite optoelectronics, improving device performance and reliability.
Collapse
Affiliation(s)
- Su Min Park
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University (JBNU), Jeonju, 54896, Republic of Korea
| | - Sang Wook Park
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University (GNU), Jinju, 52828, Republic of Korea
| | - Haedam Jin
- Graduate School of Integrated Energy-AI, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dohun Baek
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University (JBNU), Jeonju, 54896, Republic of Korea
| | - Jeongbeom Cha
- Graduate School of Integrated Energy-AI, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Weon-Sik Chae
- Daegu Center, Korea Basic Science Institute, Daegu, 41566, Republic of Korea
| | - Tae Kyung Lee
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University (GNU), Jinju, 52828, Republic of Korea
| | - Min Kim
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University (JBNU), Jeonju, 54896, Republic of Korea
- Graduate School of Integrated Energy-AI, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
10
|
Cheng X, Gan X, Jin G, Chen Z, Li N. Recent Progress of Thin Crystal Engineering for Perovskite Solar Cells. CHEMSUSCHEM 2024:e202401366. [PMID: 39351612 DOI: 10.1002/cssc.202401366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/25/2024] [Indexed: 11/09/2024]
Abstract
Metal halide perovskite single crystals hold promise for photovoltaics with high efficiency and stability due to their superior optoelectronic properties and weak bulk ion migration. The past several years have witnessed rapid development of single-crystal perovskite solar cells (PSCs) with efficiency rocketed from 6.5 % to 24.3 %, however, which still lags behind their polycrystalline counterparts. Moreover, the poor device stability under light illumination is contrary to the high ion migration barrier of perovskite single crystals. The key limiting factors should be the low crystalline quality and high surface defect density of solution-grown thin single crystals. Under this circumstance, a review paper summarizing the recent progress and challenges will be instructive for future development of this emerging field. In this manuscript, the crystal engineering used to enhance carrier transport and suppress carrier recombination in vertical single-crystal PSCs will be summarized initially, including crystal growth, component control, surface and interface modification. Subsequently, the application of perovskite single crystals in lateral single-crystal PSCs will be discussed and compared with the conventionally vertical structure. Finally, the challenges and proposed strategies for the development of single-crystal PSCs are provided.
Collapse
Affiliation(s)
- Xiao Cheng
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Xinguang Gan
- Senior Engineer Experimental Training Center, Shandong Urban Construction Vocational College, Jinan, 250103, China
| | - Gan Jin
- School of Material and Chemical Engineering, Chuzhou University, Chuzhou, 239000, China
| | - Zhaolai Chen
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Ning Li
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| |
Collapse
|
11
|
Yang M, Wu X, Li A, Hao X, Wu L, Tian H, Yang D, Zhang J. Space-Confined Growth for Thickness-Controlled Cs 3Bi 2I 9 Perovskite Single Crystal Wafers for X-Ray Detectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400763. [PMID: 38864211 DOI: 10.1002/smll.202400763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/26/2024] [Indexed: 06/13/2024]
Abstract
The Cs3Bi2I9 single crystal, as an all-inorganic non-lead perovskite, offers advantages such as stability and environmental friendliness. Its superior photoelectric properties, attributed to the absence of grain boundary influence, make it an outstanding X-ray detection material compared to polycrystals. In addition to material properties, X-ray detector performance is affected by the thickness of the absorption layer. Addressing this, a space-confined method is proposed. The temperature field is determined through finite element simulation, effectively guiding the design of the space-confined method. Through this innovative method, a series of thickness-controlled perovskite single crystal wafers (PSCWs) are successfully prepared. Corresponding X-ray detectors are then prepared, and the impact of single crystal thickness on device performance is investigated. With an increase in single crystal thickness, a rise followed by a decline in device sensitivity is observed, reaching an optimal value at 0.7 mm thickness at 40V mm-1 with a device performance of 11313.6µC Gy-1 cm-2. This space-confined method enables the direct growth of high-quality perovskite single crystals with specified thickness, eliminating the need for slicing or etching.
Collapse
Affiliation(s)
- Manman Yang
- College of Materials Science and Engineering & Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiaoling Wu
- College of Materials Science and Engineering & Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Anfeng Li
- College of Materials Science and Engineering & Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Xia Hao
- College of Materials Science and Engineering & Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, 610064, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu, 610065, P. R. China
| | - Lili Wu
- College of Materials Science and Engineering & Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, 610064, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu, 610065, P. R. China
| | - Haibo Tian
- College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu, 610225, P. R. China
| | - Dingyu Yang
- College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu, 610225, P. R. China
| | - Jingquan Zhang
- College of Materials Science and Engineering & Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, 610064, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu, 610065, P. R. China
| |
Collapse
|
12
|
Zhou K, Tang L, Zhu C, Tang J, Su H, Luo L, Chen L, Zeng D. Recent Advances in Structure Design and Application of Metal Halide Perovskite-Based Gas Sensor. ACS Sens 2024; 9:4425-4449. [PMID: 39185676 DOI: 10.1021/acssensors.4c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Metal halide perovskites (MHPs) are emerging gas-sensing materials and have attracted considerable attention in gas sensors due to their unique bandgap structure and tunable optoelectronic properties. The past decade has witnessed significant developments in the gas-sensing field; however, their intrinsic structural instability and ambiguous gas-sensing mechanisms hamper their practical applications. Herein, we summarize the recent advances in MHP-based gas sensors. The physicochemical properties of MHPs are discussed at first. The structure design, including dimension design and engineering design, is overviewed as well as their fabrication methods, and we put forward our insights into the gas-sensing mechanism of MHPs. It is believed that enhanced understanding of gas-sensing mechanisms of MHPs are helpful for their application as gas-sensing materials, and structure design can enhance their stability, sensing sensitivity, and selectivity to target gases as gas sensors. Subsequently, the latest developments in MHP-based gas sensors are summarized according to their different application scenarios. Finally, we conclude with the current status and challenges in this field and propose future perspectives.
Collapse
Affiliation(s)
- Kechen Zhou
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Lu Tang
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Chaoqi Zhu
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Jiahong Tang
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Huiyu Su
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Lingfei Luo
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Liyan Chen
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Dawen Zeng
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| |
Collapse
|
13
|
Zhang H, Hou W, Hao Y, Song J, Zhang F. Unified Crystal Phase Control with MACl for Inducing Single-Crystal-Like Perovskite Thin Films in High-Pressure Fusion Toward High Efficiency Perovskite Solar Cell Modules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400173. [PMID: 38822718 DOI: 10.1002/smll.202400173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/13/2024] [Indexed: 06/03/2024]
Abstract
Perovskite solar cells, recognized for their high photovoltaic conversion efficiency (PCE), cost-effectiveness, and simple fabrication, face challenges in PCE improvement due to structural defects in polycrystalline films. This study introduces a novel fabrication method for perovskite films using methylammonium chloride (MACl) to align grain orientation uniformly, followed by a high-pressure process to merge these grains into a texture resembling single-crystal perovskite. Employing advanced visual fluorescence microscopy, charge dynamics in these films are analyzed, uncovering the significant impact of grain boundaries on photo-generated charge transport within perovskite crystals. A key discovery is that optimal charge transport efficiency and speed occur in grain centers when the grain size exceeds 10 µm, challenging the traditional view that efficiency peaks when grain size surpasses film thickness to form a monolayer. Additionally, the presence of large-sized grains enhances ion activation energy, reducing ion migration under light and improving resistance to photo-induced degradation. In application, a perovskite solar cell module with large grains achieve a PCE of 22.45%, maintaining performance with no significant degradation under continuous white LED light at 100 mA cm-2 for over 1000 h. This study offers a new approach to perovskite film fabrication and insights into optimizing perovskite solar cell modules.
Collapse
Affiliation(s)
- Hanhong Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration(Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Wenjing Hou
- School of Physics and Optoelectronic Engineering, Faculty of Information Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Yuying Hao
- College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Jun Song
- State Key Laboratory of Radio Frequency Heterogeneous Integration(Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Fan Zhang
- School of Physics and Optoelectronic Engineering, Faculty of Information Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| |
Collapse
|
14
|
Liu S, Gao W, Chen Y, Yang X, Niu K, Li S, Xiao Y, Liu Y, Zhong J, Xia J, Li Z, Hu Y, Chen S, Liu Y, Wang Y. van der Waals Integration of Large-Area Monocrystalline 3D Perovskite Thin Films on Arbitrary Semiconductor Substrates for Heterojunctions. NANO LETTERS 2024; 24:7724-7731. [PMID: 38864413 DOI: 10.1021/acs.nanolett.4c01715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Perovskite monocrystalline films are regarded as desirable candidates for the integration of high-performance optoelectronics due to their unique photophysical properties. However, the heterogeneous integration of a perovskite monocrystalline film with other semiconductors is fundamentally limited by the lattice mismatch, which hinders direct epitaxy. Herein, the van der Waals (vdW) integration strategy for 3D perovskites is developed, where perovskite monocrystalline films are epitaxially grown on the mother substrate, followed by its peeling off and transferring to arbitrary semiconductors, forming monocrystalline heterojunctions. The as-achieved CsPbBr3-Nb-doped SrTiO3 (Nb:STO) vdW p-n heterojunction exhibited comparable performance to their directly epitaxial counterpart, demonstrating the feasibility of vdW integration for 3D perovskites. Furthermore, the vdW integration could be extended to silicon substrates, rendering the CsPbBr3-n-Si and CsPbCl3-p-Si p-n heterojunction with apparent rectification behaviors and photoresponse. The vdW integration significantly enriches the selections of semiconductors hybridizing with perovskites and provides opportunities for monocrystalline perovskite optoelectronics with complex configurations and multiple functionalities.
Collapse
Affiliation(s)
- Songlong Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Weiqi Gao
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yang Chen
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Xiaokun Yang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Kaixin Niu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Siyu Li
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yulong Xiao
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering and Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, China
| | - Yanfang Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jiang Zhong
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jiangnan Xia
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Zhou Li
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Yuanyuan Hu
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Shulin Chen
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Yuan Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yiliu Wang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
15
|
Wu LK, Feng Y, Zou QH, Jiang LL, Wang ZJ, Wang N, Ye HY, Li JR. Gas-Liquid Interface Route to Hybrid Copper Bromine Perovskite Single-Crystal Membrane with Dielectric Transitions and Ferromagnetic Exchanges. Inorg Chem 2024; 63:6972-6979. [PMID: 38567571 DOI: 10.1021/acs.inorgchem.4c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Single-crystal membranes (SCMs) show great promise in the fields of sensors, light-emitting diodes, and photodetection. However, the growth of a large-area single-crystal membranes is challenging. We report a new organic-inorganic SCMs [HCMA]2CuBr4 (HCMA = cyclohexanemethylamine) crystallized at the gas-liquid interface. It also has low-temperature ferromagnetic order, high-temperature dielectric anomalies, and narrow band gap indirect semiconductor properties. Specifically, the reversible phase transition of the compound occurs at 350/341 K on cooling/heating and exhibits dielectric anomalies and stable switching performance near the phase transition temperature. The ferromagnetic exchange interaction in the inorganic octahedra and the organic layer enables ferromagnetic ordering at low-temperature 10 K. Finally, the single crystal exhibits an indirect semiconducting property with a narrow band gap of 0.99 eV. Such rich multichannel physical properties make it a potential application in photodetection, information storage and sensors.
Collapse
Affiliation(s)
- Ling-Kun Wu
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Yan Feng
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Qing-Hua Zou
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Lu-Lu Jiang
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Ze-Jie Wang
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Na Wang
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Heng-Yun Ye
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Jian-Rong Li
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| |
Collapse
|
16
|
Sun J, Ding L. A Polarization-Sensitive Photodetector with Patterned CH 3NH 3PbCl 3 Film. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308583. [PMID: 38032157 DOI: 10.1002/smll.202308583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/05/2023] [Indexed: 12/01/2023]
Abstract
Perovskite photodetectors with polarization-sensitive properties have gained significant attention due to their potential applications in fields such as imaging and remote sensing. Most perovskite photodetectors concentrate on iodine (I) or bromine (Br)-based materials, primarily due to their straightforward fabrication techniques. The utilization of chloride (Cl)-based perovskites with wider bandgaps, such as CH3NH3PbCl3, is relatively limited. In this work, polarized perovskite photodetectors are prepared by a patterned spatially confined method with polarization sensitivity and excellent optoelectronic properties. The patterned perovskite photodetectors (PP-PDs) not only exhibit outstanding photoelectric conversion performance but also demonstrate polarization sensitivity. PP-PDs showcase remarkable performance, including on/off ratios of 3.4 × 104, an extremely low dark current of 1.56 × 10-11 A, and a rapid response time of microseconds. The responsivity and detectivity of PP-PDs reach 10.6 A W-1 and 3 × 1012 Jones, respectively, positioning them as among the highest-performing MAPbCl3-based photodetectors reported to date. Furthermore, polarization layered imaging sensing is achieved using stepwise scanning of the device. This work provides innovative ideas for realizing high-performance polarized perovskite photodetectors.
Collapse
Affiliation(s)
- Jie Sun
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
17
|
Ghasemi M, Wei Q, Lu J, Yang Y, Hou J, Jia B, Wen X. Can thick metal-halide perovskite single crystals have narrower optical bandgaps with near-infrared absorption? Phys Chem Chem Phys 2024; 26:9137-9148. [PMID: 38456202 DOI: 10.1039/d4cp00034j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Metal-halide perovskite (MHP) single crystals are emerging as potential competitors to their polycrystalline thin-film counterparts. These materials have shown the specific feature of extended absorbance towards the near-infrared (NIR) region, which promises further extension of their applications in the field of photovoltaics and photodetectors. This notable expansion of absorbance has been explained by the narrower effective optical bandgap of MHP single crystals promoted by their large thickness over several micrometres to millimetres. Herein, the attributes of the material's thickness and the measurement technique used to estimate these characteristics are discussed to elucidate the actual origins of the extended absorbance of MHP single crystals. Contrary to the general belief of the narrower bandgap of the MHP single crystals, we demonstrate that the extended NIR absorption in the MHP single crystals mainly originates from the combination of unique below-bandgap absorption of MHPs, the thickness of single crystals, and the technical limitation of the spectrophotometer, with the key attributes of (i) significantly large thickness of the MHP single crystals by suppressing the transmitted light and (ii) the detector's limited dynamic range. Combining the theoretical and experimental characterizations, we clarify the significant role of the large thickness together with the limited sensitivity of the detector in promoting the well-known red shift of the absorption onset of the MHP single crystals. The observations evidently show that in some special circumstances, the acquired absorption spectrum cannot reliably represent the optical bandgap of MHP materials. This highlights some misinterpretations in the estimation of the narrower optical bandgap of the MHP single crystals from conventional optical methods, while the optical bandgap is an inherent property independent of the thickness. The proposed broad applications of the MHP single crystals are dictated by their fascinating properties, and therefore, a deep insight into these features should be considered besides device applications, because much of their property-function relationships are still ambiguous and a subject of debate.
Collapse
Affiliation(s)
- Mehri Ghasemi
- School of Science, RMIT University, Melbourne 3000, Australia.
| | - Qianwen Wei
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Junlin Lu
- School of Science, RMIT University, Melbourne 3000, Australia.
| | - Yu Yang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Baohua Jia
- School of Science, RMIT University, Melbourne 3000, Australia.
| | - Xiaoming Wen
- School of Science, RMIT University, Melbourne 3000, Australia.
| |
Collapse
|
18
|
Liu D, Zheng Y, Sui XY, Wu XF, Zou C, Peng Y, Liu X, Lin M, Wei Z, Zhou H, Yao YF, Dai S, Yuan H, Yang HG, Yang S, Hou Y. Universal growth of perovskite thin monocrystals from high solute flux for sensitive self-driven X-ray detection. Nat Commun 2024; 15:2390. [PMID: 38493199 PMCID: PMC10944467 DOI: 10.1038/s41467-024-46712-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
Metal-halide perovskite thin monocrystals featuring efficient carrier collection and transport capabilities are well suited for radiation detectors, yet their growth in a generic, well-controlled manner remains challenging. Here, we reveal that mass transfer is one major limiting factor during solution growth of perovskite thin monocrystals. A general approach is developed to overcome synthetic limitation by using a high solute flux system, in which mass diffusion coefficient is improved from 1.7×10-10 to 5.4×10-10 m2 s-1 by suppressing monomer aggregation. The generality of this approach is validated by the synthesis of 29 types of perovskite thin monocrystals at 40-90 °C with the growth velocity up to 27.2 μm min-1. The as-grown perovskite monocrystals deliver a high X-ray sensitivity of 1.74×105 µC Gy-1 cm-2 without applied bias. The findings regarding limited mass transfer and high-flux crystallization are crucial towards advancing the preparation and application of perovskite thin monocrystals.
Collapse
Affiliation(s)
- Da Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Yichu Zheng
- School of Mechatronic Engineering and Automation, Shanghai University, 99 Shangda Road, 200444, Shanghai, China
| | - Xin Yuan Sui
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Xue Feng Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Can Zou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Yu Peng
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Xinyi Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Miaoyu Lin
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Zhanpeng Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Hang Zhou
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, 3663 North Zhongshan Road, 200062, Shanghai, China
| | - Ye-Feng Yao
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, 3663 North Zhongshan Road, 200062, Shanghai, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Haiyang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Shuang Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China.
| | - Yu Hou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China.
| |
Collapse
|
19
|
Shi X, Liu C, Zhang X, Zhan G, Cai Y, Zhou D, Zhao Y, Wang N, Hu F, Wang X, Ma H, Wang L. Vapor Phase Growth of Air-Stable Hybrid Perovskite FAPbBr 3 Single-Crystalline Nanosheets. NANO LETTERS 2024; 24:2299-2307. [PMID: 38334593 DOI: 10.1021/acs.nanolett.3c04604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Organic-inorganic hybrid perovskites have attracted tremendous attention owing to their fascinating optoelectronic properties. However, their poor air stability seriously hinders practical applications, which becomes more serious with thickness down to the nanoscale. Here we report a one-step vapor phase growth of HC(NH2)2PbBr3 (FAPbBr3) single-crystalline nanosheets of tunable size up to 50 μm and thickness down to 20 nm. The FAPbBr3 nanosheets demonstrate high stability for over months of exposure to air with no degradation in surface roughness and photoluminescence efficiency. Besides, the FAPbBr3 photodetectors exhibit superior overall performance as compared to previous devices based on nonlayered perovskite nanosheets, such as an ultralow dark current of 24 pA, an ultrahigh responsivity of 1033 A/W, an external quantum efficiency over 3000%, a rapid response time around 25 ms, and a high on/off ratio of 104. This work provides a strategy to tackle the challenges of hybrid perovskites toward integrated optoelectronics with requirements of nanoscale thickness, high stability, and excellent performance.
Collapse
Affiliation(s)
- Xinyu Shi
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Chao Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Xiaomin Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Guixiang Zhan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Yuxiao Cai
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Dawei Zhou
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Yuwei Zhao
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Nana Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Fengrui Hu
- School of Physics, College of Engineering and Applied Sciences, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiaoyong Wang
- School of Physics, College of Engineering and Applied Sciences, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Huifang Ma
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Lin Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| |
Collapse
|
20
|
Yang F, Li Y, Zhang K. Diffusion of Solute Atoms in an Evaporated Liquid Droplet. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:797-804. [PMID: 38113637 DOI: 10.1021/acs.langmuir.3c02993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Controlling the evaporation of a solvent has made it possible to grow crystals, nanoparticles, and microparticles from liquid droplets. At the heart of this process is the evaporation-induced diffusion of solute atoms, causing the liquid solution of the solute atoms to be in a supersaturated state. In this work, we analyze the mass transport in a spherical liquid droplet, which experiences the loss or evaporation of the solvents across the droplet surface. Using a pseudo-steady-state method, two approximate solutions are derived for the moving boundary problem: one is a linear function of the square of radial variable with a constraint to the loss rate of the solvent, and the other is an exponential function of the square of radial variable without any constraint to the loss rate of the solvent. The numerical results obtained from both approximate solutions are in accord with the numerical results from the finite element method, validating the approximate solutions. The results reveal that a small evaporation/loss rate of the solvent is needed to maintain a relatively uniform distribution of solute atoms in a liquid droplet during the solvent evaporation/loss.
Collapse
Affiliation(s)
- Fuqian Yang
- Materials Program, Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Yong Li
- School of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| | - Kai Zhang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
21
|
Sun S, Qi J, Wang S, Wang Z, Hu Y, Huang Y, Fu Y, Wang Y, Du H, Hu X, Lei Y, Chen X, Li L, Hu W. General Spatial Confinement Recrystallization Method for Rapid Preparation of Thickness-Controllable and Uniform Organic Semiconductor Single Crystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301421. [PMID: 37264765 DOI: 10.1002/smll.202301421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/29/2023] [Indexed: 06/03/2023]
Abstract
Organic semiconductor single crystals (OSSCs) are ideal materials for studying the intrinsic properties of organic semiconductors (OSCs) and constructing high-performance organic field-effect transistors (OFETs). However, there is no general method to rapidly prepare thickness-controllable and uniform single crystals for various OSCs. Here, inspired by the recrystallization (a spontaneous morphological instability phenomenon) of polycrystalline films, a spatial confinement recrystallization (SCR) method is developed to rapidly (even at several second timescales) grow thickness-controllable and uniform OSSCs in a well-controlled way by applying longitudinal pressure to tailor the growth direction of grains in OSCs polycrystalline films. The relationship between growth parameters including the growth time, temperature, longitudinal pressure, and thickness is comprehensively investigated. Remarkably, this method is applicable for various OSCs including insoluble and soluble small molecules and polymers, and can realize the high-quality crystal array growth. The corresponding 50 dinaphtho[2,3-b:2″,3″-f]thieno[3,2-b]thiophene (DNTT) single crystals coplanar OFETs prepared by the same batch have the mobility of 4.1 ± 0.4 cm2 V-1 s-1 , showing excellent uniformity. The overall performance of the method is superior to the reported methods in term of growth rate, generality, thickness controllability, and uniformity, indicating its broad application prospects in organic electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Shougang Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072, Tianjin, China
| | - Jiannan Qi
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072, Tianjin, China
| | - Shuguang Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072, Tianjin, China
| | - Zhongwu Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072, Tianjin, China
| | - Yongxu Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072, Tianjin, China
| | - Yinan Huang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072, Tianjin, China
| | - Yao Fu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072, Tianjin, China
| | - Yanpeng Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072, Tianjin, China
| | - Haiyan Du
- Analysis and testing center of Tianjin University, 300192, Tianjin, China
| | - Xiaoxia Hu
- Analysis and testing center of Tianjin University, 300192, Tianjin, China
| | - Yong Lei
- Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universitat Ilmenau, 98693, Ilmenau, Germany
| | - Xiaosong Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072, Tianjin, China
| | - Liqiang Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072, Tianjin, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, 350207, Fuzhou, China
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072, Tianjin, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, 350207, Fuzhou, China
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China
| |
Collapse
|
22
|
Zhang Z, Kim W, Ko MJ, Li Y. Perovskite single-crystal thin films: preparation, surface engineering, and application. NANO CONVERGENCE 2023; 10:23. [PMID: 37212959 PMCID: PMC10203094 DOI: 10.1186/s40580-023-00373-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/08/2023] [Indexed: 05/23/2023]
Abstract
Perovskite single-crystal thin films (SCTFs) have emerged as a significant research hotspot in the field of optoelectronic devices owing to their low defect state density, long carrier diffusion length, and high environmental stability. However, the large-area and high-throughput preparation of perovskite SCTFs is limited by significant challenges in terms of reducing surface defects and manufacturing high-performance devices. This review focuses on the advances in the development of perovskite SCTFs with a large area, controlled thickness, and high quality. First, we provide an in-depth analysis of the mechanism and key factors that affect the nucleation and crystallization process and then classify the methods of preparing perovskite SCTFs. Second, the research progress on surface engineering for perovskite SCTFs is introduced. Third, we summarize the applications of perovskite SCTFs in photovoltaics, photodetectors, light-emitting devices, artificial synapse and field-effect transistor. Finally, the development opportunities and challenges in commercializing perovskite SCTFs are discussed.
Collapse
Affiliation(s)
- Zemin Zhang
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Optoelectronics Technology (MoE), Nankai University, Tianjin, 300350, China
| | - Wooyeon Kim
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Min Jae Ko
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea.
| | - Yuelong Li
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Optoelectronics Technology (MoE), Nankai University, Tianjin, 300350, China.
| |
Collapse
|
23
|
Han S, Quan J, Wang D, Li H, Liu X, Xu J, Zhang Y, Li Z, Wu L, Fang X. Anisotropic Growth of Centimeter-Size CsCu 2 I 3 Single Crystals with Ultra-Low Trap Density for Aspect-Ratio-Dependent Photodetectors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206417. [PMID: 36599662 PMCID: PMC9982547 DOI: 10.1002/advs.202206417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Low-dimensional ternary copper iodide metal halide with strong quantum confinement effects has made great progress in optoelectronic fields. However, efficient regulation of anisotropic growth of metal halides single crystal still remains a great challenge. Herein, 2 cm size CsCu2 I3 single crystals with tunable aspect ratio and the trap states (ntrap ) as low as 5.38 × 109 cm-3 are fabricated by optimized anti-solvent vapor-assisted method, in which the growth cycle is shortened by half. Evidenced by real-time observation and the LaMer growth model, the rapid and anisotropic growth mechanism is ascribed to preferential 1D growth, promoted by high concentration and fast vapor rate. Furthermore, the aspect-ratio-dependent optoelectronic performance is observed, the on-off ratio for 2 cm CsCu2 I3 single crystal are enhanced 350 times compared with those of short and thick single crystal, which shows ultrahigh on-off ratio of 1570, D* of 1.34 × 1012 Jones, Rλ of 276.94 mA W-1 , t rise /t decay of 0.37 and 1.08 ms, and EQE of 95.53%, which are clearly at very high level among lead-free perovskite-based photodetectors. This study not only provides a new strategy for overcoming anisotropic growth limitations of low-dimensional metal halides, but also paves a way for high-performance optoelectronic applications.
Collapse
Affiliation(s)
- Sancan Han
- School of Materials Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghai200093P. R. China
| | - Jiale Quan
- School of Materials Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghai200093P. R. China
| | - Ding Wang
- School of Materials Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghai200093P. R. China
| | - Huijun Li
- School of Materials Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghai200093P. R. China
| | - Xinya Liu
- Department of Materials ScienceInstitute of OptoelectronicsState Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
| | - Jingcheng Xu
- School of Materials Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghai200093P. R. China
| | - Yixin Zhang
- School of Materials Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghai200093P. R. China
| | - Ziqing Li
- Department of Materials ScienceInstitute of OptoelectronicsState Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
| | - Limin Wu
- Department of Materials ScienceInstitute of OptoelectronicsState Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
- College of Chemistry and Chemical EngineeringInner Mongolia UniversityHohhot010021P. R. China
| | - Xiaosheng Fang
- Department of Materials ScienceInstitute of OptoelectronicsState Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
| |
Collapse
|
24
|
Yuan J, Zhang X, Zhou D, Ge F, Zhong J, Zhao S, Ou Z, Zhan G, Zhang X, Li C, Tang J, Bai Q, Zhang J, Zhu C, Wang T, Ruan L, Zhu C, Song X, Huang W, Wang L. Excessive Iodine Enabled Ultrathin Inorganic Perovskite Growth at the Liquid-Air Interface. Angew Chem Int Ed Engl 2023; 62:e202218546. [PMID: 36853171 DOI: 10.1002/anie.202218546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
The liquid-air interface offers a platform for the in-plane growth of free-standing materials. However, it is rarely used for inorganic perovskites and ultrathin non-layered perovskites. Herein the liquid-air interfacial synthesis of inorganic perovskite nanosheets (Cs3 Bi2 I9 , Cs3 Sb2 I9 ) is achieved simply by drop-casting the precursor solution with only the addition of iodine. The products are inaccessible without iodine addition. The thickness and lateral size of these nanosheets can be adjusted through the iodine concentration. The high volatility of the iodine spontaneously drives precursors that normally stay in the liquid to the liquid-air interface. The iodine also repairs in situ iodine vacancies during perovskite growth, giving enhanced optical and optoelectronic properties. The liquid-air interfacial growth of ultrathin perovskites provides multi-degree-of-freedom for constructing perovskite-based heterostructures and devices at atomic scale.
Collapse
Affiliation(s)
- Jiaxiao Yuan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xiaomin Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Dawei Zhou
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Feixiang Ge
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jingxian Zhong
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Sihan Zhao
- School of Physical and Mathematical Sciences, Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Zhenwei Ou
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Guixiang Zhan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xu Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Congzhou Li
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jin Tang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Qi Bai
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Junran Zhang
- School of Physical and Mathematical Sciences, Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Chao Zhu
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Ti Wang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Longfei Ruan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Chongqin Zhu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Xuefen Song
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Wei Huang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Key Laboratory of Flexible Electronics (KLOFE), Shaanxi Institute of Flexible Electronics (SIFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Lin Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| |
Collapse
|
25
|
Soultati A, Tountas M, Armadorou KK, Yusoff ARBM, Vasilopoulou M, Nazeeruddin MK. Synthetic approaches for perovskite thin films and single-crystals. ENERGY ADVANCES 2023; 2:1075-1115. [DOI: 10.1039/d3ya00098b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Halide perovskites are compelling candidates for the next generation of photovoltaic technologies owing to an unprecedented increase in power conversion efficiency and their low cost, facile fabrication and outstanding semiconductor properties.
Collapse
Affiliation(s)
- Anastasia Soultati
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research Demokritos, 15341 Agia Paraskevi, Attica, Greece
| | - Marinos Tountas
- Department of Electrical Engineering, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion Crete, Greece
| | - Konstantina K. Armadorou
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research Demokritos, 15341 Agia Paraskevi, Attica, Greece
| | - Abd. Rashid bin Mohd Yusoff
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Maria Vasilopoulou
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research Demokritos, 15341 Agia Paraskevi, Attica, Greece
| | - Mohammad Khaja Nazeeruddin
- Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| |
Collapse
|
26
|
Kim G, Kim D, Choi Y, Ghorai A, Park G, Jeong U. New Approaches to Produce Large-Area Single Crystal Thin Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203373. [PMID: 35737971 DOI: 10.1002/adma.202203373] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Wafer-scale growth of single crystal thin films of metals, semiconductors, and insulators is crucial for manufacturing high-performance electronic and optical devices, but still challenging from both scientific and industrial perspectives. Recently, unconventional advanced synthetic approaches have been attempted and have made remarkable progress in diversifying the species of producible single crystal thin films. This review introduces several new synthetic approaches to produce large-area single crystal thin films of various materials according to the concepts and principles.
Collapse
Affiliation(s)
- Geonwoo Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Dongbeom Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Yoonsun Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Arup Ghorai
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Gyeongbae Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| |
Collapse
|
27
|
Yao J, Zhou Z, Li L, Chen Y, Wang C, Wang X, Lu Z, Bai Z, Zhang Q, Huangfu X, Sun Y, Xu H, Zou G. Zero-Dimensional Cs 3BiX 6 (X = Br, Cl) Single Crystal Films with Second Harmonic Generation. NANOSCALE RESEARCH LETTERS 2022; 17:115. [PMID: 36478063 PMCID: PMC9729671 DOI: 10.1186/s11671-022-03759-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The development of atomically thin single crystal films is necessary to potential applications in the 2D semiconductor field, and it is significant to explore new physical properties in low-dimensional semiconductors. Since, zero-dimensional (0D) materials without natural layering are connected by strong chemical bonds, it is challengeable to break symmetry and grow 0D Cs3BiX6 (X = Br, Cl) single crystal thin films. Here, we report the successful growth of 0D Cs3BiX6 (X = Br, Cl) single crystal films using a solvent evaporation crystallization strategy. Their phases and structures are both well evaluated to confirm 0D Cs3BiX6 (X = Br, Cl) single crystal films. Remarkably, the chemical potential dependent morphology evolution phenomenon is observed. It gives rise to morphology changes of Cs3BiBr6 films from rhombus to hexagon as BiBr3 concentration increased. Additionally, the robust second harmonic generation signal is detected in the Cs3BiBr6 single crystal film, demonstrating the broken symmetry originated from decreased dimension or shape change.
Collapse
Affiliation(s)
- Junjie Yao
- School of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, People's Republic of China
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Zhicheng Zhou
- School of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, People's Republic of China
| | - Lutao Li
- School of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, People's Republic of China
| | - Yuan Chen
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China.
| | - Chen Wang
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Xiangyi Wang
- School of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, People's Republic of China
| | - Zheng Lu
- School of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, People's Republic of China
| | - Zhongchao Bai
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Qiang Zhang
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Xuefeng Huangfu
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Yinghui Sun
- School of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, People's Republic of China
| | - Hao Xu
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, People's Republic of China
| | - Guifu Zou
- School of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, People's Republic of China.
| |
Collapse
|
28
|
Gao Q, Qi J, Chen K, Xia M, Hu Y, Mei A, Han H. Halide Perovskite Crystallization Processes and Methods in Nanocrystals, Single Crystals, and Thin Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200720. [PMID: 35385587 DOI: 10.1002/adma.202200720] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Halide perovskite semiconductors with extraordinary optoelectronic properties have been fascinatedly studied. Halide perovskite nanocrystals, single crystals, and thin films have been prepared for various fields, such as light emission, light detection, and light harvesting. High-performance devices rely on high crystal quality determined by the nucleation and crystal growth process. Here, the fundamental understanding of the crystallization process driven by supersaturation of the solution is discussed and the methods for halide perovskite crystals are summarized. Supersaturation determines the proportion and the average Gibbs free energy changes for surface and volume molecular units involved in the spontaneous aggregation, which could be stable in the solution and induce homogeneous nucleation only when the solution exceeds a required minimum critical concentration (Cmin ). Crystal growth and heterogeneous nucleation are thermodynamically easier than homogeneous nucleation due to the existent surfaces. Nanocrystals are mainly prepared via the nucleation-dominated process by rapidly increasing the concentration over Cmin , single crystals are mainly prepared via the growth-dominated process by keeping the concentration between solubility and Cmin , while thin films are mainly prepared by compromising the nucleation and growth processes to ensure compactness and grain sizes. Typical strategies for preparing these three forms of halide perovskites are also reviewed.
Collapse
Affiliation(s)
- Qiaojiao Gao
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jianhang Qi
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Kai Chen
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Minghao Xia
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Yue Hu
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Anyi Mei
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Hongwei Han
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
29
|
Parikh N, Sevak P, Jowhar Khanam S, Prochowicz D, Akin S, Satapathi S, Tavakoli MM, Banavoth M, Kalam A, Yadav P. Rationalizing the Effect of Polymer-Controlled Growth of Perovskite Single Crystals on Optoelectronic Properties. ACS OMEGA 2022; 7:36535-36542. [PMID: 36278064 PMCID: PMC9583095 DOI: 10.1021/acsomega.2c04400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/02/2022] [Indexed: 05/29/2023]
Abstract
To improve and modulate the optoelectronic properties of single-crystal (SC) metal halide perovskites (MHPs), significant progress has been achieved. Polymer-assisted techniques are a great approach to control the growth rate of SCs effectively. However, the resultant optoelectrical properties induced by polymers are ambiguous and need to be taken into the consideration. In this study, we have synthesized methylammonium lead triiodide (MAPbI3) SCs using polyethylene glycol (PEG) and polystyrene (PS) polymers where PEG contains oxygen functionalities and PS does not. We studied the electrical properties of these SCs under dark and illumination conditions. It was observed that PEG-assisted SCs showed few defects with lower photocurrent as compared to the PS-assisted ones because of defect-mediated conductivity. The results are further verified by transient current response, responsivity, and capacitance-frequency measurements. The present study sheds light on the polymer selection for the growth of MHP SCs and their optoelectronic properties.
Collapse
Affiliation(s)
- Nishi Parikh
- Department
of Science, School of Technology, Pandit
Deendayal Energy University, Gandhinagar382 007, Gujarat, India
| | - Parth Sevak
- Department
of Science, School of Technology, Pandit
Deendayal Energy University, Gandhinagar382 007, Gujarat, India
| | - Sarvani Jowhar Khanam
- Solar
Cells and Photonics Research Laboratory, School of Chemistry, University of Hyderabad, Hyderabad500046, Telangana, India
| | - Daniel Prochowicz
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, Warsaw01-224, Poland
| | - Seckin Akin
- Department
of Metallurgical and Materials Engineering, Karamanoglu Mehmetbey University, Karaman70200, Turkey
| | - Soumitra Satapathi
- Department
of Physics, Indian Institute of Technology
Roorkee, Roorkee, Haridwar, Uttarakhand247667, India
| | - Mohammad Mahdi Tavakoli
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Murali Banavoth
- Solar
Cells and Photonics Research Laboratory, School of Chemistry, University of Hyderabad, Hyderabad500046, Telangana, India
| | - Abul Kalam
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha61413, Saudi Arabia
| | - Pankaj Yadav
- Department
of Solar Energy, School of Technology, Pandit
Deendayal Energy University, Gandhinagar382 007, Gujarat, India
| |
Collapse
|
30
|
Zhou Y, Parkes MA, Zhang J, Wang Y, Ruddlesden M, Fielding HH, Su L. Single-crystal organometallic perovskite optical fibers. SCIENCE ADVANCES 2022; 8:eabq8629. [PMID: 36149951 PMCID: PMC9506722 DOI: 10.1126/sciadv.abq8629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Semiconductors in their optical-fiber forms are desirable. Single-crystal organometallic halide perovskites have attractive optoelectronic properties and therefore are suitable fiber-optic platforms. However, single-crystal organometallic perovskite optical fibers have not been reported before due to the challenge of one-directional single-crystal growth in solution. Here, we report a solution-processed approach to continuously grow single-crystal organometallic perovskite optical fibers with controllable diameters and lengths. For single-crystal MAPbBr3 (MA = CH3NH3+) perovskite optical fiber made using our method, it demonstrates low transmission losses (<0.7 dB/cm), mechanical flexibilities (a bending radius down to 3.5 mm), and mechanical deformation-tunable photoluminescence in organometallic perovskites. Moreover, the light confinement provided by our organometallic perovskite optical fibers leads to three-photon absorption (3PA), in contrast with 2PA in bulk single crystals under the same experimental conditions. The single-crystal organometallic perovskite optical fibers have the potential in future optoelectronic applications.
Collapse
Affiliation(s)
- Yongfeng Zhou
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Michael A. Parkes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Jinshuai Zhang
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Yufei Wang
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Michael Ruddlesden
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Helen H. Fielding
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Lei Su
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
31
|
He J, Li CY, Qi DX, Cai Q, Liu Y, Fan RH, Su J, Huo P, Xu T, Peng R, Wang M. Improving Photoelectric Conversion with Broadband Perovskite Metasurface. NANO LETTERS 2022; 22:6655-6663. [PMID: 35925801 DOI: 10.1021/acs.nanolett.2c01979] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The miniaturization and integration of optoelectronic devices require progressive size reduction of active layers, resulting in less optical absorption and lower quantum efficiency. In this work, we demonstrate that introducing a metasurface made of hybrid organic-inorganic perovskite (HOIP) can significantly enhance broadband absorption and improve photon-to-electron conversion, which roots from exciting Mie resonances together with suppressing optical transmission. On the basis of the HOIP metasurface, a broadband photodetector has been fabricated where photocurrent boosts more than 10 times in the frequency ranging from ultraviolet to visible. The device response time is less than 5.1 μs at wavelengths 380, 532, and 710 nm, and the relevant 3 dB bandwidth is over 0.26 MHz. Moreover, this photodetector has been applied as a signal receiver for transmitting 2D color images in broadband optical communication. These results accentuate the practical applications of HOIP metasurfaces in novel optoelectronic devices for broadband optical communication.
Collapse
Affiliation(s)
- Jie He
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Cheng-Yao Li
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Dong-Xiang Qi
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Qing Cai
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yu Liu
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Ren-Hao Fan
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jing Su
- School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Pengcheng Huo
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Ting Xu
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Ruwen Peng
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Mu Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- American Physical Society, Ridge, New York 11961, United States
| |
Collapse
|
32
|
Cho Y, Jung HR, Jo W. Halide perovskite single crystals: growth, characterization, and stability for optoelectronic applications. NANOSCALE 2022; 14:9248-9277. [PMID: 35758131 DOI: 10.1039/d2nr00513a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recently, metal halide perovskite materials have received significant attention as promising candidates for optoelectronic applications with tremendous achievements, owing to their outstanding optoelectronic properties and facile solution-processed fabrication. However, the existence of a large number of grain boundaries in perovskite polycrystalline thin films causes ion migration, surface defects, and instability, which are detrimental to device applications. Compared with their polycrystalline counterparts, perovskite single crystals have been explored to realize stable and excellent properties such as a long diffusion length and low trap density. The development of growth techniques and physicochemical characterizations led to the widespread implementation of perovskite single-crystal structures in optoelectronic applications. In this review, recent progress in the growth techniques of perovskite single crystals, including advanced crystallization methods, is summarized. Additionally, their optoelectronic characterizations are elucidated along with a detailed analysis of their optical properties, carrier transport mechanisms, defect densities, surface morphologies, and stability issues. Furthermore, the promising applications of perovskite single crystals in solar cells, photodetectors, light-emitting diodes, lasers, and flexible devices are discussed. The development of suitable growth and characterization techniques contributes to the fundamental investigation of these materials and aids in the construction of highly efficient optoelectronic devices based on halide perovskite single crystals.
Collapse
Affiliation(s)
- Yunae Cho
- New and Renewable Energy Research Centre, Ewha Womans University, Seoul, Republic of Korea.
| | - Hye Ri Jung
- Department of Physics, Ewha Womans University, Seoul, Republic of Korea
| | - William Jo
- New and Renewable Energy Research Centre, Ewha Womans University, Seoul, Republic of Korea.
- Department of Physics, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
33
|
Zhu W, Zhang Y, Shen J, Shi Y, Li M, Lian J. Large-Area Uniaxial-Oriented Growth of Free-Standing Thin Films at the Liquid-Air Interface with Millimeter-Sized Grains. ACS NANO 2022; 16:11802-11814. [PMID: 35786949 DOI: 10.1021/acsnano.1c07662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Manipulating materials at the atomic scale and assembling them into macroscopic structures with controlled dimensionalities and single-crystal quality are grand scientific challenges. Here, we report a general solvent evaporation method to synthesize large-area uniaxial-oriented growth of free-standing thin films at the liquid-air interface. Crystals nucleate at the solution surface and rotate into the same orientation under electrostatic interaction and then merge as large crystals and grow laterally into a large-area uniform thin film with millimeter-sized grains. The lateral dimension is confined only by the size of containers. The film thickness can be tuned by adjusting solvent evaporation rate (R) and solute diffusivity (D), and a characteristic length, L * ∼ D R , was derived to estimate the film thickness. Molecular dynamic (MD) simulations reveal a concentration spike at the liquid-air interface during fast solvent evaporation, leading to the lateral growth of thin films. The large-area uniaxial oriented films are demonstrated on both inorganic metal halides and hybrid metal halide perovskites. The solvent evaporation approach and the determination of key parameters enabling film thickness prediction are beneficial to the high throughput and scalable production of single crystal-quality thin film materials under controlled evaporation conditions.
Collapse
Affiliation(s)
- Weiguang Zhu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Yanming Zhang
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Junhua Shen
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Yunfeng Shi
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Mingxin Li
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jie Lian
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
34
|
Yang F. Heterogeneous Nucleation of an Embryo in the Shape of Square Prism: Effect of Surface Roughness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7218-7224. [PMID: 35622990 DOI: 10.1021/acs.langmuir.2c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The solution-based synthesis in a confined space between two parallel plates has been demonstrated to be a potential approach to grow single-crystal perovskite films of large sizes, such as CH3NH3PbX3 (X = Br and I) single-crystal films. In this work, we study the effects of surface roughness on the separation between two parallel, rough plates, and heterogeneous nucleation of an embryo in the shape of square prism for the Wenzel contact between the embryo and the rough surface. Analytical relations are derived for the separation of two parallel, rough plates under mechanical loading and the critical dimensions of a square embryo on a rough surface. The analytical relation reveals that one can control the thickness of perovskite films grown between two parallel plates by changing the surface tension of the precursor solution and mechanical loading. The critical dimensions of a square embryo and the corresponding formation energy are dependent on interface energies and the root mean square of surface roughness. There exists a critical root mean square of surface roughness, above which it is very difficult to form an embryo in the shape of square prism. The results illustrate the important roles of the interface energies and surface roughness of substrates in the growth of single-crystal films, including perovskites and ionic crystals, and the need to include the anisotropic characteristics of surface/interface energies in the nucleation analysis of crystalline materials.
Collapse
Affiliation(s)
- Fuqian Yang
- Materials Program, Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
35
|
Tang X, Wang Z, Wu D, Wu Z, Ren Z, Li R, Liu P, Mei G, Sun J, Yu J, Zheng F, Choy WCH, Chen R, Sun XW, Yang F, Wang K. In Situ Growth Mechanism for High-Quality Hybrid Perovskite Single-Crystal Thin Films with High Area to Thickness Ratio: Looking for the Sweet Spot. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104788. [PMID: 35261191 PMCID: PMC9069385 DOI: 10.1002/advs.202104788] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/14/2022] [Indexed: 05/30/2023]
Abstract
The development of in situ growth methods for the fabrication of high-quality perovskite single-crystal thin films (SCTFs) directly on hole-transport layers (HTLs) to boost the performance of optoelectronic devices is critically important. However, the fabrication of large-area high-quality SCTFs with thin thickness still remains a significant challenge due to the elusive growth mechanism of this process. In this work, the influence of three key factors on in situ growth of high-quality large-size MAPbBr3 SCTFs on HTLs is investigated. An optimal "sweet spot" is determined: low interface energy between the precursor solution and substrate, a slow heating rate, and a moderate precursor solution concentration. As a result, the as-obtained perovskite SCTFs with a thickness of 540 nm achieve a record area to thickness ratio of 1.94 × 104 mm, a record X-ray diffraction peak full width at half maximum of 0.017°, and an ultralong carrier lifetime of 1552 ns. These characteristics enable the as-obtained perovskite SCTFs to exhibit a record carrier mobility of 141 cm2 V-1 s-1 and good long-term structural stability over 360 days.
Collapse
Affiliation(s)
- Xiaobing Tang
- Department of Electrical and Electronic EngineeringGuangdong University Key Laboratory for Advanced Quantum Dot Displays and LightingGuangdong‐Hong Kong‐Macao Joint Laboratory for Photonic‐Thermal‐Electrical Energy Materials and DevicesSouthern University of Science and TechnologyShenzhen518055P. R. China
- Materials ProgramDepartment of Chemical and Materials EngineeringUniversity of KentuckyLexingtonKY40506USA
| | - Zhaojin Wang
- Department of Electrical and Electronic EngineeringGuangdong University Key Laboratory for Advanced Quantum Dot Displays and LightingGuangdong‐Hong Kong‐Macao Joint Laboratory for Photonic‐Thermal‐Electrical Energy Materials and DevicesSouthern University of Science and TechnologyShenzhen518055P. R. China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology)Ministry of EducationShenzhen518055P. R. China
| | - Dan Wu
- College of New Materials and New EnergiesShenzhen Technology UniversityShenzhen518118P. R. China
| | - Zhenghui Wu
- Department of Electrical and Electronic EngineeringGuangdong University Key Laboratory for Advanced Quantum Dot Displays and LightingGuangdong‐Hong Kong‐Macao Joint Laboratory for Photonic‐Thermal‐Electrical Energy Materials and DevicesSouthern University of Science and TechnologyShenzhen518055P. R. China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology)Ministry of EducationShenzhen518055P. R. China
| | - Zhenwei Ren
- Department of Electrical and Electronic EngineeringGuangdong University Key Laboratory for Advanced Quantum Dot Displays and LightingGuangdong‐Hong Kong‐Macao Joint Laboratory for Photonic‐Thermal‐Electrical Energy Materials and DevicesSouthern University of Science and TechnologyShenzhen518055P. R. China
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong KongP. R. China
| | - Ruxue Li
- Department of Electrical and Electronic EngineeringGuangdong University Key Laboratory for Advanced Quantum Dot Displays and LightingGuangdong‐Hong Kong‐Macao Joint Laboratory for Photonic‐Thermal‐Electrical Energy Materials and DevicesSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Pai Liu
- Department of Electrical and Electronic EngineeringGuangdong University Key Laboratory for Advanced Quantum Dot Displays and LightingGuangdong‐Hong Kong‐Macao Joint Laboratory for Photonic‐Thermal‐Electrical Energy Materials and DevicesSouthern University of Science and TechnologyShenzhen518055P. R. China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology)Ministry of EducationShenzhen518055P. R. China
| | - Guanding Mei
- Department of Electrical and Electronic EngineeringGuangdong University Key Laboratory for Advanced Quantum Dot Displays and LightingGuangdong‐Hong Kong‐Macao Joint Laboratory for Photonic‐Thermal‐Electrical Energy Materials and DevicesSouthern University of Science and TechnologyShenzhen518055P. R. China
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong KongP. R. China
| | - Jiayun Sun
- Department of Electrical and Electronic EngineeringGuangdong University Key Laboratory for Advanced Quantum Dot Displays and LightingGuangdong‐Hong Kong‐Macao Joint Laboratory for Photonic‐Thermal‐Electrical Energy Materials and DevicesSouthern University of Science and TechnologyShenzhen518055P. R. China
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong KongP. R. China
| | - Jiahao Yu
- Department of Electrical and Electronic EngineeringGuangdong University Key Laboratory for Advanced Quantum Dot Displays and LightingGuangdong‐Hong Kong‐Macao Joint Laboratory for Photonic‐Thermal‐Electrical Energy Materials and DevicesSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Fankai Zheng
- Department of Electrical and Electronic EngineeringGuangdong University Key Laboratory for Advanced Quantum Dot Displays and LightingGuangdong‐Hong Kong‐Macao Joint Laboratory for Photonic‐Thermal‐Electrical Energy Materials and DevicesSouthern University of Science and TechnologyShenzhen518055P. R. China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology)Ministry of EducationShenzhen518055P. R. China
| | - Wallace C. H. Choy
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong KongP. R. China
| | - Rui Chen
- Department of Electrical and Electronic EngineeringGuangdong University Key Laboratory for Advanced Quantum Dot Displays and LightingGuangdong‐Hong Kong‐Macao Joint Laboratory for Photonic‐Thermal‐Electrical Energy Materials and DevicesSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Xiao Wei Sun
- Department of Electrical and Electronic EngineeringGuangdong University Key Laboratory for Advanced Quantum Dot Displays and LightingGuangdong‐Hong Kong‐Macao Joint Laboratory for Photonic‐Thermal‐Electrical Energy Materials and DevicesSouthern University of Science and TechnologyShenzhen518055P. R. China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology)Ministry of EducationShenzhen518055P. R. China
| | - Fuqian Yang
- Materials ProgramDepartment of Chemical and Materials EngineeringUniversity of KentuckyLexingtonKY40506USA
| | - Kai Wang
- Department of Electrical and Electronic EngineeringGuangdong University Key Laboratory for Advanced Quantum Dot Displays and LightingGuangdong‐Hong Kong‐Macao Joint Laboratory for Photonic‐Thermal‐Electrical Energy Materials and DevicesSouthern University of Science and TechnologyShenzhen518055P. R. China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology)Ministry of EducationShenzhen518055P. R. China
| |
Collapse
|
36
|
Zhang H, Yu T, Wang C, Jia R, Pirzado AAA, Wu D, Zhang X, Zhang X, Jie J. High-Luminance Microsized CH 3NH 3PbBr 3 Single-Crystal-Based Light-Emitting Diodes via a Facile Liquid-Insulator Bridging Route. ACS NANO 2022; 16:6394-6403. [PMID: 35404055 DOI: 10.1021/acsnano.2c00488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Micro-/nanosized organic-inorganic hybrid perovskite single crystals (SCs) with appropriate thickness and high crystallinity are promising candidates for high-performance electroluminescent (EL) devices. However, their small lateral size poses a great challenge for efficient device construction and performance optimization, causing perovskite SC-based light-emitting diodes (PSC-LEDs) to demonstrate poor EL performance. Here, we develop a facile liquid-insulator bridging (LIB) strategy to fabricate high-luminance PSC-LEDs based on single-crystalline CH3NH3PbBr3 microflakes. By introducing a blade-coated poly(methyl methacrylate) (PMMA) insulating layer to effectively overcome the problems of leakage current and possible short circuits between electrodes, we achieve the reliable fabrication of PSC-LEDs. The LIB method also allows us to systematically boost the device performance through crystal growth regulation and device architecture optimization. Consequently, we realize the best CH3NH3PbBr3 microflake-based PSC-LED with an ultrahigh luminance of 136100 cd m-2 and a half-lifetime of 88.2 min at an initial luminance of ∼1100 cd m-2, which is among the highest for organic-inorganic hybrid perovskite LEDs reported to date. Moreover, we observe the strong polarized edge emission of the microflake-based PSC-LEDs with a high degree of polarization up to 0.69. Our work offers a viable approach for the development of high-performance perovskite SC-based EL devices.
Collapse
Affiliation(s)
- Huanyu Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Tingxiu Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Chaoqiang Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Ruofei Jia
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Azhar Ali Ayaz Pirzado
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Department of Electronic Engineering, Faculty of Engineering and Technology, University of Sindh, Allama I.I. Kazi Campus, Jamshoro, Sindh 76080, Pakistan
| | - Di Wu
- School of Physics and Microelectronics and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, P. R. China
| | - Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Jiansheng Jie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, P. R. China
| |
Collapse
|
37
|
Peng B, Zhou H, Liu Z, Li Y, Shang Q, Xie J, Deng L, Zhang Q, Liang D. Pattern-Selective Molecular Epitaxial Growth of Single-Crystalline Perovskite Arrays toward Ultrasensitive and Ultrafast Photodetector. NANO LETTERS 2022; 22:2948-2955. [PMID: 35289627 DOI: 10.1021/acs.nanolett.2c00074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The emergence of organic-inorganic perovskite has provided great flexibility for creating optoelectronic devices with unprecedented performance or unique functionality. However, the perovskite films explored so far have been difficult to be patterned to arrays owing to their poor solvent and moisture stability, which usually lead to serious structural damage of perovskites. The successful preparation of perovskite microarrays with uniform shape and size is more challenging. Here we report a straightforward approach to realize single-crystalline perovskite arrays through a relatively simple pattern-selective molecular epitaxial growth. This approach is applied to create diverse shaped perovskite arrays, such as hexagon, triangle, circle, square, and rectangle. A vertically aligned perovskite photodetector displays both an ultrasensitive and ultrafast photoresponse arising from the reduction in carrier diffusion paths and the high optical absorption. This work demonstrates a general approach to creating perovskite arrays with uniform shape, size, and morphology and provides a rich platform for producing high-performance photodetectors and photovoltage devices.
Collapse
Affiliation(s)
- Bo Peng
- National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Key Laboratory of Multi Spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hongmei Zhou
- National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Key Laboratory of Multi Spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhen Liu
- National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Key Laboratory of Multi Spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yue Li
- National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Key Laboratory of Multi Spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qiuyu Shang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Jianliang Xie
- National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Key Laboratory of Multi Spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Longjiang Deng
- National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Key Laboratory of Multi Spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qing Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Difei Liang
- National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Key Laboratory of Multi Spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
38
|
Li Z, Hong E, Zhang X, Deng M, Fang X. Perovskite-Type 2D Materials for High-Performance Photodetectors. J Phys Chem Lett 2022; 13:1215-1225. [PMID: 35089041 DOI: 10.1021/acs.jpclett.1c04225] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodetectors are light sensors in widespread use in image sensing, optical communication, and consumer electronics. In current smart optoelectronic technology, conventional semiconductors have encountered a bottleneck caused by inflexibility and opacity. With the ever-increasing demands for versatile optoelectronic applications, perovskite-type 2D materials demonstrate great potential for advanced photodetectors inspired by molecularly thin 2D materials. Through the reduction of thickness to thin or molecularly thin levels, single-crystalline 2D perovskites can exhibit superior optoelectronic performance characteristics, such as tunable absorption property by chemical design, enhanced carrier separation by remarkable photosensing capability, and improved carrier extraction by versatile band engineering. More importantly, perovskite-type 2D materials exhibit great potential for large-scale monolithic integration to achieve all-in-one sensing-memory-computing optoelectronic devices. In this Perspective, recent progress in 2D perovskite-based photodetectors is presented in detail. The focus is on growth strategies for reducing thickness, thickness-dependent optical and electrical properties, device engineering, heterojunction fabrication, and device performance. Finally, the current challenges and future prospects in this field are presented.
Collapse
Affiliation(s)
- Ziqing Li
- Institute of Optoelectronics, Fudan University, Shanghai 200433, P.R. China
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| | - Enliu Hong
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| | - Xinyu Zhang
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| | - Ming Deng
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| | - Xiaosheng Fang
- Institute of Optoelectronics, Fudan University, Shanghai 200433, P.R. China
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
39
|
Shen YZ, Guan J, Ma C, Shu Y, Xu Q, Hu XY. Competitive Displacement Triggering DBP Photoelectrochemical Aptasensor via Cetyltrimethylammonium Bromide Bridging Aptamer and Perovskite. Anal Chem 2022; 94:1742-1751. [PMID: 35026109 DOI: 10.1021/acs.analchem.1c04348] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Here, a label-free perovskite-based photoelectrochemical (PEC) aptasensor was rationally designed for the displacement assay of dibutyl phthalate (DBP), a well-known endocrine disruptor, with the aid of cetyltrimethylammonium bromide (CTAB). In this method, CTAB significantly enhanced the PEC response and humidity resistance of the CH3NH3PbI3 perovskite by forming a protecting layer and passivating the X- and A-sites vacancies of CH3NH3PbI3. In addition, CTAB facilitated the immobilization of an aptamer through van der Waals and hydrophobicity forces, as well as the electrostatic interactions between the phosphate group of the aptamer and the cationic group of CTAB. When exposed to DBP in the affinity solution, the DBP aptamer was released from the electrode because the affinity between DBP and its aptamer competes with the interaction of the aptamer and CTAB. The displacement of the aptamer from the perovskite surface relieves the block effect and thus enhances the photoelectric signal of perovskite. By virtue of the good photoelectrochemical characters of CH3NH3PbI3 and the specific recognition ability of aptamer, the linear range of the PEC sensor was 1.0 × 10-13 to 1.0 × 10-8 M and the detection and quantification limits were down to 2.5 × 10-14 and 8.2 × 10-14 M (S/N = 3), respectively. This work offers a novel strategy for designing aptasensors for the detection of various targets and exhibits the marvelous potential of organic-inorganic perovskite in the field of PEC analysis.
Collapse
Affiliation(s)
- Ying-Zhuo Shen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jie Guan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chen Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yun Shu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xiao-Ya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
40
|
Li J, Gu Y, Han Z, Liu J, Zou Y, Xu X. Further Advancement of Perovskite Single Crystals. J Phys Chem Lett 2022; 13:274-290. [PMID: 34978435 DOI: 10.1021/acs.jpclett.1c03624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Halide perovskite (HP) single crystals (SCs) are garnering extensive attention as active materials to substitute polycrystalline counterparts in solar cells, photodiodes, and photodetectors, etc. Nevertheless, the large thickness and defect-rich surface results in severe carrier recombination and becomes the major bottleneck for augmented performance. In this perspective, we are looking forward to explaining in detail why the SCs hardly unleash their engrossing potential and introduce two parallel paths for further advancement. First is the modification of thick SCs by reducing the prepared thickness or surface passivation. Second is the large thickness that is conducive to the sufficient absorption of high-energy rays with strong penetrating ability and is beneficial to the thermoelectric effect due to the ultralow thermal conductivity of HPs. These applications provide a roundabout strategy to exploit freestanding SCs with a large thickness. Herein, direct modification and application of thick SCs are systematically introduced, expecting to give rise to the prosperity of HP SCs.
Collapse
Affiliation(s)
- Junyu Li
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yu Gu
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zeyao Han
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiaxin Liu
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yousheng Zou
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaobao Xu
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
41
|
Capitaine A, Sciacca B. Monocrystalline Methylammonium Lead Halide Perovskite Materials for Photovoltaics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102588. [PMID: 34652035 DOI: 10.1002/adma.202102588] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Lead halide perovskite solar cells have been gaining more and more interest. In only a decade, huge research efforts from interdisciplinary communities enabled enormous scientific advances that rapidly led to energy conversion efficiency near that of record silicon solar cells, at an unprecedented pace. However, while for most materials the best solar cells were achieved with single crystals (SC), for perovskite the best cells have been so far achieved with polycrystalline (PC) thin films, despite the optoelectronic properties of perovskite SC are undoubtedly superior. Here, by taking as example monocrystalline methylammonium lead halide, the authors elaborate the literature from material synthesis and characterization to device fabrication and testing, to provide with plausible explanations for the relatively low efficiency, despite the superior optoelectronics performance. In particular, the authors focus on how solar cell performance is affected by anisotropy, crystal orientation, surface termination, interfaces, and device architecture. It is argued that, to unleash the full potential of monocrystalline perovskite, a holistic approach is needed in the design of next-generation device architecture. This would unquestionably lead to power conversion efficiency higher than those of PC perovskites and silicon solar cells, with tremendous impact on the swift deployment of renewable energy on a large scale.
Collapse
Affiliation(s)
- Anna Capitaine
- Aix Marseille Univ, CNRS, CINaM, Marseille, 13288, France
| | | |
Collapse
|
42
|
Liu G, Jia S, Wang J, Li Y, Yang H, Wang S, Gong Q. Toward Microlasers with Artificial Structure Based on Single-Crystal Ultrathin Perovskite Films. NANO LETTERS 2021; 21:8650-8656. [PMID: 34609149 DOI: 10.1021/acs.nanolett.1c02618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A perovskite microlaser is potentially valuable for integrated photonics due to its excellent properties. The artificial microlasers were mostly made on polycrystalline films. Though a perovskite single crystal has significantly improved properties in comparison with its polycrystalline counterpart, an artificial microlaser based on single-crystal perovskite has been much less explored due to the difficulty in producing an ultrathin-single-crystal (UTSC) film. Here we show a device processing based on a perovskite UTSC film, confirming the high performance of the UTSC device with a quality factor of 1250. The single-crystal device shows 4.5 times the quality factor and 8 times the radiation intensity in comparison with its polycrystalline counterpart. The experiment first proved that hybrid perovskite microlasers with a subwavelength fine structure can be processed by focused ion beams (FIB). In addition, a wavelength-tunable distributed feedback (DFB) laser is demonstrated, with a tuning range of ∼4.6 nm. The research provides an easily applicable approach for perovskite photonic devices with excellent performance.
Collapse
Affiliation(s)
- Guodong Liu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Shangtong Jia
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Ju Wang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Yifan Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Hong Yang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Shufeng Wang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, People's Republic of China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, People's Republic of China
- Peking University, Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu226010, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Qihuang Gong
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, People's Republic of China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, People's Republic of China
- Peking University, Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu226010, People's Republic of China
| |
Collapse
|
43
|
Xu W, Wei X, Zheng D, Huang W, Li P, Chen Y, Meng F, Liu J. Biphasic Liquid-Liquid Interface Limit Architecture of High-Quality Perovskite Single-Crystal Sheets for UV Photodetection. J Phys Chem Lett 2021; 12:10052-10059. [PMID: 34623160 DOI: 10.1021/acs.jpclett.1c02905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thin organic-inorganic MAPbX3 perovskite single-crystal sheets have become the hotspot of smart photodetectors because of their low number of trap states, high carrier mobility, long diffusion length, and effective light-receiving area. However, MAPbX3 single crystals are so fragile that single-crystal perovskite sheets with a thickness of ≤100 μm are hard to obtain by cutting. Thin single-crystal MAPbX3 sheets were synthesized by the biphasic liquid-liquid interface limit method with dimethicone/DMSO biphasic films and could be obtained with an adjustable thickness of 1-50 μm and improved crystal quality of the perovskite sheets. The thin MAPbX3 single-crystal sheet-based photodetector exhibits a superior responsivity of 0.88 A W-1, an external quantum efficiency of 276.8%, and an ultrahigh detectivity of 2.26 × 1011 Jones under 395 nm irradiation at 3 V. These values are more than 500% as high as those of the bulk-crystal-based photodetector. In particular, the sheet-based photodetector could retain long-time stability after 4200 on-off cycles.
Collapse
Affiliation(s)
- Wenchao Xu
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiangfeng Wei
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Daoyuan Zheng
- Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Wenjun Huang
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Panpan Li
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yudan Chen
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Fancheng Meng
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jiehua Liu
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Engineering Research Center of High-Performance Copper Alloy Materials and Processing, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
44
|
Li Z, Liu X, Zuo C, Yang W, Fang X. Supersaturation-Controlled Growth of Monolithically Integrated Lead-Free Halide Perovskite Single-Crystalline Thin Film for High-Sensitivity Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103010. [PMID: 34431141 DOI: 10.1002/adma.202103010] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/03/2021] [Indexed: 05/24/2023]
Abstract
Monolithical integration of the promising optoelectronic material with mature and inexpensive silicon circuitry contributes to simplifying device geometry, enhancing performance, and expanding new functionalities. Herein, a lead-free halide perovskite Cs3 Bi2 I9 single-crystalline thin film (SCTF), with thickness ranging from 900 nm to 4.1 µm and aspect ratio up to 1666, is directly integrated on various substrates including Si wafer, through a facile and low-temperature solution-processing method. The growth kinetics of the lead-free halide perovskite SCTF are elucidated by in situ observation, and the solution supersaturation is controlled to reduce the inverse-temperature crystallization nucleation density and elongate the evaporation growth. The excellent lattice match and band alignment between Si(111) and Cs3 Bi2 I9 (001) facets promote photogenerated charge dissociation and extraction, resulting in boosting the photoelectric sensitivity by 10-200 times compared with photodetectors based on other substrates. More importantly, this silicon-compatible perovskite SCTF photodetector exhibits a high switching ratio of 3000 and a fast response of 1.5 µs, which are higher than most reported state-of-the-art lead-free halide perovskite photodetectors. This work not only gives an in-depth understanding of the perovskite precursor solution chemistry, but also demonstrates the great potential of monolithical integration of lead-free halide perovskite SCTF with a silicon wafer for high-performance photodetectors.
Collapse
Affiliation(s)
- Ziqing Li
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xinya Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Chaolei Zuo
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Wei Yang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
45
|
Moseley ODI, Doherty TAS, Parmee R, Anaya M, Stranks SD. Halide perovskites scintillators: unique promise and current limitations. JOURNAL OF MATERIALS CHEMISTRY. C 2021; 9:11588-11604. [PMID: 34671480 PMCID: PMC8444306 DOI: 10.1039/d1tc01595h] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/28/2021] [Indexed: 05/31/2023]
Abstract
The widespread use of X- and gamma-rays in a range of sectors including healthcare, security and industrial screening is underpinned by the efficient detection of the ionising radiation. Such detector applications are dominated by indirect detectors in which a scintillating material is combined with a photodetector. Halide perovskites have recently emerged as an interesting class of semiconductors, showing enormous promise in optoelectronic applications including solar cells, light-emitting diodes and photodetectors. Here, we discuss how the same superior semiconducting properties that have catalysed their rapid development in these optoelectronic devices, including high photon attenuation and fast and efficient emission properties, also make them promising scintillator materials. By outlining the key mechanisms of their operation as scintillators, we show why reports of remarkable performance have already emerged, and describe how further learning from other optoelectronic devices will propel forward their applications as scintillators. Finally, we outline where these materials can make the greatest impact in detector applications by maximally exploiting their unique properties, leading to dramatic improvements in existing detection systems or introducing entirely new functionality.
Collapse
Affiliation(s)
- Oliver D I Moseley
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue Cambridge CB3 0HE UK
| | - Tiarnan A S Doherty
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue Cambridge CB3 0HE UK
| | - Richard Parmee
- Cheyney Design and Development, Ltd., Litlington Cambridge SG8 0SS UK
| | - Miguel Anaya
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue Cambridge CB3 0HE UK
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive Cambridge CB3 0AS UK
| | - Samuel D Stranks
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue Cambridge CB3 0HE UK
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive Cambridge CB3 0AS UK
| |
Collapse
|
46
|
Ma J, Wang H, Li D. Recent Progress of Chiral Perovskites: Materials, Synthesis, and Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008785. [PMID: 34028888 DOI: 10.1002/adma.202008785] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/03/2021] [Indexed: 05/27/2023]
Abstract
Chiral materials with intrinsic inversion-symmetric structures possess many unique physicochemical features, including circular dichroism, circularly polarized photoluminescence, nonlinear optics, ferroelectricity, and spintronics. Halide perovskites have attracted considerable attention owing to their excellent optical and electrical properties, which are particularly suitable for realizing high power-conversion efficiency in solar cells. Recent studies have shown that chirality can be transferred from chiral organic ligands into halide perovskites and the resultant chiral perovskites combine the advantages of both chiral materials and halide perovskites; this provides an ideal platform to design next-generation optoelectronic and spintronic devices. In this progress report, the most recent advances are summarized in various chemical structures of chiral perovskites, their synthesis strategies, chirality generation mechanisms, and physical properties. Furthermore, the potential chiral-halide-perovskite-based applications are presented and the challenges and prospects of chiral perovskites are discussed. This report outlines the diverse construction strategies of and proposes research directions for chiral halide perovskites; thus, it provides insights into the design of novel chiral perovskites and facilitates investigation of the optoelectronic applications that employ chirality.
Collapse
Affiliation(s)
- Jiaqi Ma
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Haizhen Wang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dehui Li
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
47
|
He J, Zhou Y, Li CY, Xiong B, Jing H, Peng R, Wang M. Metasurface-assisted broadband optical absorption in ultrathin perovskite films. OPTICS EXPRESS 2021; 29:19170-19182. [PMID: 34154158 DOI: 10.1364/oe.427028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
Ultrathin hybrid organic-inorganic perovskite (HOIP) films have significant potential for use in integrated high-performance photoelectric devices. However, the relatively low optical absorption capabilities of thinner films, particularly in the long-wavelength region, pose a significant challenge to the further improvement of photoelectrical conversion in ultrathin HOIP films. To address this problem, we propose a combining of ultrathin HOIP film with plasmonic metasurface to enhance the absorption of the film effectively. The metasurface excites localized surface plasmon resonances and deflects the reflected light within the HOIP film, resulting in an obvious enhancement of film absorption. Finite-difference time-domain simulation results reveal that the far-field intensities, deflection angles, and electric field distributions can be effectively varied by using metasurfaces with different arrangements. Examination of the reflection and absorption spectra reveals that embedding a specifically designed metasurface into the HOIP film produces an obvious enhancement in broadband optical absorption compared with pure HOIP films. We further demonstrate that this broadband absorption promotion mechanism can be effective at a wide range of HOIP film thicknesses. Comparison of the absorption spectra at various incidence angles of ultrathin HOIP films with and without underlying metasurfaces indicates that the addition of a metasurface can effectively promote absorption under wide-angle incident light illumination. Moreover, by extending the metasurface structure to a two-dimensional case, absorption enhancements insensitive to the incident polarization states have also been demonstrated. This proposed metasurface-assisted absorption enhancement method could be applied in designing novel high-performance thin-film solar cells and photodetectors.
Collapse
|
48
|
Liu Y, Zheng X, Fang Y, Zhou Y, Ni Z, Xiao X, Chen S, Huang J. Ligand assisted growth of perovskite single crystals with low defect density. Nat Commun 2021; 12:1686. [PMID: 33727538 PMCID: PMC7966356 DOI: 10.1038/s41467-021-21934-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/18/2021] [Indexed: 11/09/2022] Open
Abstract
A low defect density in metal halide perovskite single crystals is critical to achieve high performance optoelectronic devices. Here we show the reduction of defect density in perovskite single crystals grown by a ligand-assisted solution process with 3‐(decyldimethylammonio)‐propane‐sulfonate inner salt (DPSI) as an additive. DPSI ligands anchoring with lead ions on perovskite crystal surfaces not only suppress nucleation in solution, but also regulate the addition of proper ions to the growing surface, which greatly enhances the crystal quality. The grown CH3NH3PbI3 crystals show better crystallinity and a 23-fold smaller trap density of 7 × 1010 cm−3 than the optimized control crystals. The enhanced material properties result in significantly suppressed ion migration and superior X-ray detection sensitivity of CH3NH3PbI3 detectors of (2.6 ± 0.4) × 106 µC Gy−1air cm−2 for 60 kVp X-ray and the lowest detectable dose rate reaches (5.0 ± 0.7) nGy s−1, which enables reduced radiation dose to patients in medical X-ray diagnostics. The performance of a metal halide perovskite single crystal is governed by the defect density. Here, the authors report a high quality single crystal perovskite grown by a ligand-assisted solution process with DPSI achieving 23-fold smaller trap density than that without DPSI.
Collapse
Affiliation(s)
- Ye Liu
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA.,Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Xiaopeng Zheng
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Yanjun Fang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Ying Zhou
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Zhenyi Ni
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Xun Xiao
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Shangshang Chen
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jinsong Huang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
49
|
Le Corre VM, Duijnstee EA, El Tambouli O, Ball JM, Snaith HJ, Lim J, Koster LJA. Revealing Charge Carrier Mobility and Defect Densities in Metal Halide Perovskites via Space-Charge-Limited Current Measurements. ACS ENERGY LETTERS 2021. [PMID: 33869770 DOI: 10.1021/acsenergylett.9b02720] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Space-charge-limited current (SCLC) measurements have been widely used to study the charge carrier mobility and trap density in semiconductors. However, their applicability to metal halide perovskites is not straightforward, due to the mixed ionic and electronic nature of these materials. Here, we discuss the pitfalls of SCLC for perovskite semiconductors, and especially the effect of mobile ions. We show, using drift-diffusion (DD) simulations, that the ions strongly affect the measurement and that the usual analysis and interpretation of SCLC need to be refined. We highlight that the trap density and mobility cannot be directly quantified using classical methods. We discuss the advantages of pulsed SCLC for obtaining reliable data with minimal influence of the ionic motion. We then show that fitting the pulsed SCLC with DD modeling is a reliable method for extracting mobility, trap, and ion densities simultaneously. As a proof of concept, we obtain a trap density of 1.3 × 1013 cm-3, an ion density of 1.1 × 1013 cm-3, and a mobility of 13 cm2 V-1 s-1 for a MAPbBr3 single crystal.
Collapse
Affiliation(s)
- Vincent M Le Corre
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Elisabeth A Duijnstee
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Omar El Tambouli
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - James M Ball
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Henry J Snaith
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Jongchul Lim
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - L Jan Anton Koster
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
50
|
Le Corre VM, Duijnstee EA, El Tambouli O, Ball JM, Snaith HJ, Lim J, Koster LJA. Revealing Charge Carrier Mobility and Defect Densities in Metal Halide Perovskites via Space-Charge-Limited Current Measurements. ACS ENERGY LETTERS 2021; 6:1087-1094. [PMID: 33869770 PMCID: PMC8043077 DOI: 10.1021/acsenergylett.0c02599] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/23/2021] [Indexed: 05/14/2023]
Abstract
Space-charge-limited current (SCLC) measurements have been widely used to study the charge carrier mobility and trap density in semiconductors. However, their applicability to metal halide perovskites is not straightforward, due to the mixed ionic and electronic nature of these materials. Here, we discuss the pitfalls of SCLC for perovskite semiconductors, and especially the effect of mobile ions. We show, using drift-diffusion (DD) simulations, that the ions strongly affect the measurement and that the usual analysis and interpretation of SCLC need to be refined. We highlight that the trap density and mobility cannot be directly quantified using classical methods. We discuss the advantages of pulsed SCLC for obtaining reliable data with minimal influence of the ionic motion. We then show that fitting the pulsed SCLC with DD modeling is a reliable method for extracting mobility, trap, and ion densities simultaneously. As a proof of concept, we obtain a trap density of 1.3 × 1013 cm-3, an ion density of 1.1 × 1013 cm-3, and a mobility of 13 cm2 V-1 s-1 for a MAPbBr3 single crystal.
Collapse
Affiliation(s)
- Vincent M. Le Corre
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Elisabeth A. Duijnstee
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Clarendon
Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United
Kingdom
| | - Omar El Tambouli
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - James M. Ball
- Clarendon
Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United
Kingdom
| | - Henry J. Snaith
- Clarendon
Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United
Kingdom
| | - Jongchul Lim
- Clarendon
Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United
Kingdom
| | - L. Jan Anton Koster
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|