1
|
Qiao Y, Zia A, Shy A, Wu G, Chu M, Liu Z, Wang F, Xu B. Intrinsically Disordered Peptide Nanofibers from a Structured Motif Within Proteins. Angew Chem Int Ed Engl 2025:e202425456. [PMID: 40294067 DOI: 10.1002/anie.202425456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/12/2025] [Accepted: 04/28/2025] [Indexed: 04/30/2025]
Abstract
Intrinsically disordered regions (IDRs) are ubiquitous in proteins, orchestrating complex cellular signaling through higher-order protein assemblies. However, the properties and functions of intrinsically disordered peptide (IDP) assemblies are largely underexplored. This work unveiled a facile strategy for engineering IDP assemblies. We demonstrate that conjugating a structured motif derived from a protein's phosphorylation site to a self-assembling tripeptide unexpectedly yields self-assembled nanofibers with intrinsic disorder. Specifically, by using a glycine linker to attach a pentapeptide derived from a phosphorylation site within a random coil region of SRC kinase to the C-terminus of a widely used self-assembling enabler, we generated a phosphorylated octapeptide. The octapeptide exhibits cell compatibility and forms a hydrogel upon dephosphorylation of the phosphooctapeptide. Cryo-electron microscopy (cryo-EM) structural analysis of the nanofibers reveals that the peptides adopt two types of helical arrangements but exhibit intrinsic disorder at the periphery of the nanofibers. The hydrogels exhibit decreased protein adsorption with increasing peptide concentration. This study represents the first instance of a structured random coil within a protein transitioning into an intrinsically disordered state within self-assembled peptide nanofibers, expanding the pool of peptide sequences for IDPs and providing valuable insights for the engineering of peptide nanofibers with intrinsic disorder for the development of cell-compatible biomaterials.
Collapse
Affiliation(s)
- Yuchen Qiao
- Department of Chemistry, Brandeis University, 415 South St., Waltham, Massachusetts, 02454, USA
| | - Ayisha Zia
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35233, USA
| | - Adrianna Shy
- Department of Chemistry, Brandeis University, 415 South St., Waltham, Massachusetts, 02454, USA
| | - Grace Wu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, Massachusetts, 02454, USA
| | - Matthew Chu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, Massachusetts, 02454, USA
| | - Zhiyu Liu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, Massachusetts, 02454, USA
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35233, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, Massachusetts, 02454, USA
| |
Collapse
|
2
|
Nguyen TD, Le HD, Dang GC, Jung HS, Choi Y, Khim K, Kim Y, Lee SE, Rhee JH. A combined adjuvant and ferritin nanocage based mucosal vaccine against Streptococcus pneumoniae induces protective immune responses in a murine model. Nat Commun 2025; 16:2871. [PMID: 40128220 PMCID: PMC11933286 DOI: 10.1038/s41467-025-58115-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 03/13/2025] [Indexed: 03/26/2025] Open
Abstract
Protein nanocages are multimeric structures that can be engineered to mimic the molecular conformation of microorganisms. Based on previous findings showing that a mucosal FlaB-tPspA fusion (flagellin fused with truncated PspA antigen of Streptococcus pneumoniae) vaccine-induced protective immune response against S. pneumoniae, we develop a ferritin nanocage vaccine displaying multivalent presentation of both antigen and adjuvant on a nanocarrier using the SpyTag/SpyCatcher strategy. The 1:1 antigen/adjuvant nanocage is further used as a mucosal vaccine, which can translocate to draining lymph nodes with higher efficiency than fusion vaccine. Moreover, intranasal immunization with the nanocage vaccine significantly enhances mucosal immune responses with more efficient B-cell memory generation and antibody maturation, as well as more balanced (Th1/Th2) immune responses with increased IFN-γ and IL-17 production, comparing with fusion vaccine. Mice immunized with the nanocage vaccine exhibited enhanced protection against lethal infection compare to the FlaB-tPspA fusion group. Our study thus demonstrates the effectiveness of an all-in-one nanocage mucosal vaccine platform, which guarantees enhanced protection with balanced immune responses.
Collapse
Affiliation(s)
- Tien Duc Nguyen
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Hoang Duy Le
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Giang Chau Dang
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Hyun Seok Jung
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Yoonjoo Choi
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Koemchhoy Khim
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Young Kim
- Department of Oral Pathology, Chonnam National University School of Dentistry, Gwangju, Republic of Korea
| | - Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea.
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea.
- Department of Pharmacology and Dental Therapeutics, Chonnam National University School of Dentistry, Gwangju, Republic of Korea.
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea.
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea.
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea.
| |
Collapse
|
3
|
Shi Y, Liu M, Wang Y, Chen Y, Jiang L. Multi-enzyme assemblies both in the cell membrane and cytoplasm boost intracellular lycopene production. Int J Biol Macromol 2025; 288:138654. [PMID: 39689805 DOI: 10.1016/j.ijbiomac.2024.138654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
The multi-enzyme assembly system demonstrates remarkable potential in enhancing both intracellular and extracellular enzyme catalysis. In this study, we employed a novel icosahedral protein cage, Mi3, as a protein scaffold and combined it with an ester bond-based peptide tagging system, ReverseTag/ReverseCatcher, to improve the enzymatic catalytic efficiency both in vitro and in vivo. In vitro, we fused ReverseTag to the N-terminal of exo-inulinase (EXINU) from Pseudomonas mucidolens, yielding ReverseTag-EXINU, which effectively bound to the surface of the ReverseCatcher-Mi3 protein cage. Following assembly, the Km value decreased from 16.3 to 7.9 g/L, while kcat/Km value increased from 1.9 to 3.0 L s-1 g-1, indicating a significant enhancement in substrate affinity and enzymatic catalytic efficiency. In vivo, we constructed a protein-cage multi-enzyme assembly system located in the cytoplasm and cell membrane based on ReverseTag/ReverseCatcher/Mi3 system. In lycopene biosynthesis, the production of lycopene after assembly was increased by 2.97 times compared to free enzyme catalysis. This strategy holds profound implications for fields such as synthetic biology and enzyme engineering.
Collapse
Affiliation(s)
- Yi Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Minghui Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Yuwei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yao Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Ling Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
4
|
Munoz-Robles BG, DeForest CA. Irreversible light-activated SpyLigation mediates split-protein assembly in 4D. Nat Protoc 2024; 19:1015-1052. [PMID: 38253657 PMCID: PMC11288621 DOI: 10.1038/s41596-023-00938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/23/2023] [Indexed: 01/24/2024]
Abstract
The conditional assembly of split-protein pairs to modulate biological activity is commonly achieved by fusing split-protein fragments to dimerizing components that bring inactive pairs into close proximity in response to an exogenous trigger. However, current methods lack full spatial and temporal control over reconstitution, require sustained activation and lack specificity. Here light-activated SpyLigation (LASL), based on the photoregulation of the covalent SpyTag (ST)/SpyCatcher (SC) peptide-protein reaction, assembles nonfunctional split fragment pairs rapidly and irreversibly in solution, in engineered biomaterials and intracellularly. LASL introduces an ortho-nitrobenzyl(oNB)-caged lysine into SC's reactive site to generate a photoactivatable SC (pSC). Split-protein pairs of interest fused to pSC and ST are conditionally assembled via near-ultraviolet or pulsed near-infrared irradiation, as the uncaged SC can react with ST to ligate appended fragments. We describe procedures for the efficient synthesis of the photocaged amino acid that is incorporated within pSC (<5 days) as well as the design and cloning of LASL plasmids (1-4 days) for recombinant protein expression in either Escherichia coli (5-6 days) or mammalian cells (4-6 days), which require some prior expertise in protein engineering. We provide a chemoenzymatic scheme for appending bioorthogonal reactive handles onto E. coli-purified pSC protein (<4 days) that permits LASL component incorporation and patterned protein activation within many common biomaterial platforms. Given that LASL is irreversible, the photolithographic patterning procedures are fast and do not require sustained light exposure. Overall, LASL can be used to interrogate and modulate cell signaling in various settings.
Collapse
Affiliation(s)
- Brizzia G Munoz-Robles
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Cole A DeForest
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA.
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA.
- Department of Chemistry, University of Washington, Seattle, WA, USA.
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
Fan R, Aranko AS. Catcher/Tag Toolbox: Biomolecular Click-Reactions For Protein Engineering Beyond Genetics. Chembiochem 2024; 25:e202300600. [PMID: 37851860 DOI: 10.1002/cbic.202300600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Manipulating protein architectures beyond genetic control has attracted widespread attention. Catcher/Tag systems enable highly specific conjugation of proteins in vivo and in vitro via an isopeptide-bond. They provide efficient, robust, and irreversible strategies for protein conjugation and are simple yet powerful tools for a variety of applications in enzyme industry, vaccines, biomaterials, and cellular applications. Here we summarize recent development of the Catcher/Tag toolbox with a particular emphasis on the design of Catcher/Tag pairs targeted for specific applications. We cover the current limitations of the Catcher/Tag systems and discuss the pH sensitivity of the reactions. Finally, we conclude some of the future directions in the development of this versatile protein conjugation method and envision that improved control over inducing the ligation reaction will further broaden the range of applications.
Collapse
Affiliation(s)
- Ruxia Fan
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, 02150, Espoo, Finland
| | - A Sesilja Aranko
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, 02150, Espoo, Finland
| |
Collapse
|
6
|
Li H, Hou Z, Wang Y, Zhou Z, Cai J, Xin Q, Yin F, Li Z, Xu N. Methodology of stable peptide based on propargylated sulfonium. Biochem Biophys Rep 2023; 35:101508. [PMID: 37448811 PMCID: PMC10336417 DOI: 10.1016/j.bbrep.2023.101508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Peptides can be used as effective molecular tool for covalent modification of proteins and play important roles in ligand directed covalent modification. Tyr-selective protein modifications exert a profound impact on protein functionality. Here, we developed a general strategy that involves nucleophilic addition of alkyne for tyrosine modification. The terminal alkyne of propargyl sulfonium is motivated by the sulfonium center to react with phenolic hydroxyl. This approach provides a straightforward method for tyrosine modification due to its high yield in aqueous solution at physiological temperature. In addition, cyclic peptides could be obtained via adjusting pH to 8.0 from peptides consisting of tyrosine and methionine modified by propargyl bromide, and the resulting cyclic peptides are proved to have better stability, excellent 2-mercaptopyridine resistance and improved cellular uptakes. Furthermore, molecules made from the propargylated sulfonium have the potential to be used as warheads against tyrosine containing biomolecules. Collectively, we develop a direct and uncomplicated technique for modifying tyrosine residues, the strategy concerned can be widely utilized to construct stable peptides and biomolecules imaging.
Collapse
Affiliation(s)
- Heng Li
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhanfeng Hou
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Yuena Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ziyuan Zhou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jin Cai
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Qilei Xin
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Naihan Xu
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
7
|
She T, Yang F, Chen S, Yang H, Tao Z, Xing H, Chen J, Chang H, Lu H, Su T, Jin Y, Zhong Y, Cheng J, Zhu H, Lu X. Snoopligase-catalyzed molecular glue enables efficient generation of hyperoligomerized TRAIL variant with enhanced antitumor effect. J Control Release 2023; 361:856-870. [PMID: 37516318 DOI: 10.1016/j.jconrel.2023.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Clinical application of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is predominantly limited by its inefficient apoptosis induction in tumor cells, which might be improved by using molecular superglue-mediated hyperoligomerization to increase its valency. Here, the minimal superglue peptide pairs, including Snoopligase-catalyzed SnoopTagJr/SnoopDogTag and SpyStapler-catalyzed SpyTag/SpyBDTag, were individually fused at the N- or C-terminus of the TRAIL promoter to produce superglue-fusion TRAIL variants. Similar to native trivalent TRAIL, these superglue-fusion TRAIL variants were highly expressed in Escherichia coli (E. coli) and spontaneously trimerized. In the presence of Snoopligase or SpyStapler, the trivalent superglue-fusion TRAIL variants were predominantly crosslinked into hexavalent TRAIL variants. Nevertheless, Snoopligase was more efficient than SpyStapler in the production of hexavalent TRAIL variants. In particular, Snoopligase-catalyzed trivalent TRAIL variants with N-terminal fusion of SnoopTagJr/SnoopDogTag produced hexavalent SnHexaTR with the highest yield (∼70%). The in vitro cytotoxicity of SnHexaTR was 10-40 times greater than that of TRAIL in several tumor cells. In addition, compared to trivalent TRAIL, hexavalent SnHexaTR showed a longer serum half-life and greater tumor uptake, which resulted in eradication of 50% of tumor xenografts of TRAIL-sensitive COLO 205. In mice bearing TRAIL-resistant HT-29 tumor xenografts, hexavalent SnHexaTR combined with bortezomib encapsulated in liposomes also showed robust tumor growth suppression, indicating that hyperoligomerization mediated by minimal molecular superglue significantly increased the cytotoxicity and antitumor effect of TRAIL. As a novel anticancer agent candidate, the hexavalent SnHexaTR has great potential for clinical application in cancer therapy.
Collapse
Affiliation(s)
- Tianshan She
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fen Yang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiyuan Chen
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China; Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ze Tao
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China; Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huimin Xing
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Chen
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huansheng Chang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyu Lu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Su
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Youmei Jin
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Zhong
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China; Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiaofeng Lu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China; Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Keeble AH, Wood DP, Howarth M. Design and Evolution of Enhanced Peptide-Peptide Ligation for Modular Transglutaminase Assembly. Bioconjug Chem 2023. [PMID: 37289810 DOI: 10.1021/acs.bioconjchem.3c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Robust and precise tools are needed to enhance the functionality and resilience of synthetic nanoarchitectures. Here, we have employed directed evolution and rational design to build a fast-acting molecular superglue from a bacterial adhesion protein. We have generated the SnoopLigase2 coupling system, a genetically encoded route for efficient transamidation between SnoopTag2 and DogTag2 peptides. Each peptide was selected for rapid reaction by phage display screening. The optimized set allows more than 99% completion and is compatible with diverse buffers, pH values, and temperatures, accelerating the reaction over 1000-fold. SnoopLigase2 directs a specific reaction in the mammalian secretory pathway, allowing covalent display on the plasma membrane. Transglutaminase 2 (TG2) has a network of interactions and substrates amidst the mammalian cell surface and extracellular matrix. We expressed a modified TG2 with resistance to oxidative inactivation and minimal self-reactivity. SnoopLigase2 enables TG2 functionalization with transforming growth factor alpha (TGFα) in routes that would be impossible through genetic fusion. The TG2:TGFα conjugate retained transamidase activity, stably anchored TGFα for signal activation in the extracellular environment, and reprogrammed cell behavior. This modular toolbox should create new opportunities for molecular assembly, both for novel biomaterials and complex cellular environments.
Collapse
Affiliation(s)
- Anthony H Keeble
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Dominic P Wood
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| |
Collapse
|
9
|
Ruskowitz ER, Munoz-Robles BG, Strange AC, Butcher CH, Kurniawan S, Filteau JR, DeForest CA. Spatiotemporal functional assembly of split protein pairs through a light-activated SpyLigation. Nat Chem 2023; 15:694-704. [PMID: 37069270 PMCID: PMC10164143 DOI: 10.1038/s41557-023-01152-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/26/2023] [Indexed: 04/19/2023]
Abstract
Proteins provide essential functional regulation of many bioprocesses across all scales of life; however, new techniques to specifically modulate protein activity within living systems and in engineered biomaterials are needed to better interrogate fundamental cell signalling and guide advanced decisions of biological fate. Here we establish a generalizable strategy to rapidly and irreversibly activate protein function with full spatiotemporal control. Through the development of a genetically encoded and light-activated SpyLigation (LASL), bioactive proteins can be stably reassembled from non-functional split fragment pairs following brief exposure (typically minutes) to cytocompatible light. Employing readily accessible photolithographic processing techniques to specify when, where and how much photoligation occurs, we demonstrate precise protein activation of UnaG, NanoLuc and Cre recombinase using LASL in solution, biomaterials and living mammalian cells, as well as optical control over protein subcellular localization. Looking forward, we expect that these photoclick-based optogenetic approaches will find tremendous utility in probing and directing complex cellular fates in both time and three-dimensional space.
Collapse
Affiliation(s)
- Emily R Ruskowitz
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | | | - Alder C Strange
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Carson H Butcher
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Sebastian Kurniawan
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Jeremy R Filteau
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Cole A DeForest
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
- Department of Chemistry, University of Washington, Seattle, WA, USA.
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
| |
Collapse
|
10
|
Abstract
The ability to manipulate the chemical composition of proteins and peptides has been central to the development of improved polypeptide-based therapeutics and has enabled researchers to address fundamental biological questions that would otherwise be out of reach. Protein ligation, in which two or more polypeptides are covalently linked, is a powerful strategy for generating semisynthetic products and for controlling polypeptide topology. However, specialized tools are required to efficiently forge a peptide bond in a chemoselective manner with fast kinetics and high yield. Fortunately, nature has addressed this challenge by evolving enzymatic mechanisms that can join polypeptides using a diverse set of chemical reactions. Here, we summarize how such nature-inspired protein ligation strategies have been repurposed as chemical biology tools that afford enhanced control over polypeptide composition.
Collapse
Affiliation(s)
- Rasmus Pihl
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA.
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Kou S, Chen W, Sun C, Sun F. SpyStapler-mediated assembly of nanoparticle vaccines. NANO RESEARCH 2022; 16:2821-2828. [PMID: 36258758 PMCID: PMC9561328 DOI: 10.1007/s12274-022-4951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has wreaked havoc around the globe, with no end in sight. The rapid emergence of viral mutants, marked by rapid transmission and effective immune evasion, has also posed unprecedented challenges for vaccine development, not least in its speed, mass production, and distribution. Here we report a versatile "plug-and-display" strategy for creating protein vaccines, including those against malaria parasites and SARS-CoV-2, through the combined use of the intrinsically disordered protein ligase SpyStapler and computationally designed viral-like particles. The resulting protein nanoparticles harboring multiple antigens induce potent neutralizing antibody responses in mice, substantially stronger than those induced by the corresponding free antigens. This modular vaccine design enabled by SpyStapler furnishes us with a new weapon for combatting infectious diseases. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (further details of the protein sequences, cloning procedures, TEM imaging, ELISA details, and reaction controls) is available in the online version of this article at 10.1007/s12274-022-4951-9.
Collapse
Affiliation(s)
- Songzi Kou
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036 China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, 518132 China
| | - Weitao Chen
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036 China
| | - Chenbo Sun
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Fei Sun
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036 China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, 518132 China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
12
|
Chen K, Dong X, Sun Y. Sequentially co-immobilized PET and MHET hydrolases via Spy chemistry in calcium phosphate nanocrystals present high-performance PET degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129517. [PMID: 35809363 DOI: 10.1016/j.jhazmat.2022.129517] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Accumulation of polyethylene terephthalate (PET) has brought an enormous threat to the ecosystem. The recently reported PET hydrolase (DuraPETase) and MHET hydrolase (MHETase) can synergistically catalyze the complete PET degradation. Hence, this work was designed to develop a bienzymatic cascade catalysis by co-immobilizing the two enzymes for PET biodegradation. DuraPETase and MHETase were sequentially co-immobilized in calcium phosphate nanocrystals (CaP) through SpyTag/SpyCatcher system. MHETase-SpyCatcher was first embedded inside the nanocrystals via biomimetic mineralization, and DuraPETase-SpyTag was then conjugated on the outlayer (~1.5 µm). The bienzyme compartmentalization facilitated DuraPETase interaction with the solid substrate, and the layered structures of the nanocrystals protected the enzymes, thus enhancing their stability. The high specific surface area of the nanocrystals and the proximity effects from the bienzymatic cascade were beneficial to the improved enzyme activity. Experimental data and molecular dynamics simulations revealed the activation effect of Ca2+ on DuraPETase. Taken together, the final results indicate that the PET degradation efficiency of DuraPETase-MHETase@CaP increased by 6.1 and 1.5 times over the free bienzyme system within 10 d at 40 °C and 50 °C, with weight losses at 32.2% and 50.3%, respectively. The bienzymatic cascade with DuraPETase-MHETase@CaP can completely degrade PET, contributing to the recycling of PET.
Collapse
Affiliation(s)
- Kun Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
13
|
Wu WH, Guo J, Zhang L, Zhang WB, Gao W. Peptide/protein-based macrocycles: from biological synthesis to biomedical applications. RSC Chem Biol 2022; 3:815-829. [PMID: 35866174 PMCID: PMC9257627 DOI: 10.1039/d1cb00246e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Living organisms have evolved cyclic or multicyclic peptides and proteins with enhanced stability and high bioactivity superior to their linear counterparts for diverse purposes. Herein, we review recent progress in applying this concept to artificial peptides and proteins to exploit the functional benefits of these macrocycles. Not only have simple cyclic forms been prepared, numerous macrocycle variants, such as knots and links, have also been developed. The chemical tools and synthetic strategies are summarized for the biological synthesis of these macrocycles, demonstrating it as a powerful alternative to chemical synthesis. Its further application to therapeutic peptides/proteins has led to biomedicines with profoundly improved pharmaceutical performances. Finally, we present our perspectives on the field and its future developments.
Collapse
Affiliation(s)
- Wen-Hao Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Jianwen Guo
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| | - Longshuai Zhang
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Weiping Gao
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| |
Collapse
|
14
|
Ye X, Wang N, Li Y, Fang X, Kong J. A high-specificity flap probe-based isothermal nucleic acid amplification method based on recombinant FEN1-Bst DNA polymerase. Biosens Bioelectron 2021; 192:113503. [PMID: 34303138 PMCID: PMC8280370 DOI: 10.1016/j.bios.2021.113503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 01/02/2023]
Abstract
The COVID-19 pandemic has unfortunately demonstrated how easily infectious diseases can spread and harm human life and society. As of writing, pandemic has now been on-going for more than one year. There is an urgent need for new nucleic acid-based methods that can be used to diagnose pathogens early, quickly, and accurately to effectively impede the spread of infections and gain control of epidemics. We developed a flap probe-based isothermal nucleic acid amplification method that is triggered by recombinant FEN1-Bst DNA polymerase, which-through enzymatic engineering-has both DNA synthesis, strand displacement and cleavage functions. This novel method offers a simpler and more specific probe-primer pair than those of other isothermal amplifications. We tested the method's ability to detect SARS-CoV-2 (both ORF1ab and N genes), rotavirus, and Chlamydia trachomatis. The limits of detection were 10 copies/μL for rotavirus, C. trachomatis, and SARS-CoV-2 N gene, and 100 copies/μL for SARS-CoV-2 ORF1ab gene. There were no cross-reactions among 11 other common pathogens with characteristics similar to those of the test target, and the method showed 100% sensitivity and 100% specificity in clinical comparisons with RT-PCR testing. In addition to real-time detection, the endpoint could be displayed under a transilluminator, which is a convenient reporting method for point-of-care test settings. Therefore, this novel nucleic acid senor has great potential for use in clinical diagnostics, epidemic prevention, and epidemic control.
Collapse
Affiliation(s)
- Xin Ye
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Ning Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yang Li
- Shanghai Suxin Biotechnology Co. Ltd., Shanghai, 201318, PR China
| | - Xueen Fang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China.
| | - Jilie Kong
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
15
|
Riebe J, Niemeyer J. Mechanically Interlocked Molecules for Biomedical Applications. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Jan Riebe
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE) University of Duisburg-Essen Universitätsstr. 7 45141 Essen Germany
| | - Jochen Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE) University of Duisburg-Essen Universitätsstr. 7 45141 Essen Germany
| |
Collapse
|
16
|
Wang R, Liu M, Wang H, Xia J, Li H. GB Tags: Small Covalent Peptide Tags Based on Protein Fragment Reconstitution. Bioconjug Chem 2021; 32:1926-1934. [PMID: 34329559 DOI: 10.1021/acs.bioconjchem.1c00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Developing peptide tags that can bind target proteins covalently under mild conditions is of great importance for a myriad of applications, ranging from chemical biology to biotechnology. Here we report the development of a small covalent peptide tag system, termed as GB tags, that can covalently label the target protein with high specificity and high yield under oxidizing conditions. The GB tags consist of a pair of short peptides, GN and GC (GN contains 45 residues and GC contains 19 residues). GN and GC, which are split from a parent protein GB1, can undergo protein fragment reconstitution to reconstitute the folded structure of the parent protein spontaneously. The engineered cysteines in GN and GC can readily form a disulfide bond oxidized by air oxygen after protein reconstitution. Using thermally stable variants of GB1, we identified two pairs of GB tags that display improved thermodynamic stability and binding affinity. They can serve as efficient covalent peptide tags for various applications, including specific labeling of mammalian cell surface receptors. We anticipate that these new GB tags will find applications in biochemical labeling as well as biomaterials, such as protein hydrogels.
Collapse
Affiliation(s)
- Ruidi Wang
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada.,State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Miao Liu
- Department of Chemistry, Chinese University of Hong Kong, Hong Kong SRC, P. R. China
| | - Han Wang
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Jiang Xia
- Department of Chemistry, Chinese University of Hong Kong, Hong Kong SRC, P. R. China
| | - Hongbin Li
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
17
|
Keeble AH, Yadav VK, Ferla MP, Bauer CC, Chuntharpursat-Bon E, Huang J, Bon RS, Howarth M. DogCatcher allows loop-friendly protein-protein ligation. Cell Chem Biol 2021; 29:339-350.e10. [PMID: 34324879 PMCID: PMC8878318 DOI: 10.1016/j.chembiol.2021.07.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/09/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022]
Abstract
There are many efficient ways to connect proteins at termini. However, connecting at a loop is difficult because of lower flexibility and variable environment. Here, we have developed DogCatcher, a protein that forms a spontaneous isopeptide bond with DogTag peptide. DogTag/DogCatcher was generated initially by splitting a Streptococcus pneumoniae adhesin. We optimized DogTag/DogCatcher through rational design and evolution, increasing reaction rate by 250-fold and establishing millimolar solubility of DogCatcher. When fused to a protein terminus, DogTag/DogCatcher reacts slower than SpyTag003/SpyCatcher003. However, inserted in loops of a fluorescent protein or enzyme, DogTag reacts much faster than SpyTag003. Like many membrane proteins, the ion channel TRPC5 has no surface-exposed termini. DogTag in a TRPC5 extracellular loop allowed normal calcium flux and specific covalent labeling on cells in 1 min. DogTag/DogCatcher reacts under diverse conditions, at nanomolar concentrations, and to 98% conversion. Loop-friendly ligation should expand the toolbox for creating protein architectures. Spontaneous transamidation at internal sites harnessing a DogTag/DogCatcher pair DogCatcher is designed and bred for high solubility and rapid reaction Within protein loops DogTag can clamp on its partner faster than SpyTag003 Fast and faithful fluorescent labeling of an ion channel at the cell surface via DogTag
Collapse
Affiliation(s)
- Anthony H Keeble
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Vikash K Yadav
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Matteo P Ferla
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Claudia C Bauer
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Eulashini Chuntharpursat-Bon
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Jin Huang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Robin S Bon
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
18
|
Da XD, Wu XL, Liu Y, Zhang WB. Protein Conjugation via SpyStapler-Mediated SpyTag/BDTag Coupling. Curr Protoc 2021; 1:e99. [PMID: 33826806 DOI: 10.1002/cpz1.99] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Genetically encoded peptide-protein coupling reactions, such as the SpyTag/SpyCatcher chemistry, are recent additions to the expanding toolbox of protein bioconjugation. The alternative three-component ligation system, e.g., SpyStapler-mediated SpyTag/BDTag coupling, retains most advantages of the Tag/Catcher chemistry, yet requires only two short peptide tags in the genetic fusion for side-chain ligation. Not only does this facilitate the construction of large protein conjugates directly from as-expressed protein components with minimal disruption to their function, but it also provides an entirely new mode of bioconjugation via mechanical bonding, which could impart additional functional benefits such as improved activity and enhanced stability to the conjugate. Such features are attractive for improving the pharmacokinetic performance of protein therapeutics. Herein we describe protocols for SpyStapler-mediated SpyTag/BDTag coupling for protein bioconjugation. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Conjugation via isopeptide bond Support Protocol: Purification by size-exclusion chromatography Basic Protocol 2: Conjugation via mechanical bond.
Collapse
Affiliation(s)
- Xiao-Di Da
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Xia-Ling Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Yajie Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| |
Collapse
|
19
|
Kajiwara K, Aoki W, Koike N, Ueda M. Development of a yeast cell surface display method using the SpyTag/SpyCatcher system. Sci Rep 2021; 11:11059. [PMID: 34040114 PMCID: PMC8155107 DOI: 10.1038/s41598-021-90593-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/12/2021] [Indexed: 12/05/2022] Open
Abstract
Yeast cell surface display (YSD) has been used to engineer various proteins, including antibodies. Directed evolution, which subjects a gene to iterative rounds of mutagenesis, selection and amplification, is useful for protein engineering. In vivo continuous mutagenesis, which continuously diversifies target genes in the host cell, is a promising tool for accelerating directed evolution. However, combining in vivo continuous evolution and YSD is difficult because mutations in the gene encoding the anchor proteins may inhibit the display of target proteins on the cell surface. In this study, we have developed a modified YSD method that utilises SpyTag/SpyCatcher-based in vivo protein ligation. A nanobody fused with a SpyTag of 16 amino acids and an anchor protein fused with a SpyCatcher of 113 amino acids are encoded by separate gene cassettes and then assembled via isopeptide bond formation. This system achieved a high display efficiency of more than 90%, no intercellular protein ligation events, and the enrichment of target cells by cell sorting. These results suggested that our system demonstrates comparable performance with conventional YSD methods; therefore, it can be an appropriate platform to be integrated with in vivo continuous evolution.
Collapse
Affiliation(s)
- Kaho Kajiwara
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Wataru Aoki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
- JST, CREST, 7 Goban-cho, Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Naoki Koike
- TechnoPro, Inc. TechnoPro R&D, Company, Tokyo, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
- JST, CREST, 7 Goban-cho, Chiyoda-ku, Tokyo, 102-0076, Japan.
| |
Collapse
|
20
|
Fredsgaard L, Goksøyr L, Thrane S, Aves KL, Theander TG, Sander AF. Head-to-Head Comparison of Modular Vaccines Developed Using Different Capsid Virus-Like Particle Backbones and Antigen Conjugation Systems. Vaccines (Basel) 2021; 9:vaccines9060539. [PMID: 34063871 PMCID: PMC8224050 DOI: 10.3390/vaccines9060539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 01/19/2023] Open
Abstract
Capsid virus-like particles (cVLPs) are used as molecular scaffolds to increase the immunogenicity of displayed antigens. Modular platforms have been developed whereby antigens are attached to the surface of pre-assembled cVLPs. However, it remains unknown to what extent the employed cVLP backbone and conjugation system may influence the immune response elicited against the displayed antigen. Here, we performed a head-to-head comparison of antigen-specific IgG responses elicited by modular cVLP-vaccines differing by their employed cVLP backbone or conjugation system, respectively. Covalent antigen conjugation (i.e., employing the SpyTag/SpyCatcher system) resulted in significantly higher antigen-specific IgG titers compared to when using affinity-based conjugation (i.e., using biotin/streptavidin). The cVLP backbone also influenced the antigen-specific IgG response. Specifically, vaccines based on the bacteriophage AP205 cVLP elicited significantly higher antigen-specific IgG compared to corresponding vaccines using the human papillomavirus major capsid protein (HPV L1) cVLP. In addition, the AP205 cVLP platform mediated induction of antigen-specific IgG with a different subclass profile (i.e., higher IgG2a and IgG2b) compared to HPV L1 cVLP. These results demonstrate that the cVLP backbone and conjugation system can individually affect the IgG response elicited against a displayed antigen. These data will aid the understanding and process of tailoring modular cVLP vaccines to achieve improved immune responses.
Collapse
Affiliation(s)
- Laurits Fredsgaard
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.F.); (L.G.); (K.-L.A.); (T.G.T.)
| | - Louise Goksøyr
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.F.); (L.G.); (K.-L.A.); (T.G.T.)
- AdaptVac Aps, 2970 Hørsholm, Denmark;
| | | | - Kara-Lee Aves
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.F.); (L.G.); (K.-L.A.); (T.G.T.)
| | - Thor G. Theander
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.F.); (L.G.); (K.-L.A.); (T.G.T.)
| | - Adam F. Sander
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.F.); (L.G.); (K.-L.A.); (T.G.T.)
- AdaptVac Aps, 2970 Hørsholm, Denmark;
- Correspondence:
| |
Collapse
|
21
|
|
22
|
Shi J, Hu J, Yuan Y, Zhang B, Guo W, Wu Y, Jiang L. Genetic Fusion of Transacting Activator of Transcription Peptide to Cyclized Green Fluorescence Protein Improves Stability, Intracellular Delivery, and Tumor Retention. ACS OMEGA 2021; 6:7931-7940. [PMID: 33778304 PMCID: PMC7992142 DOI: 10.1021/acsomega.1c00532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Therapeutic proteins such as enzymes, hormones, and cytokines suffer from poor stability, inefficient cellular penetration, and rapid clearance from circulation. Conjugation with polymers (such as poly(ethylene glycol)) and fusion with long-acting proteins (such as albumin and Fc fragments) have been utilized to partially address the delivery issues, but these strategies require the introduction of new macromolecular substances, resulting in potential immunogenicity and toxicity. Herein, we report an easy strategy to increase the intracellular delivery efficiency and stability of proteins by combining of sortase-mediated protein cyclization and cell-penetrating peptide (CPP)-mediated intracellular delivery. We, for the first time, genetically constructed a green fluorescence protein (GFP) fused with a CPP, a transacting activator of transcription (TAT) peptide, at its C-terminus for intracellular internalization, and two sortase recognition sequences, pentaglycine and LPETG, at its N- and C-termini for cyclization. Notably, the cyclized GFP-TAT (cGFP-TAT) not only highly retained the photophysical properties of the protein but also significantly improved the in vitro stability compared with the native linear GFP (lGFP) and linear TAT peptide-fused GFP (lGFP-TAT).Moreover, cGFP-TAT showed better cellular internalization ability compared with lGFP. In C26 tumor-inoculated mice, cGFP-TAT exhibited enhanced in vivo tumor retention, with increases of 7.79- and 6.52-fold relative to lGFP and lGFP-TAT in tumor retention 3 h after intratumor administration. This proof-of-concept study has provided an easy strategy to increase the in vitro stability, intracellular delivery efficiency, and in vivo tumor retention of GFP, which would be applicable to numerous therapeutic proteins and peptides for clinical practice.
Collapse
Affiliation(s)
- Jianquan Shi
- Department
of Intensive Care Unit, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor
Research Institute, Beijing 101149, China
| | - Jin Hu
- Department
of Medical Research Center, State Key Laboratory of Complex Severe
and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union
Medical College, Beijing 100730, China
| | - Yeshuang Yuan
- Department
of Medical Research Center, State Key Laboratory of Complex Severe
and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union
Medical College, Beijing 100730, China
- Department
of Microbiology and Immunology, North Sichuan
Medical College, Nanchong 637100, China
| | - Bo Zhang
- Department
of Medical Research Center, State Key Laboratory of Complex Severe
and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union
Medical College, Beijing 100730, China
| | - Wenting Guo
- Department
of Medical Research Center, State Key Laboratory of Complex Severe
and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union
Medical College, Beijing 100730, China
| | - Yuanhao Wu
- Department
of Medical Research Center, State Key Laboratory of Complex Severe
and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union
Medical College, Beijing 100730, China
| | - Lingjuan Jiang
- Department
of Medical Research Center, State Key Laboratory of Complex Severe
and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union
Medical College, Beijing 100730, China
| |
Collapse
|
23
|
Kang YF, Sun C, Zhuang Z, Yuan RY, Zheng Q, Li JP, Zhou PP, Chen XC, Liu Z, Zhang X, Yu XH, Kong XW, Zhu QY, Zhong Q, Xu M, Zhong NS, Zeng YX, Feng GK, Ke C, Zhao JC, Zeng MS. Rapid Development of SARS-CoV-2 Spike Protein Receptor-Binding Domain Self-Assembled Nanoparticle Vaccine Candidates. ACS NANO 2021; 15:2738-2752. [PMID: 33464829 PMCID: PMC7839421 DOI: 10.1021/acsnano.0c08379] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/13/2021] [Indexed: 05/18/2023]
Abstract
The coronavirus disease pandemic of 2019 (COVID-19) caused by the novel SARS-CoV-2 coronavirus resulted in economic losses and threatened human health worldwide. The pandemic highlights an urgent need for a stable, easily produced, and effective vaccine. SARS-CoV-2 uses the spike protein receptor-binding domain (RBD) to bind its cognate receptor, angiotensin-converting enzyme 2 (ACE2), and initiate membrane fusion. Thus, the RBD is an ideal target for vaccine development. In this study, we designed three different RBD-conjugated nanoparticle vaccine candidates, namely, RBD-Ferritin (24-mer), RBD-mi3 (60-mer), and RBD-I53-50 (120-mer), via covalent conjugation using the SpyTag-SpyCatcher system. When mice were immunized with the RBD-conjugated nanoparticles (NPs) in conjunction with the AddaVax or Sigma Adjuvant System, the resulting antisera exhibited 8- to 120-fold greater neutralizing activity against both a pseudovirus and the authentic virus than those of mice immunized with monomeric RBD. Most importantly, sera from mice immunized with RBD-conjugated NPs more efficiently blocked the binding of RBD to ACE2 in vitro, further corroborating the promising immunization effect. Additionally, the vaccine has distinct advantages in terms of a relatively simple scale-up and flexible assembly. These results illustrate that the SARS-CoV-2 RBD-conjugated nanoparticles developed in this study are a competitive vaccine candidate and that the carrier nanoparticles could be adopted as a universal platform for a future vaccine development.
Collapse
Affiliation(s)
- Yin-Feng Kang
- State Key Laboratory of Oncology in South China,
Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of
Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research,
Sun Yat-sen University Cancer Center, Sun Yat-sen University,
Guangzhou 510060, P. R. China
| | - Cong Sun
- State Key Laboratory of Oncology in South China,
Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of
Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research,
Sun Yat-sen University Cancer Center, Sun Yat-sen University,
Guangzhou 510060, P. R. China
| | - Zhen Zhuang
- State Key Laboratory of Respiratory Disease, National
Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory
Health, The First Affiliated Hospital of Guangzhou Medical
University, Guangzhou 510182, P. R. China
| | - Run-Yu Yuan
- Guangdong Provincial Institution of Public Health,
Guangdong Provincial Center for Disease Control and
Prevention, Guangzhou 511430, P. R. China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and
Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in
Infectious Diseases, School of Public Health, Xiamen
University, Xiamen 361102, P. R. China
| | - Jiang-Ping Li
- State Key Laboratory of Oncology in South China,
Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of
Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research,
Sun Yat-sen University Cancer Center, Sun Yat-sen University,
Guangzhou 510060, P. R. China
| | - Ping-Ping Zhou
- Guangdong Provincial Institution of Public Health,
Guangdong Provincial Center for Disease Control and
Prevention, Guangzhou 511430, P. R. China
| | - Xin-Chun Chen
- State Key Laboratory of Oncology in South China,
Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of
Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research,
Sun Yat-sen University Cancer Center, Sun Yat-sen University,
Guangzhou 510060, P. R. China
| | - Zhe Liu
- Guangdong Provincial Institution of Public Health,
Guangdong Provincial Center for Disease Control and
Prevention, Guangzhou 511430, P. R. China
| | - Xiao Zhang
- State Key Laboratory of Oncology in South China,
Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of
Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research,
Sun Yat-sen University Cancer Center, Sun Yat-sen University,
Guangzhou 510060, P. R. China
| | - Xiao-Hui Yu
- State Key Laboratory of Oncology in South China,
Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of
Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research,
Sun Yat-sen University Cancer Center, Sun Yat-sen University,
Guangzhou 510060, P. R. China
| | - Xiang-Wei Kong
- State Key Laboratory of Oncology in South China,
Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of
Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research,
Sun Yat-sen University Cancer Center, Sun Yat-sen University,
Guangzhou 510060, P. R. China
| | - Qian-Ying Zhu
- State Key Laboratory of Oncology in South China,
Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of
Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research,
Sun Yat-sen University Cancer Center, Sun Yat-sen University,
Guangzhou 510060, P. R. China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China,
Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of
Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research,
Sun Yat-sen University Cancer Center, Sun Yat-sen University,
Guangzhou 510060, P. R. China
| | - Miao Xu
- State Key Laboratory of Oncology in South China,
Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of
Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research,
Sun Yat-sen University Cancer Center, Sun Yat-sen University,
Guangzhou 510060, P. R. China
| | - Nan-Shan Zhong
- State Key Laboratory of Respiratory Disease, National
Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory
Health, The First Affiliated Hospital of Guangzhou Medical
University, Guangzhou 510182, P. R. China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China,
Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of
Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research,
Sun Yat-sen University Cancer Center, Sun Yat-sen University,
Guangzhou 510060, P. R. China
| | - Guo-Kai Feng
- State Key Laboratory of Oncology in South China,
Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of
Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research,
Sun Yat-sen University Cancer Center, Sun Yat-sen University,
Guangzhou 510060, P. R. China
| | - Changwen Ke
- Guangdong Provincial Institution of Public Health,
Guangdong Provincial Center for Disease Control and
Prevention, Guangzhou 511430, P. R. China
| | - Jin-Cun Zhao
- State Key Laboratory of Respiratory Disease, National
Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory
Health, The First Affiliated Hospital of Guangzhou Medical
University, Guangzhou 510182, P. R. China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China,
Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of
Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research,
Sun Yat-sen University Cancer Center, Sun Yat-sen University,
Guangzhou 510060, P. R. China
| |
Collapse
|
24
|
Yan X, Guo Q, Lin Z, Liu X, Yuan J, Wang J, Wang H, Liu Y, Su Z, Liu T, Huang J, Zhang R, Wang Y, Huang M, Zhang W, Cheng SZD. Geometry‐Directed Self‐Assembly of Polymeric Molecular Frameworks. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xiao‐Yun Yan
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Qing‐Yun Guo
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Zhiwei Lin
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Xian‐You Liu
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Jun Yuan
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Jing Wang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Haomin Wang
- Department of Chemistry Lehigh University 6 E Packer Avenue Bethlehem PA 18015 USA
| | - Yuchu Liu
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Zebin Su
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Tong Liu
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Jiahao Huang
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Ruimeng Zhang
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Yicong Wang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Mingjun Huang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Wei Zhang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Stephen Z. D. Cheng
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| |
Collapse
|
25
|
Yan X, Guo Q, Lin Z, Liu X, Yuan J, Wang J, Wang H, Liu Y, Su Z, Liu T, Huang J, Zhang R, Wang Y, Huang M, Zhang W, Cheng SZD. Geometry‐Directed Self‐Assembly of Polymeric Molecular Frameworks. Angew Chem Int Ed Engl 2020; 60:2024-2029. [DOI: 10.1002/anie.202012117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/24/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Xiao‐Yun Yan
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Qing‐Yun Guo
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Zhiwei Lin
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Xian‐You Liu
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Jun Yuan
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Jing Wang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Haomin Wang
- Department of Chemistry Lehigh University 6 E Packer Avenue Bethlehem PA 18015 USA
| | - Yuchu Liu
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Zebin Su
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Tong Liu
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Jiahao Huang
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Ruimeng Zhang
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Yicong Wang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Mingjun Huang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Wei Zhang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Stephen Z. D. Cheng
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| |
Collapse
|
26
|
Wang R, Sun F. The Spy that links: Creation of nonlinear protein architectures and materials using SpyTag/SpyCatcher chemistry. Methods Enzymol 2020; 647:283-301. [PMID: 33482993 DOI: 10.1016/bs.mie.2020.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The peptide/protein pair, SpyTag/SpyCatcher, which is derived from split immunoglobulin-like collagen adhesin domain (CnaB2) from Streptococcus pyogenes, can spontaneously form a stable Lys-Asp isopeptide bond under physiological conditions. This enabling technology- also known as genetically encoded click chemistry owing to its marked efficiency and specificity-has led to a variety of applications in protein engineering, materials science and synthetic biology in recent years. In this chapter, we discuss the use of SpyTag/SpyCatcher chemistry to create nonlinear protein architectures and materials, with emphasis on its role in shaping up topology engineering as an emerging branch of protein engineering. The synthesis of entirely protein-based molecular networks, Spy networks, is highlighted. The protocols for preparing Spy networks and applications thereof are also illustrated.
Collapse
Affiliation(s)
- Ri Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, People's Republic of China
| | - Fei Sun
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
27
|
Lieser RM, Yur D, Sullivan MO, Chen W. Site-Specific Bioconjugation Approaches for Enhanced Delivery of Protein Therapeutics and Protein Drug Carriers. Bioconjug Chem 2020; 31:2272-2282. [DOI: 10.1021/acs.bioconjchem.0c00456] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rachel M. Lieser
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States of America
| | - Daniel Yur
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States of America
| | - Millicent O. Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States of America
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States of America
| |
Collapse
|
28
|
Zhang F, Zhang W. Encrypting Chemical Reactivity in Protein Sequences toward
Information‐Coded
Reactions
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000083] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Fan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Wen‐Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| |
Collapse
|
29
|
Yang B, Liu Z, Liu H, Nash MA. Next Generation Methods for Single-Molecule Force Spectroscopy on Polyproteins and Receptor-Ligand Complexes. Front Mol Biosci 2020; 7:85. [PMID: 32509800 PMCID: PMC7248566 DOI: 10.3389/fmolb.2020.00085] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022] Open
Abstract
Single-molecule force spectroscopy with the atomic force microscope provides molecular level insights into protein function, allowing researchers to reconstruct energy landscapes and understand functional mechanisms in biology. With steadily advancing methods, this technique has greatly accelerated our understanding of force transduction, mechanical deformation, and mechanostability within single- and multi-domain polyproteins, and receptor-ligand complexes. In this focused review, we summarize the state of the art in terms of methodology and highlight recent methodological improvements for AFM-SMFS experiments, including developments in surface chemistry, considerations for protein engineering, as well as theory and algorithms for data analysis. We hope that by condensing and disseminating these methods, they can assist the community in improving data yield, reliability, and throughput and thereby enhance the information that researchers can extract from such experiments. These leading edge methods for AFM-SMFS will serve as a groundwork for researchers cognizant of its current limitations who seek to improve the technique in the future for in-depth studies of molecular biomechanics.
Collapse
Affiliation(s)
- Byeongseon Yang
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Zhaowei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Haipei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Michael A. Nash
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
30
|
Aves KL, Goksøyr L, Sander AF. Advantages and Prospects of Tag/Catcher Mediated Antigen Display on Capsid-Like Particle-Based Vaccines. Viruses 2020; 12:v12020185. [PMID: 32041299 PMCID: PMC7077247 DOI: 10.3390/v12020185] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
Capsid-like particles (CLPs) are multimeric, repetitive assemblies of recombinant viral capsid proteins, which are highly immunogenic due to their structural similarity to wild-type viruses. CLPs can be used as molecular scaffolds to enable the presentation of soluble vaccine antigens in a similar structural format, which can significantly increase the immunogenicity of the antigen. CLP-based antigen display can be obtained by various genetic and modular conjugation methods. However, these vary in their versatility as well as efficiency in achieving an immunogenic antigen display. Here, we make a comparative review of the major CLP-based antigen display technologies. The Tag/Catcher-AP205 platform is highlighted as a particularly versatile and efficient technology that offers new qualitative and practical advantages in designing modular CLP vaccines. Finally, we discuss how split-protein Tag/Catcher conjugation systems can help to further propagate and enhance modular CLP vaccine designs.
Collapse
Affiliation(s)
- Kara-Lee Aves
- Faculty of Health Science, Institute for Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; (K.-L.A.); (L.G.)
| | - Louise Goksøyr
- Faculty of Health Science, Institute for Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; (K.-L.A.); (L.G.)
- AdaptVac Aps, Agern Alle 1, 2970 Hørsholm, Denmark
| | - Adam F. Sander
- Faculty of Health Science, Institute for Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; (K.-L.A.); (L.G.)
- AdaptVac Aps, Agern Alle 1, 2970 Hørsholm, Denmark
- Correspondence:
| |
Collapse
|
31
|
Da X, Zhang W. Active Template Synthesis of Protein Heterocatenanes. Angew Chem Int Ed Engl 2019; 58:11097-11104. [DOI: 10.1002/anie.201904943] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Xiao‐Di Da
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Polymer Chemistry & Physics of Ministry of EducationCenter for Soft Matter Science and EngineeringCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 P. R. China
| | - Wen‐Bin Zhang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Polymer Chemistry & Physics of Ministry of EducationCenter for Soft Matter Science and EngineeringCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 P. R. China
| |
Collapse
|
32
|
Affiliation(s)
- Xiao‐Di Da
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Polymer Chemistry & Physics of Ministry of EducationCenter for Soft Matter Science and EngineeringCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 P. R. China
| | - Wen‐Bin Zhang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Polymer Chemistry & Physics of Ministry of EducationCenter for Soft Matter Science and EngineeringCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 P. R. China
| |
Collapse
|