1
|
Li B, Lu Y, Huang X, Sojic N, Jiang D, Liu B. Stimuli-Responsive DNA Nanomachines for Intracellular Targeted Electrochemiluminescence Imaging in Single Cells. Angew Chem Int Ed Engl 2025; 64:e202421658. [PMID: 39714401 DOI: 10.1002/anie.202421658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Electrochemiluminescence (ECL) microscopy has emerged as a powerful technique for single-cell imaging owing to its unparalleled background-free imaging advantages. However, controlled intracellular ECL imaging remains challenging. Here, we developed a stimuli-responsive self-assembled DNA nanomachine that enables the ECL imaging of intracellular target biomolecules in single cells. The ECL nanoprobe consists of an ECL nanoemitter constructed from Ru(bpy)3 2+-doped metal-organic framework as the nanoreactor core, with a DNA polymer hydrogel (DNAgel) shell acting as the stimuli-gated layer. The outer functionalized DNAgel of the ECL nanoprobe was specifically designed to block ECL generation and to dissociate by ATP molecules, thereby enabling selective recovery of ECL emission capability. Such an engineered stimuli-responsive nanomachine successfully achieved the targeted ECL imaging of intracellular ATP distribution with spatial resolution. In addition, ECL imaging of various intracellular biomolecules should be generalizable by simply changing the switching DNA sequence of the probe. Our research provided a reliable strategy for ECL microscopy within cells, which will broaden the application of ECL in single-cell and single-molecule profiling.
Collapse
Affiliation(s)
- Binxiao Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Yanwei Lu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Xuedong Huang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Neso Sojic
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR, 5255, F-33400, Talence, France
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
2
|
Zhang G, Wang Z, Ma L, Li J, Han J, Zhu M, Zhang Z, Zhang S, Zhang X, Wang Z. Identification of Pancreatic Metastasis Cells and Cell Spheroids by the Organelle-Targeting Sensor Array. Adv Healthc Mater 2024; 13:e2400241. [PMID: 38456344 DOI: 10.1002/adhm.202400241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Indexed: 03/09/2024]
Abstract
Pancreatic cancer is a highly malignant and metastatic cancer. Pancreatic cancer can lead to liver metastases, gallbladder metastases, and duodenum metastases. The identification of pancreatic cancer cells is essential for the diagnosis of metastatic cancer and exploration of carcinoma in situ. Organelles play an important role in maintaining the function of cells, the various cells show significant differences in organelle microenvironment. Herein, six probes are synthesized for targeting mitochondria, lysosomes, cell membranes, endoplasmic reticulum, Golgi apparatus, and lipid droplets. The six fluorescent probes form an organelles-targeted sensor array (OT-SA) to image pancreatic metastatic cancer cells and cell spheroids. The homology of metastatic cancer cells brings the challenge for identification of these cells. The residual network (ResNet) model has been proven to automatically extract and select image features, which can figure out a subtle difference among similar samples. Hence, OT-SA is developed to identify pancreatic metastasis cells and cell spheroids in combination with ResNet analysis. The identification accuracy for the pancreatic metastasis cells (> 99%) and pancreatic metastasis cell spheroids (> 99%) in the test set is successfully achieved respectively. The organelles-targeting sensor array provides a method for the identification of pancreatic cancer metastasis in cells and cell spheroids.
Collapse
Affiliation(s)
- Guoyang Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zirui Wang
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lijun Ma
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiguang Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Chemical Experimental Teaching Demonstration Center, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Jiahao Han
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mingguang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zixuan Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shilong Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
3
|
Xia T, Xia Z, Tang P, Fan J, Peng X. Light-Driven Mitochondrion-to-Nucleus DNA Cascade Fluorescence Imaging and Enhanced Cancer Cell Photoablation. J Am Chem Soc 2024; 146:12941-12949. [PMID: 38685727 DOI: 10.1021/jacs.3c13095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Nucleic acids are mainly found in the mitochondria and nuclei of cells. Detecting nucleic acids in the mitochondrion and nucleus in cascade mode is crucial for understanding diverse biological processes. This study introduces a novel nucleic acid-based fluorescent styrene dye (SPP) that exhibits light-driven cascade migration from the mitochondrion to the nucleus. By introducing N-arylpyridine on one side of the styrene dye skeleton and a bis(2-ethylsulfanyl-ethy)-amino unit on the other side, we found that SPP exhibits excellent DNA specificity (16-fold, FDNA/Ffree) and a stronger binding force to nuclear DNA (-5.09 kcal/mol) than to mitochondrial DNA (-2.59 kcal/mol). SPP initially accumulates in the mitochondrion and then migrates to the nucleus within 10 s under light irradiation. By tracking the damage to nucleic acids in apoptotic cells, SPP allows the successful visualization of the differences between apoptosis and ferroptosis. Finally, a triphenylamine segment with photodynamic effects was incorporated into SPP to form a photosensitizer (MTPA-SPP), which targets the mitochondria for photosensitization and then migrates to the nucleus under light irradiation for enhanced photodynamic cancer cell treatment. This innovative nucleic acid-based fluorescent molecule with light-triggered mitochondrion-to-nucleus migration ability provides a feasible approach for the in situ identification of nucleic acids, monitoring of subcellular physiological events, and efficient photodynamic therapy.
Collapse
Affiliation(s)
- Tianping Xia
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Zhuoran Xia
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Peichen Tang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
4
|
Chadha R, Guerrero JA, Wei L, Sanchez LM. Seeing is Believing: Developing Multimodal Metabolic Insights at the Molecular Level. ACS CENTRAL SCIENCE 2024; 10:758-774. [PMID: 38680555 PMCID: PMC11046475 DOI: 10.1021/acscentsci.3c01438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 05/01/2024]
Abstract
This outlook explores how two different molecular imaging approaches might be combined to gain insight into dynamic, subcellular metabolic processes. Specifically, we discuss how matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and stimulated Raman scattering (SRS) microscopy, which have significantly pushed the boundaries of imaging metabolic and metabolomic analyses in their own right, could be combined to create comprehensive molecular images. We first briefly summarize the recent advances for each technique. We then explore how one might overcome the inherent limitations of each individual method, by envisioning orthogonal and interchangeable workflows. Additionally, we delve into the potential benefits of adopting a complementary approach that combines both MSI and SRS spectro-microscopy for informing on specific chemical structures through functional-group-specific targets. Ultimately, by integrating the strengths of both imaging modalities, researchers can achieve a more comprehensive understanding of biological and chemical systems, enabling precise metabolic investigations. This synergistic approach holds substantial promise to expand our toolkit for studying metabolites in complex environments.
Collapse
Affiliation(s)
- Rahuljeet
S Chadha
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125 United States
| | - Jason A. Guerrero
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, Santa
Cruz, California 95064 United States
| | - Lu Wei
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125 United States
| | - Laura M. Sanchez
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, Santa
Cruz, California 95064 United States
| |
Collapse
|
5
|
Pieczara A, Arellano Reyes RA, Keyes TE, Dawiec P, Baranska M. New Highly Sensitive and Specific Raman Probe for Live Cell Imaging of Mitochondrial Function. ACS Sens 2024; 9:995-1003. [PMID: 38334979 PMCID: PMC10897933 DOI: 10.1021/acssensors.3c02576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
For Raman hyperspectral detection and imaging in live cells, it is very desirable to create novel probes with strong and unique Raman vibrations in the biological silent region (1800-2800 cm-1). The use of molecular probes in Raman imaging is a relatively new technique in subcellular research; however, it is developing very rapidly. Compared with the label-free method, it allows for a more sensitive and selective visualization of organelles within a single cell. Biological systems are incredibly complex and heterogeneous. Directly visualizing biological structures and activities at the cellular and subcellular levels remains by far one of the most intuitive and powerful ways to study biological problems. Each organelle plays a specific and essential role in cellular processes, but importantly for cells to survive, mitochondrial function must be reliable. Motivated by earlier attempts and successes of biorthogonal chemical imaging, we develop a tool supporting Raman imaging of cells to track biochemical changes associated with mitochondrial function at the cellular level in an in vitro model. In this work, we present a newly synthesized highly sensitive RAR-BR Raman probe for the selective imaging of mitochondria in live endothelial cells.
Collapse
Affiliation(s)
- Anna Pieczara
- Jagiellonian
Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
- Jagiellonian
University in Kraków, Doctoral School
of Exact and Natural Sciences, 11 Lojasiewicza Street, 30-348 Krakow, Poland
| | - Ruben Arturo Arellano Reyes
- School
of Chemical Sciences, Dublin City University, 592, 628 Collins Ave Ext, Whitehall
Dublin 9, D09 E432 Dublin, Ireland
| | - Tia E. Keyes
- School
of Chemical Sciences, Dublin City University, 592, 628 Collins Ave Ext, Whitehall
Dublin 9, D09 E432 Dublin, Ireland
| | - Patrycja Dawiec
- Jagiellonian
University in Kraków, Doctoral School
of Exact and Natural Sciences, 11 Lojasiewicza Street, 30-348 Krakow, Poland
- Faculty
of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Malgorzata Baranska
- Jagiellonian
Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
- Faculty
of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| |
Collapse
|
6
|
Yu S, Li S, Xie Z, Liu W, Islam MM, Redshaw C, Cao MJ, Chen Q, Feng X. New pyrrolo[3,2-b]pyrroles with AIE characteristics for detection of dichloromethane and chloroform. LUMINESCENCE 2023. [PMID: 38053240 DOI: 10.1002/bio.4640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
Three new pyrrolo[3,2-b]pyrrole derivatives containing methoxyphenyl, pyrene or tetraphenylethylene (TPE) units (compounds 1-3) have been designed, synthesized and fully characterized. The aggregation-induced emission (AIE) properties of compounds 1-3 were tested in different water fraction (fw ) of tetrahydrofuran (THF). The pyrrolo[3,2-b]pyrrole derivative 3 containing TPE units exhibited typical AIE features with an enhanced emission (∼32-fold) in the solid state versus in solution; compounds 1 and 2 exhibited an aggregation-caused quenching effect. In addition, the steric and electronic effects of the peripheral moieties on the emission behavior, both in solution and in the solid state, have been investigated. Moreover, pyrrolo[3,2-b]pyrrole 1 exhibits high sensitivity and selectivity for dichloromethane and chloroform solvents, with the system displaying a new emission peak and fast response time under ultraviolet irradiation.
Collapse
Affiliation(s)
- Shuning Yu
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou, P. R. China
| | - Shaoling Li
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou, P. R. China
| | - Zhixin Xie
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou, P. R. China
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou, P. R. China
| | - Md Monarul Islam
- Synthesis Laboratory, Chemical Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhanmondi, Dhaka, Bangladesh
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull, UK
| | - Mei Juan Cao
- College of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing, P. R. China
| | - Qing Chen
- Science and Technology Innovation Center, Eco-Environmental Protection Company, China South-to-North Water Diversion Corporation Limited, Beijing, P. R. China
| | - Xing Feng
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou, P. R. China
| |
Collapse
|
7
|
Wang X, Xia J, Aipire A, Li J. Reviews of bio-orthogonal probes in bioscience by stimulated Raman scattering microscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 306:123545. [PMID: 39492383 DOI: 10.1016/j.saa.2023.123545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/10/2023] [Accepted: 10/14/2023] [Indexed: 11/05/2024]
Abstract
Stimulated Raman scattering (SRS) microscopy, is a nonlinear optical imaging method for visualizing chemical content based on molecular vibrational bonds, with high sensitivity, resolution, speed, and specificity. In the current review, we provided a comprehensive and critical review of the most recent developments in the field of SRS in combination with bio-orthogonal Raman tags or labels in bioscience. Firstly, we introduced the fundamentals of SRS microscopy and the theory principle of bio-orthogonal Raman tags. In particular, present the applications of each kind of bio-orthogonal Raman tags, including heavy water (D2O), stable isotope probes (SIP), and triple-bonds tags. And shared our vision for the remaining challenges, research needs, and potential future breakthroughs for SRS technology lastly. We envision that the advanced SRS imaging and analysis will be a major force in future biological discovery.
Collapse
Affiliation(s)
- Xiaoting Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Jingjing Xia
- Institute of Materia Medica, Xinjiang University, Urumqi, 830017, China.
| | - Adila Aipire
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China; Institute of Materia Medica, Xinjiang University, Urumqi, 830017, China.
| |
Collapse
|
8
|
Sharma CP, Vyas A, Pandey P, Gupta S, Vats RP, Jaiswal SP, Bhatt MLB, Sachdeva M, Goel A. A new class of teraryl-based AIEgen for highly selective imaging of intracellular lipid droplets and its detection in advanced-stage human cervical cancer tissues. J Mater Chem B 2023; 11:9922-9932. [PMID: 37840367 DOI: 10.1039/d3tb01764h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Lipid droplets (LDs) have drawn much attention in recent years. They serve as the energy reservoir of cells and also play an important role in numerous physiological processes. Furthermore, LDs are found to be associated with several pathological conditions, including cancer and diabetes mellitus. Herein, we report a new class of teraryl-based donor-acceptor-appended aggregation-induced emission luminogen (AIEgen), 6a, for selective staining of intracellular LDs in in vitro live 3T3-L1 preadipocytes and the HeLa cancer cell line. In addition, AIEgen 6a was found to be capable of staining and quantifying the LD accumulation in the tissue sections of advanced-stage human cervical cancer patients. Unlike commercial LD staining dyes Nile Red, BODIPY and LipidTOX, AIEgen 6a showed a high Stokes shift (195 nm), a good fluorescence lifetime decay of 12.7 ns, and LD staining persisting for nearly two weeks.
Collapse
Affiliation(s)
- Chandra Prakash Sharma
- Fluorescent Chemistry Lab, Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | - Akanksha Vyas
- Division of Endocrinology CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Priyanka Pandey
- Fluorescent Chemistry Lab, Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | - Shashwat Gupta
- Fluorescent Chemistry Lab, Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Ravi Prakash Vats
- Fluorescent Chemistry Lab, Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Sakshi Priya Jaiswal
- Fluorescent Chemistry Lab, Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | | | - Monika Sachdeva
- Division of Endocrinology CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Atul Goel
- Fluorescent Chemistry Lab, Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
9
|
Lee KW, Chen H, Wan Y, Zhang Z, Huang Z, Li S, Lee CS. Innovative probes with aggregation-induced emission characteristics for sensing gaseous signaling molecules. Biomaterials 2022; 289:121753. [DOI: 10.1016/j.biomaterials.2022.121753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/08/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022]
|
10
|
Benson S, de Moliner F, Tipping W, Vendrell M. Miniaturized Chemical Tags for Optical Imaging. Angew Chem Int Ed Engl 2022; 61:e202204788. [PMID: 35704518 PMCID: PMC9542129 DOI: 10.1002/anie.202204788] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 11/06/2022]
Abstract
Recent advances in optical bioimaging have prompted the need for minimal chemical reporters that can retain the molecular recognition properties and activity profiles of biomolecules. As a result, several methodologies to reduce the size of fluorescent and Raman labels to a few atoms (e.g., single aryl fluorophores, Raman-active triple bonds and isotopes) and embed them into building blocks (e.g., amino acids, nucleobases, sugars) to construct native-like supramolecular structures have been described. The integration of small optical reporters into biomolecules has also led to smart molecular entities that were previously inaccessible in an expedite manner. In this article, we review recent chemical approaches to synthesize miniaturized optical tags as well as some of their multiple applications in biological imaging.
Collapse
Affiliation(s)
- Sam Benson
- Centre for Inflammation ResearchThe University of EdinburghEdinburghEH16 4TJUK
| | - Fabio de Moliner
- Centre for Inflammation ResearchThe University of EdinburghEdinburghEH16 4TJUK
| | - William Tipping
- Centre for Molecular NanometrologyThe University of StrathclydeGlasgowG1 1RDUK
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghEdinburghEH16 4TJUK
| |
Collapse
|
11
|
Cui H, Glidle A, Cooper JM. Tracking Molecular Diffusion across Biomaterials' Interfaces Using Stimulated Raman Scattering. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31586-31593. [PMID: 35801584 PMCID: PMC9305705 DOI: 10.1021/acsami.2c04444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The determination of molecular diffusion across biomaterial interfaces, including those involving hydrogels and tissues remains important, underpinning the understanding of a broad range of processes including, for example, drug delivery. Current techniques using Raman spectroscopy have previously been established as a method to quantify diffusion coefficients, although when using spontaneous Raman spectroscopy, the signal can be weak and dominated by interferences such as background fluorescence (including biological autofluoresence). To overcome these issues, we demonstrate the use of the stimulated Raman scattering technique to obtain measurements in soft tissue samples that have good signal-to-noise ratios and are largely free from fluorescence interference. As a model illustration of a small metabolite/drug molecule being transported through tissue, we use deuterated (d7-) glucose and monitor the Raman C-D band in a spectroscopic region free from other Raman bands. The results show that although mass transport follows a diffusion process characterized by Fick's laws within hydrogel matrices, more complex mechanisms appear within tissues.
Collapse
Affiliation(s)
- Han Cui
- Beijing
Key Lab for Precision Optoelectronic Measurement Instrument and Technology,
School of Optics and Photonics, Beijing
Institute of Technology, Beijing 100081, China
- Division
of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom
| | - Andrew Glidle
- Division
of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom
| | - Jonathan M. Cooper
- Division
of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom
| |
Collapse
|
12
|
Hong Luo G, Zhao Xu T, Li X, Jiang W, Hong Duo Y, Zhong Tang B. Cellular organelle-targeted smart AIEgens in tumor detection, imaging and therapeutics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
13
|
Benson S, de Moliner F, Tipping W, Vendrell M. Miniaturized Chemical Tags for Optical Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sam Benson
- The University of Edinburgh Centre for Inflammation Research UNITED KINGDOM
| | - Fabio de Moliner
- The University of Edinburgh Centre for Inflammation Research UNITED KINGDOM
| | - William Tipping
- University of Strathclyde Centre for Molecular Nanometrology UNITED KINGDOM
| | - Marc Vendrell
- University of Edinburgh Centre for Inflammation Research 47 Little France Crescent EH16 4TJ Edinburgh UNITED KINGDOM
| |
Collapse
|
14
|
Manifold B, Fu D. Quantitative Stimulated Raman Scattering Microscopy: Promises and Pitfalls. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:269-289. [PMID: 35300525 PMCID: PMC10083020 DOI: 10.1146/annurev-anchem-061020-015110] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Since its first demonstration, stimulated Raman scattering (SRS) microscopy has become a powerful chemical imaging tool that shows promise in numerous biological and biomedical applications. The spectroscopic capability of SRS enables identification and tracking of specific molecules or classes of molecules, often without labeling. SRS microscopy also has the hallmark advantage of signal strength that is directly proportional to molecular concentration, allowing for in situ quantitative analysis of chemical composition of heterogeneous samples with submicron spatial resolution and subminute temporal resolution. However, it is important to recognize that quantification through SRS microscopy requires assumptions regarding both system and sample. Such assumptions are often taken axiomatically, which may lead to erroneous conclusions without proper validation. In this review, we focus on the tacitly accepted, yet complex, quantitative aspect of SRS microscopy. We discuss the various approaches to quantitative analysis, examples of such approaches, challenges in different systems, and potential solutions. Through our examination of published literature, we conclude that a scrupulous approach to experimental design can further expand the powerful and incisive quantitative capabilities of SRS microscopy.
Collapse
Affiliation(s)
- Bryce Manifold
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - Dan Fu
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
15
|
Brzozowski K, Matuszyk E, Pieczara A, Firlej J, Nowakowska AM, Baranska M. Stimulated Raman scattering microscopy in chemistry and life science - Development, innovation, perspectives. Biotechnol Adv 2022; 60:108003. [PMID: 35690271 DOI: 10.1016/j.biotechadv.2022.108003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022]
Abstract
In this review, we present a summary of the basics of the Stimulated Raman Scattering (SRS) phenomenon, methods of detecting the signal, and collection of the SRS images. We demonstrate the advantages of SRS imaging, and recent developments, but also the limitations, especially in image capture speeds and spatial resolution. We also compare the use of SRS microscopy in biological system studies with other techniques such as fluorescence microscopy, second-harmonic generation (SHG)-based microscopy, coherent anti-Stokes Raman scattering (CARS), and spontaneous Raman, and we show the compatibility of SRS-based systems with other discussed methods. The review is also focused on indicating innovations in SRS microscopy, on the background of which we present the layout and performance of our homemade setup built from commercially available elements enabling for imaging of the molecular structure of single cells over the spectral range of 800-3600 cm-1. Methods of image analysis are discussed, including machine learning methods for obtaining images of the distribution of selected molecules and for the detection of pathological lesions in tissues or malignant cells in the context of clinical diagnosis of a wide range of diseases with the use of SRS microscopy. Finally, perspectives for the development of SRS microscopy are proposed.
Collapse
Affiliation(s)
- K Brzozowski
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - E Matuszyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - A Pieczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - J Firlej
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - A M Nowakowska
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - M Baranska
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland; Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland.
| |
Collapse
|
16
|
Long-term in vivo imaging of mouse spinal cord through an optically cleared intervertebral window. Nat Commun 2022; 13:1959. [PMID: 35414131 PMCID: PMC9005710 DOI: 10.1038/s41467-022-29496-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/17/2022] [Indexed: 11/08/2022] Open
Abstract
The spinal cord accounts for the main communication pathway between the brain and the peripheral nervous system. Spinal cord injury is a devastating and largely irreversible neurological trauma, and can result in lifelong disability and paralysis with no available cure. In vivo spinal cord imaging in mouse models without introducing immunological artifacts is critical to understand spinal cord pathology and discover effective treatments. We developed a minimally invasive intervertebral window by retaining the ligamentum flavum to protect the underlying spinal cord. By introducing an optical clearing method, we achieve repeated two-photon fluorescence and stimulated Raman scattering imaging at subcellular resolution with up to 15 imaging sessions over 6-167 days and observe no inflammatory response. Using this optically cleared intervertebral window, we study neuron-glia dynamics following laser axotomy and observe strengthened contact of microglia with the nodes of Ranvier during axonal degeneration. By enabling long-term, repetitive, stable, high-resolution and inflammation-free imaging of mouse spinal cord, our method provides a reliable platform in the research aiming at interpretation of spinal cord physiology and pathology.
Collapse
|
17
|
Koike K, Smith NI, Fujita K. Spectral focusing in picosecond pulsed stimulated Raman scattering microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:995-1004. [PMID: 35284158 PMCID: PMC8884224 DOI: 10.1364/boe.445640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
We introduce spectral focusing of picosecond laser pulses in stimulated Raman scattering (SRS) microscopy to improve spectral resolution, reduce nonlinear background signals, and decrease nonlinear photodamage. We produce a pair of 14 ps pump and Stokes laser pulses by spectral focusing of a 2 ps laser and achieve a spectral resolution of 2 cm-1. Due to instantaneous narrow-band excitation, we find that the chirped 14 ps laser pulses can be used to improve the signal-to-background ratio in SRS microscopy of various samples such as polymer particles and small molecules in HeLa cells. The lower peak powers produced by chirped picosecond laser pulses also reduce nonlinear photodamage, allowing long-term SRS imaging of living cells with higher SNR.
Collapse
Affiliation(s)
- Kota Koike
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nicholas I. Smith
- Immunology Frontier Research Center, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Katsumasa Fujita
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Bagheri P, Hoang K, Fung AA, Hussain S, Shi L. Visualizing Cancer Cell Metabolic Dynamics Regulated With Aromatic Amino Acids Using DO-SRS and 2PEF Microscopy. Front Mol Biosci 2021; 8:779702. [PMID: 34977157 PMCID: PMC8714916 DOI: 10.3389/fmolb.2021.779702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022] Open
Abstract
Oxidative imbalance plays an essential role in the progression of many diseases that include cancer and neurodegenerative diseases. Aromatic amino acids (AAA) such as phenylalanine and tryptophan have the capability of escalating oxidative stress because of their involvement in the production of Reactive Oxygen Species (ROS). Here, we use D2O (heavy water) probed stimulated Raman scattering microscopy (DO-SRS) and two Photon Excitation Fluorescence (2PEF) microscopy as a multimodal imaging approach to visualize metabolic changes in HeLa cells under excess AAA such as phenylalanine or trytophan in culture media. The cellular spatial distribution of de novo lipogenesis, new protein synthesis, NADH, Flavin, unsaturated lipids, and saturated lipids were all imaged and quantified in this experiment. Our studies reveal ∼10% increase in de novo lipogenesis and the ratio of NADH to flavin, and ∼50% increase of the ratio of unsaturated lipids to saturated lipid in cells treated with excess phenylalanine or trytophan. In contrast, these cells exhibited a decrease in the protein synthesis rate by ∼10% under these AAA treatments. The cellular metabolic activities of these biomolecules are indicators of elevated oxidative stress and mitochondrial dysfunction. Furthermore, 3D reconstruction images of lipid droplets were acquired and quantified to observe their spatial distribution around cells’ nuceli under different AAA culture media. We observed a higher number of lipid droplets in excess AAA conditions. Our study showcases that DO-SRS imaging can be used to quantitatively study how excess AAA regulates metabolic activities of cells with subcellular resolution in situ.
Collapse
|
19
|
Su X, Liu R, Li Y, Han T, Zhang Z, Niu N, Kang M, Fu S, Wang D, Wang D, Tang BZ. Aggregation-Induced Emission-Active Poly(phenyleneethynylene)s for Fluorescence and Raman Dual-Modal Imaging and Drug-Resistant Bacteria Killing. Adv Healthc Mater 2021; 10:e2101167. [PMID: 34606177 DOI: 10.1002/adhm.202101167] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Poly(phenyleneethynylene) (PPE) is a widely used functional conjugated polymer with applications ranging from organic optoelectronics and fluorescence sensors to optical imaging and theranostics. However, the fluorescence efficiency of PPE in aggregate states is generally not as good as their solution states, which greatly compromises their performance in fluorescence-related applications. Herein, a series of PPE derivatives with typical aggregation-induced emission (AIE) properties is designed and synthesized. In these PPEs, the diethylamino-substituted tetraphenylethene units function as the long-wavelength AIE source and the alkyl side chains serve as the functionalization site. The obtained AIE-active PPEs with large π-conjugation show strong aggregate-state fluorescence, interesting self-assembly behaviors, inherently enhanced alkyne vibrations in the Raman-silent region of cells, and efficient antibacterial activities. The PPE nanoparticles with good cellular uptake capability can clearly and sensitively visualize the tumor region and residual tumors via their fluorescence and Raman signals, respectively, to benefit the precise tumor resection surgery. After post-functionalization, the obtained PPE-based polyelectrolyte can preferentially image bacteria over mammalian cells and possesses efficient photodynamic killing capability against Gram-positive and drug-resistant bacteria. This work provides a feasible design strategy for developing functional conjugated polymers with multimodal imaging capability as well as photodynamic antimicrobial ability.
Collapse
Affiliation(s)
- Xiang Su
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 China
| | - Ruihua Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences Nankai University Tianjin 300071 China
| | - Ying Li
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
| | - Ting Han
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
| | - Zhijun Zhang
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Niu Niu
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Miaomiao Kang
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Shuang Fu
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Deliang Wang
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Dong Wang
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 China
- Shenzhen Institute of Aggregate Science and Technology School of Science and Engineering The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| |
Collapse
|
20
|
Schie IW, Stiebing C, Popp J. Looking for a perfect match: multimodal combinations of Raman spectroscopy for biomedical applications. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210137VR. [PMID: 34387049 PMCID: PMC8358667 DOI: 10.1117/1.jbo.26.8.080601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Raman spectroscopy has shown very promising results in medical diagnostics by providing label-free and highly specific molecular information of pathological tissue ex vivo and in vivo. Nevertheless, the high specificity of Raman spectroscopy comes at a price, i.e., low acquisition rate, no direct access to depth information, and limited sampling areas. However, a similar case regarding advantages and disadvantages can also be made for other highly regarded optical modalities, such as optical coherence tomography, autofluorescence imaging and fluorescence spectroscopy, fluorescence lifetime microscopy, second-harmonic generation, and others. While in these modalities the acquisition speed is significantly higher, they have no or only limited molecular specificity and are only sensitive to a small group of molecules. It can be safely stated that a single modality provides only a limited view on a specific aspect of a biological specimen and cannot assess the entire complexity of a sample. To solve this issue, multimodal optical systems, which combine different optical modalities tailored to a particular need, become more and more common in translational research and will be indispensable diagnostic tools in clinical pathology in the near future. These systems can assess different and partially complementary aspects of a sample and provide a distinct set of independent biomarkers. Here, we want to give an overview on the development of multimodal systems that use RS in combination with other optical modalities to improve the diagnostic performance.
Collapse
Affiliation(s)
- Iwan W. Schie
- Leibniz Institute of Photonic Technology, Jena, Germany
- University of Applied Sciences—Jena, Department for Medical Engineering and Biotechnology, Jena, Germany
| | | | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Jena, Germany
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Jena, Germany
| |
Collapse
|
21
|
Matuszyk E, Adamczyk A, Radwan B, Pieczara A, Szcześniak P, Mlynarski J, Kamińska K, Baranska M. Multiplex Raman imaging of organelles in endothelial cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119658. [PMID: 33744837 DOI: 10.1016/j.saa.2021.119658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Raman imaging using molecular reporters is a relatively new approach in subcellular investigations. It enables the visualization of organelles in cells with better selectivity and sensitivity compared to the label-free approach. Essentially Raman reporters possess in their structure an alkyne molecular group that can be selectively identified in the spectral region silent for biomolecules, hence facilitate the localization of individual organelles. The aim of this work is to visualize the main cell organelles in endothelial cells (HMEC-1) using established reporters (EdU and MitoBADY), but also to test a new one, namely falcarinol, which exhibits lipophilic properties. Moreover, we tested the possibility to use Raman reporters as a probe to detect changes in distribution of certain organelles after induced endothelial dysfunction (ED) in in vitro models. In both cases, induced ED is characterized by the formation of lipid droplets in the cells, which is why a good tool for the detection of lipid-rich organelles is so important in these studies. Two-dimensional Raman images were obtained, visualizing the distribution of selected organic compounds in the cell, such as proteins, lipids, and nucleic acids. Additionally, the distribution of EdU, MitoBADY and falcarinol in endothelial cells (ECs) was determined. Moreover, we highlight some drawback of established Raman reporter and the need for testing them in various physiological state of the cell.
Collapse
Affiliation(s)
- Ewelina Matuszyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland.
| | - Adriana Adamczyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Basseem Radwan
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Anna Pieczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Piotr Szcześniak
- Institute of Organic Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka Str., 01-224 Warsaw, Poland
| | - Jacek Mlynarski
- Institute of Organic Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka Str., 01-224 Warsaw, Poland
| | - Katarzyna Kamińska
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Malgorzata Baranska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland.
| |
Collapse
|
22
|
Lin J, Graziotto ME, Lay PA, New EJ. A Bimodal Fluorescence-Raman Probe for Cellular Imaging. Cells 2021; 10:cells10071699. [PMID: 34359866 PMCID: PMC8303253 DOI: 10.3390/cells10071699] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/24/2022] Open
Abstract
Biochemical changes in specific organelles underpin cellular function, and studying these changes is crucial to understand health and disease. Fluorescent probes have become important biosensing and imaging tools as they can be targeted to specific organelles and can detect changes in their chemical environment. However, the sensing capacity of fluorescent probes is highly specific and is often limited to a single analyte of interest. A novel approach to imaging organelles is to combine fluorescent sensors with vibrational spectroscopic imaging techniques; the latter provides a comprehensive map of the relative biochemical distributions throughout the cell to gain a more complete picture of the biochemistry of organelles. We have developed NpCN1, a bimodal fluorescence-Raman probe targeted to the lipid droplets, incorporating a nitrile as a Raman tag. NpCN1 was successfully used to image lipid droplets in 3T3-L1 cells in both fluorescence and Raman modalities, reporting on the chemical composition and distribution of the lipid droplets in the cells.
Collapse
Affiliation(s)
- Jiarun Lin
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia; (J.L.); (M.E.G.)
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW 2006, Australia
| | - Marcus E. Graziotto
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia; (J.L.); (M.E.G.)
| | - Peter A. Lay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia; (J.L.); (M.E.G.)
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: (P.A.L.); (E.J.N.); Tel.: +61-2-9351-4269 (P.A.L.); + 61-2-9351-3329 (E.J.N.)
| | - Elizabeth J. New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia; (J.L.); (M.E.G.)
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: (P.A.L.); (E.J.N.); Tel.: +61-2-9351-4269 (P.A.L.); + 61-2-9351-3329 (E.J.N.)
| |
Collapse
|
23
|
Muniyasamy H, Chinnadurai C, Nelson M, Veeramanoharan A, Sepperumal M, Ayyanar S. Synthesis of C 3-Symmetric Triazine-Based Derivatives: Study of their AIEE, Mechanochromic Behaviors, and Detection of Picric Acid and Uric Acid in Aqueous Medium. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Harikrishnan Muniyasamy
- Supramolecular and Organometallic Chemistry Laboratory, Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu 625 021, India
| | - Chithiraikumar Chinnadurai
- Supramolecular and Organometallic Chemistry Laboratory, Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu 625 021, India
| | - Malini Nelson
- Supramolecular and Organometallic Chemistry Laboratory, Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu 625 021, India
| | - Ashokkumar Veeramanoharan
- Supramolecular and Organometallic Chemistry Laboratory, Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu 625 021, India
| | - Murugesan Sepperumal
- Supramolecular and Organometallic Chemistry Laboratory, Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu 625 021, India
| | - Siva Ayyanar
- Supramolecular and Organometallic Chemistry Laboratory, Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu 625 021, India
| |
Collapse
|
24
|
Mayakrishnan S, Tamizmani M, Balachandran C, Aoki S, Maheswari NU. Rh(iii)-Catalysed synthesis of cinnolinium and fluoranthenium salts using C-H activation/annulation reactions: organelle specific mitochondrial staining applications. Org Biomol Chem 2021; 19:5413-5425. [PMID: 34047328 DOI: 10.1039/d1ob00376c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The construction of a novel class of indazolo[2,1-a]cinnolin-7-ium and diazabenzofluoranthenium salts was developed by using Rh(iii)-catalyzed C-H activation/annulation reactions with 2-phenyl-2H-indazole, and internal alkynes, which resulted in structurally important polycyclic heteroaromatic compounds (PHAs). This reaction uses mild reaction conditions and has a high efficiency, low catalyst loading, and wide substrate scope. The overall catalytic process involves C-H activation followed by C-C/C-N bond formation. Furthermore, the synthesised cinnolinium/fluoranthenium salts exhibit potential fluorescence properties and 5i was targeted in particular for specific mitochondrial staining in order to investigate cancer cell lines.
Collapse
Affiliation(s)
- Sivakalai Mayakrishnan
- Organic & Bioorganic Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai-600020, India.
| | - Masilamani Tamizmani
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Chandrasekar Balachandran
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Narayanan Uma Maheswari
- Organic & Bioorganic Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai-600020, India.
| |
Collapse
|
25
|
Switchable stimulated Raman scattering microscopy with photochromic vibrational probes. Nat Commun 2021; 12:3089. [PMID: 34035304 PMCID: PMC8149663 DOI: 10.1038/s41467-021-23407-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Photochromic probes with reversible fluorescence have revolutionized the fields of single molecule spectroscopy and super-resolution microscopy, but lack sufficient chemical specificity. In contrast, Raman probes with stimulated Raman scattering (SRS) microscopy provides superb chemical resolution for super-multiplexed imaging, but are relatively inert. Here we report vibrational photochromism by engineering alkyne tagged diarylethene to realize photo-switchable SRS imaging. The narrow Raman peak of the alkyne group shifts reversibly upon photoisomerization of the conjugated diarylethene when irradiated by ultraviolet (UV) or visible light, yielding “on” or “off” SRS images taken at the photoactive Raman frequency. We demonstrated photo-rewritable patterning and encryption on thin films, painting/erasing of cells with labelled alkyne-diarylethene, as well as pulse-chase experiments of mitochondria diffusion in living cells. The design principle provides potentials for super-resolution microscopy, optical memories and switches with vibrational specificity. Probes with reversible fluorescence are useful in super-resolution microscopy, but lack sufficient chemical specificity. Here, the authors engineer alkyne tagged diarylethene to realize photo-switchable stimulated Raman scattering probes with high chemical resolution, for applications in living cells.
Collapse
|
26
|
Bhaumik SK, Banerjee S. Highly sensitive and ratiometric luminescence sensing of heparin through templated cyanostilbene assemblies. Analyst 2021; 146:2194-2202. [PMID: 33587729 DOI: 10.1039/d0an01808b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The assembly of organic dyes on bio-molecular templates is an attractive strategy for the creation of bio-materials with intriguing optical properties. This principle is exploited here for the detection of polyanion heparin, a known anticoagulant, by employing di-cationic cyanostilbene derivatives with inherent aggregation induced emission (AIE) features. The cyanostilbene derivatives exhibited weak cyan-blue monomeric emissions in solutions but upon electrostatic co-assembly with heparin, formed highly luminescent clusters on the polyanion surface. The cyanostilbene chromophores in the clusters exhibited greenish-yellow excimer emissions with remarkably longer life-times (up to 70-fold) and higher quantum yields (up to 85-fold) compared to their aqueous solutions. This led to heparin detection in aqueous buffer in low nanomolar concentrations. Additionally, and more importantly, a ratiometric detection of heparin was achieved in highly competitive media such as 50% human serum and 60% human plasma in medically relevant concentrations.
Collapse
Affiliation(s)
- Shubhra Kanti Bhaumik
- The Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, India.
| | | |
Collapse
|
27
|
Enhancing near-infrared AIE of photosensitizer with twisted intramolecular charge transfer characteristics via rotor effect for AIE imaging-guided photodynamic ablation of cancer cells. Talanta 2021; 225:122046. [PMID: 33592768 DOI: 10.1016/j.talanta.2020.122046] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 01/10/2023]
Abstract
Near-infrared (NIR) aggregation-induced emission (AIE) of previous organic photosensitizers is usually weak because of the competition between twisted intramolecular charge transfer (TICT) effect and AIE. Herein, we report a rational molecular design strategy to boost NIR AIE of photosensitizers and still to keep strong 1O2 production capacity via rotor effect. To this end, one new triphenylamine (TPA)-based AIE photosensitizer, TPAM-1, is designed to give strong ability to generate 1O2 but weak NIR fluorescence in the aggregate state due to the strong TICT effect. Another new TPA-based AIE photosensitizer, TPAM-2, is designed by introducing three p-methoxyphenyl units as rotors into the structure of TPAM-1 to modulate the competition between AIE and TICT. TPAM-1 and TPAM-2 exhibit stronger ability to generate 1O2 in the aggregate state than the commercial photosensitizer, Ce6. Furthermore, TPAM-2 gives much brighter NIR luminescence (25-times higher quantum yield) than TPAM-1 in the aggregate state due to the rotor effect. TPAM-2 with strong NIR AIE and 1O2 production capability was encapsulated by DSPE-PEG2000 to give good biocompatibility. The DSPE-PEG2000-encapsulated TPAM-2 nanoparticles show good cell imaging performance and remarkable photosensitive activity for killing HeLa cells. This work provides a new way for designing ideal photosensitizers for AIE imaging-guided photodynamic therapy.
Collapse
|
28
|
Ferger M, Ban Ž, Krošl I, Tomić S, Dietrich L, Lorenzen S, Rauch F, Sieh D, Friedrich A, Griesbeck S, Kenđel A, Miljanić S, Piantanida I, Marder TB. Bis(phenylethynyl)arene Linkers in Tetracationic Bis-triarylborane Chromophores Control Fluorimetric and Raman Sensing of Various DNAs and RNAs. Chemistry 2021; 27:5142-5159. [PMID: 33411942 PMCID: PMC8048639 DOI: 10.1002/chem.202005141] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/20/2020] [Indexed: 11/24/2022]
Abstract
We report four new luminescent tetracationic bis-triarylborane DNA and RNA sensors that show high binding affinities, in several cases even in the nanomolar range. Three of the compounds contain substituted, highly emissive and structurally flexible bis(2,6-dimethylphenyl-4-ethynyl)arene linkers (3: arene=5,5'-2,2'-bithiophene; 4: arene=1,4-benzene; 5: arene=9,10-anthracene) between the two boryl moieties and serve as efficient dual Raman and fluorescence chromophores. The shorter analogue 6 employs 9,10-anthracene as the linker and demonstrates the importance of an adequate linker length with a certain level of flexibility by exhibiting generally lower binding affinities than 3-5. Pronounced aggregation-deaggregation processes are observed in fluorimetric titration experiments with DNA for compounds 3 and 5. Molecular modelling of complexes of 5 with AT-DNA, suggest the minor groove as the dominant binding site for monomeric 5, but demonstrate that dimers of 5 can also be accommodated. Strong SERS responses for 3-5 versus a very weak response for 6, particularly the strong signals from anthracene itself observed for 5 but not for 6, demonstrate the importance of triple bonds for strong Raman activity in molecules of this compound class. The energy of the characteristic stretching vibration of the C≡C bonds is significantly dependent on the aromatic moiety between the triple bonds. The insertion of aromatic moieties between two C≡C bonds thus offers an alternative design for dual Raman and fluorescence chromophores, applicable in multiplex biological Raman imaging.
Collapse
Affiliation(s)
- Matthias Ferger
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Željka Ban
- Division of Organic Chemistry & BiochemistryRuđer Bošković Institute, Bijenička 5410000ZagrebCroatia
| | - Ivona Krošl
- Division of Organic Chemistry & BiochemistryRuđer Bošković Institute, Bijenička 5410000ZagrebCroatia
| | - Sanja Tomić
- Division of Organic Chemistry & BiochemistryRuđer Bošković Institute, Bijenička 5410000ZagrebCroatia
| | - Lena Dietrich
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Sabine Lorenzen
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Florian Rauch
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Daniel Sieh
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Stefanie Griesbeck
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Adriana Kenđel
- Division of Analytical ChemistryDepartment of Chemistry, Faculty of ScienceUniversity of Zagreb, Horvatovac 102a10000ZagrebCroatia
| | - Snežana Miljanić
- Division of Analytical ChemistryDepartment of Chemistry, Faculty of ScienceUniversity of Zagreb, Horvatovac 102a10000ZagrebCroatia
| | - Ivo Piantanida
- Division of Organic Chemistry & BiochemistryRuđer Bošković Institute, Bijenička 5410000ZagrebCroatia
| | - Todd B. Marder
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
29
|
Wang T, Hu Z, Nie X, Huang L, Hui M, Sun X, Zhang G. Thermochromic aggregation-induced dual phosphorescence via temperature-dependent sp 3-linked donor-acceptor electronic coupling. Nat Commun 2021; 12:1364. [PMID: 33649318 PMCID: PMC7921125 DOI: 10.1038/s41467-021-21676-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/08/2021] [Indexed: 12/21/2022] Open
Abstract
Aggregation-induced emission (AIE) has proven to be a viable strategy to achieve highly efficient room temperature phosphorescence (RTP) in bulk by restricting molecular motions. Here, we show that by utilizing triphenylamine (TPA) as an electronic donor that connects to an acceptor via an sp3 linker, six TPA-based AIE-active RTP luminophores were obtained. Distinct dual phosphorescence bands emitting from largely localized donor and acceptor triplet emitting states could be recorded at lowered temperatures; at room temperature, only a merged RTP band is present. Theoretical investigations reveal that the two temperature-dependent phosphorescence bands both originate from local/global minima from the lowest triplet excited state (T1). The reported molecular construct serves as an intermediary case between a fully conjugated donor-acceptor system and a donor/acceptor binary mix, which may provide important clues on the design and control of high-freedom molecular systems with complex excited-state dynamics.
Collapse
Affiliation(s)
- Tao Wang
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, China
| | - Zhubin Hu
- Division of Arts and Science, NYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai, China
| | - Xiancheng Nie
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, China
| | - Linkun Huang
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, China
| | - Miao Hui
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, China
| | - Xiang Sun
- Division of Arts and Science, NYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai, China. .,Department of Chemistry, New York University, New York, NY, USA.
| | - Guoqing Zhang
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
30
|
Wu L, Liu J, Li P, Tang B, James TD. Two-photon small-molecule fluorescence-based agents for sensing, imaging, and therapy within biological systems. Chem Soc Rev 2021; 50:702-734. [DOI: 10.1039/d0cs00861c] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this tutorial review, we will explore recent advances for the design, construction and application of two-photon excited fluorescence (TPEF)-based small-molecule probes.
Collapse
Affiliation(s)
- Luling Wu
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes, Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institutes of Biomedical Sciences
| | - Jihong Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes, Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institutes of Biomedical Sciences
| | - Ping Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes, Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institutes of Biomedical Sciences
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes, Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institutes of Biomedical Sciences
| | - Tony D. James
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes, Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institutes of Biomedical Sciences
| |
Collapse
|
31
|
Li Y, Shen B, Li S, Zhao Y, Qu J, Liu L. Review of Stimulated Raman Scattering Microscopy Techniques and Applications in the Biosciences. Adv Biol (Weinh) 2020; 5:e2000184. [PMID: 33724734 DOI: 10.1002/adbi.202000184] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/17/2020] [Indexed: 01/10/2023]
Abstract
Stimulated Raman scattering (SRS) microscopy is a nonlinear optical imaging method for visualizing chemical content based on molecular vibrational bonds. Featuring high speed, high resolution, high sensitivity, high accuracy, and 3D sectioning, SRS microscopy has made tremendous progress toward biochemical information acquisition, cellular function investigation, and label-free medical diagnosis in the biosciences. In this review, the principle of SRS, system design, and data analysis are introduced, and the current innovations of the SRS system are reviewed. In particular, combined with various bio-orthogonal Raman tags, the applications of SRS microscopy in cell metabolism, tumor diagnosis, neuroscience, drug tracking, and microbial detection are briefly examined. The future prospects for SRS microscopy are also shared.
Collapse
Affiliation(s)
- Yanping Li
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518060, China
| | - Binglin Shen
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518060, China
| | - Shaowei Li
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518060, China
| | - Yihua Zhao
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518060, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518060, China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518060, China
| |
Collapse
|
32
|
Chen M, Qin A, Lam JW, Tang BZ. Multifaceted functionalities constructed from pyrazine-based AIEgen system. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213472] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Azemtsop Matanfack G, Rüger J, Stiebing C, Schmitt M, Popp J. Imaging the invisible-Bioorthogonal Raman probes for imaging of cells and tissues. JOURNAL OF BIOPHOTONICS 2020; 13:e202000129. [PMID: 32475014 DOI: 10.1002/jbio.202000129] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
A revolutionary avenue for vibrational imaging with super-multiplexing capability can be seen in the recent development of Raman-active bioortogonal tags or labels. These tags and isotopic labels represent groups of chemically inert and small modifications, which can be introduced to any biomolecule of interest and then supplied to single cells or entire organisms. Recent developments in the field of spontaneous Raman spectroscopy and stimulated Raman spectroscopy in combination with targeted imaging of biomolecules within living systems are the main focus of this review. After having introduced common strategies for bioorthogonal labeling, we present applications thereof for profiling of resistance patterns in bacterial cells, investigations of pharmaceutical drug-cell interactions in eukaryotic cells and cancer diagnosis in whole tissue samples. Ultimately, this approach proves to be a flexible and robust tool for in vivo imaging on several length scales and provides comparable information as fluorescence-based imaging without the need of bulky fluorescent tags.
Collapse
Affiliation(s)
- Georgette Azemtsop Matanfack
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology - a member of the Leibniz Research Alliance Leibniz Health Technology (Leibniz-IPHT), Jena, Germany
- Research Campus Infectognostics e.V., Jena, Germany
| | - Jan Rüger
- Leibniz Institute of Photonic Technology - a member of the Leibniz Research Alliance Leibniz Health Technology (Leibniz-IPHT), Jena, Germany
| | - Clara Stiebing
- Leibniz Institute of Photonic Technology - a member of the Leibniz Research Alliance Leibniz Health Technology (Leibniz-IPHT), Jena, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology - a member of the Leibniz Research Alliance Leibniz Health Technology (Leibniz-IPHT), Jena, Germany
- Research Campus Infectognostics e.V., Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology - a member of the Leibniz Research Alliance Leibniz Health Technology (Leibniz-IPHT), Jena, Germany
- Research Campus Infectognostics e.V., Jena, Germany
| |
Collapse
|
34
|
Tang X, Wu Y, Zhao R, Kou X, Dong Z, Zhou W, Zhang Z, Tan W, Fang X. Photorelease of Pyridines Using a Metal‐Free Photoremovable Protecting Group. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao‐Jun Tang
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yayun Wu
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Rong Zhao
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Xiaolong Kou
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zaizai Dong
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Wei Zhou
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zhen Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Weihong Tan
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Institute of Cancer and Basic Medicine Chinese Academy of Sciences Hangzhou 310022 China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Institute of Cancer and Basic Medicine Chinese Academy of Sciences Hangzhou 310022 China
| |
Collapse
|
35
|
Tang XJ, Wu Y, Zhao R, Kou X, Dong Z, Zhou W, Zhang Z, Tan W, Fang X. Photorelease of Pyridines Using a Metal-Free Photoremovable Protecting Group. Angew Chem Int Ed Engl 2020; 59:18386-18389. [PMID: 32671906 DOI: 10.1002/anie.202005310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Indexed: 12/18/2022]
Abstract
The photorelease of bioactive molecules has emerged as a valuable tool in biochemistry. Nevertheless, many important bioactive molecules, such as pyridine derivatives, cannot benefit from currently available organic photoremovable protecting groups (PPGs). We found that the inefficient photorelease of pyridines is attributed to intramolecular photoinduced electron transfer (PET) from PPGs to pyridinium ions. To alleviate PET, we rationally designed a strategy to drive the excited state of PPG from S1 to T1 with a heavy atom, and synthesized a new PPG by substitution of the H atom at the 3-position of 7-dietheylamino-coumarin-4-methyl (DEACM) with Br or I. This resulted in an improved photolytic efficiency of the pyridinium ion by hundreds-fold in aqueous solution. The PPG can be applied to various pyridine derivatives. The successful photorelease of a microtubule inhibitor, indibulin, in living cells was demonstrated for the potential application of this strategy in biochemical research.
Collapse
Affiliation(s)
- Xiao-Jun Tang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yayun Wu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Rong Zhao
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaolong Kou
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zaizai Dong
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Zhou
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhen Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weihong Tan
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| |
Collapse
|
36
|
Agarwal DS, Prakash Singh R, Jha PN, Sakhuja R. Fabrication of deoxycholic acid tethered α-cyanostilbenes as smart low molecular weight gelators and AIEE probes for bio-imaging. Steroids 2020; 160:108659. [PMID: 32439407 DOI: 10.1016/j.steroids.2020.108659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/22/2020] [Accepted: 05/14/2020] [Indexed: 02/08/2023]
Abstract
Four novel deoxycholic acid tethered α-cyanostilbenes were designed, synthesized and characterized using detailed spectroscopic analysis. The synthesized deoxycholic acid tethered α-cyanostilbene derivatives formed stable gels with a variety of solvents, such as xylene, toluene, mesitylene, decane, dodecane etc. The stable gels showed lamellar sheet type structures stacked over each other, consisting of entangled fibres as evident from SEM, TEM and Fluorescence Microscopy images; The synthesized compounds exhibited AIEE behaviour in H2O/THF mixture, with the maximum emission observed in 70% H2O/THF fraction along with a bathochromic shift. A solvent thickening experiment was perform to establish the mechanism of AIEE and the AIEE property was explored for bacterial bio-imaging. The synthesized derivatized steroids proved their potential as multifunctional organic materials.
Collapse
Affiliation(s)
- Devesh S Agarwal
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India
| | - Rajnish Prakash Singh
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India
| | - Prabhat N Jha
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India
| | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| |
Collapse
|
37
|
Amini H, Ban Ž, Ferger M, Lorenzen S, Rauch F, Friedrich A, Crnolatac I, Kenđel A, Miljanić S, Piantanida I, Marder TB. Tetracationic Bis-Triarylborane 1,3-Butadiyne as a Combined Fluorimetric and Raman Probe for Simultaneous and Selective Sensing of Various DNA, RNA, and Proteins. Chemistry 2020; 26:6017-6028. [PMID: 32104942 PMCID: PMC7318631 DOI: 10.1002/chem.201905328] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Indexed: 11/22/2022]
Abstract
A bis-triarylborane tetracation (4-Ar2 B-3,5-Me2 C6 H2 )-C≡C-C≡C-(3,5-Me2 C6 H2 -4-BAr2 [Ar=(2,6-Me2 -4-NMe3 -C6 H2 )+ ] (24+ ) shows distinctly different behaviour in its fluorimetric response than that of our recently published bis-triarylborane 5-(4-Ar2 B-3,5-Me2 C6 H2 )-2,2'-(C4 H2 S)2 -5'-(3,5-Me2 C6 H2 -4-BAr2 ) (34+ ). Single-crystal X-ray diffraction data on the neutral bis-triarylborane precursor 2 N confirm its rod-like dumbbell structure, which is shown to be important for DNA/RNA targeting and also for BSA protein binding. Fluorimetric titrations with DNA/RNA/BSA revealed the very strong affinity of 24+ and indicated the importance of the properties of the linker connecting the two triarylboranes. Using the butadiyne rather than a bithiophene linker resulted in an opposite emission effect (quenching vs. enhancement), and 24+ bound to BSA 100 times stronger than 34+ . Moreover, 24+ interacted strongly with ss-RNA, and circular dichroism (CD) results suggest ss-RNA chain-wrapping around the rod-like bis-triarylborane dumbbell structure like a thread around a spindle, a very unusual mode of binding of ss-RNA with small molecules. Furthermore, 24+ yielded strong Raman/SERS signals, allowing DNA or protein detection at ca. 10 nm concentrations. The above observations, combined with low cytotoxicity, efficient human cell uptake and organelle-selective accumulation make such compounds intriguing novel lead structures for bio-oriented, dual fluorescence/Raman-based applications.
Collapse
Affiliation(s)
- Hashem Amini
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgWürzburg97074Germany
| | - Željka Ban
- Laboratory for Study of Interactions of BiomacromoleculesDivision of Organic Chemistry & BiochemistryRuđer Bošković InstituteZagrebHR-10000Croatia
| | - Matthias Ferger
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgWürzburg97074Germany
| | - Sabine Lorenzen
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgWürzburg97074Germany
| | - Florian Rauch
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgWürzburg97074Germany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgWürzburg97074Germany
| | - Ivo Crnolatac
- Laboratory for Study of Interactions of BiomacromoleculesDivision of Organic Chemistry & BiochemistryRuđer Bošković InstituteZagrebHR-10000Croatia
| | - Adriana Kenđel
- Division of Analytical ChemistryDepartment of ChemistryFaculty of ScienceUniversity of ZagrebZagrebHR-10000Croatia
| | - Snežana Miljanić
- Division of Analytical ChemistryDepartment of ChemistryFaculty of ScienceUniversity of ZagrebZagrebHR-10000Croatia
| | - Ivo Piantanida
- Laboratory for Study of Interactions of BiomacromoleculesDivision of Organic Chemistry & BiochemistryRuđer Bošković InstituteZagrebHR-10000Croatia
| | - Todd B. Marder
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgWürzburg97074Germany
| |
Collapse
|
38
|
Zhang S, Xie Y, Yan L. Ultra-fast and visual detection of hydrazine hydrate based on a simple coumarin derivative. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118028. [PMID: 31931356 DOI: 10.1016/j.saa.2020.118028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/25/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
A cleverish fluorescence probe based on coumarin was developed, exhibiting remarkable color change, strong fluorescence enhancement and fast response when it interacts with hydrazine in water solution. The limit of detection (LOD) is 5.59 × 10-6 M for ultraviolet analysis and 8.18 × 10-8 M for fluorescence analysis, respectively. Taking advantage of good sensitivity and short response time, the probe was applied to test hydrazine in water and to observe hydrazine in living cells.
Collapse
Affiliation(s)
- Shiqing Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, PR China
| | - Ya Xie
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, PR China
| | - Liqiang Yan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, PR China.
| |
Collapse
|
39
|
Liu X, Liu X, Rong P, Liu D. Recent advances in background-free Raman scattering for bioanalysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115765] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
|
41
|
Tarai A, Huang M, Das P, Pan W, Zhang J, Gu Z, Yan W, Qu J, Yang Z. ICT and AIE Characteristics Two Cyano-Functionalized Probes and Their Photophysical Properties, DFT Calculations, Cytotoxicity, and Cell Imaging Applications. Molecules 2020; 25:E585. [PMID: 32013190 PMCID: PMC7037400 DOI: 10.3390/molecules25030585] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 11/16/2022] Open
Abstract
Two probes, AIE-1 and AIE-2, were synthesized to investigate the effect of substitutional functional group on aggregation (aggregation-caused quenching (ACQ) or aggregation-induced emission (AIE)) and intramolecular charge transfer (ICT) behavior as well as on the cell imaging aspect. The yellow-color non-substituted probe AIE-1 showed weak charge-transfer absorption and an emission band at 377 nm and 432 nm, whereas the yellowish-orange color substituted probe AIE-2 showed a strong charge-transfer absorption and an emission band at 424 nm and 477 nm in THF solvent. The UV-Vis studies of AIE-1 and AIE-2 in THF and THF with different water fractions showed huge absorption changes in AIE-2 with high water fractions due to its strong aggregation behavior, but no such noticeable absorption changes were observed for AIE-1. Interestingly, the fluorescence intensity of AIE-1 at 432 nm gradually decreased with increasing water fractions and became almost non-emissive at 90% water. However, the monomer-type emission of AIE-2 at 477 nm was shifted to 584 nm with a 6-fold increase in fluorescence intensity in THF-H2O (1:9, v/v) solvent mixtures due to the restriction of intramolecular rotation on aggregation in high water fractions. This result indicates that the probe AIE-1 shows ACQ and probe AIE-2 shows AIE behaviors in THF-H2O solvent mixtures. Furthermore, the emission spectra of AIE-1 and AIE-2 were carried out in different solvent and with different concentrations to see the solvent- or concentration-dependent aggregation behavior. Scanning electron microscope (SEM) and dynamic light scattering (DLS) experiments were also conducted to assess the morphology and particle size of two probes before and after aggregation. Both of the probes, AIE-1 and AIE-2, showed less toxicity on HeLa cells and were suitable for cell imaging studies. Density functional theory (DFT) calculation was also carried out to confirm the ICT process from an electron-rich indole moiety to an electron-deficient cyano-phenyl ring of AIE-1 or AIE-2.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Junle Qu
- Center for Biomedical Photonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (A.T.); (M.H.); (P.D.); (W.P.); (J.Z.); (Z.G.); (W.Y.)
| | - Zhigang Yang
- Center for Biomedical Photonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (A.T.); (M.H.); (P.D.); (W.P.); (J.Z.); (Z.G.); (W.Y.)
| |
Collapse
|
42
|
Han X, Ma Y, Chen Y, Wang X, Wang Z. Enhancement of the Aggregation-Induced Emission by Hydrogen Bond for Visualizing Hypochlorous Acid in an Inflammation Model and a Hepatocellular Carcinoma Model. Anal Chem 2020; 92:2830-2838. [PMID: 31913021 DOI: 10.1021/acs.analchem.9b05347] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As an important reactive oxygen species, hypochlorous acid (HClO) is produced in various physiological processes. The abnormal rise of the HClO level is associated with a large number of inflammatory diseases. In this work, we develop a simple, aqueous-soluble aggregration-induced emission (AIE) probe for sensing HClO with significant aggregation-induced fluorescence (>1000 times). Two probes, CH3O-TPE-Py+-N+ (COTN) and OH-TPE-Py+-N+ (HOTN) (TPE, tetraphenylethylene), are synthesized for sensing HClO by the cleavage of the Py+-N+ group; the reaction products are CH3O-TPE-CHO (COT) and OH-TPE-CHO (HOT), respectively. The hydrophobicity of the probes is changed with the increased aggregation-induced emission. During the process, HOTN shows significantly better response than COTN. The slightly different chemical structures of COTN and HOTN result in a significant response to HClO. The theoretical calculation data support the theory that the hydrogen bond contributes to the excellent sensitivity for HClO. On the basis of the good response to HClO in vitro, HOTN is used to image inflammation and hepatocellular carcinoma in vivo because these diseases always produce high HClO levels.
Collapse
Affiliation(s)
- Xiaomin Han
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering , Beijing University of Chemical Technology , North Third Ring Road 15 , Chaoyang District, Beijing 100029 , P.R. China
| | - Yufan Ma
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering , Beijing University of Chemical Technology , North Third Ring Road 15 , Chaoyang District, Beijing 100029 , P.R. China
| | - Yuzhi Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering , Beijing University of Chemical Technology , North Third Ring Road 15 , Chaoyang District, Beijing 100029 , P.R. China
| | - Xuefei Wang
- School of Chemistry and Chemical Engineering , University of Chinese Academy of Sciences , No.19(A) Yuquan Road , Shijingshan District, Beijing 100049 , P.R. China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering , Beijing University of Chemical Technology , North Third Ring Road 15 , Chaoyang District, Beijing 100029 , P.R. China
| |
Collapse
|
43
|
Shi X, Sung SHP, Lee MMS, Kwok RTK, Sung HHY, Liu H, Lam JWY, Williams ID, Liu B, Tang BZ. A lipophilic AIEgen for lipid droplet imaging and evaluation of the efficacy of HIF-1 targeting drugs. J Mater Chem B 2020; 8:1516-1523. [DOI: 10.1039/c9tb02848j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A lipid-droplet-specific AIEgen was used to evaluate the inhibitory efficacy of HIF-1-targeting drugs by assessing lipid-droplet levels.
Collapse
|
44
|
Bae K, Zheng W, Ma Y, Huang Z. Real-Time Monitoring of Pharmacokinetics of Mitochondria-Targeting Molecules in Live Cells with Bioorthogonal Hyperspectral Stimulated Raman Scattering Microscopy. Anal Chem 2019; 92:740-748. [DOI: 10.1021/acs.analchem.9b02838] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kideog Bae
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576
| | - Wei Zheng
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576
| | - Ying Ma
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576
| | - Zhiwei Huang
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576
| |
Collapse
|
45
|
Zhou L, Wu Y, Luo Y, Li H, Meng X, Liu C, Xiang J, Zhang P, Gong P, Cai L. Mitochondria-Localized Self-Reporting Small-Molecule-Decorated Theranostic Agents for Cancer-Organelle Transporting and Imaging. ACS APPLIED BIO MATERIALS 2019; 2:5164-5173. [DOI: 10.1021/acsabm.9b00811] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Lihua Zhou
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yayun Wu
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuan Luo
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hongfeng Li
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoqing Meng
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB Ann Arbor, Michigan 48109, United States
| | - Chuangjun Liu
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Jingjing Xiang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
- HKUST Shenzhen Research Institute, No. 9 Yuexing First RD, South Area, Hi-Tech Park, Nanshan, Shenzhen 518057, China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan 523808, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
46
|
Khan IM, Niazi S, Iqbal Khan MK, Pasha I, Mohsin A, Haider J, Iqbal MW, Rehman A, Yue L, Wang Z. Recent advances and perspectives of aggregation-induced emission as an emerging platform for detection and bioimaging. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115637] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Qi J, Li J, Liu R, Li Q, Zhang H, Lam JW, Kwok RT, Liu D, Ding D, Tang BZ. Boosting Fluorescence-Photoacoustic-Raman Properties in One Fluorophore for Precise Cancer Surgery. Chem 2019. [DOI: 10.1016/j.chempr.2019.07.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Zhao M, Gao Y, Ye S, Ding J, Wang A, Li P, Shi H. A light-up near-infrared probe with aggregation-induced emission characteristics for highly sensitive detection of alkaline phosphatase. Analyst 2019; 144:6262-6269. [PMID: 31566642 DOI: 10.1039/c9an01505a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Developing activatable near-infrared (NIR) probes to specifically monitor and visualize the activities of cancer-related enzymes is highly significant yet challenging in early cancer diagnosis. Taking advantage of the unique photophysical characteristics of aggregation-induced emission (AIE) fluorophores, here we design and synthesize a novel activatable probe QMTP by conjugating an AIE fluorophore quinolone-malononitrile to a hydrophilic phosphate-modified phenol group. The probe was initially non-fluorescent in aqueous solution due to its good water solubility, but was readily activated to generate a strong NIR fluorescence upon treatment with alkaline phosphatase (ALP), which enables specific detection of ALP activity. Furthermore, we have employed QMTP to monitor and spatially map the activity of endogenous ALP both in cancer cells and in drug-treated zebrafish larvae. The experimental results reveal that the QMTP probe has great specificity and sensitivity for ALP detection. We thus believe that our work offers a promising tool for accurate detection of ALP-associated diseases in preclinical applications.
Collapse
Affiliation(s)
- Meng Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
49
|
A multifunctional aggregation-induced emission (AIE)-active fluorescent chemosensor for detection of Zn2+ and Hg2+. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130489] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
50
|
|