1
|
Fang Y, Xiong L. Theoretical study on a novel Au 99+31n(SR) 40+10n cluster sequence with D5 symmetry. NANOSCALE 2025. [PMID: 40387010 DOI: 10.1039/d5nr00864f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
The cluster sequences with analogous structures are of significant importance for elucidating the evolutionary patterns in both structural configurations and electronic architectures of RS-AuNCs. Despite substantial efforts devoted to synthesizing and characterizing a series of single-crystal structures of RS-AuNCs, the scarcity of well-defined single-crystal structures for large-sized cluster sequences has impeded comprehensive understanding of structure-property correlations within this size regime. This work presents a theoretical investigation of a novel series of Au99+31n(SR)40+10n (where n = 0, 1, 2, 3) clusters exhibiting D5 symmetry. The structural evolution of the cluster sequence emerges as a one-dimensional linear extension of the Au99(SR)40 (n = 0) kernel framework, demonstrating a quantized growth pattern where each successive expansion event is accompanied by a precise 21 valence electron increment. The DFT calculations reveal that this series of clusters exhibit significantly negative average formation energies (Eave), confirming their exceptional thermodynamic stability. The sTDA calculations demonstrate that Au161(SR)60 and Au192(SR)70 clusters display characteristic surface plasmon resonance (SPR) peak in their UV-Vis, indicating a size-induced transition from molecular to metallic states in these clusters. Furthermore, the aspect ratio is proposed as a potential critical geometric parameter governing the emergence of metallic characteristics in the Au192(SR)70 cluster.
Collapse
Affiliation(s)
- Youqiong Fang
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, People's Republic of China.
| | - Lin Xiong
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, People's Republic of China.
| |
Collapse
|
2
|
Fang Y, Wang P, Pei Y, Xiong L. Architectural Blueprint of FCC Gold Nanoclusters: Modular Assembly of Au 188(SR) 60 and Au 110(SR) 48 from Tetrahedral Au 4 and Octahedral Au 6 Geometric Modules. J Phys Chem Lett 2025; 16:4675-4682. [PMID: 40315157 DOI: 10.1021/acs.jpclett.5c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Employing the fundamental building blocks of face-centered cubic (FCC) crystals, tetrahedral Au4, and octahedral Au6 as innermost kernel structures, we predicted the geometric configurations of FCC-type Au188(SR)60 and Au110(SR)48 through core-shell growth patterns. Calculations of the average formation energy (Eave) demonstrate the favorable structural stability of Au188(SR)60 and Au110(SR)48. The density of states (DOS) plot reveals discrete orbital energy levels in both clusters and molecule-like multipeak features in their absorption spectra, indicating their classification as excitons. Furthermore, in the core-shell FCC-type RS-AuNCs system, the variation of the HOMO-LUMO energy gap exhibits a markedly distinct behavior compared with cubic FCC-type RS-AuNCs, demonstrating a sharp decline analogous to the trend observed in large-sized Dh and Ih configuration systems. These phenomena highlight the pivotal role of cluster configurations in regulating their electronic structures, providing novel theoretical insights for understanding structure-property relationships in nanoclusters.
Collapse
Affiliation(s)
- Youqiong Fang
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, People's Republic of China
| | - Pu Wang
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Lin Xiong
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, People's Republic of China
| |
Collapse
|
3
|
Strienz M, Poddelskii A, Moll BK, Schrenk C, Thomas PS, Clayborne AZ, Schnepf A. Au 147(SPh) 30(PPh 3) 12: A Geometrically Closed, but Electronically Open Triple-Shell Icosahedral Gold Cluster and its Geometrically Open Counterpart. Angew Chem Int Ed Engl 2025:e202500586. [PMID: 40254986 DOI: 10.1002/anie.202500586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
The aesthetic platonic solids have been known since ancient times, and the structure of all five platonic solids is also found in chemical compounds. While gold sub-nanometer clusters and gold nanoparticles with an icosahedral structure have been known for a long time to exist, a multi-shell icosahedral gold cluster at the intermediate size between 13 and thousands of atoms has been elusive. Here we present the synthesis and crystallographic characterization of the first triple-shell icosahedral metal cluster, Au147(SPh)30(PPh3)12 1. The gold core in 1 is stabilized by phosphines and thiolates, but surprisingly no staple motifs are formed. A second cluster, Au146(SPh)30(PPh3)12 2, cocrystallizes and is identified as having a closed electronic shell but can be considered as a geometrically open pendant of 1. The unique clusters are characterized experimentally by EDX, UV/vis, DLS, and EPR and theoretically by quantum chemical calculations.
Collapse
Affiliation(s)
- Markus Strienz
- Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Andrei Poddelskii
- Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Bridget K Moll
- Department of Chemistry and Biochemistry, George Mason University, 4400 University Drive MSN 3E2, Fairfax, Virginia, 22030, USA
| | - Claudio Schrenk
- Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Phillip S Thomas
- National Energy Research Scientific Computing Center (NERSC), Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, California, 94720, USA
| | - Andre Z Clayborne
- Department of Chemistry and Biochemistry, George Mason University, 4400 University Drive MSN 3E2, Fairfax, Virginia, 22030, USA
| | - Andreas Schnepf
- Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| |
Collapse
|
4
|
Zheng LM, Long ZC, Hu F, Chan J, Shi WQ, Zhang B, Wang Z, Wang QM. Solvent Induced Transformation of Homoleptic Alkynyl-Protected Large Silver Nanoclusters. Angew Chem Int Ed Engl 2025:e202506971. [PMID: 40240296 DOI: 10.1002/anie.202506971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 04/18/2025]
Abstract
Structural transformation of high-nuclearity nanoclusters is of significant interest because of its relevance to the formation mechanisms and stability of metal clusters. Herein, we report three large homoleptic alkynyl-protected silver nanoclusters, [Ag98(2-CH3C6H4C≡C)52](BF4)2, [Ag86(2-CH3C6H4C≡C)50](BF4)4, and [Ag74(2-CH3C6H4C≡C)44](BF4)2, synthesized from the same precursor 2-CH3C6H4C≡CAg via fine-tuning the reduction rate. X-ray crystallography demonstrates that Ino decahedral Ag13 units serve as building blocks in all three nanoclusters. Remarkably, Ag98 undergoes an intercluster transformation in methanol. It initially converts into Ag74, then Ag74 reacts with Ag98 to form Ag86, which eventually is transformed into the thermodynamically stable Ag74. Time-dependent electrospray ionization mass spectrometry (ESI-MS) confirms such a multi-step reaction process during the transformation, identifying Ag86 as the key intermediate. Our findings not only provide new insights into the structural transformation pathways of nanoclusters but also enhance the understanding of transformation mechanisms, contributing to the rational synthesis of high-nuclearity nanoclusters.
Collapse
Affiliation(s)
- Lu-Ming Zheng
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, P.R. China
| | - Zhen-Chao Long
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, P.R. China
| | - Feng Hu
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, P.R. China
| | - Jiangtao Chan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Wan-Qi Shi
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, P.R. China
| | - Ben Zhang
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, P.R. China
| | - Zhaohui Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Quan-Ming Wang
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
5
|
Bian G, Chen D, Chen Y, Zhang W, Fang L, You Q, Wang R, Gu W, Zhou Y, Yan N, Zhuang S, Ji S, Zhou M, Wang C, Liao L, Tang Q, Yang J, Wu Z. Remove the innermost atom of a magnetic multi-shell gold nanoparticle for near-unity conversion of CO 2 to CO. SCIENCE ADVANCES 2025; 11:eadu1996. [PMID: 40203115 PMCID: PMC11980848 DOI: 10.1126/sciadv.adu1996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/05/2025] [Indexed: 04/11/2025]
Abstract
Few reports on paramagnetic metal nanoparticles with atomic precision and their difficult tailoring retard the insightful investigation of metal nanoparticle paramagnetism. Herein, we introduced a thiol-iodine mixture ligand-protecting strategy to successfully synthesize multi-shell paramagnetic [Au127I4(TBBT)48 (I: iodine, TBBT: 4-tert-butylphenylthiolate)]. The innermost Au atom was successfully removed via thiol induction without altering the structure framework to produce diamagnetic Au126I4(TBBT)48 with local ligand arrangement changed (butterfly effect), which could be further transformed into paramagnetic [Au126I4(TBBT)48]+ via hydrogen peroxide oxidation. The spin populations of both paramagnetic nanoparticles are more densely distributed on surface iodine than sulfur. Diamagnetic Au126I4(TBBT)48 exhibited a Faradaic efficiency of ~100% at -0.57 volt during the electrocatalytic reduction of carbon dioxide to carbon monoxide, while paramagnetic Au127I4(TBBT)48 and [Au126I4(TBBT)48]+ exhibited the maximum Faradaic efficiency of 87% at -0.67 volt and 90% at -0.57 volt, respectively, indicating the spin-catalytic activity correlation.
Collapse
Affiliation(s)
- Guoqing Bian
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Dong Chen
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yuping Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Wei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Liang Fang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, P. R. China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, P. R. China
| | - Runguo Wang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, P. R. China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, P. R. China
| | - Yue Zhou
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, P. R. China
| | - Nan Yan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, P. R. China
| | - Shengli Zhuang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, P. R. China
| | - Shiyu Ji
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chengming Wang
- Instruments’ Center for Physical Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, P. R. China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Jun Yang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
6
|
Hu F, Yang G, Long ZC, Shi WQ, Liang GJ, Wang JQ, Wang QM. The Influence of Flexibility of Alkynyl Ligands on the Formation of an Fcc Au 110 Nanocluster. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502106. [PMID: 40165779 DOI: 10.1002/smll.202502106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Isomerization of nanoclusters is helpful for understanding the relationships between structures and properties. Surface-protecting ligands play a crucial role in controlling the atomic packing mode of the inner core. The synthesis and total structural determination of the all alkynyl-protected gold nanocluster (NEt3CH2Cl)2[Au110(C≡CC3H6Ph)48] (Au110-1) are reported. Au110-1 and the previously reported [Au110(C≡CC6H4-4-CF3)]2- (Au110-2) constitute the largest alkynyl-protected nanocluster quasi-isomers (> 100 metal atoms). Both Au110 consist of an fcc Au86 kernel and a shell of 24 RC≡C─Au─C≡CR staples, but the specific arrangements are different. The application of the flexible alkynyl ligands creates a significant difference in the face-centered cubic (fcc) kernel structure in Au110-1, showing a different electronic structure, thermal- and photo-stability. Transient absorption spectra reveal that Au110-1 still does not show any metallic characteristics, even though it has a smaller energy gap (Eg) than Au110-2.
Collapse
Affiliation(s)
- Feng Hu
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| | - Gaoyuan Yang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei, 441053, P. R. China
| | - Zhen-Chao Long
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| | - Wan-Qi Shi
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| | - Gui-Jie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei, 441053, P. R. China
| | - Jia-Qi Wang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Quan-Ming Wang
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
7
|
Maity S, Kolay S, Chakraborty S, Devi A, Rashi, Patra A. A comprehensive review of atomically precise metal nanoclusters with emergent photophysical properties towards diverse applications. Chem Soc Rev 2025; 54:1785-1844. [PMID: 39670813 DOI: 10.1039/d4cs00962b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Atomically precise metal nanoclusters (MNCs) composed of a few to hundreds of metal atoms represent an emerging class of nanomaterials with a precise composition. With the size approaching the Fermi wavelength of electrons, their energy levels are well-separated, leading to molecule-like properties, like discrete single electronic transitions, tunable photoluminescence (PL), inherent structural anisotropy, and distinct redox behavior. Extensive synthetic efforts and electronic structure revelation have expanded applicability of MNCs in catalysis, optoelectronics, and biology. This review highlights the intriguing photophysical and electrochemical behaviors of MNCs and their regulatory parameters and applications. Initially, we present a brief discussion on the evolution of MNCs from gas-phase naked metal clusters to monolayer ligand-protected MNCs along with representative studies on their electronic structure. Due to their quantized molecular orbitals, they often exhibit PL, which can be regulated based on their capping ligands, number of atoms, crystal packing, presence of heterometal, and surrounding environment. Apart from PL, the relaxation pathways of MNCs on an ultrafast time scale have been extensively studied, which significantly differ from that of plasmonic metal nanoparticles. Moreover, their interaction with high-intensity light results in unique non-linear optical properties. The synergy between MNCs in a hierarchical self-assembled structure has been exploited to enhance their PL by precisely tuning their non-covalent interactions. Moreover, several NC-based hybrids have been designed to exhibit efficient electron or energy transfer in the photoexcited state. In the next section, we briefly focus on the redox behavior of NCs and facile electron transfer to suitable substrates, which result in enzyme-like catalytic activity. Utilizing these photophysical and electrochemical behaviors, NCs are widely employed in catalysis, optical sensing, and light-harvesting applications, which are also discussed in this review. In the final section, conclusions and open questions for the NC research community are included. This review will provide a comprehensive view of the emerging physicochemical properties of MNCs, thereby enabling an understanding for their precise modulation in future.
Collapse
Affiliation(s)
- Subarna Maity
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sarita Kolay
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Sikta Chakraborty
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Aarti Devi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Rashi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| |
Collapse
|
8
|
Nag A, Butt AM, Yang MY, Managutti PB, Pirzada BM, Mohideen MIH, Abdelhady AL, Haija MA, Mohamed S, Merinov BV, Goddard WA, Qurashi A. Polymorphism of [Cu 15(PhCH 2CH 2S) 13(PPh 3) 6][BF 4] 2 and Double-Helical Assembly of [Cu 18H(PhCH 2CH 2S) 14(PPh 3) 6Cl 3]: Origin of Two Chiral Nanoclusters with Triple-Helical Core from Intermediates. ACS MATERIALS LETTERS 2025; 7:442-449. [PMID: 39917081 PMCID: PMC11795624 DOI: 10.1021/acsmaterialslett.4c02148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 02/09/2025]
Abstract
Here, we report the solvent-induced polymorphism in [Cu15(PET)13(TPP)6][BF4]2(Cu15) (TPP = triphenylphosphine, PET = 2-phenylethanthiol), and double-helical assembly of the [Cu18H(PET)14(TPP)6Cl3] (Cu18) nanocluster (NC) from reaction intermediates. Both copper NCs have an intrinsically chiral triple-stranded helicate metal core, unlike traditional copper NCs with a polyhedral-based kernel. The chiral structure of Cu15 resembles an enantiomeric pair in the unit cell. Moreover, Cu18 has a three-layered 3D chirality of a sandwich constructed of sulfur-bridged copper NCs aligned in a top-middle-down configuration. Furthermore, the Cu18 NC self-hierarchically assembles into a complex double-stranded helix secondary structure sustained by noncovalent interactions. Electrospray ionization mass spectrometry (ESI-MS), density functional theory (DFT), and X-ray photoelectron spectroscopy (XPS) were utilized to validate the single-crystal X-ray diffraction (SCXRD) data. Overall, this study provides an interesting example of polymorphism, chirality, and hierarchical double-helical assembly of NCs, allowing for extensive understanding of complicated structures at the atomic level.
Collapse
Affiliation(s)
- Abhijit Nag
- Department
of Chemistry, Khalifa University of Science
and Technology, Abu Dhabi 127788, United
Arab Emirates
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Abdul Mannan Butt
- Department
of Chemistry, Khalifa University of Science
and Technology, Abu Dhabi 127788, United
Arab Emirates
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Moon Young Yang
- Materials
and Process Simulation Center (MSC), California
Institute of Technology, Pasadena, California 91125, United States
| | - Praveen B. Managutti
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Chemical
Crystallography Laboratory, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Bilal Masood Pirzada
- Department
of Chemistry, Khalifa University of Science
and Technology, Abu Dhabi 127788, United
Arab Emirates
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - M. Infas H. Mohideen
- Department
of Chemistry, Khalifa University of Science
and Technology, Abu Dhabi 127788, United
Arab Emirates
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Ahmed L. Abdelhady
- Department
of Chemistry, Khalifa University of Science
and Technology, Abu Dhabi 127788, United
Arab Emirates
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Mohamed Abu Haija
- Department
of Chemistry, Khalifa University of Science
and Technology, Abu Dhabi 127788, United
Arab Emirates
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Sharmarke Mohamed
- Department
of Chemistry, Khalifa University of Science
and Technology, Abu Dhabi 127788, United
Arab Emirates
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Chemical
Crystallography Laboratory, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Boris V. Merinov
- Materials
and Process Simulation Center (MSC), California
Institute of Technology, Pasadena, California 91125, United States
| | - William A. Goddard
- Materials
and Process Simulation Center (MSC), California
Institute of Technology, Pasadena, California 91125, United States
| | - Ahsanulhaq Qurashi
- Department
of Chemistry, Khalifa University of Science
and Technology, Abu Dhabi 127788, United
Arab Emirates
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
9
|
Qian J, Yang Z, Lyu J, Yao Q, Xie J. Molecular Interactions in Atomically Precise Metal Nanoclusters. PRECISION CHEMISTRY 2024; 2:495-517. [PMID: 39483272 PMCID: PMC11522999 DOI: 10.1021/prechem.4c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 11/03/2024]
Abstract
For nanochemistry, precise manipulation of nanoscale structures and the accompanying chemical properties at atomic precision is one of the greatest challenges today. The scientific community strives to develop and design customized nanomaterials, while molecular interactions often serve as key tools or probes for this atomically precise undertaking. In this Perspective, metal nanoclusters, especially gold nanoclusters, serve as a good platform for understanding such nanoscale interactions. These nanoclusters often have a core size of about 2 nm, a defined number of core metal atoms, and protecting ligands with known crystal structure. The atomically precise structure of metal nanoclusters allows us to discuss how the molecular interactions facilitate the systematic modification and functionalization of nanoclusters from their inner core, through the ligand shell, to the external assembly. Interestingly, the atomic packing structure of the nanocluster core can be affected by forces on the surface. After discussing the core structure, we examine various atomic-level strategies to enhance their photoluminescent quantum yield and improve nanoclusters' catalytic performance. Beyond the single cluster level, various attractive or repulsive molecular interactions have been employed to engineer the self-assembly behavior and thus packing morphology of metal nanoclusters. The methodological and fundamental insights systemized in this review should be useful for customizing the cluster structure and assembly patterns at the atomic level.
Collapse
Affiliation(s)
- Jing Qian
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P.R. China
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Zhucheng Yang
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P.R. China
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Jingkuan Lyu
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P.R. China
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qiaofeng Yao
- Key
Laboratory of Organic Integrated Circuits, Ministry of Education &
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department
of Chemistry, School of Science, Tianjin
University, Tianjin 300072, P.R. China
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P.R. China
| | - Jianping Xie
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P.R. China
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
10
|
Cui X, Zhang X, Li T, Zhu S, Han G, Li H. Substituent effect in determining the total structure of an all-alkynyl-protected Ag 98 nanocluster for methanol tolerant oxygen reduction reaction. Chem Sci 2024:d4sc04318a. [PMID: 39416300 PMCID: PMC11474724 DOI: 10.1039/d4sc04318a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Metal nanoclusters (NCs) with atomically precise structures are desirable models for truly understanding their structure-property relationship. This study reports the synthesis and structural anatomy of a Ag98 NC protected solely by an alkynyl ligand, 2-(trifluoromethyl)phenylacetylene (2-CF3PhC[triple bond, length as m-dash]CH), which features a -CF3 substituent at the ortho position (ortho-CF3). 2-CF3PhC[triple bond, length as m-dash]CH ligands are so exquisitely arranged on the surface of Ag98 that the steric hindrance caused by ortho-CF3 is minimized but its function as a hydrogen-bond (H-bond) acceptor (H⋯F) is maximized. Such a rule also applies to inter-cluster interactions which define the stacking sequence of Ag98 NCs. When supported on carbon black, Ag98 NCs demonstrate desirable oxygen reduction activity with robust long-term durability and excellent methanol tolerance, outperforming the commercial Pt/C catalyst.
Collapse
Affiliation(s)
- Xiaoqin Cui
- Institute of Crystalline Materials, Shanxi University Taiyuan 030006 Shanxi China
| | - Xuehuan Zhang
- Institute of Molecular Science, Shanxi University Taiyuan 030006 Shanxi China
| | - Ting Li
- Institute of Crystalline Materials, Shanxi University Taiyuan 030006 Shanxi China
| | - Sheng Zhu
- Institute of Molecular Science, Shanxi University Taiyuan 030006 Shanxi China
| | - Gaoyi Han
- Institute of Molecular Science, Shanxi University Taiyuan 030006 Shanxi China
| | - Huan Li
- Institute of Crystalline Materials, Shanxi University Taiyuan 030006 Shanxi China
| |
Collapse
|
11
|
Paul M, Chattopadhyay A. Magneto-Luminescent Two-Dimensional Nanosheets of Gadolinium and Gold Nanocluster Assemblies with Surface Molecular Functionalization for White Light Emission. J Phys Chem Lett 2024; 15:8584-8592. [PMID: 39141067 DOI: 10.1021/acs.jpclett.4c01888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
We report the formation of photoluminescent two-dimensional (2D) crystalline nanosheet assemblies of gadolinium ions and ligand-stabilized gold nanoclusters (Gd-Au NCs). Transmission electron microscopy, selected area electron diffraction in conjunction with atomic force microscopy, and field-emission scanning electron microscopy analyses substantiated the 2D nature of Gd-Au NC nanosheets. The optical and magnetic properties of the nanosheets were investigated by photoluminescence measurements and vibrating-sample magnetometry analyses. The so-formed crystalline product was further utilized to generate a synchronous tricolor (orange, green, and blue) emission from a single excitation wavelength through an inorganic surface complexation reaction. The independent emissions were tunable after ligand functionalization by acetylsalicylic acid and fluorescein on the Gd-Au NC assembly. Interestingly, the assembled superstructure with augmented quantum yield led to white light emission at λexc ≈ 325 nm with CIE of (0.34, 0.33) and CRI value of >85 in the liquid phase. Furthermore, the ability to modulate the luminescence properties through the surface complexation of the 2D nanosheets of Au NCs may bring about new avenues toward applications in light-emitting devices, sensing, and biomedical imaging.
Collapse
Affiliation(s)
- Manideepa Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
- Department of Chemistry and Biochemistry, Sharda University, Greater Noida, Uttar Pradesh 201306, India
| | - Arun Chattopadhyay
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
12
|
Rival JV, Nonappa, Shibu ES. The interplay of chromophore-spacer length in light-induced gold nanocluster self-assembly. NANOSCALE 2024; 16:14302-14309. [PMID: 39011753 DOI: 10.1039/d4nr01954g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The light-induced self-assembly of chromophore-tethered precision nanoclusters (NCs) has recently received significant attention due to their facile control over structure, function, and reversibility under ambient conditions. However, the magnitude of assembly depends on the photoswitching efficiency, chemical structure, and proximity of the chromophore to the NC surface. Herein, using azobenzene alkyl monothiol (AMT)-capped gold NCs with two different spacer lengths (denoted as C3-NC and C9-NC), we show that reversible cis ↔ trans isomerization efficiency can be readily tuned to control the self-assembly kinetics of NCs. Irrespective of the chain length, the time required for trans-to-cis (140 s) and cis-to-trans (260 s) isomerization of individual C3-AMT and C9-AMT is identical in dichloromethane solution. When a similar experiment was performed using a solution of C3-NCs and C9-NCs, it resulted in self-assembled disc-like superstructures. Notably, the trans-to-cis photoswitching in C3-NC could reach only 65% even after 460 seconds of irradiation. On the other hand, C9-NC completed this process within 160 seconds of irradiation. The low photoswitching efficiency of the C3-NC analog is due to the short and rigid spacer length of C3-AMT ligands, which are in close proximity to the NC surface, resulting in steric hindrance experienced at the NC-chromophore interface. Importantly, the slow photoswitching in C3-NCs helps isolate and investigate the intermediates of assembly. Using high-resolution electron microscopy, atomic force microscopy, and 3D reconstruction, we show that the discs are made up of densely packed arrays of NCs. The prolonged illumination of C9-NCs results in a chain-like assembly due to the dipolar attraction between the previously assembled superstructures. The efficient photoisomerization of chromophores located away from the nanocluster surface has been identified as the key element to speed up the light-induced assembly in chromophore-tethered nanoclusters. Such information will be useful while developing nanoscale photoswitches for electrochemistry, biosensors, and electronic devices.
Collapse
Affiliation(s)
- Jose V Rival
- Smart Materials Lab, Department of Nanoscience and Technology (DNST), University of Calicut, Thenhipalam 673635, Kerala, India.
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33101 Tampere, Finland
| | | |
Collapse
|
13
|
Deng G, Ki T, Yoo S, Liu X, Lee K, Bootharaju MS, Hyeon T. [Au 9Ag 6(CCR) 10(DPPM) 2Cl 2](PPh 4): a four-electron cluster with a bi-decahedral twisted metal core. NANOSCALE 2024; 16:11090-11095. [PMID: 38766759 DOI: 10.1039/d4nr01471e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The assembly of cluster units in a distinct manner can give rise to nanoclusters exhibiting unique geometrical structures and properties. Herein, we present a one-pot synthesis and structural characterization of a AuAg alloy cluster, [Au9Ag6(CCR)10(DPPM)2Cl2](PPh4), denoted as Au9Ag6 (where HCCR is 3,5-bis(trifluoromethyl)phenylacetylene, and DPPM is bis(diphenylphosphino)methane). Single-crystal X-ray diffraction data analysis reveals that Au9Ag6 features a distinctive Au7Ag6 bi-decahedral core, formed by a twisted assembly of two Au4Ag3 decahedra sharing one vertex. The Au4Ag3 building blocks are bridged by two gold atoms on opposite sides of the bi-decahedral core. The Au9Ag6 cluster is monoanionic and it is stabilized by two chloride, two DPPM and ten alkynyl ligands. This cluster represents the first instance of a cluster of clusters built upon decahedral units.
Collapse
Affiliation(s)
- Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeyoung Ki
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
14
|
Li S, Li NN, Dong XY, Zang SQ, Mak TCW. Chemical Flexibility of Atomically Precise Metal Clusters. Chem Rev 2024; 124:7262-7378. [PMID: 38696258 DOI: 10.1021/acs.chemrev.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ligand-protected metal clusters possess hybrid properties that seamlessly combine an inorganic core with an organic ligand shell, imparting them exceptional chemical flexibility and unlocking remarkable application potential in diverse fields. Leveraging chemical flexibility to expand the library of available materials and stimulate the development of new functionalities is becoming an increasingly pressing requirement. This Review focuses on the origin of chemical flexibility from the structural analysis, including intra-cluster bonding, inter-cluster interactions, cluster-environments interactions, metal-to-ligand ratios, and thermodynamic effects. In the introduction, we briefly outline the development of metal clusters and explain the differences and commonalities of M(I)/M(I/0) coinage metal clusters. Additionally, we distinguish the bonding characteristics of metal atoms in the inorganic core, which give rise to their distinct chemical flexibility. Section 2 delves into the structural analysis, bonding categories, and thermodynamic theories related to metal clusters. In the following sections 3 to 7, we primarily elucidate the mechanisms that trigger chemical flexibility, the dynamic processes in transformation, the resultant alterations in structure, and the ensuing modifications in physical-chemical properties. Section 8 presents the notable applications that have emerged from utilizing metal clusters and their assemblies. Finally, in section 9, we discuss future challenges and opportunities within this area.
Collapse
Affiliation(s)
- Si Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Na-Na Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C W Mak
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR 999077, China
| |
Collapse
|
15
|
Zhou H, Yang T, Deng H, Yun Y, Jin S, Xiong L, Zhu M. An insight, at the atomic level, into the structure and catalytic properties of the isomers of the Cu 22 cluster. NANOSCALE 2024; 16:10318-10324. [PMID: 38738311 DOI: 10.1039/d4nr00973h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The study of structural isomerism in copper nanoclusters has been relatively limited compared to that in gold and silver nanoclusters. In this work, we present the controlled synthesis and structures of two isomeric copper nanoclusters, denoted as Cu22-1 and Cu22-2, whose compositions were determined to be Cu22(SePh)10(Se)6(P(Ph-4F)3)8 through single-crystal X-ray diffraction (SCXRD). The structural isomerism of Cu22-1 and Cu22-2 arises from the different arrangements of a few Cu(SeR)(PR3) motifs on the surface structure. These subtle changes in the surface structure also influence the distortion of the core and the spatial arrangement of the clusters, and affect the electronic structure. Furthermore, due to their distinct structures, Cu22-1 and Cu22-2 exhibit different catalytic properties in the copper-catalyzed [3 + 2] azide-alkyne cycloaddition (CuAAC). Notably, Cu22-1 demonstrates efficient catalytic activity for photoinduced AAC, achieving a yield of 90% within 1 hour. This research contributes to the understanding of structural isomerism in copper nanoclusters and offers insights into the structure-function relationship in these systems.
Collapse
Affiliation(s)
- Huimin Zhou
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Tao Yang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Huijuan Deng
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Yapei Yun
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Shan Jin
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Lin Xiong
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, PR China.
| | - Manzhou Zhu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| |
Collapse
|
16
|
Ma X, Zhang Q, Li J, Zhang L, Li G, Zhang Z, Yu H, Zhu M. Bimetallic Ag 125Cu 8 Nanocluster, Structure Determination, and Nonlinear Optical Properties. Inorg Chem 2024; 63:8775-8781. [PMID: 38696247 DOI: 10.1021/acs.inorgchem.4c00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The atomic precision of the subnanometer nanoclusters has provided sound proof on the structural correlation of metal complexes and larger-sized metal nanoparticles. Herein, we report the synthesis, crystallography, structural characterization, electrochemistry, and optical properties of a 133-atom intermetallic nanocluster protected by 57 thiolates (3-methylbenzenethiol, abbreviated as m-MBTH) and 3 chlorides, with the formula of Ag125Cu8(m-MBT)57Cl3. This is the largest Ag-Cu bimetallic cluster ever reported. Crystallographic analysis revealed that the nanocluster has a three-layer concentric core-shell structure, Ag7@Ag47@Ag71Cu8S57Cl3, and the Ag54 metal kernel adopts a D5h symmetry. The nuclei number is between that of the previously reported large silver cluster [Ag136(SR)64Cl3Ag0.45]- and the large silver-rich cluster Au130-xAgx(SR)55 (x = 98). All these three clusters bear a similar metallic core structure, while the main structural difference lies in the shell motif structures. Electron counting revealed an open electron shell with 73 delocalized electrons, which was verified by the electron paramagnetic resonance analysis. The DPV electrochemical measurement indicates a multielectron state quantization double-layer charging shape and single-electron sequential charging and discharging characteristic of the AgCu alloy cluster. In addition, the open-hole Z-scan test reveals the nonlinear optical absorption (2-3 optical absorption in the NIR-II/III region) of Ag125Cu8 nanoclusters.
Collapse
Affiliation(s)
- Xiangyu Ma
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
- School of Materials Science and Engineering, Anhui University, Institute of Physical Science and Information Technology, Anhui Key Laboratory of Information Materials and Devices, Hefei, Anhui 230601, P. R. China
| | - Qiong Zhang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Jiale Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
- School of Materials Science and Engineering, Anhui University, Institute of Physical Science and Information Technology, Anhui Key Laboratory of Information Materials and Devices, Hefei, Anhui 230601, P. R. China
| | - Lidi Zhang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Guang Li
- School of Materials Science and Engineering, Anhui University, Institute of Physical Science and Information Technology, Anhui Key Laboratory of Information Materials and Devices, Hefei, Anhui 230601, P. R. China
| | - Zhongjie Zhang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
- School of Materials Science and Engineering, Anhui University, Institute of Physical Science and Information Technology, Anhui Key Laboratory of Information Materials and Devices, Hefei, Anhui 230601, P. R. China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| |
Collapse
|
17
|
Chai OJH, Xie J. Unraveling the Mechanism of the Brust-Schiffrin Formation of Au 25(SR) 18 through Mass Spectrometry. J Phys Chem Lett 2024:5137-5142. [PMID: 38709498 DOI: 10.1021/acs.jpclett.4c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The Brust-Schiffrin (BS) method for gold nanoparticle (Au NP) synthesis is celebrated for its ability to produce highly monodisperse NPs from toluene-water solutions, in contrast to aqueous methods, such as the Turkevich method. Despite the method's success, the actual formation mechanisms remain largely unknown due to difficulty in studying the intermediates with species-differentiating techniques such as mass spectrometry (MS) or nuclear magnetic resonance (NMR). The issue lies in the use of solvents poorly compatible with these techniques and the difficulty in differentiating useful intermediate species from side products and impurities in such one-pot reactions. Herein, we use our recently formulated fully aqueous BS reaction to study the formation mechanisms. MS is chiefly employed to capture the intermediate species, and the Au25(SR)18 nanocluster is used as a thermodynamically reliable end-point. We find that the BS method may comprise a unilateral complex-shedding stage in addition to the known thiol-etching stage.
Collapse
Affiliation(s)
- Osburg Jin Huang Chai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| |
Collapse
|
18
|
Peter BD, Pei W, Andrew GN, Zhou S, Luo Z. A luminescent Ag 8(DPPY) 6(PhCC) 6 cluster with a triangular superatomic Ag 8 core. NANOSCALE 2024; 16:8090-8095. [PMID: 38563406 DOI: 10.1039/d4nr00527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We have synthesized single crystals of a highly stable Ag8 nanocluster protected by six ligands of diphenyl-2-phosphinic pyridine (DPPY) plus six ligands of phenylacetylene (PhCC). This Ag8(DPPY)6(PhCC)6 cluster bears a triangular superatomic Ag8 core, with the vertex and edge Ag atoms (quasi-triangle Ag6) being protected by both P and N bidentate coordination of the six DPPY ligands; meanwhile, the six PhCC ligands via μ3-C coordination form coordination on the two central Ag atoms capped on both sides of the triangle facet. Apart from the well-organized coordination of the two ligands pertaining to the balanced interactions with the Ag8 core, this Ag8 nanocluster exhibits superatomic stability with two delocalized valence electrons (1S2||1P0), assuming that the six PhCC ligands fix 6 localized electrons from the Ag atoms. Interestingly, the Ag8(DPPY)6(PhCC)6 NCs display temperature-dependent dual emissions at 330 and 535 nm under deep ultraviolet excitation. TD-DFT calculations reproduced the experimental spectrum, shedding light on the nature of excitation states and metal-ligand interactions in such a superatomic metal cluster.
Collapse
Affiliation(s)
- Blessing D Peter
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Pei
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Gaya N Andrew
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Si Zhou
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China.
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
19
|
You Q, Wang H, Zhao Y, Fan W, Gu W, Jiang HL, Wu Z. Bottom-Up Construction of Metal-Organic Framework Loricae on Metal Nanoclusters with Consecutive Single Nonmetal Atom Tuning for Tailored Catalysis. J Am Chem Soc 2024; 146:9026-9035. [PMID: 38441064 DOI: 10.1021/jacs.3c13635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The introduction of single or multiple heterometal atoms into metal nanoparticles is a well-known strategy for altering their structures (compositions) and properties. However, surface single nonmetal atom doping is challenging and rarely reported. For the first time, we have developed synthetic methods, realizing "surgery"-like, successive surface single nonmetal atom doping, replacement, and addition for ultrasmall metal nanoparticles (metal nanoclusters, NCs), and successfully synthesized and characterized three novel bcc metal NCs Au38I(S-Adm)19, Au38S(S-Adm)20, and Au38IS(S-Adm)19 (S-Adm: 1-adamantanethiolate). The influences of single nonmetal atom replacement and addition on the NC structure and optical properties (including absorption and photoluminescence) were carefully investigated, providing insights into the structure (composition)-property correlation. Furthermore, a bottom-up method was employed to construct a metal-organic framework (MOF) on the NC surface, which did not essentially alter the metal NC structure but led to the partial release of surface ligands and stimulated metal NC activity for catalyzing p-nitrophenol reduction. Furthermore, surface MOF construction enhanced NC stability and water solubility, providing another dimension for tunning NC catalytic activity by modifying MOF functional groups.
Collapse
Affiliation(s)
- Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - He Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yan Zhao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Wentao Fan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| |
Collapse
|
20
|
Yen WJ, Liao JH, Chiu TH, Wen YS, Liu CW. A Silver Nanocluster Assembled by a Superatomic Building Unit. Inorg Chem 2024; 63:5320-5324. [PMID: 38468603 DOI: 10.1021/acs.inorgchem.4c00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
A unique assembly of a two-electron superatom, [Ag10{S2P(OiPr)2}8], as a primary building unit in the construction of a supramolecule [Ag10{S2P(OiPr)2}8]2(μ-4,4'-bpy) through a 4,4'-bipyridine (4,4'-bpy) linker is reported. This approach is facilitated by an open site in the structure that allows for effective pairing. The assembled structure demonstrates a minimal solvatochromic shift across organic solvents with variable polarities, highlighting the influence of self-assembly on the photophysical properties of silver nanoclusters.
Collapse
Affiliation(s)
- Wei-Jung Yen
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China
| | - Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China
| | - Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China
| | - Yuh-Sheng Wen
- Institute of Chemistry, Academia Sinica, Taipei 11528, Taiwan, Republic of China
| | - C W Liu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China
| |
Collapse
|
21
|
Deng G, Ki T, Liu X, Chen Y, Lee K, Yoo S, Tang Q, Bootharaju MS, Hyeon T. Tailoring the subshell and electronic structure of an atomically precise AuAg alloy nanocluster. Chem Commun (Camb) 2024; 60:1289-1292. [PMID: 38197160 DOI: 10.1039/d3cc04432g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Manipulating the atomic-level structure of the subshell of a nanocluster while preserving the inner and outer shell structure is challenging. We present the synthesis and molecular structure of an alkynyl-protected Au34Ag27 nanocluster, which exhibits distinct third shell atomic arrangement, electronic structure, and optical properties from those of the Au34Ag28 nanocluster.
Collapse
Affiliation(s)
- Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeyoung Ki
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yuping Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China.
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China.
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
22
|
Han Z, Wang N, Lv Y, Fu Q, Wang G, Su X. A novel self-assembled dual-emissive ratiometric fluorescent nanoprobe for alkaline phosphatase sensing. Anal Chim Acta 2024; 1287:342146. [PMID: 38182401 DOI: 10.1016/j.aca.2023.342146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Alkaline phosphatase (ALP) is widely found in various organs and tissues of the human body which could assist in the verification of the presence of various diseases through its content in the blood. In the past few years, many analytical methods for ALP activity assays have been explored. However, a simple and economical method with high sensitivity and specificity also remains great challenge. Therefore, the development of sensitive and efficient approach for ALP analysis is of great significance in biomedical studies. RESULTS Herein, we constructed a highly sensitive and label-free ratiometric fluorometric biosensing platform for the determination of ALP activity, which utilizing lysozyme(Ly)-functionalized 5-methyl-2-thiouracil(MTU)-modified gold nanoclusters (MTU-Ly@Au NC) and poly-dopamine (PDA) as signal indicators. Dopamine (DA) can self-polymerizes to form PDA under alkaline conditions that can further quenched the fluorescence of MTU-Ly@Au NC at 525 nm due to fluorescence resonance energy transfer (FRET) and absorption competition quenching (ACQ) effects. In this process, the PDA fluorescence intensity at 325 nm was nearly unchanged. After the addition of ALP, ascorbic acid (AA) which can alleviate the self-polymerization process of DA was generated from the substrate ascorbic acid 2-phosphate (AAP), thus changing ratiometric fluorescence intensity of I525/I325. Hence, by monitoring the fluorescence ratio (I525/I325), a ratiometric fluorescence biosensing platform for ALP was established with the linear calibration in the range of 0.5-8 U L-1 and the limit of detection of 0.157 U L-1. SIGNIFICANCE This work not only synthesized a novel fluorescence probe with simple preparation and low cost for ALP which has excellent anti-interference properties and selectivity. Furthermore, this biosensing platform was successfully applied for the determination of ALP activity in human serum samples. This work provided a potential tool for biomedical diagnostics in the future.
Collapse
Affiliation(s)
- Zhixuan Han
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Nan Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yuntai Lv
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qingjie Fu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Guannan Wang
- School of Pharmacy, Shenyang Medical University, Shenyang, 110034, China.
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
23
|
Jin Y, Zheng J, Ci Y, Zhu L, Zhang M, Yin XB. Magnetic copper silicate and boronic acid-conjugated AuNCs@keratin-based electrochemical/fluorescent dual-sensing for carcinoembryonic antigen. Talanta 2024; 266:125012. [PMID: 37542849 DOI: 10.1016/j.talanta.2023.125012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
Boronic Acid Sensitivity, selectivity, and reliability are of great importance for tumor diagnosis. Herein, we proposed a novel electrochemical and fluorescent dual-sensing strategy to detect carcinoembryonic antigens (CEA). To this end, monodisperse spindle-like magnetic copper silicate (FeOx@C@CS) was prepared with multiple active sites to immobilize the CEA antibody. Moreover, magnetic properties improved the anti-interference ability and sensitivity to endow the assay for complex samples. In addition, boronic acid-conjugated gold nanocluster (AuNCs@keratin-BA) was prepared as an electrochemical and fluorescent dual-signal indicator. Thus, the sandwich structure of FeOx@C@CS/CEA/AuNCs@keratin-BA was formed for electrochemical/fluorescent dual-modality assay. Under optimal conditions, the quantitation range of 12.5 fg mL-1-37.5 pg mL-1 and detection limit of 4.3 fg mL-1 were obtained for the electrochemical strategy. The fluorescence detection owned the linear range of 0.05 pg mL-1-7.5 pg mL-1 with a detection limit of 0.025 pg mL-1. Dual-modality assay improved the accuracy and efficiency of CEA detection to meet the requirement of tumor diagnosis, while chemical identification and signal transduction lay an important foundation for engineering advanced nanomaterials for clinical applications.
Collapse
Affiliation(s)
- Yuqin Jin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China
| | - Jing Zheng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China.
| | - Yanan Ci
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China
| | - Linyu Zhu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China
| | - Xue-Bo Yin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China.
| |
Collapse
|
24
|
Zhou M, Li K, Pei Y, Jin S, Zhu M. Effect of Specific Heavy Doping of Silver Atoms into the Icosahedral Au 13 on Electronic Structure and Catalytic Performance. J Phys Chem Lett 2023; 14:11715-11724. [PMID: 38112385 DOI: 10.1021/acs.jpclett.3c02884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The exploration of specific heavy doping of silver atoms into icosahedral Au13 clusters and their electronic structures and properties has been somewhat limited. Herein, we report two heavily Ag doped nanoclusters, [Au7Ag6(C7H4NOS)4(Dppf)3Cl]0 and [Au7Ag6(C7H4NOS)3(Dppf)3Cl](SbF6) (Au7Ag6-0 and Au7Ag6-1, respectively) [C7H4NOSH = 2-mercaptobenzoxazole, and Dppf = 1,1'-bis(diphenylphosphino)ferrocene]. The electronic structures and superatomic orbitals of nanoclusters were determined by density functional theory (DFT) calculations, and the energy degeneracy of the superatomic orbitals of Au7Ag6-1 is higher than that of Au7Ag6-0. Transient absorption spectroscopy was performed, revealing that Au7Ag6-0 significantly extends the excited-state lifetime. Both nanoclusters were supported on activated carbon for the oxygen reduction reaction. DFT calculations confirm that the catalytic activities mainly stem from the carbon atom of ferrocene rather than the iron atom. This study not only sheds light on the preparation of icosahedral alloy clusters but also provides insights into the regulation of icosahedral superatomic structure and electrocatalytic properties.
Collapse
Affiliation(s)
- Manman Zhou
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Kang Li
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Shan Jin
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, P. R. China
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, P. R. China
| |
Collapse
|
25
|
Higaki T, Russell JC, Paley DW, Roy X, Jin R. Electron transport through supercrystals of atomically precise gold nanoclusters: a thermal bi-stability effect. Chem Sci 2023; 14:13191-13197. [PMID: 38023517 PMCID: PMC10664525 DOI: 10.1039/d3sc02753h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Nanoparticles (NPs) may behave like atoms or molecules in the self-assembly into artificial solids with stimuli-responsive properties. However, the functionality engineering of nanoparticle-assembled solids is still far behind the aesthetic approaches for molecules, with a major problem arising from the lack of atomic-precision in the NPs, which leads to incoherence in superlattices. Here we exploit coherent superlattices (or supercrystals) that are assembled from atomically precise Au103S2(SR)41 NPs (core dia. = 1.6 nm, SR = thiolate) for controlling the charge transport properties with atomic-level structural insights. The resolved interparticle ligand packing in Au103S2(SR)41-assembled solids reveals the mechanism behind the thermally-induced sharp transition in charge transport through the macroscopic crystal. Specifically, the response to temperature induces the conformational change to the R groups of surface ligands, as revealed by variable temperature X-ray crystallography with atomic resolution. Overall, this approach leads to an atomic-level correlation between the interparticle structure and a bi-stability functionality of self-assembled supercrystals, and the strategy may enable control over such materials with other novel functionalities.
Collapse
Affiliation(s)
- Tatsuya Higaki
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| | - Jake C Russell
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Daniel W Paley
- Columbia Nano Initiative, Columbia University New York New York 10027 USA
| | - Xavier Roy
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| |
Collapse
|
26
|
Shi Y, Lv Y, Wang C, Yu H. Activity of Different Au nS n+1 Staples in the Ligand Exchange of Au 23(SR) 16- with a Single Foreign Thiolate Ligand. J Phys Chem A 2023; 127:9022-9029. [PMID: 37874272 DOI: 10.1021/acs.jpca.3c05004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Ligand exchange has been widely used to synthesize novel thiolated gold nanoclusters and to regulate their specific properties. Herein, density functional theory (DFT) calculations were conducted to investigate the kinetic profiles of the ligand exchange of the [Au23(SCy)16]- nanocluster with an aromatic thiolate (2-napthalenethiol). The three types of staple motifs (i.e., trimetallic Au3S4, monometallic AuS2, and the bridging thiolates) of the Au23 cluster precursor could be categorized into eight groups of S sites with different chemical environments. The ligand exchange of all of them occurs favorably via the SN1-like pathway, with one site starting with the Au-S dissociation and seven other sites starting with the H-transfer steps. By contrast, the SN2-like pathway (i.e., the synergistic SCy-to-SAr exchange prior to the H-transfer step) is unlikely in the target systems. Meanwhile, the Au-S bond on the capping Au atom of the bicapped icosahedral Au15 core is the most active one, while the S sites on Au3S4 (except for the one remote from the metallic core) are all competitive exchanging sites. The ligand exchange activity of the bridging thiolate and the remote S site on Au3S4 is significantly less reactive. The calculation results correlate with the multiple ligand exchange within only a few minutes and the preferential etching of the AuS2 staple with the foreign ligands reported in earlier experiments. The relative activity of different staples might be helpful in elucidating the inherent principles in the ligand exchange-induced size-evolution of metal nanoclusters.
Collapse
Affiliation(s)
- Yanan Shi
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, Anhui, P. R. China
| | - Ying Lv
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, Anhui, P. R. China
| | - Chen Wang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemical Process, Shaoxing University, Shaoxing 312000, P. R. China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, Anhui, P. R. China
| |
Collapse
|
27
|
Kawawaki T, Negishi Y. Elucidation of the electronic structures of thiolate-protected gold nanoclusters by electrochemical measurements. Dalton Trans 2023; 52:15152-15167. [PMID: 37712891 DOI: 10.1039/d3dt02005c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Metal nanoclusters (NCs) with sizes of approximately 2 nm or less have different physical/chemical properties from those of the bulk metals owing to quantum size effects. Metal NCs, which can be size-controlled and heterometal doped at atomic accuracy, are expected to be the next generation of important materials, and new metal NCs are reported regularly. However, compared with conventional materials such as metal complexes and relatively large metal nanoparticles (>2 nm), these metal NCs are still underdeveloped in terms of evaluation and establishment of application methods. Electrochemical measurements are one of the most widely used methods for synthesis, application, and characterisation of metal NCs. This review summarizes the basic knowledge of the electrochemistry and experimental techniques, and provides examples of the reported electronic states of thiolate-protected gold NCs elucidated by electrochemical approaches. It is expected that this review will provide useful information for researchers starting to study metal NCs.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
28
|
Zou X, Kang X, Zhu M. Recent developments in the investigation of driving forces for transforming coinage metal nanoclusters. Chem Soc Rev 2023; 52:5892-5967. [PMID: 37577838 DOI: 10.1039/d2cs00876a] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Metal nanoclusters serve as an emerging class of modular nanomaterials. The transformation of metal nanoclusters has been fully reflected in their studies from every aspect, including the structural evolution analysis, physicochemical property regulation, and practical application promotion. In this review, we highlight the driving forces for transforming atomically precise metal nanoclusters and summarize the related transforming principles and fundamentals. Several driving forces for transforming nanoclusters are meticulously reviewed herein: ligand-exchange-induced transformations, metal-exchange-induced transformations, intercluster reactions, photochemical transformations, oxidation/reduction-induced transformations, and other factors (intrinsic instability, pH, temperature, and metal salts) triggering transformations. The exploitation of transforming principles to customize the preparations, structures, physicochemical properties, and practical applications of metal nanoclusters is also disclosed. At the end of this review, we provide our perspectives and highlight the challenges remaining for future research on the transformation of metal nanoclusters. Our intended audience is the broader scientific community interested in metal nanoclusters, and we believe that this review will provide researchers with a comprehensive synthetic toolbox and insights on the research fundamentals needed to realize more cluster-based nanomaterials with customized compositions, structures, and properties.
Collapse
Affiliation(s)
- Xuejuan Zou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
29
|
Lin X, Tang J, Zhu C, Wang L, Yang Y, Wu R, Fan H, Liu C, Huang J. Solvent-mediated precipitating synthesis and optical properties of polyhydrido Cu 13 nanoclusters with four vertex-sharing tetrahedrons. Chem Sci 2023; 14:994-1002. [PMID: 36755712 PMCID: PMC9890966 DOI: 10.1039/d2sc06099j] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Structurally defined metal nanoclusters facilitate mechanism studies and promote functional applications. However, precisely constructing copper nanoclusters remains a long-standing challenge in nanoscience. Developing new efficient synthetic strategies for Cu nanoclusters is highly desirable. Here, we propose a solvent-mediated precipitating synthesis (SMPS) to prepare Cu13H10(SR)3(PPh3)7 nanoclusters (H-SR = 2-chloro-4-fluorobenzenethiol). The obtained Cu13 nanoclusters are high purity and high yield (39.5%, based on Cu atom), proving the superiority of the SMPS method. The Cu13 nanoclusters were comprehensively studied via a series of characterizations. Single crystal X-ray crystallography shows that the Cu13 nanoclusters contain a threefold symmetry axis and the Cu13 kernel is protected by a monolayer of ligands, including PPh3 and thiolates. Unprecedentedly, the aesthetic Cu13 kernel is composed of four vertex-sharing tetrahedrons, rather than the common icosahedral or cuboctahedral M13. The intramolecular π⋯π interactions between thiolates and PPh3 on the surface contribute to the stable configuration. Furthermore, electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) revealed the existence of ten hydrides, including four types of hydrides. Density functional theory (DFT) calculations without simplifying the ligands simulated the location of the 10 hydrides in the crystal structure. Additionally, the steady-state ultraviolet-visible absorption and fluorescence spectra of the Cu13 nanoclusters exhibit unique optical absorbance and photoluminescence. The ultrafast relaxation dynamics were also studied via transient absorption spectroscopy, and the three decay components are attributed to the relaxation pathways of internal conversion, structural relaxation and radiative relaxation. This work provides not only a novel SMPS strategy to efficiently synthesize Cu13 nanoclusters, but also a better insight into the structural characteristics and optical properties of the Cu nanoclusters.
Collapse
Affiliation(s)
- Xinzhang Lin
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jie Tang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chenyu Zhu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Li Wang
- Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Yang Yang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ren'an Wu
- Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Hongjun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Chao Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Jiahui Huang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
30
|
Gratious S, Mukherjee S, Mandal S. Co-reactant-Free Transformation in Atomically Precise Metal Nanoclusters. J Phys Chem Lett 2022; 13:9014-9027. [PMID: 36149644 DOI: 10.1021/acs.jpclett.2c02330] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Transformation chemistry has advanced significantly in recent years as an excellent methodology for synthesizing new nanoclusters and functionalizing the existing ones. However, rational synthesis and fundamental understanding of the structural evolution among clusters have not yet been achieved in nanocluster science. A deeper understanding of the fundamental aspects of structure-property correlation is necessary for the employment of befitting nanoclusters for specific applications. Very recently, the transformation of nanoclusters without the use of conventional co-reactants has been brought to light. These co-reactant-less transformations are triggered by various conditions, such as pH, solvent, light, temperature, etc. In this perspective, we discuss how this unique method of transformation without any co-reactant benefits the basic understanding of growth patterns and the corresponding property evolution in nanoclusters.
Collapse
Affiliation(s)
- Saniya Gratious
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Sayani Mukherjee
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
31
|
Liu X, Yang H, Chen Y, Yang Y, Porcar L, Radulescu A, Guldin S, Jin R, Stellacci F, Luo Z. Quantifying the Solution Structure of Metal Nanoclusters Using Small‐Angle Neutron Scattering. Angew Chem Int Ed Engl 2022; 61:e202209751. [DOI: 10.1002/anie.202209751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Xindi Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials Department of Biomedical Engineering Southern University of Science and Technology Shenzhen 518055, Guangdong China
| | - Huayan Yang
- School of Biomedical Engineering Health Science Center Shenzhen University Shenzhen 518060, Guangdong China
| | - Yuxiang Chen
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Ye Yang
- Department of Chemical Engineering University College London London WC1E 7JE UK
| | - Lionel Porcar
- Institut Laue-Langevin BP 156 38042 Grenoble CEDEX 9 France
| | - Aurel Radulescu
- Jülich Center for Neutron Science JCNS at Heinz Maier-Leibnitz Zentrum Forschungszentrum Jülich GmbH 85747 Garching Germany
| | - Stefan Guldin
- Department of Chemical Engineering University College London London WC1E 7JE UK
| | - Rongchao Jin
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Francesco Stellacci
- Institute of Materials École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Zhi Luo
- Guangdong Provincial Key Laboratory of Advanced Biomaterials Department of Biomedical Engineering Southern University of Science and Technology Shenzhen 518055, Guangdong China
| |
Collapse
|
32
|
Liu X, Yang H, Chen Y, Yang Y, Porcar L, Radulescu A, Guldin S, Jin R, Stellacci F, Luo Z. Quantifying the Solution Structure of Metal Nanoclusters Using Small‐Angle Neutron Scattering. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xindi Liu
- Southern University of Science and Technology department of biomedical engineering CHINA
| | - Huayang Yang
- Shenzhen University department of medicine CHINA
| | - Yuxiang Chen
- Carnegie Mellon University department of chemistry UNITED STATES
| | - Ye Yang
- University College London department of chemical engineering UNITED KINGDOM
| | - Lionel Porcar
- Institut Laue-Langevin large scale structure group FRANCE
| | - Aurel Radulescu
- Forschungszentrum Jülich GmbH Jülich Centre for Neutron Science: Forschungszentrum Julich GmbH Julich Centre for Neutron Science Jülich Centre for Neutron Science (JCNS) CHINA
| | - Stefan Guldin
- University College London department of chemical engineering UNITED KINGDOM
| | - Rongchao Jin
- Carnegie Mellon University department of chemistry UNITED STATES
| | - Francesco Stellacci
- EPFL: Ecole Polytechnique Federale de Lausanne Supramolecular NanoMaterials and Interfaces Laboratory SWITZERLAND
| | - Zhi Luo
- SUSTech: Southern University of Science and Technology Biomedical Engineering Xueyuan Avenue 1088HCI J392 Shenzhen CHINA
| |
Collapse
|
33
|
Nag A, Pradeep T. Assembling Atomically Precise Noble Metal Nanoclusters Using Supramolecular Interactions. ACS NANOSCIENCE AU 2022; 2:160-178. [PMID: 37101822 PMCID: PMC10114813 DOI: 10.1021/acsnanoscienceau.1c00046] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Supramolecular chemistry (SC) of noble metal nanoclusters (NMNCs) is one of the fascinating areas of contemporary materials science. It is principally concerned with the noncovalent interactions between NMNCs, as well as between NMNCs and molecules or nanoparticles. This review focuses on recent advances in the supramolecular assembly of NMNCs and applications of the resulting structures. We have divided the topics into four distinct subgroups: (i) SC of NMNCs in gaseous and solution phases, (ii) supramolecular interactions of NMNCs in crystal lattices, (iii) supramolecular assemblies of NMNCs with nanoparticles and NMNCs, and (iv) SC of NMNCs with other molecules. The last explores their interactions with fullerenes, cyclodextrins, cucurbiturils, crown ethers, and more. After discussing these topics concisely, various emerging properties of the assembled systems in terms of their mechanical, optical, magnetic, charge-transfer, etc. properties and applications are presented. SC is seen to provide a crucial role to induce new physical and chemical properties in such hybrid nanomaterials. Finally, we highlight the scope for expansion and future research in the area. This review would be useful to those working on functional nanostructures in general and NMNCs in particular.
Collapse
|
34
|
Yao Q, Zhang Q, Xie J. Atom-Precision Engineering Chemistry of Noble Metal Nanoparticles. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qiaofeng Yao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qingbo Zhang
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
35
|
Li L, Wang P, Pei Y. A theoretical study of the monolayer-protected gold cluster Au 317(SR) 110. NANOSCALE 2022; 14:5694-5700. [PMID: 35377381 DOI: 10.1039/d2nr00114d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Significant efforts have been made to uncover the structures of monolayer-protected gold nanoclusters. However, the synthesis, crystallization, and structural analysis of gold nanoclusters with over 300 metal atoms is a grand challenge. In this work, a new gold nanocluster containing 317 gold atoms and 110 thiolate (SH) ligands (referred to as Au317(SH)110) is theoretically studied, which is larger in size than the formerly reported Au279(SR)84 cluster. The stability of the Au317(SH)110 cluster is studied based on calculations of the averaged cluster formation energy (Eave), indicating that Au317(SH)110 has good structural stability and that the SPhCOOH (p-MBA) ligand is a good candidate for stabilizing the cluster. The calculation of density of state and the time-dependent density functional theory (TD-DFT) calculations of the optical absorption properties show that Au317(SH)110 is in a metallic state.
Collapse
Affiliation(s)
- Lanyan Li
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province 411105, China.
| | - Pu Wang
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province 411105, China.
- Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Guangdong Province, 5283311, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province 411105, China.
| |
Collapse
|
36
|
Liu R, Jia W, Wang Y, Hu C, Yu W, Huang Y, Wang L, Gao H. Glymphatic System and Subsidiary Pathways Drive Nanoparticles Away from the Brain. RESEARCH 2022; 2022:9847612. [PMID: 35360646 PMCID: PMC8943630 DOI: 10.34133/2022/9847612] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/08/2022] [Indexed: 12/29/2022]
Abstract
Although drug delivery systems (DDS) are efficient in brain delivery, they face failure in clinical settings due to their potential toxicity to the central nervous system. Little is known about where the DDS will go after brain delivery, and no specific elimination route that shares a passage with DDS has been verified. Hence, identifying harmless DDS for brain delivery and determining their fate there would strongly contribute to their clinical translation. In this study, we investigated nonreactive gold nanoclusters, which can deliver into the brain, to determine the elimination route of DDS. Subsequently, nanoclusters in the brain were systemically tracked and were found to be critically drained by the glymphatic system from the blood vessel basement membrane to periphery circulations (77.8 ± 23.2% and 43.7 ± 23.4% contribution). Furthermore, the nanoclusters could be actively transported across the blood-brain barrier (BBB) by exosomes (30.5 ± 27.3% and 29.2 ± 7.1% contribution). In addition, microglia promoted glymphatic drainage and passage across the BBB. The simultaneous work of the glymphatic system, BBB, and microglia revealed the fate of gold nanoclusters for brain delivery and provided a basis for further brain-delivery DDS.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wenfeng Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yushan Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chuan Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wenqi Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
37
|
Liu H, Pei Y. Atomistic Molecular Dynamics Simulation Study on the Interaction between Atomically Precise Thiolate-Protected Gold Nanoclusters and Phospholipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1653-1661. [PMID: 35080404 DOI: 10.1021/acs.langmuir.1c02001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The interaction of atomically precise monolayer thiolate (SR) protected gold nanoclusters (Au NCs) with the phospholipid membranes has been studied by the all-atom molecular dynamics (AAMD) simulations. The effect of cluster size, type, and the surface charge density of protection ligand was studied. The simulation results show gold nanoclusters with different size and surface modifications have much different transmembrane behaviors. The Au25(SR)18 cluster was found to possess the best affinity to the phospholipid membranes among six atomically accurate clusters Au25(SR)18, Au36(SR)24, Au44(SR)28, Au68(SR)32, Au144(SR)60, and Au314(SR)96. Using the Au25 NC as a model, this work also found that the aggregation mode of the surface ligands and the surface charge density are the important factors affecting the interaction between the gold nanoclusters and the phospholipid membranes. Moreover, the balance of hydrophilic and hydrophobic ligands on the surface of Au NCs is beneficial to the high permeability.
Collapse
Affiliation(s)
- Hengzhi Liu
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| |
Collapse
|
38
|
Li JJ, Liu Z, Guan ZJ, Han XS, Shi WQ, Wang QM. A 59-Electron Non-Magic-Number Gold Nanocluster Au 99(C≡CR) 40 Showing Unexpectedly High Stability. J Am Chem Soc 2022; 144:690-694. [PMID: 34994558 DOI: 10.1021/jacs.1c11643] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An atomically resolved gold nanocluster Au99(C≡CC6H3-2,4-F2)40 (Au99) with an unusual 59 valence electrons has been synthesized. Single-crystal X-ray diffraction reveals that its Au79 kernel is a Au49 Marks decahedron capped by two Au15 units. The surface structure of Au99 consists of 20 linear Au(C≡CR)2 staples. Intercluster interactions are observed between these D5 symmetric clusters. The existence of an unpaired electron is verified by magnetic measurement. Interestingly, this open-shell gold cluster Au99 stays intact in toluene solution at 80 °C for more than a week, and it has good charging-discharging capability under electrochemical conditions. The compact ligand shell protection around the symmetric core accounts for the high stability. This work suggests that geometric factors may play a crucial role in determining the stability of a metal nanocluster, even though the cluster has an open-shell electronic structure.
Collapse
Affiliation(s)
- Jiao-Jiao Li
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P. R. China
| | - Zhikun Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Zong-Jie Guan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P. R. China
| | - Xu-Shuang Han
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P. R. China
| | - Wan-Qi Shi
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P. R. China
| | - Quan-Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
39
|
Shigeta T, Takano S, Tsukuda T. A Face‐to‐Face Dimer of Au
3
Superatoms Supported by Interlocked Tridentate Scaffolds Formed in Au
18
S
2
(SR)
12. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Taro Shigeta
- Department of Chemistry Graduate School of Science The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 1130033 Japan
| | - Shinjiro Takano
- Department of Chemistry Graduate School of Science The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 1130033 Japan
| | - Tatsuya Tsukuda
- Department of Chemistry Graduate School of Science The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 1130033 Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB) Kyoto University 1-30 Goryo-Ohara, Nishikyo-ku Kyoto 6158245 Japan
| |
Collapse
|
40
|
Korath Shivan S, Maier A, Scheele M. Emergent properties in supercrystals of atomically precise nanoclusters and colloidal nanocrystals. Chem Commun (Camb) 2022; 58:6998-7017. [DOI: 10.1039/d2cc00778a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We provide a comprehensive account of the optical, electrical and mechanical properties that result from the self-assembly of colloidal nanocrystals or atomically precise nanoclusters into crystalline arrays with long-range order....
Collapse
|
41
|
Su YM, Li XY, Wang Z, Gao ZY, Huang XQ, Tung CH, Sun D. Structural rearrangement of Ag 60 nanocluster endowing different luminescence performances. J Chem Phys 2021; 155:234303. [PMID: 34937377 DOI: 10.1063/5.0070138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is well known that structure determines property, but obtaining a pair of silver nanoclusters with comparable structures to understand the structure-property relationship is a very challenging task. A new 60-nuclei silver nanocluster (SD/Ag60a) protected by a mixed-ligand shell of tBuS- and o-CH3OPhCOO- was obtained and characterized. Single crystal x-ray diffraction reveals that SD/Ag60a has an identical metal nuclearity and core-shell structural type to SD/Ag1 previously reported by our group, whereas the compositions of the core and shell have undergone a rearrangement from an Ag12 cuboctahedron core and an Ag48 rhombicuboctahedron shell in SD/Ag1 to an Ag14 rhombic dodecahedron core and an oval Ag46 shell in SD/Ag60a. The core enlargement from Ag12 to Ag14 originates from the replacement of two S2- in Ag12S15 by two Ag+, which gives a new Ag14S13 core. This result indicates that the metal frameworks of silver nanoclusters have some extent flexibility despite the same nuclearity, which can be influenced by ligands, solvents, anion templates, and others in the embryonic stage of the assembly. Interestingly, different core-shell architectures of Ag60 nanoclusters also significantly endow the different optical absorption bands, photocurrent-generating properties, and luminesecent behaviors. This work not only realizes the regulation of the core-shell structure of silver nanoclusters with the same nuclearity but also provides a comparable model for investigating the relationship of structure-photoelectric properties.
Collapse
Affiliation(s)
- Yan-Min Su
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Xiao-Yu Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Zhi Wang
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Xian-Qiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Di Sun
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
42
|
Shigeta T, Takano S, Tsukuda T. A Face-to-Face Dimer of Au 3 Superatoms Supported by Interlocked Tridentate Scaffolds Formed in Au 18 S 2 (SR) 12. Angew Chem Int Ed Engl 2021; 61:e202113275. [PMID: 34752676 DOI: 10.1002/anie.202113275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 11/08/2022]
Abstract
A new sulfur-containing gold cluster, Au18 S2 (STipb)12 , was serendipitously obtained using the bulky thiol, 2,4,6-triisopropylbenzyl mercaptan (TipbSH), as protecting ligands. Single-crystal X-ray diffraction analysis revealed that Au18 S2 (STipb)12 has a deformed octahedral Au6 core clutched by two tridentate S[Au2 (STipb)2 ]3 units in an interlocked manner. Based on density functional theory calculations, we propose that the Au6 core with two electrons is better viewed as a face-to-face dimer of Au3 (1e) superatoms rather than an electronically closed Au6 (2e) superatom. In situ formation of the sulfide anions (S2- ) via C-S bond breakage is ascribed to the steric repulsion between the TipbS ligands.
Collapse
Affiliation(s)
- Taro Shigeta
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1130033, Japan
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1130033, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1130033, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 6158245, Japan
| |
Collapse
|
43
|
Li Y, Zhou M, Jin R. Programmable Metal Nanoclusters with Atomic Precision. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006591. [PMID: 33984169 DOI: 10.1002/adma.202006591] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/26/2020] [Indexed: 06/12/2023]
Abstract
With the recent establishment of atomically precise nanochemistry, capabilities toward programmable control over the nanoparticle size and structure are being developed. Advances in the synthesis of atomically precise nanoclusters (NCs, 1-3 nm) have been made in recent years, and more importantly, their total structures (core plus ligands) have been mapped out by X-ray crystallography. These ultrasmall Au nanoparticles exhibit strong quantum-confinement effect, manifested in their optical absorption properties. With the advantage of atomic precision, gold-thiolate nanoclusters (Aun (SR)m ) are revealed to contain an inner kernel, Au-S interface (motifs), and surface ligand (-R) shell. Programming the atomic packing into various crystallographic structures of the metal kernel can be achieved, which plays a significant role in determining the optical properties and the energy gap (Eg ) of NCs. When the size increases, a general trend is observed for NCs with fcc or decahedral kernels, whereas those NCs with icosahedral kernels deviate from the general trend by showing comparably smaller Eg . Comparisons are also made to further demonstrate the more decisive role of the kernel structure over surface motifs based on isomeric Au NCs and NC series with evolving kernel or motif structures. Finally, future perspectives are discussed.
Collapse
Affiliation(s)
- Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Meng Zhou
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
44
|
Hu F, Guan ZJ, Yang G, Wang JQ, Li JJ, Yuan SF, Liang GJ, Wang QM. Molecular Gold Nanocluster Au 156 Showing Metallic Electron Dynamics. J Am Chem Soc 2021; 143:17059-17067. [PMID: 34609874 DOI: 10.1021/jacs.1c06716] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The boundary between molecular and metallic gold nanoclusters is of special interest. The difficulty in obtaining atomically precise nanoclusters larger than 2 nm limits the determination of such a boundary. The synthesis and total structural determination of the largest all-alkynyl-protected gold nanocluster (Ph4P)6[Au156(C≡CR)60] (R = 4-CF3C6H4-) (Au156) are reported. It presents an ideal platform for studying the relationship between the structure and the metallic nature. Au156 has a rod shape with the length and width of the kernel being 2.38 and 2.04 nm, respectively. The cluster contains a concentric Au126 core structure (Au46@Au50@Au30) protected by 30 linear RC≡C-Au-C≡CR staple motifs. It is interesting that Au156 displays multiple excitonic peaks in the steady-state absorption spectrum (molecular) and pump-power-dependent excited-state dynamics as revealed in the transient absorption spectrum (metallic), which indicates that Au156 is a critical crossover cluster for the transition from molecular to metallic state. Au156 is the smallest-sized gold nanocluster showing metal-like electron dynamics, and it is recognized that the cluster shape is one of the important factors determining the molecular or metallic nature of a gold nanocluster.
Collapse
Affiliation(s)
- Feng Hu
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P.R. China
| | - Zong-Jie Guan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P.R. China
| | - Gaoyuan Yang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, P.R. China
| | - Jia-Qi Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P.R. China
| | - Jiao-Jiao Li
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P.R. China
| | - Shang-Fu Yuan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P.R. China
| | - Gui-Jie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, P.R. China
| | - Quan-Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
45
|
Ndugire W, Yan M. Synthesis and solution isomerization of water-soluble Au 9 nanoclusters prepared by nuclearity conversion of [Au 11(PPh 3) 8Cl 2]Cl. NANOSCALE 2021; 13:16809-16817. [PMID: 34605842 PMCID: PMC8545225 DOI: 10.1039/d1nr04401j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Water-soluble gold nanoclusters (AuNCs) are popular in biomedical applications such as bioimaging, labelling, drug delivery, and biosensing. Despite their widespread applications, the synthesis of water-soluble phosphine-capped AuNCs is not as straightforward as their organic-soluble equivalents. Organic soluble phosphine-passivated [Au9(L)8]3+ are 6-electron closed-shell AuNCs that are generally prepared via the reduction of a phosphine-Au(I) complex by NaBH4. A similar approach attempted for the water-soluble ligand triphenylphosphine monosulfonate (TPPMS) using [AuTPPMS]Cl resulted in a mixture of cluster sizes that required gel electrophoresis or fractional precipitation to isolate the Au9 product. In this work, we report the synthesis of water-soluble [Au9(L)8]3+ nanoclusters in high yield through the biphasic ligand exchange of [Au11(PPh3)8Cl2]Cl with water-soluble phosphines such as TPPMS and 4-(diphenylphosphino)benzoic acid (DPPBA). The small molecule byproducts can be completely removed by size-based separation methods, like size exclusion chromatography or dialysis, as confirmed by 31P and 1H nuclear magnetic resonance (NMR) as well as diffusion ordered spectroscopy (DOSY). Furthermore, [Au9(DPPBA)8]Cl3 underwent a visible pH- and temperature-induced isomerization in ethanol between the 'crown' and 'butterfly' isomers of [Au9(L)8]3+ which has not been previously reported. Cytotoxicity evaluation of these water-soluble nanoclusters gave CC50 values of 36 μg mL-1 and 70 μg mL-1 against A549 human alveolar epithelial cells, and 30 μg mL-1 and 40 μg mL-1 against NIH/3T3 mouse fibroblast cells for [Au9(TPPMS)8]Cl3 and [Au9(DPPBA)8]Cl3, respectively. For comparison, auranofin, an FDA-approved gold drug, is more than an order of magnitude more toxic with a CC50 value of 7.7 μg mL-1 against A549 cells.
Collapse
Affiliation(s)
- William Ndugire
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854, USA.
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854, USA.
| |
Collapse
|
46
|
Zhou M, Bao Y, Jin S, Wen S, Chen S, Zhu M. [Ag 71(S- tBu) 31(Dppm)](SbF 6) 2: an intermediate-sized metalloid silver nanocluster containing a building block of Ag 64. Chem Commun (Camb) 2021; 57:10383-10386. [PMID: 34542129 DOI: 10.1039/d1cc04934h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An intermediate-sized atomically precise metalloid silver nanocluster [Ag71(SR)31(Dppm)](SbF6)2 (Dppm = bis (diphenylphosphino)methane, SR = S-tBu) is reported, which comprises one building block Ag64, six SR5 pentagons, one sole SR ligand, a DppmAg2 handle, and an Ag5 lid. Structurally, a decahedron Ag23 kernel is observed in the metalloid silver nanocluster. Moreover, the Ag64 unit provides insights into the growth of large clusters such as Ag136(SR)64Cl3 and Ag141(SR)40Br12via assembly. The observed decahedron Ag23 provides a deeper understanding on Marks decahedron in larger nanoclusters, and the [Ag71(S-tBu)31(Dppm)](SbF6)2 uses Ag64 as a building block to predict the structure of larger metalloid nanoclusters.
Collapse
Affiliation(s)
- Manman Zhou
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China.
| | - Yizheng Bao
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China.
| | - Shan Jin
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China.
| | - Shuaishuai Wen
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China.
| | - Shuang Chen
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China.
| | - Manzhou Zhu
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China.
| |
Collapse
|
47
|
Zhou M, Du X, Wang H, Jin R. The Critical Number of Gold Atoms for a Metallic State Nanocluster: Resolving a Decades-Long Question. ACS NANO 2021; 15:13980-13992. [PMID: 34490772 DOI: 10.1021/acsnano.1c04705] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Probing the transition from a metallic state to a molecular state in gold nanoparticles is fundamentally important for understanding the origin of surface plasmon resonance and the nature of the metallic bond. Atomically precise gold nanoclusters are desired for probing such a transition based upon a series of precise sizes with X-ray structures. While the definition of the metallic state in nanoclusters is simple, that is, when the HOMO-LUMO gap (Eg) becomes negligibly small (Eg < kBT, where kB is the Boltzmann constant and T the temperature), the experimental determination of ultrasmall Eg (e.g., of kBT level) is difficult, and the thermal excitation of valence electrons apparently comes into play in ultrasmall Eg nanoclusters. Although a sharp transition from nonmetallic Au246(SR)80 to metallic Au279(SR)84 (SR: thiolate) has been observed, there is still uncertainty about the transition region. Here, we summarize several criteria on determining the metallic state versus the molecular (or nonmetallic) state in gold nanoclusters, including (1) Eg determined by optical and electrochemical methods, (2) steady-state absorption spectra, (3) cryogenic optical spectra, (4) transient absorption spectra, (5) excited-state lifetime and power dependence, and (6) coherent oscillations in ultrafast electron dynamics. We emphasize that multiple analyses should be performed and cross-checked in practice because no single criterion is definitive. We also review the photophysics of several gold nanoclusters with nascent surface plasmon resonance. These criteria are expected to deepen the understanding of the metallic to molecular state transition of gold and other metal nanoclusters and also promote the design of functional nanomaterials and their applications.
Collapse
Affiliation(s)
- Meng Zhou
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Physics, University of Miami, Coral Gables, Florida 33146, United States
| | - Xiangsha Du
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - He Wang
- Department of Physics, University of Miami, Coral Gables, Florida 33146, United States
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
48
|
Wan X, Wang J, Wang Q. Ligand‐Protected Au
55
with a Novel Structure and Remarkable CO
2
Electroreduction Performance. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xian‐Kai Wan
- Department of Chemistry Tsinghua University Beijing 10084 P. R. China
- College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 P. R. China
| | - Jia‐Qi Wang
- Department of Chemistry Tsinghua University Beijing 10084 P. R. China
| | - Quan‐Ming Wang
- Department of Chemistry Tsinghua University Beijing 10084 P. R. China
- College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 P. R. China
| |
Collapse
|
49
|
Wan XK, Wang JQ, Wang QM. Ligand-Protected Au 55 with a Novel Structure and Remarkable CO 2 Electroreduction Performance. Angew Chem Int Ed Engl 2021; 60:20748-20753. [PMID: 34288322 DOI: 10.1002/anie.202108207] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 01/22/2023]
Abstract
A Au55 nanocluster with the composition of [Au55 (p-MBT)24 (Ph3 P)6 ](SbF6 )3 (p-MBT=4-methylbenzenethiolate) is synthesized via direct reduction of gold-phosphine and gold-thiolate precursors. Single-crystal X-ray diffraction reveals that this Au55 nanocluster features a face-centered cubic (fcc) Au55 kernel, different from the well-known two-shell cuboctahedral arrangement in Au55 (Ph3 P)12 Cl6 . The Au55 cluster shows a wide optical absorption band with optical energy gap (Eg =1.28 eV). It is found that the exclusion of chloride is crucial for the formation of the title cluster, otherwise rod-like [Au25 (SR)5 (PPh3 )10 Cl2 ]2+ is obtained. The strategy to run synthetic reaction in the absence of halide leads to new members of phosphine/thiolate co-protected metal nanoclusters. The Au55 nanocluster exhibits high catalytic activity and selectivity for electrochemical reduction of CO2 to CO; the Faradaic efficiency (FE) reaches 94.1 % at -0.6 V vs. reversible hydrogen electrode (RHE).
Collapse
Affiliation(s)
- Xian-Kai Wan
- Department of Chemistry, Tsinghua University, Beijing, 10084, P. R. China.,College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China.,College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Jia-Qi Wang
- Department of Chemistry, Tsinghua University, Beijing, 10084, P. R. China
| | - Quan-Ming Wang
- Department of Chemistry, Tsinghua University, Beijing, 10084, P. R. China.,College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| |
Collapse
|
50
|
Ma MX, Ma XL, Liang GM, Shen XT, Ni QL, Gui LC, Wang XJ, Huang SY, Li SM. A Nanocluster [Ag 307Cl 62(SPh tBu) 110]: Chloride Intercalation, Specific Electronic State, and Superstability. J Am Chem Soc 2021; 143:13731-13737. [PMID: 34410122 DOI: 10.1021/jacs.1c05618] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The controlling synthesis of novel nanoclusters of noble metals (Au, Ag) and the determination of their atomically precise structures provide opportunities for investigating their specific properties and applications. Here we report a novel silver nanocluster [Ag307Cl62(SPhtBu)110] (Ag307) whose structure is determined by X-ray single crystal diffraction. The structure analysis shows that nanocluster Ag307 contains a Ag167 core, a surface shell of [Ag140Cl2S110], and a Cl60 intermediate layer located between Ag167 and [Ag140Cl2S110]. It is a first example that such many chlorides are intercalated into a Ag nanocluster. Chlorides are released in situ from solvent CHCl3. Nanocluster Ag307 exhibits superstability. Differential pulse voltammetry experiment reveals that Ag307 has continuous charging/discharging behavior with a capacitance value of 1.39 aF, while the Ag307 has a surface plasmonic feature. These characteristics show that Ag307 is of metallic behavior. However, its electron paramagnetic resonance (EPR) spectra display a spin magnetic behavior which could be originated from the unpassivated dangling bonds of surface atoms. The direct capture of EPR signals can be attributed to the Cl- intercalating layer which partly suppresses the electronic interactions between core and surface atoms, resulting in the relatively independent electronic states for core and surface atoms.
Collapse
|