1
|
Xing R, Zhang X, Fan X, Xie R, Wu L, Fang X. Coupling Strategies of Multi-Physical Fields in 2D Materials-Based Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2501833. [PMID: 40059460 DOI: 10.1002/adma.202501833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/18/2025] [Indexed: 04/24/2025]
Abstract
2D materials possess exceptional carrier transport properties and mechanical stability despite their ultrathin nature. In this context, the coupling between polarization fields and photoelectric fields has been proposed to modulate the physical properties of 2D materials, including energy band structure, carrier mobility, as well as the dynamic processes of photoinduced carriers. These strategies have led to significant improvements in the performance, functionality, and integration density of 2D materials -based photodetectors. The present review introduces the coupling of photoelectric field with four fundamental polarization fields, delivered from dielectric, piezoelectric, pyroelectric, and ferroelectric effects, focusing on their synergistic coupling mechanisms, distinctive properties, and technological merits in advanced photodetection applications. More importantly, it sheds light on the new path of material synthesis and novel structure design to improve the efficiency of the coupling strategies in photodetectors. Then, research advances on the synergy of multi-polarization effects and photoelectric effect in the domain of bionic photodetectors are highlighted. Finally, the review outlines the future research perspectives of coupling strategies in 2D materials-based photodetectors and proposes potential solutions to address the challenges issues of this area. This comprehensive overview will guide futural fundamental and applied research that capitalizes on coupling strategies for sensitive and intelligent photodetection.
Collapse
Affiliation(s)
- Ruofei Xing
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Xinglong Zhang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Xueshuo Fan
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Ranran Xie
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area, Shenzhen, 518045, P. R. China
| | - Limin Wu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
2
|
Liao CS, Lang L, Wang QY, Zhao YQ, Yu ZL. The tunable electronic band structure of a AlP 3/Cs 3Bi 2I 6Cl 3 van der Waals heterostructure induced by an electric field: a first-principles study. Phys Chem Chem Phys 2025; 27:2485-2494. [PMID: 39803984 DOI: 10.1039/d4cp03918a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Constructing van der Waals heterostructures (vdWHs) has emerged as an attractive strategy to combine and enhance the optoelectronic properties of stacked materials. Herein, by means of first-principles calculations, we investigate the geometric and electronic structures of the AlP3/Cs3Bi2I6Cl3 vdWH as well as its tunable band structure via an external electric field. The AlP3/Cs3Bi2I6Cl3 vdWH is structurally and thermodynamically stable due to the low binding energy and the small energy fluctuation at room temperature. Our band structure calculations demonstrate that the AlP3/Cs3Bi2I6Cl3 vdWH possesses an indirect bandgap and a type-I band alignment with the band edges both dominated by an AlP3 layer. Notably, the band alignment of heterostructures can be flexibly tuned between type-I and type-II by employing an external electric field. Besides, an indirect-to-direct bandgap transition can be observed by increasing the intensity of negative electric field. These results reveal the potential of the AlP3/Cs3Bi2I6Cl3 vdWH as a novel candidate material for the experimental designs of multi-functional devices.
Collapse
Affiliation(s)
- Cheng-Sheng Liao
- Key Laboratory of Hunan Province on Information Photonics and Freespace Optical Communications, School of Physics and Electronics Science, Hunan Institute of Science and Technology, Yueyang 414006, People's Republic of China.
| | - Lin Lang
- Key Laboratory of Hunan Province on Information Photonics and Freespace Optical Communications, School of Physics and Electronics Science, Hunan Institute of Science and Technology, Yueyang 414006, People's Republic of China.
| | - Qiu-Yi Wang
- Key Laboratory of Hunan Province on Information Photonics and Freespace Optical Communications, School of Physics and Electronics Science, Hunan Institute of Science and Technology, Yueyang 414006, People's Republic of China.
| | - Yu-Qing Zhao
- School of Physics and Electronics Science, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China
| | - Zhuo-Liang Yu
- Key Laboratory of Hunan Province on Information Photonics and Freespace Optical Communications, School of Physics and Electronics Science, Hunan Institute of Science and Technology, Yueyang 414006, People's Republic of China.
| |
Collapse
|
3
|
Wu J, Peng B. Smallest [5,6]Fullerene as Building Blocks for 2D Networks with Superior Stability and Enhanced Photocatalytic Performance. J Am Chem Soc 2025; 147:1749-1757. [PMID: 39558753 PMCID: PMC11744754 DOI: 10.1021/jacs.4c13167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
The assembly of molecules to form covalent networks can create varied lattice structures with physical and chemical properties distinct from those of conventional atomic lattices. Using the smallest stable [5,6]fullerene units as building blocks, various 2D C24 networks can be formed with superior stability and strength compared to the recently synthesized monolayer polymeric C60. Monolayer C24 harnesses the properties of both carbon crystals and fullerene molecules, such as stable chemical bonds, suitable band gaps, and large surface area, facilitating photocatalytic water splitting. The electronic band gaps of C24 are comparable to those of TiO2, providing appropriate band edges with sufficient external potential for overall water splitting over the acidic and neutral pH range. Upon photoexcitation, strong solar absorption enabled by strongly bound bright excitons can generate carriers effectively, while the type-II band alignment between C24 and other 2D monolayers can separate electrons and holes in individual layers simultaneously. Additionally, the number of surface-active sites of C24 monolayers are three times more than that of their C60 counterparts in a much wider pH range, providing spontaneous reaction pathways for the hydrogen evolution reaction. Our work provides insights into materials design using tunable building blocks of fullerene units with tailored functions for energy generation, conversion, and storage.
Collapse
Affiliation(s)
- Jiaqi Wu
- Peterhouse, University of Cambridge, Trumpington Street, Cambridge CB2 1RD, UK
| | - Bo Peng
- Theory
of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK
| |
Collapse
|
4
|
Li C, Liu K, Yan H, Zhang L, Jiang D, Wen T, Yue B, Wang Y. Lateral Heterostructures Fabricated via Artificial Pressure Gradient. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407922. [PMID: 39344555 DOI: 10.1002/adma.202407922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/30/2024] [Indexed: 10/01/2024]
Abstract
Hydrostatic conditions are generally pursued in high-pressure research, maintained to prevent the intrinsic pressure gradient on the culets of diamond anvil cells (DACs) from introducing heterogeneity to the structure and physical properties of the regulated materials. Here, a pioneering route to fabricate lateral heterostructures is proposed via artificial pressure gradients intentionally designed in DACs. Under the tailored pressure gradients, different structural phases emerge in distinct parts of the material, resulting in the formation of heterostructures. Harnessing the polymorphic transition nature of violet phosphorus under high pressure, violet/blue and violet/black phosphorus lateral heterostructures with different electrical properties have been successfully prepared by the pressure gradient method. This achievement highlights the potential of artificial pressure gradients as a portable and universal strategy for the fabrication of lateral heterostructures, shedding new light on the preparation and regulation of lateral heterostructures across a wider range of materials.
Collapse
Affiliation(s)
- Chen Li
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing, 100193, China
| | - Ke Liu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing, 100193, China
| | - Huacai Yan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Long Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Dequan Jiang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Ting Wen
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing, 100193, China
| | - Binbin Yue
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing, 100193, China
| | - Yonggang Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing, 100193, China
| |
Collapse
|
5
|
Sujata KM, Chauhan P, Verma N, Solanki RG, Kumar A. Two-dimensional BiSbTeX 2 (X = S, Se, Te) and their Janus monolayers as efficient thermoelectric materials. Phys Chem Chem Phys 2024; 26:27163-27175. [PMID: 39434690 DOI: 10.1039/d4cp02750g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Today, there is a huge need for highly efficient and sustainable energy resources to tackle environmental degradation and energy crisis. We have analyzed the electronic, mechanical and thermoelectric (TE) characteristics of two-dimensional (2D) BiSbTeX2 (X = S, Se and Te) and Janus BiSbTeXY (X/Y = S, Se and Te) monolayers by implementing first principles simulations. These monolayers' dynamic stability and thermal stability have been demonstrated through phonon dispersion spectra and ab initio molecular dynamics (AIMD) simulations, respectively. The band structure of these monolayers can be tuned by applying uniaxial and biaxial strains. The investigated lattice thermal conductivity (κl) for these monolayers lies between 0.23 and 0.37 W m-1 K-1 at 300 K. For a more precise calculation of the scattering rate, we implemented electron-phonon coupling (EPC) and spin-orbit coupling effects to calculate the transport properties. For p(n)-type carriers, the power factor of these monolayers is predicted to be as high as 2.08 × 10-3 W m-1 K-2 and (0.47 × 10-3 W m-1 K-2) at 300 K. The higher thermoelectric figure of merit (ZT) of p-type carriers at 300 K is obtained because of their very low value of κl and high power factor. Our theoretical investigation predicts that these monolayers can be potential candidates for fabricating highly efficient thermoelectric power generators.
Collapse
Affiliation(s)
- K M Sujata
- Department of Physics, Central University of Punjab, Bathinda, 151401, India.
- Department of Physics, Dr. Hari Singh Gour University, Sagar, MP, 470003, India.
| | - Poonam Chauhan
- Department of Physics, Central University of Punjab, Bathinda, 151401, India.
| | - Nidhi Verma
- Department of Physics, Central University of Punjab, Bathinda, 151401, India.
| | - Rekha Garg Solanki
- Department of Physics, Dr. Hari Singh Gour University, Sagar, MP, 470003, India.
| | - Ashok Kumar
- Department of Physics, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
6
|
Wu R, Zhang H, Ma H, Zhao B, Li W, Chen Y, Liu J, Liang J, Qin Q, Qi W, Chen L, Li J, Li B, Duan X. Synthesis, Modulation, and Application of Two-Dimensional TMD Heterostructures. Chem Rev 2024; 124:10112-10191. [PMID: 39189449 DOI: 10.1021/acs.chemrev.4c00174] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMD) heterostructures have attracted a lot of attention due to their rich material diversity and stack geometry, precise controllability of structure and properties, and potential practical applications. These heterostructures not only overcome the inherent limitations of individual materials but also enable the realization of new properties through appropriate combinations, establishing a platform to explore new physical and chemical properties at micro-nano-pico scales. In this review, we systematically summarize the latest research progress in the synthesis, modulation, and application of 2D TMD heterostructures. We first introduce the latest techniques for fabricating 2D TMD heterostructures, examining the rationale, mechanisms, advantages, and disadvantages of each strategy. Furthermore, we emphasize the importance of characteristic modulation in 2D TMD heterostructures and discuss some approaches to achieve novel functionalities. Then, we summarize the representative applications of 2D TMD heterostructures. Finally, we highlight the challenges and future perspectives in the synthesis and device fabrication of 2D TMD heterostructures and provide some feasible solutions.
Collapse
Affiliation(s)
- Ruixia Wu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hongmei Zhang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Huifang Ma
- Innovation Center for Gallium Oxide Semiconductor (IC-GAO), National and Local Joint Engineering Laboratory for RF Integration and Micro-Assembly Technologies, College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- School of Flexible Electronics (Future Technologies) Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Bei Zhao
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing 211189, China
| | - Wei Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianteng Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jingyi Liang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qiuyin Qin
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weixu Qi
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Liang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jia Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bo Li
- Changsha Semiconductor Technology and Application Innovation Research Institute, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
7
|
Liu X, Jiang H, Li Z, Luo S, Li Y, Cui Y, Zhang Y, Hao R, Zeng J, Hong J, Liu Z, Gao W, Liu S. Atomic-Thin WS 2 Kirigami for Bidirectional Polarization Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407066. [PMID: 39108048 DOI: 10.1002/adma.202407066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/10/2024] [Indexed: 09/28/2024]
Abstract
The assembly and patterning engineering in two-dimensional (2D) materials hold importance for chip-level designs incorporating multifunctional detectors. At present, the patterning and stacking methods of 2D materials inevitably introduce impurity instability and functional limitations. Here, the space-confined chemical vapor deposition method is employed to achieve state-of-the-art kirigami structures of self-assembled WS2, featuring various layer combinations and stacking configurations. With this technique as a foundation, the WS2 nano-kirigami is integrated with metasurface design, achieving a photodetector with bidirectional polarization-sensitive detection capability in the infrared spectrum. Nano-kirigami can eliminate some of the uncontrollable factors in the processing of 2D material devices, providing a freely designed platform for chip-level multifunctional detection across multiple modules.
Collapse
Affiliation(s)
- Xiao Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 639798, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Hao Jiang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhiwei Li
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Song Luo
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Yanjun Li
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Yu Cui
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yan Zhang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Rui Hao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiang Zeng
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Jinhua Hong
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Weibo Gao
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Song Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- Shenzhen Research Institute, Hunan University, Shenzhen, 518000, China
| |
Collapse
|
8
|
Xu H, Meng Q, Yan T, Wang Z, Xiong Y, Wu S, Han Y, Dong S, Tian J. Semi-Coherent Heterointerface Engineering via In Situ Phase Transition for Enhanced Sodium/Lithium-Ions Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311421. [PMID: 38282177 DOI: 10.1002/smll.202311421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/09/2024] [Indexed: 01/30/2024]
Abstract
To improve ion transport kinetics and electronic conductivity between the different phases in sodium/lithium-ion battery (LIB/SIB) anodes, heterointerface engineering is considered as a promising strategy due to the strong built-in electric field. However, the lattice mismatch and defects in the interphase structure can lead to large grain boundary resistance, reducing the ion transport kinetics and electronic conductivity. Herein, monometallic selenide Fe3Se4-Fe7Se8 semi-coherent heterointerface embedded in 3D connected Nitrogen-doped carbon yolk-shell matrix (Fe3Se4-Fe7Se8@NC) is obtained via an in situ phase transition process. Such semi-coherent heterointerface between Fe3Se4 and Fe7Se8 shows the matched interfacial lattice and strong built-in electric field, resulting in the low interface impedance and fast reaction kinetics. Moreover, the yolk-shell structure is designed to confine all monometallic selenide Fe3Se4-Fe7Se8 semi-coherent heterointerface nanoparticles, improving the structural stability and inhibiting the volume expansion effect. In particular, the 3D carbon bridge between multi-yolks shell structure improves the electronic conductivity and shortens the ion transport path. Therefore, the efficient reversible pseudocapacitance and electrochemical conversion reaction are enabled by the Fe3Se4-Fe7Se8@NC, leading to the high specific capacity of 439 mAh g-1 for SIB and 1010 mAh g-1 for LIB. This work provides a new strategy for constructing heterointerface of the anode for secondary batteries.
Collapse
Affiliation(s)
- Haoran Xu
- School of Materials Science and Engineering, College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590, P. R. China
| | - Qi Meng
- School of Materials Science and Engineering, College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590, P. R. China
| | - Tengxin Yan
- School of Materials Science and Engineering, College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590, P. R. China
| | - Ziyi Wang
- School of Materials Science and Engineering, College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590, P. R. China
| | - Ya Xiong
- School of Materials Science and Engineering, College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590, P. R. China
| | - Shaowen Wu
- School of Materials Science and Engineering, College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590, P. R. China
| | - Ye Han
- School of Materials Science and Engineering, College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590, P. R. China
| | - Shihua Dong
- School of Materials Science and Engineering, College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China
| | - Jian Tian
- School of Materials Science and Engineering, College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590, P. R. China
| |
Collapse
|
9
|
Sun Y, Wang H, Xie D. Recent Advance in Synaptic Plasticity Modulation Techniques for Neuromorphic Applications. NANO-MICRO LETTERS 2024; 16:211. [PMID: 38842588 PMCID: PMC11156833 DOI: 10.1007/s40820-024-01445-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
Manipulating the expression of synaptic plasticity of neuromorphic devices provides fascinating opportunities to develop hardware platforms for artificial intelligence. However, great efforts have been devoted to exploring biomimetic mechanisms of plasticity simulation in the last few years. Recent progress in various plasticity modulation techniques has pushed the research of synaptic electronics from static plasticity simulation to dynamic plasticity modulation, improving the accuracy of neuromorphic computing and providing strategies for implementing neuromorphic sensing functions. Herein, several fascinating strategies for synaptic plasticity modulation through chemical techniques, device structure design, and physical signal sensing are reviewed. For chemical techniques, the underlying mechanisms for the modification of functional materials were clarified and its effect on the expression of synaptic plasticity was also highlighted. Based on device structure design, the reconfigurable operation of neuromorphic devices was well demonstrated to achieve programmable neuromorphic functions. Besides, integrating the sensory units with neuromorphic processing circuits paved a new way to achieve human-like intelligent perception under the modulation of physical signals such as light, strain, and temperature. Finally, considering that the relevant technology is still in the basic exploration stage, some prospects or development suggestions are put forward to promote the development of neuromorphic devices.
Collapse
Affiliation(s)
- Yilin Sun
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Huaipeng Wang
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Dan Xie
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
10
|
Huang X, Xiong R, Hao C, Beck P, Sa B, Wiebe J, Wiesendanger R. 2D Lateral Heterojunction Arrays with Tailored Interface Band Bending. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308007. [PMID: 38315969 DOI: 10.1002/adma.202308007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/24/2023] [Indexed: 02/07/2024]
Abstract
Two-dimensional (2D) lateral heterojunction arrays, characterized by well-defined electronic interfaces, hold significant promise for advancing next-generation electronic devices. Despite this potential, the efficient synthesis of high-density lateral heterojunctions with tunable interfacial band alignment remains a challenging. Here, a novel strategy is reported for the fabrication of lateral heterojunction arrays between monolayer Si2Te2 grown on Sb2Te3 (ML-Si2Te2@Sb2Te3) and one-quintuple-layer Sb2Te3 grown on monolayer Si2Te2 (1QL-Sb2Te3@ML-Si2Te2) on a p-doped Sb2Te3 substrate. The site-specific formation of numerous periodically arranged 2D ML-Si2Te2@Sb2Te3/1QL-Sb2Te3@ML-Si2Te2 lateral heterojunctions is realized solely through three epitaxial growth steps of thick-Sb2Te3, ML-Si2Te2, and 1QL-Sb2Te3 films, sequentially. More importantly, the precisely engineering of the interfacial band alignment is realized, by manipulating the substrate's p-doping effect with lateral spatial dependency, on each ML-Si2Te2@Sb2Te3/1QL-Sb2Te3@ML-Si2Te2 junction. Atomically sharp interfaces of the junctions with continuous lattices are observed by scanning tunneling microscopy. Scanning tunneling spectroscopy measurements directly reveal the tailored type-II band bending at the interface. This reported strategy opens avenues for advancing lateral epitaxy technology, facilitating practical applications of 2D in-plane heterojunctions.
Collapse
Affiliation(s)
- Xiaochun Huang
- Department of Physics, University of Hamburg, D-20355, Hamburg, Germany
| | - Rui Xiong
- Multiscale Computational Materials Facility & Materials Genome Institute, School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Chunxue Hao
- Department of Physics, University of Hamburg, D-20355, Hamburg, Germany
| | - Philip Beck
- Department of Physics, University of Hamburg, D-20355, Hamburg, Germany
| | - Baisheng Sa
- Multiscale Computational Materials Facility & Materials Genome Institute, School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Jens Wiebe
- Department of Physics, University of Hamburg, D-20355, Hamburg, Germany
| | | |
Collapse
|
11
|
Cui Q, Li Y, Zhang H, Chang J, Xu H, Xu C. Spatiotemporal evolution of ultrafast photocarrier dynamics across WS2-ReS2 lateral interface. J Chem Phys 2024; 160:124704. [PMID: 38526112 DOI: 10.1063/5.0198494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024] Open
Abstract
2D lateral heterostructures possess atomically sharp lateral interfaces, while understanding of their ultrafast photocarrier dynamics from a spatiotemporal viewpoint is rather elusive. In this study, we have investigated the spatiotemporal evolution of photocarrier dynamics across the 1D lateral interface of a WS2-ReS2 2D lateral heterostructure utilizing femtosecond laser pump-probe. The nontrivial band offset across the 1D lateral interface markedly mediates the spatiotemporal photocarrier transfer and transport processes. Subsequently, a hole accumulation region on the WS2 side and an electron accumulation region (1DEG) on the ReS2 side have been spatially identified by correlating ultrafast photocarrier signals. The measured width of the unilateral depletion region is 1360 ± 160 nm. Our work has provided substantial insights into mediated photocarrier dynamics in the 2D lateral heterostructure, which will benefit explorations in 2D interfacial physics and 2D lateral optoelectronic devices.
Collapse
Affiliation(s)
- Qiannan Cui
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Yuanyuan Li
- School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - He Zhang
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Jianhua Chang
- School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Hua Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Chunxiang Xu
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
12
|
Ma L, Wang Y, Liu Y. van der Waals Contact for Two-Dimensional Transition Metal Dichalcogenides. Chem Rev 2024; 124:2583-2616. [PMID: 38427801 DOI: 10.1021/acs.chemrev.3c00697] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have emerged as highly promising candidates for next-generation electronics owing to their atomically thin structures and surfaces devoid of dangling bonds. However, establishing high-quality metal contacts with TMDs presents a critical challenge, primarily attributed to their ultrathin bodies and delicate lattices. These distinctive characteristics render them susceptible to physical damage and chemical reactions when conventional metallization approaches involving "high-energy" processes are implemented. To tackle this challenge, the concept of van der Waals (vdW) contacts has recently been proposed as a "low-energy" alternative. Within the vdW geometry, metal contacts can be physically laminated or gently deposited onto the 2D channel of TMDs, ensuring the formation of atomically clean and electronically sharp contact interfaces while preserving the inherent properties of the 2D TMDs. Consequently, a considerable number of vdW contact devices have been extensively investigated, revealing unprecedented transport physics or exceptional device performance that was previously unachievable. This review presents recent advancements in vdW contacts for TMD transistors, discussing the merits, limitations, and prospects associated with each device geometry. By doing so, our purpose is to offer a comprehensive understanding of the current research landscape and provide insights into future directions within this rapidly evolving field.
Collapse
Affiliation(s)
- Likuan Ma
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yiliu Wang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yuan Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
13
|
Sun X, Suriyage M, Khan AR, Gao M, Zhao J, Liu B, Hasan MM, Rahman S, Chen RS, Lam PK, Lu Y. Twisted van der Waals Quantum Materials: Fundamentals, Tunability, and Applications. Chem Rev 2024; 124:1992-2079. [PMID: 38335114 DOI: 10.1021/acs.chemrev.3c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Twisted van der Waals (vdW) quantum materials have emerged as a rapidly developing field of two-dimensional (2D) semiconductors. These materials establish a new central research area and provide a promising platform for studying quantum phenomena and investigating the engineering of novel optoelectronic properties such as single photon emission, nonlinear optical response, magnon physics, and topological superconductivity. These captivating electronic and optical properties result from, and can be tailored by, the interlayer coupling using moiré patterns formed by vertically stacking atomic layers with controlled angle misorientation or lattice mismatch. Their outstanding properties and the high degree of tunability position them as compelling building blocks for both compact quantum-enabled devices and classical optoelectronics. This paper offers a comprehensive review of recent advancements in the understanding and manipulation of twisted van der Waals structures and presents a survey of the state-of-the-art research on moiré superlattices, encompassing interdisciplinary interests. It delves into fundamental theories, synthesis and fabrication, and visualization techniques, and the wide range of novel physical phenomena exhibited by these structures, with a focus on their potential for practical device integration in applications ranging from quantum information to biosensors, and including classical optoelectronics such as modulators, light emitting diodes, lasers, and photodetectors. It highlights the unique ability of moiré superlattices to connect multiple disciplines, covering chemistry, electronics, optics, photonics, magnetism, topological and quantum physics. This comprehensive review provides a valuable resource for researchers interested in moiré superlattices, shedding light on their fundamental characteristics and their potential for transformative applications in various fields.
Collapse
Affiliation(s)
- Xueqian Sun
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Manuka Suriyage
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Ahmed Raza Khan
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Department of Industrial and Manufacturing Engineering, University of Engineering and Technology (Rachna College Campus), Gujranwala, Lahore 54700, Pakistan
| | - Mingyuan Gao
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- College of Engineering and Technology, Southwest University, Chongqing 400716, China
| | - Jie Zhao
- Department of Quantum Science & Technology, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Boqing Liu
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Md Mehedi Hasan
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Sharidya Rahman
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre of Excellence in Exciton Science, Monash University, Clayton, Victoria 3800, Australia
| | - Ruo-Si Chen
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Ping Koy Lam
- Department of Quantum Science & Technology, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yuerui Lu
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
14
|
Wang J, He L, Zhang Y, Nong H, Li S, Wu Q, Tan J, Liu B. Locally Strained 2D Materials: Preparation, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2314145. [PMID: 38339886 DOI: 10.1002/adma.202314145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/28/2024] [Indexed: 02/12/2024]
Abstract
2D materials are promising for strain engineering due to their atomic thickness and exceptional mechanical properties. In particular, non-uniform and localized strain can be induced in 2D materials by generating out-of-plane deformations, resulting in novel phenomena and properties, as witnessed in recent years. Therefore, the locally strained 2D materials are of great value for both fundamental studies and practical applications. This review discusses techniques for introducing local strains to 2D materials, and their feasibility, advantages, and challenges. Then, the unique effects and properties that arise from local strain are explored. The representative applications based on locally strained 2D materials are illustrated, including memristor, single photon emitter, and photodetector. Finally, concluding remarks on the challenges and opportunities in the emerging field of locally strained 2D materials are provided.
Collapse
Affiliation(s)
- Jingwei Wang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Liqiong He
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yunhao Zhang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Huiyu Nong
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Shengnan Li
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Qinke Wu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Junyang Tan
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
15
|
Botella R, Cao W, Celis J, Fernández-Catalá J, Greco R, Lu L, Pankratova V, Temerov F. Activating two-dimensional semiconductors for photocatalysis: a cross-dimensional strategy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:141501. [PMID: 38086082 DOI: 10.1088/1361-648x/ad14c8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
The emerging two-dimensional (2D) semiconductors substantially extend materials bases for versatile applications such as semiconductor photocatalysis demanding semiconductive matrices and large surface areas. The dimensionality, while endowing 2D semiconductors the unique properties to host photocatalytic functionality of pollutant removal and hydrogen evolution, hurdles the activation paths to form heterogenous photocatalysts where the photochemical processes are normally superior over these on the mono-compositional counterparts. In this perspective, we present a cross-dimensional strategy to employ thenD (n= 0-2) clusters or nanomaterials as activation partners to boost the photocatalytic activities of the 2D semiconductors. The formation principles of heterogenous photocatalysts are illustrated specifically for the 2D matrices, followed by selection criteria of them among the vast 2D database. The computer investigations are illustrated in the density functional theory route and machine learning benefitted from the vast samples in the 2D library. Synthetic realizations and characterizations of the 2D heterogenous systems are introduced with an emphasis on chemical methods and advanced techniques to understand materials and mechanistic studies. The perspective outlooks cross-dimensional activation strategies of the 2D materials for other applications such as CO2removal, and materials matrices in other dimensions which may inspire incoming research within these fields.
Collapse
Affiliation(s)
- R Botella
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, FIN-90014, Finland
| | - W Cao
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, FIN-90014, Finland
| | - J Celis
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, FIN-90014, Finland
| | - J Fernández-Catalá
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, FIN-90014, Finland
| | - R Greco
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, FIN-90014, Finland
| | - L Lu
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, FIN-90014, Finland
| | - V Pankratova
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, FIN-90014, Finland
| | - F Temerov
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, FIN-90014, Finland
| |
Collapse
|
16
|
Hong M, Dai L, Hu H, Zhang X, Li C, He Y. Pressure-Driven Structural and Electronic Transitions in a Two-Dimensional Janus WSSe Crystal. Inorg Chem 2023; 62:16782-16793. [PMID: 37775280 DOI: 10.1021/acs.inorgchem.3c02144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
In this work, we presented the first report on the high-pressure structural stability and electrical transport characteristics in WSSe under different hydrostatic environments through Raman spectroscopy, electrical conductivity, and high-resolution transmission electron microscopy (HRTEM) coupled with first-principles theoretical calculations. For nonhydrostatic conditions, WSSe endured a phase transition at 15.2 GPa, followed by a semiconductor-to-metal crossover at 25.3 GPa. Furthermore, the bandgap closure was accounted for the metallization of WSSe as derived from theoretical calculations. Under hydrostatic conditions, ∼ 2.0 GPa pressure hysteresis was detected for the emergence of phase transition and metallization in WSSe because of the feeble deviatoric stress. Upon depressurization, the reversibility of the phase transition was substantiated by those of microscopic HRTEM observations under different hydrostatic environments. Our high-pressure investigation on WSSe advances the insightful understanding of the crystalline structure and electronic properties for the Janus transition-metal dichalcogenide (TMD) family and boosts prospective developments in functional devices.
Collapse
Affiliation(s)
- Meiling Hong
- Key Laboratory of High-Temperature and High-Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guizhou 550081, China
| | - Lidong Dai
- Key Laboratory of High-Temperature and High-Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guizhou 550081, China
| | - Haiying Hu
- Key Laboratory of High-Temperature and High-Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guizhou 550081, China
| | - Xinyu Zhang
- Key Laboratory of High-Temperature and High-Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guizhou 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuang Li
- Key Laboratory of High-Temperature and High-Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guizhou 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu He
- Key Laboratory of High-Temperature and High-Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guizhou 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Xu Q, Wu Q, Wang C, Zhang X, Cai Z, Lin L, Gu X, Ostrikov KK, Nan H, Xiao S. High-performance multilayer WSe 2/SnS 2p-n heterojunction photodetectors by two step confined space chemical vapor deposition. NANOTECHNOLOGY 2023; 34:505604. [PMID: 37748477 DOI: 10.1088/1361-6528/acfcc3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Two-dimensional (2D) p-n heterojunctions have attracted great attention due to their outstanding properties in electronic and optoelectronic devices, especially in photodetectors. Various types of heterojunctions have been constituted by mechanical exfoliation and stacking. However, achieving controlled growth of heterojunction structures remains a tremendous challenge. Here, we employed a two-step KI-assisted confined-space chemical vapor deposition method to prepare multilayer WSe2/SnS2p-n heterojunctions. Optical characterization results revealed that the prepared WSe2/SnS2vertical heterostructures have clear interfaces as well as vertical heterostructures. The electrical and optoelectronic properties were investigated by constructing the corresponding heterojunction devices, which exhibited good rectification characteristics and obtained a high detectivity of 7.85 × 1012Jones and a photoresponse of 227.3 A W-1under visible light irradiation, as well as a fast rise/fall time of 166/440μs. These remarkable performances are likely attributed to the ultra-low dark current generated in the depletion region at the junction and the high direct tunneling current during illumination. This work demonstrates the value of multilayer WSe2/SnS2heterojunctions for applications in high-performance photodetectors.
Collapse
Affiliation(s)
- Qilei Xu
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Qianqian Wu
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Chenglin Wang
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xiumei Zhang
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Zhengyang Cai
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Liangliang Lin
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xiaofeng Gu
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Kostya Ken Ostrikov
- School of Physics and Chemistry and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Haiyan Nan
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Shaoqing Xiao
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
18
|
Yuan L, Zheng B, Zhao Q, Kempt R, Brumme T, Kuc AB, Ma C, Deng S, Pan A, Huang L. Strong Dipolar Repulsion of One-Dimensional Interfacial Excitons in Monolayer Lateral Heterojunctions. ACS NANO 2023; 17:15379-15387. [PMID: 37540827 DOI: 10.1021/acsnano.2c12903] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Repulsive and long-range exciton-exciton interactions are crucial for the exploration of one-dimensional (1D) correlated quantum phases in the solid state. However, the experimental realization of nanoscale confinement of a 1D dipolar exciton has thus far been limited. Here, we demonstrate atomically precise lateral heterojunctions based at transitional-metal dichalcogenides (TMDCs) as a platform for 1D dipolar excitons. The dynamics and transport of the interfacial charge transfer excitons in a type II WSe2-WS1.16Se0.84 lateral heterostructure were spatially and temporally imaged using ultrafast transient reflection microscopy. The expansion of the exciton cloud driven by dipolar repulsion was found to be strongly density dependent and highly anisotropic. The interaction strength between the 1D excitons was determined to be ∼3.9 × 10-14 eV cm-2, corresponding to a dipolar length of 310 nm, which is a factor of 2-3 larger than the interlayer excitons at two-dimensional van der Waals vertical interfaces. These results suggest 1D dipolar excitons with large static in-plane dipole moments in lateral TMDC heterojunctions as an exciting system for investigating quantum many-body physics.
Collapse
Affiliation(s)
- Long Yuan
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230052, China
| | - Biyuan Zheng
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410012, China
| | - Qiuchen Zhao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Roman Kempt
- Technische Universitat Dresden, 01062 Dresden, Germany
| | - Thomas Brumme
- Technische Universitat Dresden, 01062 Dresden, Germany
| | - Agnieszka B Kuc
- Helmholtz-Zentrum Dresden-Rossendorf, Abteilung Ressourcenökologie, Forschungsstelle Leipzig, Permoserstraße 15, 04318 Leipzig, Germany
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410012, China
| | - Shibin Deng
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Anlian Pan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410012, China
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Changsha, Hunan 410012, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Changsha, Hunan 410012, China
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
19
|
Sutter P, Komsa HP, Kisslinger K, Sutter E. Lateral Integration of SnS and GeSe van der Waals Semiconductors: Interface Formation, Electronic Structure, and Nanoscale Optoelectronics. ACS NANO 2023; 17:9552-9564. [PMID: 37144978 DOI: 10.1021/acsnano.3c02411] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The emergence of atomically thin crystals has allowed extending materials integration to lateral heterostructures where different 2D materials are covalently connected in the plane. The concept of lateral heterostructures can be generalized to thicker layered crystals, provided that a suitably faceted seed crystal presents edges to which a compatible second van der Waals material can be attached layer by layer. Here, we examine the possibility of integrating multilayer crystals of the group IV monochalcogenides SnS and GeSe, which have the same crystal structure, small lattice mismatch, and similar bandgaps. In a two-step growth process, lateral epitaxy of GeSe on the sidewalls of multilayer SnS flakes (obtained by vapor transport of a SnS2 precursor on graphite) yields heterostructures of laterally stitched crystalline GeSe and SnS without any detectable vertical overgrowth of the SnS seeds and with sharp lateral interfaces. Combined cathodoluminescence spectroscopy and ab initio calculations show the effects of small band offsets on carrier transport and radiative recombination near the interface. The results demonstrate the possibility of forming atomically connected lateral interfaces across many van der Waals layers, which is promising for manipulating optoelectronics, photonics, and for managing charge- and thermal transport.
Collapse
Affiliation(s)
- Peter Sutter
- Department of Electrical & Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Hannu-Pekka Komsa
- Microelectronics Research Unit, University of Oulu, FI-90014 Oulu, Finland
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Eli Sutter
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
20
|
Yao C, Wu G, Huang M, Wang W, Zhang C, Wu J, Liu H, Zheng B, Yi J, Zhu C, Tang Z, Wang Y, Huang M, Huang L, Li Z, Xiang L, Li D, Li S, Pan A. Reconfigurable Artificial Synapse Based on Ambipolar Floating Gate Memory. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23573-23582. [PMID: 37141554 DOI: 10.1021/acsami.3c00063] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Artificial synapse networks capable of massively parallel computing and mimicking biological neural networks can potentially improve the processing efficiency of existing information technologies. Semiconductor devices functioning as excitatory and inhibitory synapses are crucial for developing intelligence systems, such as traffic control systems. However, achieving reconfigurability between two working modes (inhibitory and excitatory) and bilingual synaptic behavior in a single transistor remains challenging. This study successfully mimics a bilingual synaptic response using an artificial synapse based on an ambipolar floating gate memory comprising tungsten selenide (WSe2)/hexagonal boron nitride (h-BN)/ molybdenum telluride (MoTe2). In this WSe2/h-BN/MoTe2 structure, ambipolar semiconductors WSe2 and MoTe2 are inserted as channel and floating gates, respectively, and h-BN serves as the tunneling barrier layer. Using either positive or negative pulse amplitude modulations at the control gate, this device with bipolar channel conduction produced eight distinct resistance states. Based on this, we experimentally projected that we could achieve 490 memory states (210 hole-resistance states + 280 electron-resistance states). Using the bipolar charge transport and multistorage states of WSe2/h-BN/MoTe2 floating gate memory, we mimicked reconfigurable excitatory and inhibitory synaptic plasticity in a single device. Furthermore, the convolution neural network formed by these synaptic devices can recognize handwritten digits with an accuracy of >92%. This study identifies the unique properties of heterostructure devices based on two-dimensional materials as well as predicts their applicability in advanced recognition of neuromorphic computing.
Collapse
Affiliation(s)
- Chengdong Yao
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Guangcheng Wu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Mingqiang Huang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenqiang Wang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Cheng Zhang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jiaxin Wu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Huawei Liu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Biyuan Zheng
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jiali Yi
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Chenguang Zhu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zilan Tang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yizhe Wang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Ming Huang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Luying Huang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Ziwei Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Li Xiang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Dong Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Shengman Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
21
|
Ju L, Tang X, Zhang Y, Li X, Cui X, Yang G. Single Selenium Atomic Vacancy Enabled Efficient Visible-Light-Response Photocatalytic NO Reduction to NH3 on Janus WSSe Monolayer. Molecules 2023; 28:molecules28072959. [PMID: 37049721 PMCID: PMC10095809 DOI: 10.3390/molecules28072959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The NO reduction reaction (NORR) toward NH3 is simultaneously emerging for both detrimental NO elimination and valuable NH3 synthesis. An efficient NORR generally requires a high degree of activation of the NO gas molecule from the catalyst, which calls for a powerful chemisorption. In this work, by means of first-principles calculations, we discovered that the NO gas molecule over the Janus WSSe monolayer might undergo a physical-to-chemical adsorption transition when Se vacancy is introduced. If the Se vacancy is able to work as the optimum adsorption site, then the interface’s transferred electron amounts are considerably increased, resulting in a clear electronic orbital hybridization between the adsorbate and substrate, promising excellent activity and selectivity for NORR. Additionally, the NN bond coupling and *N diffusion of NO molecules can be effectively suppressed by the confined space of Se vacancy defects, which enables the active site to have the superior NORR selectivity in the NH3 synthesis. Moreover, the photocatalytic NO-to-NH3 reaction is able to occur spontaneously under the potentials solely supplied by the photo-generated electrons. Our findings uncover a promising approach to derive high-efficiency photocatalysts for NO-to-NH3 conversion.
Collapse
|
22
|
Di Liberto G, Tosoni S. Band Edges Engineering of 2D/2D Heterostructures: The C 3 N 4 /Phosphorene Interface. Chemphyschem 2023; 24:e202200791. [PMID: 36399544 DOI: 10.1002/cphc.202200791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Indexed: 11/19/2022]
Abstract
We investigate the interface between carbon nitride (C3 N4 ) and phosphorene nanosheets (P-ene) by means of Density Functional Theory (DFT) calculations. C3 N4 /P-ene composites have been recently obtained experimentally showing excellent photoactivity. Our results indicate that the formation of the interface is a favorable process driven by Van der Waals forces. The thickness of P-ene nanosheets determines the band edges offsets and the charge carriers' separation. The system is predicted to pass from a nearly type-II to a type-I junction when the thickness of P-ene increases, and the conduction band offset is particularly sensitive. Last, we apply the Transfer Matrix Method to estimate the efficiency for charge carriers' migration as a function of the P-ene thickness.
Collapse
Affiliation(s)
- Giovanni Di Liberto
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via Cozzi 55, 20125, Milano, Italy
| | - Sergio Tosoni
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via Cozzi 55, 20125, Milano, Italy
| |
Collapse
|
23
|
Xiao Y, Xiong C, Chen MM, Wang S, Fu L, Zhang X. Structure modulation of two-dimensional transition metal chalcogenides: recent advances in methodology, mechanism and applications. Chem Soc Rev 2023; 52:1215-1272. [PMID: 36601686 DOI: 10.1039/d1cs01016f] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Together with the development of two-dimensional (2D) materials, transition metal dichalcogenides (TMDs) have become one of the most popular series of model materials for fundamental sciences and practical applications. Due to the ever-growing requirements of customization and multi-function, dozens of modulated structures have been introduced in TMDs. In this review, we present a systematic and comprehensive overview of the structure modulation of TMDs, including point, linear and out-of-plane structures, following and updating the conventional classification for silicon and related bulk semiconductors. In particular, we focus on the structural characteristics of modulated TMD structures and analyse the corresponding root causes. We also summarize the recent progress in modulating methods, mechanisms, properties and applications based on modulated TMD structures. Finally, we demonstrate challenges and prospects in the structure modulation of TMDs and forecast potential directions about what and how breakthroughs can be achieved.
Collapse
Affiliation(s)
- Yao Xiao
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Chengyi Xiong
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Miao-Miao Chen
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Shengfu Wang
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Lei Fu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China. .,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Xiuhua Zhang
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| |
Collapse
|
24
|
NO 2 Physical-to-Chemical Adsorption Transition on Janus WSSe Monolayers Realized by Defect Introduction. Molecules 2023; 28:molecules28041644. [PMID: 36838632 PMCID: PMC9960547 DOI: 10.3390/molecules28041644] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
As is well known, NO2 adsorption plays an important role in gas sensing and treatment because it expands the residence time of compounds to be treated in plasma-catalyst combination. In this work, the adsorption behaviors and mechanism of NO2 over pristine and Se-vacancy defect-engineered WSSe monolayers have been systematically investigated using density functional theory (DFT). The adsorption energy calculation reveals that introducing Se vacancy acould result in a physical-to-chemical adsorption transition for the system. The Se vacancy, the most possible point defect, could work as the optimum adsorption site, and it dramatically raises the transferred-electron quantities at the interface, creating an obviously electronic orbital hybridization between the adsorbate and substrate and greatly improving the chemical activity and sensing sensitivity of the WSSe monolayer. The physical-to-chemical adsorption transition could meet different acquirements of gas collection and gas treatment. Our work broadens the application filed of the Janus WSSe as NO2-gas-sensitive materials. In addition, it is found that both keeping the S-rich synthetic environments and applying compression strain could make the introduction of Se vacancy easier, which provides a promising path for industrial synthesis of Janus WSSe monolayer with Se vacancy.
Collapse
|
25
|
Zribi J, Pierucci D, Bisti F, Zheng B, Avila J, Khalil L, Ernandes C, Chaste J, Oehler F, Pala M, Maroutian T, Hermes I, Lhuillier E, Pan A, Ouerghi A. Unidirectional Rashba spin splitting in single layer WS 2(1-x)Se 2xalloy. NANOTECHNOLOGY 2022; 34:075705. [PMID: 36347029 DOI: 10.1088/1361-6528/aca0f6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Atomically thin two-dimensional (2D) layered semiconductors such as transition metal dichalcogenides have attracted considerable attention due to their tunable band gap, intriguing spin-valley physics, piezoelectric effects and potential device applications. Here we study the electronic properties of a single layer WS1.4Se0.6alloys. The electronic structure of this alloy, explored using angle resolved photoemission spectroscopy, shows a clear valence band structure anisotropy characterized by two paraboloids shifted in one direction of thek-space by a constant in-plane vector. This band splitting is a signature of a unidirectional Rashba spin splitting with a related giant Rashba parameter of 2.8 ± 0.7 eV Å. The combination of angle resolved photoemission spectroscopy with piezo force microscopy highlights the link between this giant unidirectional Rashba spin splitting and an in-plane polarization present in the alloy. These peculiar anisotropic properties of the WS1.4Se0.6alloy can be related to local atomic orders induced during the growth process due the different size and electronegativity between S and Se atoms. This distorted crystal structure combined to the observed macroscopic tensile strain, as evidenced by photoluminescence, displays electric dipoles with a strong in-plane component, as shown by piezoelectric microscopy. The interplay between semiconducting properties, in-plane spontaneous polarization and giant out-of-plane Rashba spin-splitting in this 2D material has potential for a wide range of applications in next-generation electronics, piezotronics and spintronics devices.
Collapse
Affiliation(s)
- Jihene Zribi
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, F-91120, Palaiseau, France
| | - Debora Pierucci
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, F-91120, Palaiseau, France
| | - Federico Bisti
- Dipartimento di Scienze Fisiche e Chimiche, Università dell'Aquila, Via Vetoio 10, I-67100 L'Aquila, Italy
| | - Biyuan Zheng
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - José Avila
- Synchrotron-SOLEIL, Saint-Aubin, BP48, F-91192 Gif sur Yvette Cedex, France
| | - Lama Khalil
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, F-91120, Palaiseau, France
| | - Cyrine Ernandes
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, F-91120, Palaiseau, France
| | - Julien Chaste
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, F-91120, Palaiseau, France
| | - Fabrice Oehler
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, F-91120, Palaiseau, France
| | - Marco Pala
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, F-91120, Palaiseau, France
| | - Thomas Maroutian
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, F-91120, Palaiseau, France
| | - Ilka Hermes
- Park Systems Europe GmbH. Schildkroetstrasse 15, D-68199 Mannheim, Germany
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, F-75005 Paris, France
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Abdelkarim Ouerghi
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, F-91120, Palaiseau, France
| |
Collapse
|
26
|
Guo S, Li Y, Mao Y, Tao W, Bu K, Fu T, Zhao C, Luo H, Hu Q, Zhu H, Shi E, Yang W, Dou L, Lü X. Reconfiguring band-edge states and charge distribution of organic semiconductor-incorporated 2D perovskites via pressure gating. SCIENCE ADVANCES 2022; 8:eadd1984. [PMID: 36322656 PMCID: PMC9629702 DOI: 10.1126/sciadv.add1984] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Two-dimensional (2D) semiconductor heterostructures are key building blocks for many electronic and optoelectronic devices. Reconfiguring the band-edge states and modulating their interplay with charge carriers at the interface in a continuous manner have long been sought yet are challenging. Here, using organic semiconductor-incorporated 2D halide perovskites as the model system, we realize the manipulation of band-edge states and charge distribution via mechanical-rather than chemical or thermal-regulation. Compression induces band-alignment switching and charge redistribution due to the different pressure responses of organic and inorganic building blocks, giving controllable emission properties of 2D perovskites. We propose and demonstrate a "pressure gating" strategy that enables the control of multiple emission states within a single material. We also reveal that band-alignment transition at the organic-inorganic interface is intrinsically not well resolved at room temperature owing to the thermally activated transfer and shuffling of band-edge carriers. This work provides important fundamental insights into the energetics and carrier dynamics of hybrid semiconductor heterostructures.
Collapse
Affiliation(s)
- Songhao Guo
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Yahui Li
- School of Engineering, Westlake University, Hangzhou, China
| | - Yuhong Mao
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Weijian Tao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Kejun Bu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Tonghuan Fu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Chang Zhao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Hui Luo
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Qingyang Hu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Haiming Zhu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Enzheng Shi
- School of Engineering, Westlake University, Hangzhou, China
| | - Wenge Yang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| |
Collapse
|
27
|
Abstract
![]()
Photocatalytic water splitting can produce hydrogen in
an environmentally
friendly way and provide alternative energy sources to reduce global
carbon emissions. Recently, monolayer fullerene networks have been
successfully synthesized [Hou et al. Nature2022, 606, 507], offering new material candidates
for photocatalysis because of their large surface area with abundant
active sites, feasibility to be combined with other 2D materials to
form heterojunctions, and the C60 cages for potential hydrogen
storage. However, efficient photocatalysts need a combination of a
suitable band gap and appropriate positions of the band edges with
sufficient driving force for water splitting. In this study, I employ
semilocal density functional theory and hybrid functional calculations
to investigate the electronic structures of monolayer fullerene networks.
I find that only the weakly screened hybrid functional, combined with
time-dependent Hartree–Fock calculations to include the exciton
binding energy, can reproduce the experimentally obtained optical
band gap of monolayer C60. All the phases of monolayer
fullerene networks have suitable band gaps with high carrier mobility
and appropriate band edges to thermodynamically drive overall water
splitting. In addition, the optical properties of monolayer C60 are studied, and different phases of fullerene networks
exhibit distinct absorption and recombination behavior, providing
unique advantages either as an electron acceptor or as an electron
donor in photocatalysis.
Collapse
Affiliation(s)
- Bo Peng
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, CambridgeCB3 0HE, United Kingdom
| |
Collapse
|
28
|
Liu M, Tang Y, Yao H, Bai L, Song J, Ma B. Theoretical study on photocatalytic performance of ZnO/C2N heterostructure towards high efficiency water splitting. Front Chem 2022; 10:1048437. [PMID: 36339040 PMCID: PMC9626801 DOI: 10.3389/fchem.2022.1048437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
The construction of van der Waals heterostructures offers effective boosting of the photocatalytic performance of two-dimensional materials. In this study, which uses the first-principles method, the electronic and absorptive properties of an emerging ZnO/C2N heterostructure are systematically explored to determine the structure’s photocatalytic potential. The results demonstrate that ZnO and C2N form a type-II band alignment heterostructure with a reduced band gap, and hence superior absorption in the visible region. Furthermore, the band edge positions of a ZnO/C2N heterostructure meet the requirements for spontaneous water splitting. The ZnO/C2N heterostructure is known to possess considerably improved carrier mobility, which is advantageous in the separation and migration of carriers. The Gibbs free energy calculation confirms the high catalytic activity of the ZnO/C2N heterostructure for water-splitting reactions. All the aforementioned properties, including band gap, band edge positions, and optical absorption, can be directly tuned using biaxial lateral strain. A suitable band gap, decent band edge positions, high catalytic activity, and superior carrier mobility thus identify a ZnO/C2N heterostructure as a prominent potential photocatalyst for water splitting.
Collapse
Affiliation(s)
- Meiping Liu
- Henan Key Laboratory of Smart Lighting, Huanghuai University, Zhumadian, Henan, China
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, China
| | - Yong Tang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, China
- School of Energy Engineering, Huanghuai University, Zhumadian, Henan, China
- *Correspondence: Yong Tang,
| | - Haizi Yao
- School of Energy Engineering, Huanghuai University, Zhumadian, Henan, China
| | - Liuyang Bai
- School of Energy Engineering, Huanghuai University, Zhumadian, Henan, China
| | - Jun Song
- School of Energy Engineering, Huanghuai University, Zhumadian, Henan, China
| | - Benyuan Ma
- School of Energy Engineering, Huanghuai University, Zhumadian, Henan, China
| |
Collapse
|
29
|
Xiong Y, Xu D, Feng Y, Zhang G, Lin P, Chen X. P-Type 2D Semiconductors for Future Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2206939. [PMID: 36245325 DOI: 10.1002/adma.202206939] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/30/2022] [Indexed: 06/16/2023]
Abstract
2D semiconductors represent one of the best candidates to extend Moore's law for their superiorities, such as keeping high carrier mobility and remarkable gate-control capability at atomic thickness. Complementary transistors and van der Waals junctions are critical in realizing 2D semiconductors-based integrated circuits suitable for future electronics. N-type 2D semiconductors have been reported predominantly for the strong electron doping caused by interfacial charge impurities and internal structural defects. By contrast, superior and reliable p-type 2D semiconductors with holes as majority carriers are still scarce. Not only that, but some critical issues have not been adequately addressed, including their controlled synthesis in wafer size and high quality, defect and carrier modulation, optimization of interface and contact, and application in high-speed and low-power integrated devices. Here the material toolkit, synthesis strategies, device basics, and digital electronics closely related to p-type 2D semiconductors are reviewed. Their opportunities, challenges, and prospects for future electronic applications are also discussed, which would be promising or even shining in the post-Moore era.
Collapse
Affiliation(s)
- Yunhai Xiong
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Duo Xu
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yiping Feng
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guangjie Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Pei Lin
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiang Chen
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
30
|
Zou H, Wang X, Zhou K, Li Y, Fu Y, Zhang L. Electronic property modulation in two-dimensional lateral superlattices of monolayer transition metal dichalcogenides. NANOSCALE 2022; 14:10439-10448. [PMID: 35816154 DOI: 10.1039/d2nr02189g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fabricating lateral heterostructures (HSs) and superlattices (SLs) provides a unique degree of freedom for modulating the physical properties of two-dimensional (2D) materials by varying the chemical component, geometric size and interface structure in the ultra-thin atomic thickness limit. While a variety of 2D lateral HSs/SLs have been synthesized, especially for transition metal dichalcogenides (TMDs), how such structures affect quantitatively the physical properties of 2D materials has not yet been established. We herein explore electronic property modulation in 2D lateral SLs of monolayer TMDs through first-principles high-throughput calculations. The dependence of the electronic structure, bandgap, carrier effective masses, charge density overlap on chemical components, interface type, and sub-lattice size of lateral TMD-SLs are investigated. We find that by comparison with their random alloy counterparts, the lateral TMD-SLs exhibit generally type-II band alignment, a wider range of bandgap tunability, larger carrier effective masses, and stronger electron-hole charge separation tendency. The bandgap variation with a sub-lattice size shows larger bowing parameters for the SLs with heterogeneous anions, by comparison with the homogeneous anion cases. A similar behavior is observed for the SLs with an armchair-type interface, by comparison with the zigzag-type interface cases. Further analyses reveal that the underlying physical mechanism can be attributed to the synergistic interplay among the band offset of sub-lattices, quantum confinement effect, and existing internal strain.
Collapse
Affiliation(s)
- Hongshuai Zou
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE and College of Materials Science and Engineering, Jilin University, Changchun 130012, China.
| | - Xinjiang Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.
| | - Kun Zhou
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE and College of Materials Science and Engineering, Jilin University, Changchun 130012, China.
| | - Yawen Li
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE and College of Materials Science and Engineering, Jilin University, Changchun 130012, China.
| | - Yuhao Fu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.
| | - Lijun Zhang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE and College of Materials Science and Engineering, Jilin University, Changchun 130012, China.
| |
Collapse
|
31
|
Kang T, Tang TW, Pan B, Liu H, Zhang K, Luo Z. Strategies for Controlled Growth of Transition Metal Dichalcogenides by Chemical Vapor Deposition for Integrated Electronics. ACS MATERIALS AU 2022; 2:665-685. [PMID: 36855548 PMCID: PMC9928416 DOI: 10.1021/acsmaterialsau.2c00029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In recent years, transition metal dichalcogenide (TMD)-based electronics have experienced a prosperous stage of development, and some considerable applications include field-effect transistors, photodetectors, and light-emitting diodes. Chemical vapor deposition (CVD), a typical bottom-up approach for preparing 2D materials, is widely used to synthesize large-area 2D TMD films and is a promising method for mass production to implement them for practical applications. In this review, we investigate recent progress in controlled CVD growth of 2D TMDs, aiming for controlled nucleation and orientation, using various CVD strategies such as choice of precursors or substrates, process optimization, and system engineering. We then survey different patterning methods, such as surface patterning, metal precursor patterning, and postgrowth sulfurization/selenization/tellurization, to mass produce heterostructures for device applications. With these strategies, various well-designed architectures, such as wafer-scale single crystals, vertical and lateral heterostructures, patterned structures, and arrays, are achieved. In addition, we further discuss various electronics made from CVD-grown TMDs to demonstrate the diverse application scenarios. Finally, perspectives regarding the current challenges of controlled CVD growth of 2D TMDs are also suggested.
Collapse
Affiliation(s)
- Ting Kang
- Department
of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao
Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology,
William Mong Institute of Nano Science and Technology, and Hong Kong
Branch of Chinese National Engineering Research Center for Tissue
Restoration and Reconstruction, Hong Kong
University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P.R. China
| | - Tsz Wing Tang
- Department
of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao
Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology,
William Mong Institute of Nano Science and Technology, and Hong Kong
Branch of Chinese National Engineering Research Center for Tissue
Restoration and Reconstruction, Hong Kong
University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P.R. China
| | - Baojun Pan
- Macao
Institute of Materials Science and Engineering (MIMSE), Macau University of Science and Technology, Taipa, Macau 999078, P.R. China
| | - Hongwei Liu
- Department
of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao
Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology,
William Mong Institute of Nano Science and Technology, and Hong Kong
Branch of Chinese National Engineering Research Center for Tissue
Restoration and Reconstruction, Hong Kong
University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P.R. China
| | - Kenan Zhang
- Department
of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao
Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology,
William Mong Institute of Nano Science and Technology, and Hong Kong
Branch of Chinese National Engineering Research Center for Tissue
Restoration and Reconstruction, Hong Kong
University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P.R. China
| | - Zhengtang Luo
- Department
of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao
Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology,
William Mong Institute of Nano Science and Technology, and Hong Kong
Branch of Chinese National Engineering Research Center for Tissue
Restoration and Reconstruction, Hong Kong
University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P.R. China,
| |
Collapse
|
32
|
Kang T, Jin Z, Han X, Liu Y, You J, Wong H, Liu H, Pan J, Liu Z, Tang TW, Zhang K, Wang J, Yu J, Li D, Pan A, Pan D, Wang J, Liu Y, Luo Z. Band Alignment Engineering by Twist Angle and Composition Modulation for Heterobilayer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202229. [PMID: 35736629 DOI: 10.1002/smll.202202229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Atomically thin monolayer semiconducting transition metal dichalcogenides (TMDs), exhibiting direct band gap and strong light-matter interaction, are promising for optoelectronic devices. However, an efficient band alignment engineering method is required to further broaden their practical applications as versatile optoelectronics. In this work, the band alignment of two vertically stacked monolayer TMDs using the chemical vapor deposition (CVD) method is effectively tuned by two strategies: 1) formulating the compositions of MoS2(1-x) Se2x alloys, and 2) varying the twist angles of the stacked heterobilayer structures. Photoluminescence (PL) results combined with density functional theory (DFT) calculation show that by changing the alloy composition, a continuously tunable band alignment and a transition of type II-type I-type II band alignment of TMD heterobilayer is achieved. Moreover, only at moderate (10°-50°) twist angles, a PL enhancement of 28%-110% caused by the type I alignment is observed, indicating that the twist angle is coupled with the global band structure of heterobilayer. A heterojunction device made with MoS0.76 Se1.24 /WS2 of 14° displays a significantly high photoresponsivity (55.9 A W-1 ), large detectivity (1.07 × 1010 Jones), and high external quantum efficiency (135%). These findings provide engineering tools for heterostructure design for their application in optoelectronic devices.
Collapse
Affiliation(s)
- Ting Kang
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Zijing Jin
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Xu Han
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Yong Liu
- Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Jiawen You
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Hoilun Wong
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Hongwei Liu
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Jie Pan
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Zhenjing Liu
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Tsz Wing Tang
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Kenan Zhang
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Jun Wang
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Junting Yu
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Dong Li
- Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Anlian Pan
- Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Ding Pan
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
- HKUST Fok Ying Tung Research Institute, Guangzhou, 511458, P. R. China
| | - Jiannong Wang
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Yuan Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
33
|
Zhang S, Deng X, Wu Y, Wang Y, Ke S, Zhang S, Liu K, Lv R, Li Z, Xiong Q, Wang C. Lateral layered semiconductor multijunctions for novel electronic devices. Chem Soc Rev 2022; 51:4000-4022. [PMID: 35477783 DOI: 10.1039/d1cs01092a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Layered semiconductors, represented by transition metal dichalcogenides, have attached extensive attention due to their unique and tunable electrical and optical properties. In particular, lateral layered semiconductor multijunctions, including homojunctions, heterojunctions, hybrid junctions and superlattices, present a totally new degree of freedom in research on electronic devices beyond traditional materials and their structures, providing unique opportunities for the development of new structures and operation principle-based high performance devices. However, the advances in this field are limited by the precise synthesis of high-quality junctions and greatly hampered by ambiguous device performance limits. Herein, we review the recent key breakthroughs in the design, synthesis, electronic structure and property modulation of lateral semiconductor multijunctions and focus on their application-specific devices. Specifically, the synthesis methods based on different principles, such as chemical and external source-induced methods, are introduced stepwise for the controllable fabrication of semiconductor multijunctions as the basics of device application. Subsequently, their structure and property modulation are discussed, including control of their electronic structure, exciton dynamics and optical properties before the fabrication of lateral layered semiconductor multijunction devices. Precise property control will potentially result in outstanding device performances, including high-quality diodes and FETs, scalable logic and analog circuits, highly efficient optoelectronic devices, and unique electrochemical devices. Lastly, we focus on several of the most essential but unresolved debates in this field, such as the true advantages of few-layer vs. monolayer multijunctions, how sharp the interface should be for specific functional devices, and the superiority of lateral multijunctions over vertical multijunctions, highlighting the next-phase strategy to enhance the performance potential of lateral multijunction devices.
Collapse
Affiliation(s)
- Simian Zhang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| | - Xiaonan Deng
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| | - Yifei Wu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| | - Yuqi Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| | - Shengxian Ke
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| | - Shishu Zhang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Beijing Innovation Center for Future Chips, Tsinghua University, Beijing, 100084, China
| | - Kai Liu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| | - Ruitao Lv
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| | - Zhengcao Li
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| | - Qihua Xiong
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Beijing Innovation Center for Future Chips, Tsinghua University, Beijing, 100084, China.,Frontier Science Center for Quantum Information, Beijing, 100084, China.,Beijing Academy of Quantum Information Sciences, Beijing, 100193, China.
| | - Chen Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
34
|
Wu X, Chen X, Yang R, Zhan J, Ren Y, Li K. Recent Advances on Tuning the Interlayer Coupling and Properties in van der Waals Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105877. [PMID: 35044721 DOI: 10.1002/smll.202105877] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/25/2021] [Indexed: 06/14/2023]
Abstract
2D van der Waals (vdW) heterostructures are receiving increasing research attention due to the theoretically amazing properties and unprecedented application potential. However, the as-synthesized heterostructures are generally underperforming due to the weak interlayer coupling, which inspires the researchers to find ways to modulate the interlayer coupling and properties, realizing the tailored performance for actual applications. There have been a lot of publications regarding the controllable regulation of the structures and properties of 2D vdW heterostructures in the past few years, while a review work summarizing the current advances is not yet available, though it is significant. This paper conducts a state-of-the-art review regarding the current research progress of performance modulation of vdW heterostructures by different techniques. First, the general synthesis methods of vdW heterostructures are summarized. Then, different performance modulation techniques, that is, mechanical-based, external fields-assisted, and particle beam irradiation-based methods, are discussed and compared in detail. Some of the newly proposed concepts are described. Thereafter, applications of vdW heterostructures with tailored properties are reviewed for the application prospects of the topic around this area. Moreover, the future research challenges and prospects are discussed, aiming at triggering more research interest and device applications around this topic.
Collapse
Affiliation(s)
- Xin Wu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong, 519082, China
| | - Xiyue Chen
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong, 519082, China
| | - Ruxue Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong, 519082, China
| | - Jianbin Zhan
- State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400044, China
| | - Yingzhi Ren
- State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400044, China
| | - Kun Li
- State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400044, China
- Chongqing Key Laboratory of Metal Additive Manufacturing (3D Printing), Chongqing University, Chongqing, 400044, China
| |
Collapse
|
35
|
Wang P, Yang Y, Pan E, Liu F, Ajayan PM, Zhou J, Liu Z. Emerging Phases of Layered Metal Chalcogenides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105215. [PMID: 34923740 DOI: 10.1002/smll.202105215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Layered metal chalcogenides, as a "rich" family of 2D materials, have attracted increasing research interest due to the abundant choices of materials with diverse structures and rich electronic characteristics. Although the common metal chalcogenide phases such as 2H and 1T have been intensively studied, many other unusual phases are rarely explored, and some of these show fascinating behaviors including superconductivity, ferroelectrics, ferromagnetism, etc. From this perspective, the unusual phases of metal chalcogenides and their characteristics, as well as potential applications are introduced. First, the unusual phases of metal chalcogenides from different classes, including transition metal dichalcogenides, magnetic element-based chalcogenides, and metal phosphorus chalcogenides, are discussed, respectively. Meanwhile, their excellent properties of different unusual phases are introduced. Then, the methods for producing the unusual phases are discussed, specifically, the stabilization strategies during the chemical vapor deposition process for the unusual phase growth are discussed, followed by an outlook and discussions on how to prepare the unusual phase metal dichalcogenides in terms of synthetic methodology and potential applications.
Collapse
Affiliation(s)
- Ping Wang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics, and Ultrafine Optoelectronic Systems, and School of Physics, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Yang Yang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics, and Ultrafine Optoelectronic Systems, and School of Physics, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Er Pan
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313099, China
| | - Fucai Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313099, China
| | - Pulickel M Ajayan
- Department of Materials Science and Nano Engineering, Rice University, Houston, TX, 77005, USA
| | - Jiadong Zhou
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics, and Ultrafine Optoelectronic Systems, and School of Physics, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
36
|
Nugera FA, Sahoo PK, Xin Y, Ambardar S, Voronine DV, Kim UJ, Han Y, Son H, Gutiérrez HR. Bandgap Engineering in 2D Lateral Heterostructures of Transition Metal Dichalcogenides via Controlled Alloying. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106600. [PMID: 35088542 DOI: 10.1002/smll.202106600] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/20/2021] [Indexed: 06/14/2023]
Abstract
2D heterostructures made of transition metal dichalcogenides (TMD) have emerged as potential building blocks for new-generation 2D electronics due to their interesting physical properties at the interfaces. The bandgap, work function, and optical constants are composition dependent, and the spectrum of applications can be expanded by producing alloy-based heterostructures. Herein, the successful synthesis of monolayer and bilayer lateral heterostructures, based on ternary alloys of MoS2(1- x ) Se2 x -WS2(1- x ) Se2 x , is reported by modifying the ratio of the source precursors; the bandgaps of both materials in the heterostructure are continuously tuned in the entire range of chalcogen compositions. Raman and photoluminescence (PL) spatial maps show good intradomain composition homogeneity. Kelvin probe measurements in different heterostructures reveal composition-dependent band alignments, which can further be affected by unintentional electronic doping during the growth. The fabrication of sequential multijunction lateral heterostructures with three layers of thickness, composed of quaternary and ternary alloys, is also reported. These results greatly expand the available tools kit for optoelectronic applications in the 2D realm.
Collapse
Affiliation(s)
- Florence A Nugera
- Department of Physics, University of South Florida, Tampa, FL, 33620, USA
| | - Prasana K Sahoo
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Yan Xin
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA
| | - Sharad Ambardar
- Department of Physics, and Department of Medical Engineering, University of South Florida, Tampa, FL, 33620, USA
| | - Dmitri V Voronine
- Department of Physics, and Department of Medical Engineering, University of South Florida, Tampa, FL, 33620, USA
| | - Un Jeong Kim
- Imaging Device Laboratory, Samsung Advanced Institute of Technology, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yoojoong Han
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyungbin Son
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | | |
Collapse
|
37
|
Ye M, Li Y, Tang R, Liu S, Ma S, Liu H, Tao Q, Yang B, Wang X, Yue H, Zhu P. Pressure-induced bandgap engineering and photoresponse enhancement of wurtzite CuInS 2 nanocrystals. NANOSCALE 2022; 14:2668-2675. [PMID: 35107111 DOI: 10.1039/d1nr07721j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Wurtzite CuInS2 exhibits great potential for optoelectronic applications because of its excellent optical properties and good stability. However, exploring effective strategies to simultaneously optimize its optical and photoelectrical properties remains a challenge. In this study, the bandgap of wurtzite CuInS2 nanocrystals is successfully extended and the photocurrent is enhanced synchronously using external pressure. The bandgap of wurtzite CuInS2 increases with pressure and reaches an optimal value (1.5 eV) for photovoltaic solar energy conversion at about 5.9 GPa. Surprisingly, the photocurrent simultaneously increases nearly 3-fold and reaches the maximum value at this critical pressure. Theoretical calculation indicates that the pressure-induced bandgap extention in wurtzite CuInS2 may be attributed to an increased charge density and ionic polarization between the In-S atoms. The photocurrent preserves a relatively high photoresponse even at 8.8 GPa, but almost disappears above 10.3 GPa. The structural evolution demonstrates that CuInS2 undergoes a phase transformation from the wurtzite phase (P63mc) to the rock salt phase (Fm3̄m) at about 10.3 GPa, which resulted in a direct to indirect bandgap transition and fianlly caused a dramatic reduction in photocurrent. These results not only map a new route toward further increase in the photoelectrical performance of wurtzite CuInS2, but also advance the current research of AI-BIII-CVI2 materials.
Collapse
Affiliation(s)
- Meiyan Ye
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China.
| | - Yan Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China.
| | - Ruilian Tang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
- Center for High Pressure Science and Technology Advanced Research, Changchun, 130012, China
| | - Siyu Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China.
| | - Shuailing Ma
- DeutschesElektronen-Synchrotron DESY, Hamburg, 22607, Germany
| | - Haozhe Liu
- Center for High Pressure Science and Technology Advanced Research, Changchun, 130012, China
| | - Qiang Tao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China.
| | - Bin Yang
- Center for High Pressure Science and Technology Advanced Research, Changchun, 130012, China
| | - Xin Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China.
| | - Huijuan Yue
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Pinwen Zhu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China.
| |
Collapse
|
38
|
Garg S, Fix JP, Krayev AV, Flanery C, Colgrove M, Sulkanen AR, Wang M, Liu GY, Borys NJ, Kung P. Nanoscale Raman Characterization of a 2D Semiconductor Lateral Heterostructure Interface. ACS NANO 2022; 16:340-350. [PMID: 34936762 DOI: 10.1021/acsnano.1c06595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The nature of the interface in lateral heterostructures of 2D monolayer semiconductors including its composition, size, and heterogeneity critically impacts the functionalities it engenders on the 2D system for next-generation optoelectronics. Here, we use tip-enhanced Raman scattering (TERS) to characterize the interface in a single-layer MoS2/WS2 lateral heterostructure with a spatial resolution of 50 nm. Resonant and nonresonant TERS spectroscopies reveal that the interface is alloyed with a size that varies over an order of magnitude─from 50 to 600 nm─within a single crystallite. Nanoscale imaging of the continuous interfacial evolution of the resonant and nonresonant Raman spectra enables the deconvolution of defect activation, resonant enhancement, and material composition for several vibrational modes in single-layer MoS2, MoxW1-xS2, and WS2. The results demonstrate the capabilities of nanoscale TERS spectroscopy to elucidate macroscopic structure-property relationships in 2D materials and to characterize lateral interfaces of 2D systems on length scales that are imperative for devices.
Collapse
Affiliation(s)
- Sourav Garg
- Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - J Pierce Fix
- Department of Physics, Montana State University, Bozeman, Montana 59717, United States
| | | | - Connor Flanery
- Department of Physics, Montana State University, Bozeman, Montana 59717, United States
| | - Michael Colgrove
- Department of Physics, Montana State University, Bozeman, Montana 59717, United States
| | - Audrey R Sulkanen
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Minyuan Wang
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Gang-Yu Liu
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Nicholas J Borys
- Department of Physics, Montana State University, Bozeman, Montana 59717, United States
| | - Patrick Kung
- Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
39
|
Zhou M, Ou H, Li S, Qin X, Fang Y, Lee S, Wang X, Ho W. Photocatalytic Air Purification Using Functional Polymeric Carbon Nitrides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102376. [PMID: 34693667 PMCID: PMC8693081 DOI: 10.1002/advs.202102376] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/20/2021] [Indexed: 05/19/2023]
Abstract
The techniques for the production of the environment have received attention because of the increasing air pollution, which results in a negative impact on the living environment of mankind. Over the decades, burgeoning interest in polymeric carbon nitride (PCN) based photocatalysts for heterogeneous catalysis of air pollutants has been witnessed, which is improved by harvesting visible light, layered/defective structures, functional groups, suitable/adjustable band positions, and existing Lewis basic sites. PCN-based photocatalytic air purification can reduce the negative impacts of the emission of air pollutants and convert the undesirable and harmful materials into value-added or nontoxic, or low-toxic chemicals. However, based on previous reports, the systematic summary and analysis of PCN-based photocatalysts in the catalytic elimination of air pollutants have not been reported. The research progress of functional PCN-based composite materials as photocatalysts for the removal of air pollutants is reviewed here. The working mechanisms of each enhancement modification are elucidated and discussed on structures (nanostructure, molecular structue, and composite) regarding their effects on light-absorption/utilization, reactant adsorption, intermediate/product desorption, charge kinetics, and reactive oxygen species production. Perspectives related to further challenges and directions as well as design strategies of PCN-based photocatalysts in the heterogeneous catalysis of air pollutants are also provided.
Collapse
Affiliation(s)
- Min Zhou
- Department of Science and Environmental StudiesThe Education University of Hong KongTai Po, New TerritoriesHong KongP. R. China
| | - Honghui Ou
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Shanrong Li
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350116P. R. China
| | - Xing Qin
- Department of Science and Environmental StudiesThe Education University of Hong KongTai Po, New TerritoriesHong KongP. R. China
| | - Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350116P. R. China
| | - Shun‐cheng Lee
- Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityHong KongP. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350116P. R. China
| | - Wingkei Ho
- Department of Science and Environmental StudiesThe Education University of Hong KongTai Po, New TerritoriesHong KongP. R. China
| |
Collapse
|
40
|
Yang X, Zhu Z, Luo F, Wang G, Peng G, Zhu M, Qin S. Strain-Induced Alternating Photoluminescence Segmentation in Hexagonal Monolayer Tungsten Disulfide Grown by Physical Vapor Deposition. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46164-46170. [PMID: 34533939 DOI: 10.1021/acsami.1c13096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional semiconductors exhibit strong light emission under optical or electrical pumping due to quantum confinement and large exciton binding energies. The regulation of the light emission shows great application potential in next-generation optoelectronic devices. Herein, by the physical vapor deposition strategy, we synthesize monolayer hexagonal-shaped WS2, and its photoluminescence intensity mapping show three-fold symmetric patterns with alternating bright and dark regions. Regardless of the length of the edges, all domains with S-terminated edges show lower photoluminescence intensity, while all regions with W-terminated edges exhibit higher photoluminescence intensity. The photoluminescence segmentation mechanism is studied in detail by employing Raman spectroscopy, atomic force microscopy, high-resolution transmission electron microscopy, and Kelvin probe force microscopy, and it is found to originate from different strain distributions in the S-terminated region and the W-terminated region. The optical band gap determined by the photoluminescence in the dark region is ∼2 meV lower than that in the bright region, implying that more strain is stored in the S-terminated region than in the W-terminated region. The photoluminescence segmentation vanishes in transferred hexagonal-shaped WS2 from the initial substrate to a fresh silicon substrate, further confirming the physical mechanism. Our results provide guidance for tuning the optical properties of two-dimensional semiconductors by controllable strain engineering.
Collapse
Affiliation(s)
- Xi Yang
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Zhihong Zhu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Fang Luo
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Guang Wang
- College of Liberal Arts and Sciences & Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Gang Peng
- College of Liberal Arts and Sciences & Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Mengjian Zhu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Shiqiao Qin
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
| |
Collapse
|
41
|
Wei L, Li C, Guan L, Guo J. Enhancing ferroelectric photovoltaic effect of BaTiO
3
by the lateral interface. SURF INTERFACE ANAL 2021. [DOI: 10.1002/sia.6978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Lijing Wei
- School of Computer and Information Engineering Hebei Finance University Baoding China
| | - Changliang Li
- Key Laboratory of High‐precision Computation and Application of Quantum Field Theory of Hebei Province, College of Physics Science and Technology Hebei University Baoding China
| | - Li Guan
- Key Laboratory of High‐precision Computation and Application of Quantum Field Theory of Hebei Province, College of Physics Science and Technology Hebei University Baoding China
| | - Jianxin Guo
- Key Laboratory of High‐precision Computation and Application of Quantum Field Theory of Hebei Province, College of Physics Science and Technology Hebei University Baoding China
| |
Collapse
|
42
|
Zhang H, Li Q, Hossain M, Li B, Chen K, Huang Z, Yang X, Dang W, Shu W, Wang D, Li B, Xu W, Zhang Z, Yu G, Duan X. Phase-Selective Synthesis of Ultrathin FeTe Nanoplates by Controllable Fe/Te Atom Ratio in the Growth Atmosphere. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101616. [PMID: 34270865 DOI: 10.1002/smll.202101616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/11/2021] [Indexed: 06/13/2023]
Abstract
Phase controllable synthesis of 2D materials is of significance for tuning related electrical, optical, and magnetic properties. Herein, the phase-controllable synthesis of tetragonal and hexagonal FeTe nanoplates has been realized by a rational control of the Fe/Te ratio in a chemical vapor deposition system. Using density functional theory calculations, it has been revealed that with the change of the Fe/Te ratio, the formation energy of active clusters changes, causing the phase-controllable synthesis of FeTe nanoplates. The thickness of the obtained FeTe nanoplates can be tuned down to the 2D limit (2.8 nm for tetragonal and 1.4 nm for hexagonal FeTe). X-ray diffraction pattern, transmission electron microscopy, and high resolution scanning transmission electron microscope analyses exhibit the high crystallinity of the as-grown FeTe nanoplates. The two kinds of FeTe nanoflakes show metallic behavior and good electrical conductivity, featuring 8.44 × 104 S m-1 for 9.8 nm-thick tetragonal FeTe and 5.45 × 104 S m-1 for 7.6 nm-thick hexagonal FeTe. The study provides an efficient and convenient route for tailoring the phases of FeTe nanoplates, which benefits to study phase-sensitive properties, and may pave the way for the synthesis of other multiphase 2D nanosheets with controllable phases.
Collapse
Affiliation(s)
- Hongmei Zhang
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qiuqiu Li
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Mongur Hossain
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bo Li
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Keqiu Chen
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Ziwei Huang
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xiangdong Yang
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Weiqi Dang
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Weining Shu
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Di Wang
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bailing Li
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Weiting Xu
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Zucheng Zhang
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Gang Yu
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xidong Duan
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
43
|
Zhou X, Yu G. Preparation Engineering of Two-Dimensional Heterostructures via Bottom-Up Growth for Device Applications. ACS NANO 2021; 15:11040-11065. [PMID: 34264631 DOI: 10.1021/acsnano.1c02985] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional heterostructures with tremendous electronic and optoelectronic properties hold great promise for nanodevice integrations and applications owing to the wide tunable characteristics. Toward this end, developing construction strategies in allusion to large-scale production of high-quality heterostructures is critical. The mainstream preparation routes are representatively classified into two categories of top-down and bottom-up approaches. Nonetheless, the relatively low reproductivity and the limitation for lateral heterostructure formations of top-down methods at the present stage inherently impeded their further developments. To surmount these obstacles, assembling heterostructures via miscellaneous bottom-up preparation protocols has emerged as a potential solution, attributed to the controllability and clean interface. Three typical approaches of chemical/physical vapor deposition, solution synthesis, and growth under ultrahigh vacuum conditions have shown promise due to the possibilities for preparing heterostructures with predesigned structures, clean interfaces, and the like. Therefore, bottom-up preparation engineering of heterostructures in two dimensions for further device applications is of vital importance. Moreover, heterostructure integrations by these methods have experienced a period of flourishing development in the past few years. In this review, the classical bottom-up growth routes, characterization methods, and latest progress of diverse heterostructures and further device applications are overviewed. Finally, the challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Xiahong Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
44
|
Wu L, Cong C, Yang W, Chen Y, Shao Y, Do TTH, Wen W, Feng S, Zou C, Zhang H, Du B, Cao B, Shang J, Xiong Q, Loh KP, Yu T. Observation of Strong Valley Magnetic Response in Monolayer Transition Metal Dichalcogenide Alloys of Mo 0.5W 0.5Se 2 and Mo 0.5W 0.5Se 2/WS 2 Heterostructures. ACS NANO 2021; 15:8397-8406. [PMID: 33881826 DOI: 10.1021/acsnano.0c10478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Monolayer transition metal dichalcogenide (TMD) alloys have emerged as a unique material system for promising applications in electronics, optoelectronics, and spintronics due to their tunable electronic structures, effective masses of carriers, and valley polarization with various alloy compositions. Although spin-orbit engineering has been extensively studied in monolayer TMD alloys, the valley Zeeman effect in these alloys still remains largely unexplored. Here we demonstrate the enhanced valley magnetic response in Mo0.5W0.5Se2 alloy monolayers and Mo0.5W0.5Se2/WS2 heterostructures probed by magneto-photoluminescence spectroscopy. The large g factors of negatively charged excitons (trions) of Mo0.5W0.5Se2 have been extracted for both pure Mo0.5W0.5Se2 monolayers and Mo0.5W0.5Se2/WS2 heterostructures, which are attributed to the significant impact of doping-induced strong many-body Coulomb interactions on trion emissions under an out-of-plane magnetic field. Moreover, compared with the monolayer Mo0.5W0.5Se2, the slightly reduced valley Zeeman splitting in Mo0.5W0.5Se2/WS2 is a consequence of the weakened exchange interaction arising from p-doping in Mo0.5W0.5Se2 via interlayer charge transfer between Mo0.5W0.5Se2 and WS2. Such interlayer charge transfer further evidences the formation of type-II band alignment, in agreement with the density functional theory calculations. Our findings give insights into the spin-valley and interlayer coupling effects in monolayer TMD alloys and their heterostructures, which are essential to develop valleytronic applications based on the emerging family of TMD alloys.
Collapse
Affiliation(s)
- Lishu Wu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Chunxiao Cong
- State Key Laboratory of ASIC and System, School of Information Science and Technology, Fudan University, Shanghai 200433, P. R. China
| | - Weihuang Yang
- Key Laboratory of RF Circuits and System of Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, P. R. China
| | - Yu Chen
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yan Shao
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - T Thu Ha Do
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Wen Wen
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Shun Feng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Chenji Zou
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Hongbo Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Bowen Du
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Bingchen Cao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jingzhi Shang
- Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Qihua Xiong
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Ting Yu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
45
|
Li QH, Ding YF, He PB, Zeng R, Wan Q, Cai MQ. Transition of the Type of Band Alignments for All-Inorganic Perovskite van der Waals Heterostructures CsSnBr 3/WS 2(1-x)Se 2x. J Phys Chem Lett 2021; 12:3809-3818. [PMID: 33852315 DOI: 10.1021/acs.jpclett.1c00830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In general, two-dimensional semiconductor-based van der Waals heterostructures (vdWHs) can be modulated to achieve the transition of band alignments (type-I, type-II, and type-III), which can be applied in different applications. However, it is rare in three-dimensional perovskite-based vdWHs, and it is challenging to achieve the tunable band alignments for a single perovskite-based heterostructure. Here, we systematically investigate the electronic and optical properties of all-inorganic perovskite vdWHs CsSnBr3/WS2(1-x)Se2x based on density functional theory (DFT) calculation. The calculated results show that the transitions of band alignment from type-II to type-I and type-III to type-II are achieved by modulating the doping ratio of the Se atom in the WS2(1-x)Se2x monolayer for SnBr2/WS2(1-x)Se2x and CsBr/WS2(1-x)Se2x heterostructures, respectively, in which the CsBr and SnBr2 represent two different terminated surfaces of CsSnBr3. The change of band alignments can be attributed to the conduction band minimum (CBM) transforming from the W 5d to Sn 5p orbital in SnBr2/WS2(1-x)Se2x vdWHs, and the valence band maximum (VBM) and CBM change from an overlapped state to a separated one in CsBr/WS2(1-x)Se2x vdWHs. This work can provide a theoretical basis for the dynamic modulation of band alignments in perovskite-based vdWHs.
Collapse
Affiliation(s)
- Qiao-Hua Li
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yu-Feng Ding
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Peng-Bin He
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Ruosheng Zeng
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, Guangxi 530004, China
| | - Qiang Wan
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Meng-Qiu Cai
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
46
|
Lv L, Yu J, Hu M, Yin S, Zhuge F, Ma Y, Zhai T. Design and tailoring of two-dimensional Schottky, PN and tunnelling junctions for electronics and optoelectronics. NANOSCALE 2021; 13:6713-6751. [PMID: 33885475 DOI: 10.1039/d1nr00318f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Owing to their superior carrier mobility, strong light-matter interactions, and flexibility at the atomically thin thickness, two-dimensional (2D) materials are attracting wide interest for application in electronic and optoelectronic devices, including rectifying diodes, transistors, memory, photodetectors, and light-emitting diodes. At the heart of these devices, Schottky, PN, and tunneling junctions are playing an essential role in defining device function. Intriguingly, the ultrathin thickness and unique van der Waals (vdW) interlayer coupling in 2D materials has rendered enormous opportunities for the design and tailoring of various 2D junctions, e.g. using Lego-like hetero-stacking, surface decoration, and field-effect modulation methods. Such flexibility has led to marvelous breakthroughs during the exploration of 2D electronics and optoelectronic devices. To advance further, it is imperative to provide an overview of existing strategies for the engineering of various 2D junctions for their integration in the future. Thus, in this review, we provide a comprehensive survey of previous efforts toward 2D Schottky, PN, and tunneling junctions, and the functional devices built from them. Though these junctions exhibit similar configurations, distinct strategies have been developed for their optimal figures of merit based on their working principles and functional purposes.
Collapse
Affiliation(s)
- Liang Lv
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | | | | | | | | | | | | |
Collapse
|
47
|
Zhou Y, Zhang L, Gao W, Yang M, Lu J, Zheng Z, Zhao Y, Yao J, Li J. A reasonably designed 2D WS 2 and CdS microwire heterojunction for high performance photoresponse. NANOSCALE 2021; 13:5660-5669. [PMID: 33724286 DOI: 10.1039/d1nr00210d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Heterojunctions based on low-dimensional materials can combine the superiorities of each component and realize novel properties. Herein, a mixed-dimensional heterojunction comprising multilayer WS2, CdS microwire, and few-layer WS2 has been demonstrated. The working mechanism and its application in a photodetector are investigated. The multilayer WS2 and CdS microwire are utilized to provide efficient light absorption, while the few-layer WS2 is utilized to passivate interfacial impurity scattering. In addition, based on the reasonable band alignment of the components, three built-in electric fields are formed, which efficiently separate the photo-generated carriers and enhance the photocurrent. In particular, the photo-generated electrons are trapped in CdS, while the photo-generated holes circulate in the external circuit, leading to a high photoconductivity gain. Motivated by these, we constructed a device that exhibits a photoresponsivity of ∼4.7 A W-1, a response/recovery time of 13.7/15.8 ms, and a detectivity of 3.4 × 1012 Jones, which are much better than the counterparts. All of these clearly demonstrate the importance of advanced device designs for realizing high performance optoelectronic devices.
Collapse
Affiliation(s)
- Yuchen Zhou
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, Guangdong, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang X, Pan L, Yang J, Li B, Liu YY, Wei Z. Direct Synthesis and Enhanced Rectification of Alloy-to-Alloy 2D Type-II MoS 2(1- x ) Se 2 x /SnS 2(1- y ) Se 2 y Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006908. [PMID: 33448082 DOI: 10.1002/adma.202006908] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/02/2020] [Indexed: 06/12/2023]
Abstract
The interfacial tunable band alignment of heterostructures is coveted in device design and optimization of device performance. As an intentional approach, alloying allows band engineering and continuous band-edge tunability for low-dimensional semiconductors. Thus, combining the tunability of alloying with the band structure of a heterostructure is highly desirable for the improvement of device characteristics. In this work, the single-step growth of alloy-to-alloy (MoS2(1- x ) Se2 x /SnS2(1- y ) Se2 y ) 2D vertical heterostructures is demonstrated. Electron diffraction reveals the well-aligned heteroepitaxial relationship for the heterostructure, and a near-atomically sharp and defect-free boundary along the interface is observed. The nearly intrinsic van der Waals (vdW) interface enables measurement of the intrinsic behaviors of the heterostructures. The optimized type-II band alignment for the MoS2(1- x ) Se2 x /SnS2(1- y ) Se2 y heterostructure, along with the large band offset and effective charge transfer, is confirmed through quenched PL spectroscopy combined with density functional theory calculations. Devices based on completely stacked heterostructures show one or two orders enhanced electron mobility and rectification ratio than those of the constituent materials. The realization of device-quality alloy-to-alloy heterostructures provides a new material platform for precisely tuning band alignment and optimizing device applications.
Collapse
Affiliation(s)
- Xiaoting Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Longfei Pan
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juehan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Bo Li
- Hunan Key Laboratory of Two-Dimensional Materials, Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Yue-Yang Liu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
49
|
Liu Y. Band engineering of Dirac materials in Sb mBi n lateral heterostructures. RSC Adv 2021; 11:17445-17455. [PMID: 35479692 PMCID: PMC9032838 DOI: 10.1039/d1ra02702f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/30/2021] [Indexed: 12/01/2022] Open
Abstract
Band engineering the electronic structures of SbmBin lateral heterostructures (LHS) from antimonene and bismuthene is systematically investigated using first principles calculations. The spin–orbit coupling is found to be crucial in determining electronic structures of SbmBin LHS. The results indicate that these lateral heterostructures have a type-II band alignment which can be easily tuned using their size and tensile strain. The band gap tends to zero when the lateral heterostructure size is larger than a critical value, which intrinsically corresponds to a semiconductor-to-semimetal transition. The band inversion near the Γ point occurs under suitable tensile strain, indicating that SbmBin LHS are very promising to realize quantum spin Hall effects. Band engineering the electronic structures of SbmBin lateral heterostructures (LHS) from antimonene and bismuthene is systematically investigated using first principles calculations.![]()
Collapse
Affiliation(s)
- Yonghui Liu
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution
- East China University of Technology
- Nanchang
- China
- College of Water Resources and Environmental Engineering
| |
Collapse
|
50
|
Sun X, Zhu C, Liu H, Zheng B, Liu Y, Yi J, Fang L, Liu Y, Wang X, Zubair M, Zhu X, Wang X, Li D, Pan A. Contact and injection engineering for low SS reconfigurable FETs and high gain complementary inverters. Sci Bull (Beijing) 2020; 65:2007-2013. [PMID: 36659059 DOI: 10.1016/j.scib.2020.06.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/09/2020] [Accepted: 06/15/2020] [Indexed: 01/21/2023]
Abstract
The newly emerged two-dimensional (2D) semiconducting materials, owning to the atomic thick nature and excellent optical and electrical properties, are considered as potential candidates to solve the bottlenecks of traditional semiconductors. However, the realization of high performance 2D semiconductor-based field-effect transistors (FETs) has been a longstanding challenge in 2D electronics, which is mainly ascribing to the presence of significant Schottky barrier (SB) at metal-semiconductor interfaces. Here, an additional contact gate is induced in 2D ambipolar FET to realize near ideal reconfigurable FET (RFET) devices without restrictions of SB. Benefitting from the consistently high doping of contact region, the effective SB height can be maintained at ultra-small value during all operation conditions, resulting in the near ideal subthreshold swing (SS) values (132 mV/decade for MoTe2 RFET and 67 mV/decade for WSe2 RFET) and the relatively high mobility (28.6 cm2/(V s) for MoTe2 RFET and 89.8 cm2/(V s) for WSe2 RFET). Moreover, the flexible control on the doping polarity of contact region enables the remodeling and switching of the achieved unipolar FETs between p-type mode and n-type mode. Based on such reconfigurable behaviors, high gain complementary MoTe2 inverters are further realized. The findings in this work push forward the development of high-performance 2D semiconductor integrated devices and circuits.
Collapse
Affiliation(s)
- Xingxia Sun
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Chenguang Zhu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Huawei Liu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Biyuan Zheng
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Yong Liu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Jiali Yi
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Lizhen Fang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Ying Liu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Xingwang Wang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Muhammad Zubair
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Xiaoli Zhu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Xiao Wang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Dong Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|