1
|
Bergame CP, Dong C, Bandi S, Schlemper-Scheidt MD, Sutour S, von Reuß SH. Identification and synthesis of 4'- ortho-aminobenzoyl ascarosides as sex pheromones of gonochoristic Caenorhabditis nigoni. Org Biomol Chem 2025; 23:3654-3670. [PMID: 40126449 DOI: 10.1039/d5ob00271k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Using a combination of RP-C18 chromatography, MS and NMR techniques, a new class of homologous modular ascarosides carrying a 4'-ortho-aminobenzoyl moiety was identified from Caenorhabditis nigoni and Caenorhabditis tropicalis. These compounds could not be detected using targeted ascaroside screens based on precursor ion screening for m/z 73.0294 [C3H5O2]-, which highlighted a limitation of the current protocols. Their structure assignment was established by total synthesis of AB-asc-C5 (SMID: abas#9) as a representative example in about 1% yield over 14 steps. To achieve this aim, a new method for the synthesis of orthogonally protected ascarosides has been developed which provides methyl 2-benzoyl-ascaroside as a highly versatile building block for regioselective ascaroside synthesis. Furthermore, a new synthesis for short chain C5 ascarosides was developed that employs selective reduction and Grubbs cross metathesis. The identity of synthetic AB-asc-C5 and the natural product isolated from C. nigoni was established by an NMR mixing experiment. Retention of C. nigoni males by the exclusively female produced AB-asc-C5 suggests a function as a sex pheromone component. Along with the indole ascarosides (icas), the new class of 4'-ortho-aminobenzoyl ascarosides (abas) represents a mechanism to translate bacterial food dependent L-tryptophan availability into species-specific signaling molecules.
Collapse
Affiliation(s)
- Célia P Bergame
- Laboratory for Bioanalytical Chemistry, Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland.
| | - Chuanfu Dong
- Max Planck Institute for Chemical Ecology (MPICE), Department of Bioorganic Chemistry, Hans-Knoell Strasse 8, D-07745 Jena, Germany
| | - Siva Bandi
- Laboratory for Bioanalytical Chemistry, Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland.
| | - Marie-Désirée Schlemper-Scheidt
- Laboratory for Bioanalytical Chemistry, Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland.
| | - Sylvain Sutour
- Neuchatel Platform of Analytical Chemistry (NPAC), University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland
| | - Stephan H von Reuß
- Laboratory for Bioanalytical Chemistry, Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland.
- Max Planck Institute for Chemical Ecology (MPICE), Department of Bioorganic Chemistry, Hans-Knoell Strasse 8, D-07745 Jena, Germany
- Neuchatel Platform of Analytical Chemistry (NPAC), University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland
| |
Collapse
|
2
|
Piskobulu V, Athanasouli M, Witte H, Feldhaus C, Streit A, Sommer RJ. High Nutritional Conditions Influence Feeding Plasticity in Pristionchus pacificus and Render Worms Non-Predatory. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2025; 344:94-111. [PMID: 39822045 PMCID: PMC11788882 DOI: 10.1002/jez.b.23284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
Developmental plasticity, the ability of a genotype to produce different phenotypes in response to environmental conditions, has been subject to intense studies in the last four decades. The self-fertilising nematode Pristionchus pacificus has been developed as a genetic model system for studying developmental plasticity due to its mouth-form polyphenism that results in alternative feeding strategies with a facultative predatory and non-predatory mouth form. Many studies linked molecular aspects of the regulation of mouth-form polyphenism with investigations of its evolutionary and ecological significance. Also, several environmental factors influencing P. pacificus feeding structure expression were identified including temperature, culture condition and population density. However, the nutritional plasticity of the mouth form has never been properly investigated although polyphenisms are known to be influenced by changes in nutritional conditions. For instance, studies in eusocial insects and scarab beetles have provided significant mechanistic insights into the nutritional regulation of polyphenisms but also other forms of plasticity. Here, we study the influence of nutrition on mouth-form polyphenism in P. pacificus through experiments with monosaccharide and fatty acid supplementation. We show that in particular glucose supplementation renders worms non-predatory. Subsequent transcriptomic and mutant analyses indicate that de novo fatty acid synthesis and peroxisomal beta-oxidation pathways play an important role in the mediation of this plastic response. Finally, the analysis of fitness consequences through fecundity counts suggests that non-predatory animals have an advantage over predatory animals grown in the glucose-supplemented condition.
Collapse
Affiliation(s)
- Veysi Piskobulu
- Department for Integrative Evolutionary BiologyMax‐Planck Institute for Biology TübingenTübingenGermany
| | - Marina Athanasouli
- Department for Integrative Evolutionary BiologyMax‐Planck Institute for Biology TübingenTübingenGermany
| | - Hanh Witte
- Department for Integrative Evolutionary BiologyMax‐Planck Institute for Biology TübingenTübingenGermany
| | - Christian Feldhaus
- Max‐Planck Institute for Biology Tübingen, BioOptics FacilityTübingenGermany
| | - Adrian Streit
- Department for Integrative Evolutionary BiologyMax‐Planck Institute for Biology TübingenTübingenGermany
| | - Ralf J. Sommer
- Department for Integrative Evolutionary BiologyMax‐Planck Institute for Biology TübingenTübingenGermany
| |
Collapse
|
3
|
Kotowska AM, Hiramatsu F, Alexander MR, Scurr DJ, Lightfoot JW, Chauhan VM. Surface Lipids in Nematodes are Influenced by Development and Species-specific Adaptations. J Am Chem Soc 2025; 147:6439-6449. [PMID: 39936408 PMCID: PMC11869268 DOI: 10.1021/jacs.4c12519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/13/2025]
Abstract
The surface of an organism is a dynamic interface that continually adapts to its environment. In nematodes, the cuticle forms a complex boundary that protects against the physicochemical pressures. However, the precise molecular composition and function of this surface remain largely unexplored. By utilizing 3D-OrbiSIMS, an advanced surface-sensitive mass spectrometry method, we directly characterized the molecular composition of the outermost regions (∼50 nm) of Caenorhabditis elegans and Pristionchus pacificus to improve the understanding of species-specific surface lipid composition and its potential roles in nematode biology. We found that nematode surfaces consist of a lipid-dominated landscape (>81% C. elegans and >69% P. pacificus of all surveyed chemistries) with distinct compositions, which enrich in granularity and complexity through development. The surface lipids are also species-specific, potentially highlighting distinct molecular compositions that are derived from diverging evolutionary paths. By exploring the effect of mutations on lipid production, we found the peroxisomal fatty acid β-oxidation component daf-22 is essential for defining the surface molecular fingerprint. This pathway is conserved across species in producing distinct chemical profiles, indicating its fundamental role in lipid metabolism and maintaining the surface integrity and function. Furthermore, we discovered that variations in surface lipids of C. elegans daf-22 larvae contribute to significantly increased susceptibility to predation by P. pacificus. Therefore, our findings reveal that nematode surface lipids are developmentally dependent, species-specific, and fundamental in interspecies interactions. These insights pave the way for further exploration into the physiological and behavioral significance of surface lipids.
Collapse
Affiliation(s)
- Anna M. Kotowska
- Advanced
Materials & Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, U.K.
| | - Fumie Hiramatsu
- Max
Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior−caesar, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Morgan R. Alexander
- Advanced
Materials & Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, U.K.
| | - David J. Scurr
- Advanced
Materials & Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, U.K.
| | - James W. Lightfoot
- Max
Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior−caesar, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Veeren M. Chauhan
- Advanced
Materials & Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, U.K.
| |
Collapse
|
4
|
Shi T, Yang X, Zhang K, Zhao PJ, Li G. Ethyl-Dimer-Galactopyranoside, a New Glycoside with Attractive Activity from Cultures of Caenorhabditis elegans on NGM. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4642-4647. [PMID: 39932479 DOI: 10.1021/acs.jafc.4c11812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The nematode Caenorhabditis elegans is an important model for the study of social behaviors. Ethyl-dimer-galactopyranoside, a new glycoside isolated from the cultures of C. elegans on nematode growth medium (NGM), exhibited strong attractive activity toward C. elegans at different doses, reaching a chemotaxis index of 0.36 at 500 pg. Moreover, the results of transcriptome and chemotaxis assays suggest that ASE neurons are involved in the attractive effect of ethyl-dimer-galactopyranoside toward C. elegans. This study supplemented the understanding of the structure and biological function of modular glycosides of C. elegans. It is noteworthy that the chemotaxis index of 500 pg of ethyl-dimer-galactopyranoside toward Meloidogyne incognita was 0.19. It will also help us to further explore the complex multidirectional communication networks among different nematode species, which may aid the development of new treatment approaches for harmful parasitic nematodes in agriculture.
Collapse
Affiliation(s)
- Tingting Shi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650500, PR China
| | - Xiangyu Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650500, PR China
| | - Keqin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650500, PR China
| | - Pei-Ji Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650500, PR China
| | - Guohong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650500, PR China
| |
Collapse
|
5
|
Novoa-Del-Toro EM, Witting M. Navigating common pitfalls in metabolite identification and metabolomics bioinformatics. Metabolomics 2024; 20:103. [PMID: 39305388 PMCID: PMC11416380 DOI: 10.1007/s11306-024-02167-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Metabolomics, the systematic analysis of small molecules in a given biological system, emerged as a powerful tool for different research questions. Newer, better, and faster methods have increased the coverage of metabolites that can be detected and identified in a shorter amount of time, generating highly dense datasets. While technology for metabolomics is still advancing, another rapidly growing field is metabolomics data analysis including metabolite identification. Within the next years, there will be a high demand for bioinformaticians and data scientists capable of analyzing metabolomics data as well as chemists capable of using in-silico tools for metabolite identification. However, metabolomics is often not included in bioinformatics curricula, nor does analytical chemistry address the challenges associated with advanced in-silico tools. AIM OF REVIEW In this educational review, we briefly summarize some key concepts and pitfalls we have encountered in a collaboration between a bioinformatician (originally not trained for metabolomics) and an analytical chemist. We identified that many misunderstandings arise from differences in knowledge about metabolite annotation and identification, and the proper use of bioinformatics approaches for these tasks. We hope that this article helps other bioinformaticians (as well as other scientists) entering the field of metabolomics bioinformatics, especially for metabolite identification, to quickly learn the necessary concepts for a successful collaboration with analytical chemists. KEY SCIENTIFIC CONCEPTS OF REVIEW We summarize important concepts related to LC-MS/MS based non-targeted metabolomics and compare them with other data types bioinformaticians are potentially familiar with. Drawing these parallels will help foster the learning of key aspects of metabolomics.
Collapse
Affiliation(s)
- Elva María Novoa-Del-Toro
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP- Purpan, UPS, 180 chemin de Tournefeuille St-Martin-du-Touch, BP 3, Toulouse Cedex, 31931, France
| | - Michael Witting
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, 85764, Neuherberg, Germany.
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, 85354, Freising-Weihenstephan, Germany.
| |
Collapse
|
6
|
Chantab K, Rao Z, Zheng X, Han R, Cao L. Ascarosides and Symbiotic Bacteria of Entomopathogenic Nematodes Regulate Host Immune Response in Galleria mellonella Larvae. INSECTS 2024; 15:514. [PMID: 39057246 PMCID: PMC11277396 DOI: 10.3390/insects15070514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Insects protect themselves through their immune systems. Entomopathogenic nematodes and their bacterial symbionts are widely used for the biocontrol of economically important pests. Ascarosides are pheromones that regulate nematode behaviors, such as aggregation, avoidance, mating, dispersal, and dauer recovery and formation. However, whether ascarosides influence the immune response of insects remains unexplored. In this study, we co-injected ascarosides and symbiotic Photorhabdus luminescens subsp. kayaii H06 bacteria derived from Heterorhabditis bacteriophora H06 into the last instar larvae of Galleria mellonella. We recorded larval mortality and analyzed the expressions of AMPs, ROS/RNS, and LPSs. Our results revealed a process in which ascarosides, acting as enhancers of the symbiotic bacteria, co-induced G. mellonella immunity by significantly increasing oxidative stress responses and secreting AMPs (gallerimycin, gloverin, and cecropin). This led to a reduction in color intensity and the symbiotic bacteria load, ultimately resulting in delayed host mortality compared to either ascarosides or symbiotic bacteria. These findings demonstrate the cross-kingdom regulation of insects and symbiotic bacteria by nematode pheromones. Furthermore, our results suggest that G. mellonella larvae may employ nematode pheromones secreted by IJs to modulate insect immunity during early infection, particularly in the presence of symbiotic bacteria, for enhancing resistance to invasive bacteria in the hemolymph.
Collapse
Affiliation(s)
- Kanjana Chantab
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China; (K.C.); (Z.R.); (X.Z.); (R.H.)
- Department of Plant Sciences, Faculty of Agriculture and Technology, Rajamangala University of Technology Isan, Surin 32000, Thailand
| | - Zhongchen Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China; (K.C.); (Z.R.); (X.Z.); (R.H.)
| | - Xuehong Zheng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China; (K.C.); (Z.R.); (X.Z.); (R.H.)
| | - Richou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China; (K.C.); (Z.R.); (X.Z.); (R.H.)
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China; (K.C.); (Z.R.); (X.Z.); (R.H.)
| |
Collapse
|
7
|
Kuo CY, Tay RJ, Lin HC, Juan SC, Vidal-Diez de Ulzurrun G, Chang YC, Hoki J, Schroeder FC, Hsueh YP. The nematode-trapping fungus Arthrobotrys oligospora detects prey pheromones via G protein-coupled receptors. Nat Microbiol 2024; 9:1738-1751. [PMID: 38649409 PMCID: PMC11724650 DOI: 10.1038/s41564-024-01679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
The ability to sense prey-derived cues is essential for predatory lifestyles. Under low-nutrient conditions, Arthrobotrys oligospora and other nematode-trapping fungi develop dedicated structures for nematode capture when exposed to nematode-derived cues, including a conserved family of pheromones, the ascarosides. A. oligospora senses ascarosides via conserved MAPK and cAMP-PKA pathways; however, the upstream receptors remain unknown. Here, using genomic, transcriptomic and functional analyses, we identified two families of G protein-coupled receptors (GPCRs) involved in sensing distinct nematode-derived cues. GPCRs homologous to yeast glucose receptors are required for ascaroside sensing, whereas Pth11-like GPCRs contribute to ascaroside-independent nematode sensing. Both GPCR classes activate conserved cAMP-PKA signalling to trigger trap development. This work demonstrates that predatory fungi use multiple GPCRs to sense several distinct nematode-derived cues for prey recognition and to enable a switch to a predatory lifestyle. Identification of these receptors reveals the molecular mechanisms of cross-kingdom communication via conserved pheromones also sensed by plants and animals.
Collapse
Affiliation(s)
- Chih-Yen Kuo
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Rebecca J Tay
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hung-Che Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Sheng-Chian Juan
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | - Yu-Chu Chang
- Department of Biochemistry and Molecular Cell Biology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jason Hoki
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Frank C Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Yen-Ping Hsueh
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan.
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
8
|
Zhang B, Mullmann J, Ludewig AH, Fernandez IR, Bales TR, Weiss RS, Schroeder FC. Acylspermidines are conserved mitochondrial sirtuin-dependent metabolites. Nat Chem Biol 2024; 20:812-822. [PMID: 38167917 PMCID: PMC11715332 DOI: 10.1038/s41589-023-01511-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
Sirtuins are nicotinamide adenine dinucleotide (NAD+)-dependent protein lysine deacylases regulating metabolism and stress responses; however, characterization of the removed acyl groups and their downstream metabolic fates remains incomplete. Here we employed untargeted comparative metabolomics to reinvestigate mitochondrial sirtuin biochemistry. First, we identified N-glutarylspermidines as metabolites downstream of the mitochondrial sirtuin SIR-2.3 in Caenorhabditis elegans and demonstrated that SIR-2.3 functions as a lysine deglutarylase and that N-glutarylspermidines can be derived from O-glutaryl-ADP-ribose. Subsequent targeted analysis of C. elegans, mouse and human metabolomes revealed a chemically diverse range of N-acylspermidines, and formation of N-succinylspermidines and/or N-glutarylspermidines was observed downstream of mammalian mitochondrial sirtuin SIRT5 in two cell lines, consistent with annotated functions of SIRT5. Finally, N-glutarylspermidines were found to adversely affect C. elegans lifespan and mammalian cell proliferation. Our results indicate that N-acylspermidines are conserved metabolites downstream of mitochondrial sirtuins that facilitate annotation of sirtuin enzymatic activities in vivo and may contribute to sirtuin-dependent phenotypes.
Collapse
Affiliation(s)
- Bingsen Zhang
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - James Mullmann
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | | | - Irma R Fernandez
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Tyler R Bales
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Robert S Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Frank C Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA.
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
9
|
Tsai SH, Wu YC, Palomino DF, Schroeder FC, Pan CL. Peripheral peroxisomal β-oxidation engages neuronal serotonin signaling to drive stress-induced aversive memory in C. elegans. Cell Rep 2024; 43:113996. [PMID: 38520690 PMCID: PMC11087011 DOI: 10.1016/j.celrep.2024.113996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/06/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Physiological dysfunction confers negative valence to coincidental sensory cues to induce the formation of aversive associative memory. How peripheral tissue stress engages neuromodulatory mechanisms to form aversive memory is poorly understood. Here, we show that in the nematode C. elegans, mitochondrial disruption induces aversive memory through peroxisomal β-oxidation genes in non-neural tissues, including pmp-4/very-long-chain fatty acid transporter, dhs-28/3-hydroxylacyl-CoA dehydrogenase, and daf-22/3-ketoacyl-CoA thiolase. Upregulation of peroxisomal β-oxidation genes under mitochondrial stress requires the nuclear hormone receptor NHR-49. Importantly, the memory-promoting function of peroxisomal β-oxidation is independent of its canonical role in pheromone production. Peripheral signals derived from the peroxisomes target NSM, a critical neuron for memory formation under stress, to upregulate serotonin synthesis and remodel evoked responses to sensory cues. Our genetic, transcriptomic, and metabolomic approaches establish peroxisomal lipid signaling as a crucial mechanism that connects peripheral mitochondrial stress to central serotonin neuromodulation in aversive memory formation.
Collapse
Affiliation(s)
- Shang-Heng Tsai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Yu-Chun Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Diana Fajardo Palomino
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Chun-Liang Pan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.
| |
Collapse
|
10
|
Szczepańska A, Olek K, Kołodziejska K, Yu J, Ibrahim AT, Adamkiewicz L, Schroeder FC, Pokrzywa W, Turek M. Pheromone-based communication influences the production of somatic extracellular vesicles in C. elegans. Nat Commun 2024; 15:2715. [PMID: 38548742 PMCID: PMC10978837 DOI: 10.1038/s41467-024-47016-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/15/2024] [Indexed: 04/01/2024] Open
Abstract
Extracellular vesicles (EVs) are integral to numerous biological processes, yet it is unclear how environmental factors or interactions among individuals within a population affect EV-regulated systems. In Caenorhabditis elegans, the evolutionarily conserved large EVs, known as exophers, are part of a maternal somatic tissue resource management system. Consequently, the offspring of individuals exhibiting active exopher biogenesis (exophergenesis) develop faster. Our research focuses on unraveling the complex inter-tissue and social dynamics that govern exophergenesis. We found that ascr#10, the primary male pheromone, enhances exopher production in hermaphrodites, mediated by the G-protein-coupled receptor STR-173 in ASK sensory neurons. In contrast, pheromone produced by other hermaphrodites, ascr#3, diminishes exophergenesis within the population. This process is regulated via the neuropeptides FLP-8 and FLP-21, which originate from the URX and AQR/PQR/URX neurons, respectively. Our results reveal a regulatory network that controls the production of somatic EV by the nervous system in response to social signals.
Collapse
Affiliation(s)
- Agata Szczepańska
- Laboratory of Animal Molecular Physiology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Olek
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Klaudia Kołodziejska
- Laboratory of Animal Molecular Physiology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jingfang Yu
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Abdulrahman Tudu Ibrahim
- Laboratory of Animal Molecular Physiology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Laura Adamkiewicz
- Laboratory of Animal Molecular Physiology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| | - Michał Turek
- Laboratory of Animal Molecular Physiology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
11
|
Conroy MJ, Andrews RM, Andrews S, Cockayne L, Dennis E, Fahy E, Gaud C, Griffiths W, Jukes G, Kolchin M, Mendivelso K, Lopez-Clavijo A, Ready C, Subramaniam S, O’Donnell V. LIPID MAPS: update to databases and tools for the lipidomics community. Nucleic Acids Res 2024; 52:D1677-D1682. [PMID: 37855672 PMCID: PMC10767878 DOI: 10.1093/nar/gkad896] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
LIPID MAPS (LIPID Metabolites and Pathways Strategy), www.lipidmaps.org, provides a systematic and standardized approach to organizing lipid structural and biochemical data. Founded 20 years ago, the LIPID MAPS nomenclature and classification has become the accepted community standard. LIPID MAPS provides databases for cataloging and identifying lipids at varying levels of characterization in addition to numerous software tools and educational resources, and became an ELIXIR-UK data resource in 2020. This paper describes the expansion of existing databases in LIPID MAPS, including richer metadata with literature provenance, taxonomic data and improved interoperability to facilitate FAIR compliance. A joint project funded by ELIXIR-UK, in collaboration with WikiPathways, curates and hosts pathway data, and annotates lipids in the context of their biochemical pathways. Updated features of the search infrastructure are described along with implementation of programmatic access via API and SPARQL. New lipid-specific databases have been developed and provision of lipidomics tools to the community has been updated. Training and engagement have been expanded with webinars, podcasts and an online training school.
Collapse
Affiliation(s)
- Matthew J Conroy
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Robert M Andrews
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Simon Andrews
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Lauren Cockayne
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Edward A Dennis
- Department of Pharmacology, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0601, USA
| | - Eoin Fahy
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92037, USA
| | - Caroline Gaud
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - William J Griffiths
- Swansea University Medical School, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Geoff Jukes
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Maksim Kolchin
- Boehringer Ingelheim Espana SA, Carrer de Prat de la Riba, 50, 08174 Sant Cugat del Vallès, Barcelona, Spain
| | - Karla Mendivelso
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | | | - Caroline Ready
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92037, USA
| | - Valerie B O’Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| |
Collapse
|
12
|
Witting M. (Re-)use and (re-)analysis of publicly available metabolomics data. Proteomics 2023; 23:e2300032. [PMID: 37670538 DOI: 10.1002/pmic.202300032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
Metabolomics, the systematic measurement of small molecules (<1000 Da) in a given biological sample, is a fast-growing field with many different applications. In contrast to transcriptomics and proteomics, sharing of data is not as widespread in metabolomics, though more scientists are sharing their data nowadays. However, to improve data analysis tools and develop new data analytical approaches and to improve metabolite annotation and identification, sharing of reference data is crucial. Here, different possibilities to share (metabolomics) data are reviewed and some recent approaches and applications regarding the (re-)use and (re-)analysis are highlighted.
Collapse
Affiliation(s)
- Michael Witting
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Freising-Weihenstephan, Germany
| |
Collapse
|
13
|
Lee D, Fox B, Palomino D, Panda O, Tenjo F, Koury E, Evans K, Stevens L, Rodrigues P, Kolodziej A, Schroeder F, Andersen E. Natural genetic variation in the pheromone production of C. elegans. Proc Natl Acad Sci U S A 2023; 120:e2221150120. [PMID: 37339205 PMCID: PMC10293855 DOI: 10.1073/pnas.2221150120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/10/2023] [Indexed: 06/22/2023] Open
Abstract
From bacterial quorum sensing to human language, communication is essential for social interactions. Nematodes produce and sense pheromones to communicate among individuals and respond to environmental changes. These signals are encoded by different types and mixtures of ascarosides, whose modular structures further enhance the diversity of this nematode pheromone language. Interspecific and intraspecific differences in this ascaroside pheromone language have been described previously, but the genetic basis and molecular mechanisms underlying the variation remain largely unknown. Here, we analyzed natural variation in the production of 44 ascarosides across 95 wild Caenorhabditis elegans strains using high-performance liquid chromatography coupled to high-resolution mass spectrometry. We discovered wild strains defective in the production of specific subsets of ascarosides (e.g., the aggregation pheromone icas#9) or short- and medium-chain ascarosides, as well as inversely correlated patterns between the production of two major classes of ascarosides. We investigated genetic variants that are significantly associated with the natural differences in the composition of the pheromone bouquet, including rare genetic variants in key enzymes participating in ascaroside biosynthesis, such as the peroxisomal 3-ketoacyl-CoA thiolase, daf-22, and the carboxylesterase cest-3. Genome-wide association mappings revealed genomic loci harboring common variants that affect ascaroside profiles. Our study yields a valuable dataset for investigating the genetic mechanisms underlying the evolution of chemical communication.
Collapse
Affiliation(s)
- Daehan Lee
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
- Department of Biology, Kyung Hee University, Seoul02447, Republic of Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Bennett W. Fox
- Boyce Thompson Institute, Cornell University, Ithaca, NY14850
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14850
| | - Diana Fajardo Palomino
- Boyce Thompson Institute, Cornell University, Ithaca, NY14850
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14850
| | - Oishika Panda
- Boyce Thompson Institute, Cornell University, Ithaca, NY14850
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14850
| | - Francisco J. Tenjo
- Boyce Thompson Institute, Cornell University, Ithaca, NY14850
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14850
| | - Emily J. Koury
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
| | - Kathryn S. Evans
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
| | - Lewis Stevens
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
- Tree of Life, Wellcome Sanger Institute, CambridgeCB10 1SA, United Kingdom
| | - Pedro R. Rodrigues
- Boyce Thompson Institute, Cornell University, Ithaca, NY14850
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14850
| | - Aiden R. Kolodziej
- Boyce Thompson Institute, Cornell University, Ithaca, NY14850
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14850
| | - Frank C. Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, NY14850
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14850
| | - Erik C. Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
| |
Collapse
|
14
|
Salzer L, Schmitt-Kopplin P, Witting M. Capillary electrophoresis-mass spectrometry as a tool for Caenorhabditis elegans metabolomics research. Metabolomics 2023; 19:61. [PMID: 37351740 DOI: 10.1007/s11306-023-02025-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
INTRODUCTION Polar metabolites in Caenorhabditis elegans (C. elegans) have predominantly been analyzed using hydrophilic interaction liquid chromatography coupled to mass spectrometry (HILIC-MS). Capillary electrophoresis coupled to mass spectrometry (CE-MS) represents another complementary analytical platform suitable for polar and charged analytes. OBJECTIVE We compared CE-MS and HILIC-MS for the analysis of a set of 60 reference standards relevant for C. elegans and specifically investigated the strengths of CE separation. Furthermore, we employed CE-MS as a complementary analytical approach to study polar metabolites in C. elegans samples, particularly in the context of longevity, in order to address a different part of its metabolome. METHOD We analyzed 60 reference standards as well as metabolite extracts from C. elegans daf-2 loss-of-function mutants and wild-type (WT) samples using HILIC-MS and CE-MS employing a Q-ToF-MS instrument. RESULTS CE separations showed narrower peak widths and a better linearity of the estimated response function across different concentrations which is linked to less saturation of the MS signals. Additionally, CE exhibited a distinct selectivity in the separation of compounds compared to HILIC-MS, providing complementary information for the analysis of the target compounds. Analysis of C. elegans metabolites of daf-2 mutants and WT samples revealed significant alterations in shared metabolites identified through HILIC-MS, as well as the presence of distinct metabolites. CONCLUSION CE-MS was successfully applied in C. elegans metabolomics, being able to recover known as well as identify novel putative biomarkers of longevity.
Collapse
Affiliation(s)
- Liesa Salzer
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Michael Witting
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany.
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
15
|
Wrobel CJJ, Schroeder FC. Repurposing degradation pathways for modular metabolite biosynthesis in nematodes. Nat Chem Biol 2023; 19:676-686. [PMID: 37024728 PMCID: PMC10559835 DOI: 10.1038/s41589-023-01301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/24/2023] [Indexed: 04/08/2023]
Abstract
Recent studies have revealed that Caenorhabditis elegans and other nematodes repurpose products from biochemical degradation pathways for the combinatorial assembly of complex modular structures that serve diverse signaling functions. Building blocks from neurotransmitter, amino acid, nucleoside and fatty acid metabolism are attached to scaffolds based on the dideoxyhexose ascarylose or glucose, resulting in hundreds of modular ascarosides and glucosides. Genome-wide association studies have identified carboxylesterases as the key enzymes mediating modular assembly, enabling rapid compound discovery via untargeted metabolomics and suggesting that modular metabolite biosynthesis originates from the 'hijacking' of conserved detoxification mechanisms. Modular metabolites thus represent a distinct biosynthetic strategy for generating structural and functional diversity in nematodes, complementing the primarily polyketide synthase- and nonribosomal peptide synthetase-derived universe of microbial natural products. Although many aspects of modular metabolite biosynthesis and function remain to be elucidated, their identification demonstrates how phenotype-driven compound discovery, untargeted metabolomics and genomic approaches can synergize to facilitate the annotation of metabolic dark matter.
Collapse
Affiliation(s)
- Chester J J Wrobel
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
16
|
Curtis BJ, Schwertfeger TJ, Burkhardt RN, Fox BW, Andrzejewski J, Wrobel CJJ, Yu J, Rodrigues PR, Tauffenberger A, Schroeder FC. Oligonucleotide Catabolism-Derived Gluconucleosides in Caenorhabditis elegans. J Am Chem Soc 2023; 145:11611-11621. [PMID: 37192367 PMCID: PMC10536790 DOI: 10.1021/jacs.3c01151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nucleosides are essential cornerstones of life, and nucleoside derivatives and synthetic analogues have important biomedical applications. Correspondingly, production of non-canonical nucleoside derivatives in animal model systems is of particular interest. Here, we report the discovery of diverse glucose-based nucleosides in Caenorhabditis elegans and related nematodes. Using a mass spectrometric screen based on all-ion fragmentation in combination with total synthesis, we show that C. elegans selectively glucosylates a series of modified purines but not the canonical purine and pyrimidine bases. Analogous to ribonucleosides, the resulting gluconucleosides exist as phosphorylated and non-phosphorylated forms. The phosphorylated gluconucleosides can be additionally decorated with diverse acyl moieties from amino acid catabolism. Syntheses of representative variants, facilitated by a novel 2'-O- to 3'-O-dibenzyl phosphoryl transesterification reaction, demonstrated selective incorporation of different nucleobases and acyl moieties. Using stable-isotope labeling, we further show that gluconucleosides incorporate modified nucleobases derived from RNA and possibly DNA breakdown, revealing extensive recycling of oligonucleotide catabolites. Gluconucleosides are conserved in other nematodes, and biosynthesis of specific subsets is increased in germline mutants and during aging. Bioassays indicate that gluconucleosides may function in stress response pathways.
Collapse
Affiliation(s)
- Brian J Curtis
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Tyler J Schwertfeger
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Russell N Burkhardt
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Bennett W Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jude Andrzejewski
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Chester J J Wrobel
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jingfang Yu
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Pedro R Rodrigues
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Arnaud Tauffenberger
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
17
|
Reilly DK, Schwarz EM, Muirhead CS, Robidoux AN, Narayan A, Doma MK, Sternberg PW, Srinivasan J. Transcriptomic profiling of sex-specific olfactory neurons reveals subset-specific receptor expression in Caenorhabditis elegans. Genetics 2023; 223:iyad026. [PMID: 36801937 PMCID: PMC10319972 DOI: 10.1093/genetics/iyad026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 02/20/2023] Open
Abstract
The nematode Caenorhabditis elegans utilizes chemosensation to navigate an ever-changing environment for its survival. A class of secreted small-molecule pheromones, termed ascarosides, play an important role in olfactory perception by affecting biological functions ranging from development to behavior. The ascaroside #8 (ascr#8) mediates sex-specific behaviors, driving avoidance in hermaphrodites and attraction in males. Males sense ascr#8 via the ciliated male-specific cephalic sensory (CEM) neurons, which exhibit radial symmetry along dorsal-ventral and left-right axes. Calcium imaging studies suggest a complex neural coding mechanism that translates stochastic physiological responses in these neurons to reliable behavioral outputs. To test the hypothesis that neurophysiological complexity arises from differential expression of genes, we performed cell-specific transcriptomic profiling; this revealed between 18 and 62 genes with at least twofold higher expression in a specific CEM neuron subtype vs both other CEM neurons and adult males. These included two G protein-coupled receptor (GPCR) genes, srw-97 and dmsr-12, that were specifically expressed in nonoverlapping subsets of CEM neurons and whose expression was confirmed by GFP reporter analysis. Single CRISPR-Cas9 knockouts of either srw-97 or dmsr-12 resulted in partial defects, while a double knockout of both srw-97 and dmsr-12 completely abolished the attractive response to ascr#8. Together, our results suggest that the evolutionarily distinct GPCRs SRW-97 and DMSR-12 act nonredundantly in discrete olfactory neurons to facilitate male-specific sensation of ascr#8.
Collapse
Affiliation(s)
- Douglas K Reilly
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Erich M Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Caroline S Muirhead
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Annalise N Robidoux
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Anusha Narayan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Meenakshi K Doma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| |
Collapse
|
18
|
Yang B, Wang J, Zheng X, Wang X. Nematode Pheromones: Structures and Functions. Molecules 2023; 28:2409. [PMID: 36903652 PMCID: PMC10005090 DOI: 10.3390/molecules28052409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Pheromones are chemical signals secreted by one individual that can affect the behaviors of other individuals within the same species. Ascaroside is an evolutionarily conserved family of nematode pheromones that play an integral role in the development, lifespan, propagation, and stress response of nematodes. Their general structure comprises the dideoxysugar ascarylose and fatty-acid-like side chains. Ascarosides can vary structurally and functionally according to the lengths of their side chains and how they are derivatized with different moieties. In this review, we mainly describe the chemical structures of ascarosides and their different effects on the development, mating, and aggregation of nematodes, as well as how they are synthesized and regulated. In addition, we discuss their influences on other species in various aspects. This review provides a reference for the functions and structures of ascarosides and enables their better application.
Collapse
Affiliation(s)
| | | | | | - Xin Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| |
Collapse
|
19
|
Burkhardt RN, Artyukhin AB, Aprison EZ, Curtis BJ, Fox BW, Ludewig AH, Palomino DF, Luo J, Chaturbedi A, Panda O, Wrobel CJJ, Baumann V, Portman DS, Lee SS, Ruvinsky I, Schroeder FC. Sex-specificity of the C. elegans metabolome. Nat Commun 2023; 14:320. [PMID: 36658169 PMCID: PMC9852247 DOI: 10.1038/s41467-023-36040-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Recent studies of animal metabolism have revealed large numbers of novel metabolites that are involved in all aspects of organismal biology, but it is unclear to what extent metabolomes differ between sexes. Here, using untargeted comparative metabolomics for the analysis of wildtype animals and sex determination mutants, we show that C. elegans hermaphrodites and males exhibit pervasive metabolomic differences. Several hundred small molecules are produced exclusively or in much larger amounts in one sex, including a host of previously unreported metabolites that incorporate building blocks from nucleoside, carbohydrate, lipid, and amino acid metabolism. A subset of male-enriched metabolites is specifically associated with the presence of a male germline, whereas enrichment of other compounds requires a male soma. Further, we show that one of the male germline-dependent metabolites, an unusual dipeptide incorporating N,N-dimethyltryptophan, increases food consumption, reduces lifespan, and accelerates the last stage of larval development in hermaphrodites. Our results serve as a foundation for mechanistic studies of how the genetic sex of soma and germline shape the C. elegans metabolome and provide a blueprint for the discovery of sex-dependent metabolites in other animals.
Collapse
Affiliation(s)
- Russell N Burkhardt
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander B Artyukhin
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
- Chemistry Department, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, 13210, USA
| | - Erin Z Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Brian J Curtis
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Bennett W Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Andreas H Ludewig
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Diana Fajardo Palomino
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jintao Luo
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, 14642, USA
- School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Amaresh Chaturbedi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Oishika Panda
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Chester J J Wrobel
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Victor Baumann
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Douglas S Portman
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, 14642, USA
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
20
|
Application of Caenorhabditis elegans in Lipid Metabolism Research. Int J Mol Sci 2023; 24:ijms24021173. [PMID: 36674689 PMCID: PMC9860639 DOI: 10.3390/ijms24021173] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Over the last decade, the development and prevalence of obesity have posed a serious public health risk, which has prompted studies on the regulation of adiposity. With the ease of genetic manipulation, the diversity of the methods for characterizing body fat levels, and the observability of feeding behavior, Caenorhabditis elegans (C. elegans) is considered an excellent model for exploring energy homeostasis and the regulation of the cellular fat storage. In addition, the homology with mammals in the genes related to the lipid metabolism allows many aspects of lipid modulation by the regulators of the central nervous system to be conserved in this ideal model organism. In recent years, as the complex network of genes that maintain an energy balance has been gradually expanded and refined, the regulatory mechanisms of lipid storage have become clearer. Furthermore, the development of methods and devices to assess the lipid levels has become a powerful tool for studies in lipid droplet biology and the regulation of the nematode lipid metabolism. Herein, based on the rapid progress of C. elegans lipid metabolism-related studies, this review outlined the lipid metabolic processes, the major signaling pathways of fat storage regulation, and the primary experimental methods to assess the lipid content in nematodes. Therefore, this model system holds great promise for facilitating the understanding, management, and therapies of human obesity and other metabolism-related diseases.
Collapse
|
21
|
Helf MJ, Fox BW, Artyukhin AB, Zhang YK, Schroeder FC. Comparative metabolomics with Metaboseek reveals functions of a conserved fat metabolism pathway in C. elegans. Nat Commun 2022; 13:782. [PMID: 35145075 PMCID: PMC8831614 DOI: 10.1038/s41467-022-28391-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/14/2022] [Indexed: 02/08/2023] Open
Abstract
Untargeted metabolomics via high-resolution mass spectrometry can reveal more than 100,000 molecular features in a single sample, many of which may represent unidentified metabolites, posing significant challenges to data analysis. We here introduce Metaboseek, an open-source analysis platform designed for untargeted comparative metabolomics and demonstrate its utility by uncovering biosynthetic functions of a conserved fat metabolism pathway, α-oxidation, using C. elegans as a model. Metaboseek integrates modules for molecular feature detection, statistics, molecular formula prediction, and fragmentation analysis, which uncovers more than 200 previously uncharacterized α-oxidation-dependent metabolites in an untargeted comparison of wildtype and α-oxidation-defective hacl-1 mutants. The identified metabolites support the predicted enzymatic function of HACL-1 and reveal that α-oxidation participates in metabolism of endogenous β-methyl-branched fatty acids and food-derived cyclopropane lipids. Our results showcase compound discovery and feature annotation at scale via untargeted comparative metabolomics applied to a conserved primary metabolic pathway and suggest a model for the metabolism of cyclopropane lipids. Untargeted mass spectrometry-based metabolomics can reveal new biochemistry, but data analysis is challenging. Here, the authors develop Metaboseek, an open-source software that facilitates metabolite discovery, and apply it to characterize fatty acid alpha-oxidation in C. elegans.
Collapse
Affiliation(s)
- Maximilian J Helf
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Bennett W Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander B Artyukhin
- Chemistry Department, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, 13210, USA
| | - Ying K Zhang
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
22
|
Gao C, Li Q, Yu J, Li S, Cui Q, Hu X, Chen L, Zhang SO. Endocrine pheromones couple fat rationing to dauer diapause through HNF4α nuclear receptors. SCIENCE CHINA-LIFE SCIENCES 2021; 64:2153-2174. [PMID: 34755252 DOI: 10.1007/s11427-021-2016-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 09/30/2021] [Indexed: 12/21/2022]
Abstract
Developmental diapause is a widespread strategy for animals to survive seasonal starvation and environmental harshness. Diapaused animals often ration body fat to generate a basal level of energy for enduring survival. How diapause and fat rationing are coupled, however, is poorly understood. The nematode Caenorhabditis elegans excretes pheromones to the environment to induce a diapause form called dauer larva. Through saturated forward genetic screens and CRISPR knockout, we found that dauer pheromones feed back to repress the transcription of ACOX-3, MAOC-1, DHS-28, DAF-22 (peroxisomal β-oxidation enzymes dually involved in pheromone synthesis and fat burning), ALH-4 (aldehyde dehydrogenase for pheromone synthesis), PRX-10 and PRX-11 (peroxisome assembly and proliferation factors). Dysfunction of these pheromone enzymes and factors relieves the repression. Surprisingly, transcription is repressed not by pheromones excreted but by pheromones endogenous to each animal. The endogenous pheromones regulate the nuclear translocation of HNF4α family nuclear receptor NHR-79 and its co-receptor NHR-49, and, repress transcription through the two receptors. The feedback repression maintains pheromone homeostasis, increases fat storage, decreases fat burning, and prolongs dauer lifespan. Thus, the exocrine dauer pheromones possess an unexpected endocrine function to mediate a peroxisome-nucleus crosstalk, coupling dauer diapause to fat rationing.
Collapse
Affiliation(s)
- Cheng Gao
- Laboratory of Metabolic Genetics, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Qi Li
- Laboratory of Metabolic Genetics, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Jialei Yu
- Laboratory of Metabolic Genetics, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Shiwei Li
- Laboratory of Metabolic Genetics, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Qingpo Cui
- Laboratory of Metabolic Genetics, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xiao Hu
- Laboratory of Metabolic Genetics, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Lifeng Chen
- Laboratory of Metabolic Genetics, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Shaobing O Zhang
- Laboratory of Metabolic Genetics, College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
23
|
Wrobel CJJ, Yu J, Rodrigues PR, Ludewig AH, Curtis BJ, Cohen SM, Fox BW, O'Donnell MP, Sternberg PW, Schroeder FC. Combinatorial Assembly of Modular Glucosides via Carboxylesterases Regulates C. elegans Starvation Survival. J Am Chem Soc 2021; 143:14676-14683. [PMID: 34460264 DOI: 10.1021/jacs.1c05908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The recently discovered modular glucosides (MOGLs) form a large metabolite library derived from combinatorial assembly of moieties from amino acid, neurotransmitter, and lipid metabolism in the model organism C. elegans. Combining CRISPR-Cas9 genome editing, comparative metabolomics, and synthesis, we show that the carboxylesterase homologue Cel-CEST-1.2 is responsible for specific 2-O-acylation of diverse glucose scaffolds with a wide variety of building blocks, resulting in more than 150 different MOGLs. We further show that this biosynthetic role is conserved for the closest homologue of Cel-CEST-1.2 in the related nematode species C. briggsae, Cbr-CEST-2. Expression of Cel-cest-1.2 and MOGL biosynthesis are strongly induced by starvation conditions in C. elegans, one of the premier model systems for mechanisms connecting nutrition and physiology. Cel-cest-1.2-deletion results in early death of adult animals under starvation conditions, providing first insights into the biological functions of MOGLs.
Collapse
Affiliation(s)
- Chester J J Wrobel
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jingfang Yu
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Pedro R Rodrigues
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Andreas H Ludewig
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian J Curtis
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Sarah M Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Bennett W Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Michael P O'Donnell
- Department of Molecular, Cellular and Developmental Biology, New Haven, Connecticut 06511, United States
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
24
|
Dong C, Dolke F, Bandi S, Paetz C, von Reuß SH. Dimerization of conserved ascaroside building blocks generates species-specific male attractants in Caenorhabditis nematodes. Org Biomol Chem 2021; 18:5253-5263. [PMID: 32614033 DOI: 10.1039/d0ob00799d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Comparative ascaroside profiling of Caenorhabditis nematodes using HPLC-ESI-(-)-MS/MS precursor ion scanning revealed a class of highly species-specific ascaroside dimers. Their 2- and 4-isomeric, homo- and heterodimeric structures were identified using a combination of HPLC-ESI-(+)-HR-MS/MS spectrometry and high-resolution dqf-COSY NMR spectroscopy. Structure assignments were confirmed by total synthesis of representative examples. Functional characterization using holding assays indicated that males of Caenorhabditis remanei and Caenorhabditis nigoni are exclusively retained by their conspecific ascaroside dimers, demonstrating that dimerization of conserved monomeric building blocks represents a yet undescribed mechanism that generates species-specific signaling molecules in the Caenorhabditis genus.
Collapse
Affiliation(s)
- Chuanfu Dong
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, D-07745 Jena, Germany
| | - Franziska Dolke
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, D-07745 Jena, Germany
| | - Siva Bandi
- Laboratory for Bioanalytical Chemistry, Institute of Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland.
| | - Christian Paetz
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, D-07745 Jena, Germany
| | - Stephan H von Reuß
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, D-07745 Jena, Germany and Laboratory for Bioanalytical Chemistry, Institute of Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland.
| |
Collapse
|
25
|
Perez MF, Shamalnasab M, Mata-Cabana A, Della Valle S, Olmedo M, Francesconi M, Lehner B. Neuronal perception of the social environment generates an inherited memory that controls the development and generation time of C. elegans. Curr Biol 2021; 31:4256-4268.e7. [PMID: 34358445 DOI: 10.1016/j.cub.2021.07.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/29/2021] [Accepted: 07/13/2021] [Indexed: 12/31/2022]
Abstract
An old and controversial question in biology is whether information perceived by the nervous system of an animal can "cross the Weismann barrier" to alter the phenotypes and fitness of their progeny. Here, we show that such intergenerational transmission of sensory information occurs in the model organism, C. elegans, with a major effect on fitness. Specifically, that perception of social pheromones by chemosensory neurons controls the post-embryonic timing of the development of one tissue, the germline, relative to others in the progeny of an animal. Neuronal perception of the social environment thus intergenerationally controls the generation time of this animal.
Collapse
Affiliation(s)
- Marcos Francisco Perez
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Mehrnaz Shamalnasab
- Université de Lyon, ENS de Lyon, Université de Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée d'Italie, Site Jacques Monod, 69007 Lyon, France
| | - Alejandro Mata-Cabana
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Simona Della Valle
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - María Olmedo
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Mirko Francesconi
- Université de Lyon, ENS de Lyon, Université de Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée d'Italie, Site Jacques Monod, 69007 Lyon, France.
| | - Ben Lehner
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
26
|
Yu Y, Zhang YK, Manohar M, Artyukhin AB, Kumari A, Tenjo-Castano FJ, Nguyen H, Routray P, Choe A, Klessig DF, Schroeder FC. Nematode Signaling Molecules Are Extensively Metabolized by Animals, Plants, and Microorganisms. ACS Chem Biol 2021; 16:1050-1058. [PMID: 34019369 DOI: 10.1021/acschembio.1c00217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many bacterivorous and parasitic nematodes secrete signaling molecules called ascarosides that play a central role regulating their behavior and development. Combining stable-isotope labeling and mass spectrometry-based comparative metabolomics, here we show that ascarosides are taken up from the environment and metabolized by a wide range of phyla, including plants, fungi, bacteria, and mammals, as well as nematodes. In most tested eukaryotes and some bacteria, ascarosides are metabolized into derivatives with shortened fatty acid side chains, analogous to ascaroside biosynthesis in nematodes. In plants and C. elegans, labeled ascarosides were additionally integrated into larger, modular metabolites, and use of different ascaroside stereoisomers revealed the stereospecificity of their biosynthesis. The finding that nematodes extensively metabolize ascarosides taken up from the environment suggests that pheromone editing may play a role in conspecific and interspecific interactions. Moreover, our results indicate that plants, animals, and microorganisms may interact with associated nematodes via manipulation of ascaroside signaling.
Collapse
Affiliation(s)
- Yan Yu
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ying K. Zhang
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Murli Manohar
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Alexander B. Artyukhin
- Chemistry Department, College of Environmental Science and Forestry, State University of New York, Syracuse, New York 13210, United States
| | - Anshu Kumari
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, United States
| | | | - Hung Nguyen
- Holoclara, Inc., Pasadena, California 91101, United States
| | - Pratyush Routray
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Andrea Choe
- Holoclara, Inc., Pasadena, California 91101, United States
| | - Daniel F. Klessig
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, United States
| | - Frank C. Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
27
|
Salzer L, Witting M. Quo Vadis Caenorhabditis elegans Metabolomics-A Review of Current Methods and Applications to Explore Metabolism in the Nematode. Metabolites 2021; 11:metabo11050284. [PMID: 33947148 PMCID: PMC8146106 DOI: 10.3390/metabo11050284] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolomics and lipidomics recently gained interest in the model organism Caenorhabditis elegans (C. elegans). The fast development, easy cultivation and existing forward and reverse genetic tools make the small nematode an ideal organism for metabolic investigations in development, aging, different disease models, infection, or toxicology research. The conducted type of analysis is strongly depending on the biological question and requires different analytical approaches. Metabolomic analyses in C. elegans have been performed using nuclear magnetic resonance (NMR) spectroscopy, direct infusion mass spectrometry (DI-MS), gas-chromatography mass spectrometry (GC-MS) and liquid chromatography mass spectrometry (LC-MS) or combinations of them. In this review we provide general information on the employed techniques and their advantages and disadvantages in regard to C. elegans metabolomics. Additionally, we reviewed different fields of application, e.g., longevity, starvation, aging, development or metabolism of secondary metabolites such as ascarosides or maradolipids. We also summarised applied bioinformatic tools that recently have been used for the evaluation of metabolomics or lipidomics data from C. elegans. Lastly, we curated metabolites and lipids from the reviewed literature, enabling a prototypic collection which serves as basis for a future C. elegans specific metabolome database.
Collapse
Affiliation(s)
- Liesa Salzer
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany;
| | - Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany;
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
- Correspondence:
| |
Collapse
|
28
|
Dall KB, Havelund JF, Harvald EB, Witting M, Færgeman NJ. HLH-30-dependent rewiring of metabolism during starvation in C. elegans. Aging Cell 2021; 20:e13342. [PMID: 33724708 PMCID: PMC8045935 DOI: 10.1111/acel.13342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
One of the most fundamental challenges for all living organisms is to sense and respond to alternating nutritional conditions in order to adapt their metabolism and physiology to promote survival and achieve balanced growth. Here, we applied metabolomics and lipidomics to examine temporal regulation of metabolism during starvation in wild‐type Caenorhabditis elegans and in animals lacking the transcription factor HLH‐30. Our findings show for the first time that starvation alters the abundance of hundreds of metabolites and lipid species in a temporal‐ and HLH‐30‐dependent manner. We demonstrate that premature death of hlh‐30 animals under starvation can be prevented by supplementation of exogenous fatty acids, and that HLH‐30 is required for complete oxidation of long‐chain fatty acids. We further show that RNAi‐mediated knockdown of the gene encoding carnitine palmitoyl transferase I (cpt‐1) only impairs survival of wild‐type animals and not of hlh‐30 animals. Strikingly, we also find that compromised generation of peroxisomes by prx‐5 knockdown renders hlh‐30 animals hypersensitive to starvation, which cannot be rescued by supplementation of exogenous fatty acids. Collectively, our observations show that mitochondrial functions are compromised in hlh‐30 animals and that hlh‐30 animals rewire their metabolism to largely depend on functional peroxisomes during starvation, underlining the importance of metabolic plasticity to maintain survival.
Collapse
Affiliation(s)
- Kathrine B. Dall
- Department of Biochemistry and Molecular Biology Villum Center for Bioanalytical Sciences University of Southern Denmark Odense M Denmark
| | - Jesper F. Havelund
- Department of Biochemistry and Molecular Biology Villum Center for Bioanalytical Sciences University of Southern Denmark Odense M Denmark
| | - Eva B. Harvald
- Department of Biochemistry and Molecular Biology Villum Center for Bioanalytical Sciences University of Southern Denmark Odense M Denmark
| | - Michael Witting
- Research Unit Analytical BioGeoChemistry Helmholtz Zentrum München Neuherberg Germany
- Metabolomics and Proteomics Core Helmholtz Zentrum München Neuherberg Germany
- Chair of Analytical Food Chemistry Technische Universität München Freising Germany
| | - Nils J. Færgeman
- Department of Biochemistry and Molecular Biology Villum Center for Bioanalytical Sciences University of Southern Denmark Odense M Denmark
| |
Collapse
|
29
|
Xu J, Taubert S. Beyond Proteostasis: Lipid Metabolism as a New Player in ER Homeostasis. Metabolites 2021; 11:52. [PMID: 33466824 PMCID: PMC7830277 DOI: 10.3390/metabo11010052] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Biological membranes are not only essential barriers that separate cellular and subcellular structures, but also perform other critical functions such as the initiation and propagation of intra- and intercellular signals. Each membrane-delineated organelle has a tightly regulated and custom-made membrane lipid composition that is critical for its normal function. The endoplasmic reticulum (ER) consists of a dynamic membrane network that is required for the synthesis and modification of proteins and lipids. The accumulation of unfolded proteins in the ER lumen activates an adaptive stress response known as the unfolded protein response (UPR-ER). Interestingly, recent findings show that lipid perturbation is also a direct activator of the UPR-ER, independent of protein misfolding. Here, we review proteostasis-independent UPR-ER activation in the genetically tractable model organism Caenorhabditis elegans. We review the current knowledge on the membrane lipid composition of the ER, its impact on organelle function and UPR-ER activation, and its potential role in human metabolic diseases. Further, we summarize the bi-directional interplay between lipid metabolism and the UPR-ER. We discuss recent progress identifying the different respective mechanisms by which disturbed proteostasis and lipid bilayer stress activate the UPR-ER. Finally, we consider how genetic and metabolic disturbances may disrupt ER homeostasis and activate the UPR and discuss how using -omics-type analyses will lead to more comprehensive insights into these processes.
Collapse
Affiliation(s)
- Jiaming Xu
- Graduate Program in Cell and Developmental Biology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Healthy Starts Theme, British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Stefan Taubert
- Graduate Program in Cell and Developmental Biology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Healthy Starts Theme, British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
30
|
Rackles E, Witting M, Forné I, Zhang X, Zacherl J, Schrott S, Fischer C, Ewbank JJ, Osman C, Imhof A, Rolland SG. Reduced peroxisomal import triggers peroxisomal retrograde signaling. Cell Rep 2021; 34:108653. [PMID: 33472070 DOI: 10.1016/j.celrep.2020.108653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/06/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
Maintaining organelle function in the face of stress is known to involve organelle-specific retrograde signaling. Using Caenorhabditis elegans, we present evidence of the existence of such retrograde signaling for peroxisomes, which we define as the peroxisomal retrograde signaling (PRS). Specifically, we show that peroxisomal import stress caused by knockdown of the peroxisomal matrix import receptor prx-5/PEX5 triggers NHR-49/peroxisome proliferator activated receptor alpha (PPARα)- and MDT-15/MED15-dependent upregulation of the peroxisomal Lon protease lonp-2/LONP2 and the peroxisomal catalase ctl-2/CAT. Using proteomic and transcriptomic analyses, we show that proteins involved in peroxisomal lipid metabolism and immunity are also upregulated upon prx-5(RNAi). While the PRS can be triggered by perturbation of peroxisomal β-oxidation, we also observed hallmarks of PRS activation upon infection with Pseudomonas aeruginosa. We propose that the PRS, in addition to a role in lipid metabolism homeostasis, may act as a surveillance mechanism to protect against pathogens.
Collapse
Affiliation(s)
- Elisabeth Rackles
- Faculty of Biology, Ludwig Maximilian University of Munich, 82152 Martinsried, Germany
| | - Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Ignasi Forné
- Protein Analysis Unit, BioMedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Großhadernerstr. 9, 82152 Martinsried, Germany
| | - Xing Zhang
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Judith Zacherl
- Faculty of Biology, Ludwig Maximilian University of Munich, 82152 Martinsried, Germany
| | - Simon Schrott
- Faculty of Biology, Ludwig Maximilian University of Munich, 82152 Martinsried, Germany
| | - Christian Fischer
- Faculty of Biology, Ludwig Maximilian University of Munich, 82152 Martinsried, Germany
| | - Jonathan J Ewbank
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Christof Osman
- Faculty of Biology, Ludwig Maximilian University of Munich, 82152 Martinsried, Germany
| | - Axel Imhof
- Protein Analysis Unit, BioMedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Großhadernerstr. 9, 82152 Martinsried, Germany
| | - Stéphane G Rolland
- Faculty of Biology, Ludwig Maximilian University of Munich, 82152 Martinsried, Germany.
| |
Collapse
|
31
|
Yu Y, Le HH, Curtis BJ, Wrobel CJJ, Zhang B, Maxwell DN, Pan JY, Schroeder FC. An Untargeted Approach for Revealing Electrophilic Metabolites. ACS Chem Biol 2020; 15:3030-3037. [PMID: 33074644 DOI: 10.1021/acschembio.0c00706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reactive electrophilic intermediates such as coenzyme A esters play central roles in metabolism but are difficult to detect with conventional strategies. Here, we introduce hydroxylamine-based stable isotope labeling to convert reactive electrophilic intermediates into stable derivatives that are easily detectable via LC-MS. In the model system Caenorhabditis elegans, parallel treatment with 14NH2OH and 15NH2OH revealed >1000 labeled metabolites, e.g., derived from peptide, fatty acid, and ascaroside pheromone biosyntheses. Results from NH2OH treatment of a pheromone biosynthesis mutant, acox-1.1, suggested upregulation of thioesterase activity, which was confirmed by gene expression analysis. The upregulated thioesterase contributes to the biosynthesis of a specific subset of ascarosides, determining the balance of dispersal and attractive signals. These results demonstrate the utility of NH2OH labeling for investigating complex biosynthetic networks. Initial results with Aspergillus and human cell lines indicate applicability toward uncovering reactive metabolomes in diverse living systems.
Collapse
Affiliation(s)
- Yan Yu
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Henry H. Le
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian J. Curtis
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Chester J. J. Wrobel
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Bingsen Zhang
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Danielle N. Maxwell
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Judy Y. Pan
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Frank C. Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
32
|
Edison AS, Colonna M, Gouveia GJ, Holderman NR, Judge MT, Shen X, Zhang S. NMR: Unique Strengths That Enhance Modern Metabolomics Research. Anal Chem 2020; 93:478-499. [DOI: 10.1021/acs.analchem.0c04414] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Le HH, Wrobel CJ, Cohen SM, Yu J, Park H, Helf MJ, Curtis BJ, Kruempel JC, Rodrigues PR, Hu PJ, Sternberg PW, Schroeder FC. Modular metabolite assembly in Caenorhabditis elegans depends on carboxylesterases and formation of lysosome-related organelles. eLife 2020; 9:61886. [PMID: 33063667 PMCID: PMC7641594 DOI: 10.7554/elife.61886] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Signaling molecules derived from attachment of diverse metabolic building blocks to ascarosides play a central role in the life history of C. elegans and other nematodes; however, many aspects of their biogenesis remain unclear. Using comparative metabolomics, we show that a pathway mediating formation of intestinal lysosome-related organelles (LROs) is required for biosynthesis of most modular ascarosides as well as previously undescribed modular glucosides. Similar to modular ascarosides, the modular glucosides are derived from highly selective assembly of moieties from nucleoside, amino acid, neurotransmitter, and lipid metabolism, suggesting that modular glucosides, like the ascarosides, may serve signaling functions. We further show that carboxylesterases that localize to intestinal organelles are required for the assembly of both modular ascarosides and glucosides via ester and amide linkages. Further exploration of LRO function and carboxylesterase homologs in C. elegans and other animals may reveal additional new compound families and signaling paradigms.
Collapse
Affiliation(s)
- Henry H Le
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Chester Jj Wrobel
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Sarah M Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Jingfang Yu
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Heenam Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Maximilian J Helf
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Brian J Curtis
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Joseph C Kruempel
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, United States
| | - Pedro Reis Rodrigues
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Patrick J Hu
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| |
Collapse
|
34
|
Hoki JS, Le HH, Mellott KE, Zhang YK, Fox BW, Rodrigues PR, Yu Y, Helf MJ, Baccile JA, Schroeder FC. Deep Interrogation of Metabolism Using a Pathway-Targeted Click-Chemistry Approach. J Am Chem Soc 2020; 142:18449-18459. [PMID: 33053303 DOI: 10.1021/jacs.0c06877] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Untargeted metabolomics indicates that the number of unidentified small-molecule metabolites may exceed the number of protein-coding genes for many organisms, including humans, by orders of magnitude. Uncovering the underlying metabolic networks is essential for elucidating the physiological and ecological significance of these biogenic small molecules. Here we develop a click-chemistry-based enrichment strategy, DIMEN (deep interrogation of metabolism via enrichment), that we apply to investigate metabolism of the ascarosides, a family of signaling molecules in the model organism C. elegans. Using a single alkyne-modified metabolite and a solid-phase azide resin that installs a diagnostic moiety for MS/MS-based identification, DIMEN uncovered several hundred novel compounds originating from diverse biosynthetic transformations that reveal unexpected intersection with amino acid, carbohydrate, and energy metabolism. Many of the newly discovered transformations could not be identified or detected by conventional LC-MS analyses without enrichment, demonstrating the utility of DIMEN for deeply probing biochemical networks that generate extensive yet uncharacterized structure space.
Collapse
Affiliation(s)
- Jason S Hoki
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Henry H Le
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Karlie E Mellott
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ying K Zhang
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Bennett W Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Pedro R Rodrigues
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yan Yu
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Maximilian J Helf
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Joshua A Baccile
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
35
|
Yilmaz LS, Li X, Nanda S, Fox B, Schroeder F, Walhout AJ. Modeling tissue-relevant Caenorhabditis elegans metabolism at network, pathway, reaction, and metabolite levels. Mol Syst Biol 2020; 16:e9649. [PMID: 33022146 PMCID: PMC7537831 DOI: 10.15252/msb.20209649] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 01/04/2023] Open
Abstract
Metabolism is a highly compartmentalized process that provides building blocks for biomass generation during development, homeostasis, and wound healing, and energy to support cellular and organismal processes. In metazoans, different cells and tissues specialize in different aspects of metabolism. However, studying the compartmentalization of metabolism in different cell types in a whole animal and for a particular stage of life is difficult. Here, we present MEtabolic models Reconciled with Gene Expression (MERGE), a computational pipeline that we used to predict tissue-relevant metabolic function at the network, pathway, reaction, and metabolite levels based on single-cell RNA-sequencing (scRNA-seq) data from the nematode Caenorhabditis elegans. Our analysis recapitulated known tissue functions in C. elegans, captured metabolic properties that are shared with similar tissues in human, and provided predictions for novel metabolic functions. MERGE is versatile and applicable to other systems. We envision this work as a starting point for the development of metabolic network models for individual cells as scRNA-seq continues to provide higher-resolution gene expression data.
Collapse
Affiliation(s)
- Lutfu Safak Yilmaz
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Xuhang Li
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Shivani Nanda
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Bennett Fox
- Boyce Thompson Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Frank Schroeder
- Boyce Thompson Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Albertha Jm Walhout
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
36
|
Curtis BJ, Kim LJ, Wrobel CJJ, Eagan JM, Smith RA, Burch JE, Le HH, Artyukhin AB, Nelson HM, Schroeder FC. Identification of Uric Acid Gluconucleoside-Ascaroside Conjugates in Caenorhabditis elegans by Combining Synthesis and MicroED. Org Lett 2020; 22:6724-6728. [PMID: 32820938 PMCID: PMC7526323 DOI: 10.1021/acs.orglett.0c02038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Few nucleoside-derived natural products have been identified from animals, despite the ubiquity of nucleosides in living organisms. Here, we use a combination of synthesis and the emerging electron microscopy technique microcrystal electron diffraction to determine the structures of several N3-(β-glucopyranosyl)uric acid derivatives in Caenorhabditis elegans. These noncanonical gluconucleosides further integrate an ascaroside moiety, for which we present a shortened synthetic route. The production of a phosphorylated gluconucleoside is influenced by evolutionarily conserved insulin signaling.
Collapse
Affiliation(s)
- Brian J Curtis
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Lee Joon Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Chester J J Wrobel
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - James M Eagan
- Ascribe Bioscience, Ithaca, New York 14853, United States
| | - Rubin A Smith
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jessica E Burch
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Henry H Le
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Alexander B Artyukhin
- Chemistry Department, College of Environmental Science and Forestry, State University of New York, Syracuse, New York 13210, United States
| | - Hosea M Nelson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
37
|
Faghih N, Bhar S, Zhou Y, Dar AR, Mai K, Bailey LS, Basso KB, Butcher RA. A Large Family of Enzymes Responsible for the Modular Architecture of Nematode Pheromones. J Am Chem Soc 2020; 142:13645-13650. [PMID: 32702987 DOI: 10.1021/jacs.0c04223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nematode Caenorhabditis elegans produces a broad family of pheromones, known as the ascarosides, that are modified with a variety of groups derived from primary metabolism. These modifications are essential for the diverse activities of the ascarosides in development and various behaviors, including attraction, aggregation, avoidance, and foraging. The mechanism by which these different groups are added to the ascarosides is poorly understood. Here, we identify a family of over 30 enzymes, which are homologous to mammalian carboxylesterase (CES) enzymes, and show that a number of these enzymes are responsible for the selective addition of specific modifications to the ascarosides. Through stable isotope feeding experiments, we demonstrate the in vivo activity of the CES-like enzymes and provide direct evidence that the acyl-CoA synthetase ACS-7, which was previously implicated in the attachment of certain modifications to the ascarosides in C. elegans, instead activates the side chains of certain ascarosides for shortening through β-oxidation. Our data provide a key to the combinatorial logic that gives rise to different modified ascarosides, which should greatly facilitate the exploration of the specific biological functions of these pheromones in the worm.
Collapse
Affiliation(s)
- Nasser Faghih
- Department of Chemistry, University of Florida, Gainesville, Florida, United States
| | - Subhradeep Bhar
- Department of Chemistry, University of Florida, Gainesville, Florida, United States
| | - Yue Zhou
- Department of Chemistry, University of Florida, Gainesville, Florida, United States
| | - Abdul Rouf Dar
- Department of Chemistry, University of Florida, Gainesville, Florida, United States
| | - Kevin Mai
- Department of Chemistry, University of Florida, Gainesville, Florida, United States
| | - Laura S Bailey
- Department of Chemistry, University of Florida, Gainesville, Florida, United States
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, Florida, United States
| | - Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
38
|
Aron AT, Gentry EC, McPhail KL, Nothias LF, Nothias-Esposito M, Bouslimani A, Petras D, Gauglitz JM, Sikora N, Vargas F, van der Hooft JJJ, Ernst M, Kang KB, Aceves CM, Caraballo-Rodríguez AM, Koester I, Weldon KC, Bertrand S, Roullier C, Sun K, Tehan RM, Boya P CA, Christian MH, Gutiérrez M, Ulloa AM, Tejeda Mora JA, Mojica-Flores R, Lakey-Beitia J, Vásquez-Chaves V, Zhang Y, Calderón AI, Tayler N, Keyzers RA, Tugizimana F, Ndlovu N, Aksenov AA, Jarmusch AK, Schmid R, Truman AW, Bandeira N, Wang M, Dorrestein PC. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat Protoc 2020; 15:1954-1991. [PMID: 32405051 DOI: 10.1038/s41596-020-0317-5] [Citation(s) in RCA: 372] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Global Natural Product Social Molecular Networking (GNPS) is an interactive online small molecule-focused tandem mass spectrometry (MS2) data curation and analysis infrastructure. It is intended to provide as much chemical insight as possible into an untargeted MS2 dataset and to connect this chemical insight to the user's underlying biological questions. This can be performed within one liquid chromatography (LC)-MS2 experiment or at the repository scale. GNPS-MassIVE is a public data repository for untargeted MS2 data with sample information (metadata) and annotated MS2 spectra. These publicly accessible data can be annotated and updated with the GNPS infrastructure keeping a continuous record of all changes. This knowledge is disseminated across all public data; it is a living dataset. Molecular networking-one of the main analysis tools used within the GNPS platform-creates a structured data table that reflects the molecular diversity captured in tandem mass spectrometry experiments by computing the relationships of the MS2 spectra as spectral similarity. This protocol provides step-by-step instructions for creating reproducible, high-quality molecular networks. For training purposes, the reader is led through a 90- to 120-min procedure that starts by recalling an example public dataset and its sample information and proceeds to creating and interpreting a molecular network. Each data analysis job can be shared or cloned to disseminate the knowledge gained, thus propagating information that can lead to the discovery of molecules, metabolic pathways, and ecosystem/community interactions.
Collapse
Affiliation(s)
- Allegra T Aron
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Emily C Gentry
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kerry L McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Louis-Félix Nothias
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Mélissa Nothias-Esposito
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Amina Bouslimani
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Daniel Petras
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Julia M Gauglitz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Nicole Sikora
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Fernando Vargas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Madeleine Ernst
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kyo Bin Kang
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| | - Christine M Aceves
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Irina Koester
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Kelly C Weldon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Center of Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Samuel Bertrand
- Groupe Mer, Molécules, Santé-EA 2160, UFR des Sciences Pharmaceutiques et Biologiques, Université de Nantes, Nantes, France
- ThalassOMICS Metabolomics Facility, Plateforme Corsaire, Biogenouest, Nantes, France
| | - Catherine Roullier
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
- ThalassOMICS Metabolomics Facility, Plateforme Corsaire, Biogenouest, Nantes, France
| | - Kunyang Sun
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Richard M Tehan
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Cristopher A Boya P
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, Nagarjuna Nagar, India
| | - Martin H Christian
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
| | - Marcelino Gutiérrez
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
| | | | | | - Randy Mojica-Flores
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
- Departamento de Química, Universidad Autónoma de Chiriquí (UNACHI), David, Chiriquí, Panama
| | - Johant Lakey-Beitia
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
| | - Victor Vásquez-Chaves
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, Costa Rica
| | - Yilue Zhang
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Angela I Calderón
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Nicole Tayler
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, Nagarjuna Nagar, India
| | - Robert A Keyzers
- School of Chemical & Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Fidele Tugizimana
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
- International R&D Division, Omnia Group (Pty) Ltd., Johannesburg, South Africa
| | - Nombuso Ndlovu
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Alexander A Aksenov
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Alan K Jarmusch
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Robin Schmid
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Nuno Bandeira
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA.
| | - Mingxun Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
- Center for Computational Mass Spectrometry, University of California, San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
39
|
Dong C, Weadick CJ, Truffault V, Sommer RJ. Convergent evolution of small molecule pheromones in Pristionchus nematodes. eLife 2020; 9:55687. [PMID: 32338597 PMCID: PMC7224695 DOI: 10.7554/elife.55687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/24/2020] [Indexed: 01/05/2023] Open
Abstract
The small molecules that mediate chemical communication between nematodes-so-called 'nematode-derived-modular-metabolites' (NDMMs)-are of major interest because of their ability to regulate development, behavior, and life-history. Pristionchus pacificus nematodes produce an impressive diversity of structurally complex NDMMs, some of which act as primer pheromones that are capable of triggering irreversible developmental switches. Many of these NDMMs have only ever been found in P. pacificus but no attempts have been made to study their evolution by profiling closely related species. This study brings a comparative perspective to the biochemical study of NDMMs through the systematic MS/MS- and NMR-based analysis of exo-metabolomes from over 30 Pristionchus species. We identified 36 novel compounds and found evidence for the convergent evolution of complex NDMMs in separate branches of the Pristionchus phylogeny. Our results demonstrate that biochemical innovation is a recurrent process in Pristionchus nematodes, a pattern that is probably typical across the animal kingdom.
Collapse
Affiliation(s)
- Chuanfu Dong
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Cameron J Weadick
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | | | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
40
|
Manohar M, Tenjo-Castano F, Chen S, Zhang YK, Kumari A, Williamson VM, Wang X, Klessig DF, Schroeder FC. Plant metabolism of nematode pheromones mediates plant-nematode interactions. Nat Commun 2020; 11:208. [PMID: 31924834 PMCID: PMC6954178 DOI: 10.1038/s41467-019-14104-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022] Open
Abstract
Microorganisms and nematodes in the rhizosphere profoundly impact plant health, and small-molecule signaling is presumed to play a central role in plant rhizosphere interactions. However, the nature of the signals and underlying mechanisms are poorly understood. Here we show that the ascaroside ascr#18, a pheromone secreted by plant-parasitic nematodes, is metabolized by plants to generate chemical signals that repel nematodes and reduce infection. Comparative metabolomics of plant tissues and excretions revealed that ascr#18 is converted into shorter side-chained ascarosides that confer repellency. An Arabidopsis mutant defective in two peroxisomal acyl-CoA oxidases does not metabolize ascr#18 and does not repel nematodes, indicating that plants, like nematodes, employ conserved peroxisomal β-oxidation to edit ascarosides and change their message. Our results suggest that plant-editing of nematode pheromones serves as a defense mechanism that acts in parallel to conventional pattern-triggered immunity, demonstrating that plants may actively manipulate chemical signaling of soil organisms.
Collapse
Affiliation(s)
| | | | - Shiyan Chen
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Ying K Zhang
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Anshu Kumari
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | | | - Xiaohong Wang
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY, 14853, USA
| | - Daniel F Klessig
- Boyce Thompson Institute, Ithaca, NY, 14853, USA.
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Frank C Schroeder
- Boyce Thompson Institute, Ithaca, NY, 14853, USA.
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
41
|
Zhang YK, Reilly DK, Yu J, Srinivasan J, Schroeder FC. Photoaffinity probes for nematode pheromone receptor identification. Org Biomol Chem 2019; 18:36-40. [PMID: 31781713 PMCID: PMC6961461 DOI: 10.1039/c9ob02099c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Identification of pheromone receptors plays a central role for uncovering signaling pathways that underlie chemical communication in animals. Here, we describe the synthesis and bioactivity of photoaffinity probes for the ascaroside ascr#8, a sex-pheromone of the model nematode, Caenorhabditis elegans. Structure-activity studies guided incorporation of alkyne- and diazirine-moieties and revealed that addition of functionality in the sidechain of ascr#8 was well tolerated, whereas modifications to the ascarylose moiety resulted in loss of biological activity. Our study will guide future probe design and provides a basis for pheromone receptor identification via photoaffinity labeling in C. elegans.
Collapse
Affiliation(s)
- Ying K Zhang
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| | | | | | | | | |
Collapse
|
42
|
Abstract
Secondary metabolites are often considered within the remit of bacterial or plant research, but animals also contain a plethora of these molecules with important functional roles. Classical feeding studies demonstrate that, whereas some are derived from diet, many of these compounds are made within the animals. In the past 15 years, the genetic and biochemical origin of several animal natural products has been traced to partnerships with symbiotic bacteria. More recently, a number of animal genome-encoded pathways to microbe-like natural products have come to light. These pathways are sometimes horizontally acquired from bacteria, but more commonly they unveil a new and diverse animal biochemistry. In this review, we highlight recent examples of characterized animal biosynthetic enzymes that reveal an unanticipated breadth and intricacy in animal secondary metabolism. The results so far suggest that there may be an immense diversity of animal small molecules and biosynthetic enzymes awaiting discovery. This biosynthetic dark matter is just beginning to be understood, providing a relatively untapped frontier for discovery.
Collapse
Affiliation(s)
- Joshua P Torres
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
43
|
An excreted small molecule promotes C. elegans reproductive development and aging. Nat Chem Biol 2019; 15:838-845. [PMID: 31320757 PMCID: PMC6650165 DOI: 10.1038/s41589-019-0321-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/31/2019] [Indexed: 01/16/2023]
Abstract
Excreted small-molecule signals can bias developmental trajectories and physiology in diverse animal species. However, the chemical identity of these signals remains largely obscure. Here we report identification of an unusual N-acylated glutamine derivative, nacq#1, that accelerates reproductive development and shortens lifespan in C. elegans. Produced predominantly by C. elegans males, nacq#1 hastens onset of sexual maturity in hermaphrodites by promoting exit from the larval dauer diapause and by accelerating late larval development. Even at picomolar concentrations, nacq#1 shortens hermaphrodite lifespan, suggesting a trade-off between reproductive investment and longevity. Acceleration of development by nacq#1 requires chemosensation and depends on three homologs of vertebrate steroid hormone receptors. Unlike ascaroside pheromones, which are restricted to nematodes, fatty acylated amino acid derivatives similar to nacq#1 have been reported from humans and invertebrates, suggesting that related compounds may serve signaling functions throughout Metazoa.
Collapse
|
44
|
Butcher RA. Natural products as chemical tools to dissect complex biology in C. elegans. Curr Opin Chem Biol 2019; 50:138-144. [PMID: 31102973 DOI: 10.1016/j.cbpa.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
Abstract
The search for novel pheromones, hormones, and other types of natural products in the nematode Caenorhabditis elegans has accelerated over the last 10-15 years. Many of these natural products perturb fundamental processes such as developmental progression, metabolism, reproductive and somatic aging, and various behaviors and have thus become essential tools for probing these processes, which are difficult to study in higher organisms. Furthermore, given the similarity between C. elegans and parasitic nematodes, these natural products could potentially be used to manipulate the development and behavior of parasitic nematodes and target the infections caused by them.
Collapse
Affiliation(s)
- Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
45
|
The C. elegans intestine: organogenesis, digestion, and physiology. Cell Tissue Res 2019; 377:383-396. [DOI: 10.1007/s00441-019-03036-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/12/2019] [Indexed: 12/16/2022]
|
46
|
Zdraljevic S, Fox BW, Strand C, Panda O, Tenjo FJ, Brady SC, Crombie TA, Doench JG, Schroeder FC, Andersen EC. Natural variation in C. elegans arsenic toxicity is explained by differences in branched chain amino acid metabolism. eLife 2019; 8:40260. [PMID: 30958264 PMCID: PMC6453569 DOI: 10.7554/elife.40260] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 03/26/2019] [Indexed: 12/29/2022] Open
Abstract
We find that variation in the dbt-1 gene underlies natural differences in Caenorhabditis elegans responses to the toxin arsenic. This gene encodes the E2 subunit of the branched-chain α-keto acid dehydrogenase (BCKDH) complex, a core component of branched-chain amino acid (BCAA) metabolism. We causally linked a non-synonymous variant in the conserved lipoyl domain of DBT-1 to differential arsenic responses. Using targeted metabolomics and chemical supplementation, we demonstrate that differences in responses to arsenic are caused by variation in iso-branched chain fatty acids. Additionally, we show that levels of branched chain fatty acids in human cells are perturbed by arsenic treatment. This finding has broad implications for arsenic toxicity and for arsenic-focused chemotherapeutics across human populations. Our study implicates the BCKDH complex and BCAA metabolism in arsenic responses, demonstrating the power of C. elegans natural genetic diversity to identify novel mechanisms by which environmental toxins affect organismal physiology. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Stefan Zdraljevic
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States.,Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Bennett William Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | | | - Oishika Panda
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States.,The Buck Institute for Research on Aging, Novato, United States
| | - Francisco J Tenjo
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Shannon C Brady
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States.,Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Tim A Crombie
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Erik C Andersen
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States.,Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, Chicago, United States
| |
Collapse
|
47
|
Witting M, Hastings J, Rodriguez N, Joshi CJ, Hattwell JPN, Ebert PR, van Weeghel M, Gao AW, Wakelam MJO, Houtkooper RH, Mains A, Le Novère N, Sadykoff S, Schroeder F, Lewis NE, Schirra HJ, Kaleta C, Casanueva O. Modeling Meets Metabolomics-The WormJam Consensus Model as Basis for Metabolic Studies in the Model Organism Caenorhabditis elegans. Front Mol Biosci 2018; 5:96. [PMID: 30488036 PMCID: PMC6246695 DOI: 10.3389/fmolb.2018.00096] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/22/2018] [Indexed: 02/05/2023] Open
Abstract
Metabolism is one of the attributes of life and supplies energy and building blocks to organisms. Therefore, understanding metabolism is crucial for the understanding of complex biological phenomena. Despite having been in the focus of research for centuries, our picture of metabolism is still incomplete. Metabolomics, the systematic analysis of all small molecules in a biological system, aims to close this gap. In order to facilitate such investigations a blueprint of the metabolic network is required. Recently, several metabolic network reconstructions for the model organism Caenorhabditis elegans have been published, each having unique features. We have established the WormJam Community to merge and reconcile these (and other unpublished models) into a single consensus metabolic reconstruction. In a series of workshops and annotation seminars this model was refined with manual correction of incorrect assignments, metabolite structure and identifier curation as well as addition of new pathways. The WormJam consensus metabolic reconstruction represents a rich data source not only for in silico network-based approaches like flux balance analysis, but also for metabolomics, as it includes a database of metabolites present in C. elegans, which can be used for annotation. Here we present the process of model merging, correction and curation and give a detailed overview of the model. In the future it is intended to expand the model toward different tissues and put special emphasizes on lipid metabolism and secondary metabolism including ascaroside metabolism in accordance to their central role in C. elegans physiology.
Collapse
Affiliation(s)
- Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Analytical Food Chemistry, Technische Universtität München, Freising, Germany
| | - Janna Hastings
- Epigenetics Department, Babraham Institute, Cambridge, United Kingdom
| | - Nicolas Rodriguez
- Epigenetics Department, Babraham Institute, Cambridge, United Kingdom
| | - Chintan J. Joshi
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Jake P. N. Hattwell
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R. Ebert
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Arwen W. Gao
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | | | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Abraham Mains
- Epigenetics Department, Babraham Institute, Cambridge, United Kingdom
| | - Nicolas Le Novère
- Epigenetics Department, Babraham Institute, Cambridge, United Kingdom
| | - Sean Sadykoff
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | | | - Nathan E. Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
- Novo Nordisk Foundation Center for Biosustainability at University of California, San Diego, La Jolla, CA, United States
| | | | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Olivia Casanueva
- Epigenetics Department, Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
48
|
Jex AR, Gasser RB, Schwarz EM. Transcriptomic Resources for Parasitic Nematodes of Veterinary Importance. Trends Parasitol 2018; 35:72-84. [PMID: 30529253 DOI: 10.1016/j.pt.2018.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/17/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022]
Abstract
Parasitic nematodes are important pathogens of animals, causing diseases that impact on agricultural production worldwide. Research on these worms has been constrained by a lack of genetic and genomic tools. Nonetheless, over the past decade this field has made substantial advances, many of which have been led by transcriptomic sequencing. The present review summarises major transcriptomic studies of veterinary parasitic nematodes in recent years, and comments on overarching themes stemming from this work that inform our understanding of parasitism. Finally, we comment on current, state-of-the-art informatic tools for the analysis of complex worm transcriptomes to extract maximum the molecular information from them.
Collapse
Affiliation(s)
- Aaron R Jex
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia; Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Erich M Schwarz
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia; Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
49
|
McGrath PT, Ruvinsky I. A primer on pheromone signaling in Caenorhabditis elegans for systems biologists. ACTA ACUST UNITED AC 2018; 13:23-30. [PMID: 30984890 DOI: 10.1016/j.coisb.2018.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Individuals communicate information about their age, sex, social status, and recent life history with other members of their species through the release of pheromones, chemical signals that elicit behavioral or physiological changes in the recipients. Pheromones provide a fascinating example of information exchange: animals have evolved intraspecific languages in the presence of eavesdroppers and cheaters. In this review, we discuss the recent work using the nematode C. elegans to decipher its chemical language through the analysis of ascaroside pheromones. Genetic dissection has started to identify the enzymes that produce pheromones and the neural circuits that process these signals. Ecological experiments have characterized the biotic environment of C. elegans and its relatives, including ecological relationships with a variety of species that sense or release similar blends of ascarosides. Systems biology approaches should be fruitful in understanding the organization and function of communication systems in C. elegans.
Collapse
Affiliation(s)
- Patrick T McGrath
- Department of Biological Sciences, Department of Physics; Georgia Institute of Technology, Atlanta, GA 30332.
| | - Ilya Ruvinsky
- Department of Molecular Biosciences; Northwestern University, Evanston, IL 60208.
| |
Collapse
|