1
|
Peng Y, Chen Y, Wang Z, Yin Y, Li J, Liu H, Jiao J, Zhao W, Duan R, Zhang P, Yang J, Wang H, Xing X, Liu Z, Yang S, Kang X, Han B. Selective electroreduction of carbon dioxide to ethylene over stable iodide-induced asymmetric copper sites within a metal-organic polyhedron. Sci Bull (Beijing) 2025:S2095-9273(25)00590-0. [PMID: 40562653 DOI: 10.1016/j.scib.2025.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/19/2025] [Accepted: 05/29/2025] [Indexed: 06/28/2025]
Abstract
Porous Cu-based metal-organic compounds have attracted increasing attention for CO2 electroreduction due to their well-defined porous structures and abundant metal sites. However, the classical {Cu2}-paddlewheel moieties within these materials often show poor electrochemical stability, leading to structural degradation during CO2 electroreduction. Here, we report a strategy to generate stable {Cu(II)·Cu(I)} active sites by iodide species in a Cu-based metal-organic polyhedron, Cu-TCBB (TCBB=1,3,5-tris(4'-carboxybiphenyl-2-yl)benzene), to not only promote C2H4 production but also clarify the real active sites of {Cu2}-paddlewheel-based materials during CO2 electroreduction. Cu-TCBB exhibits a high Faradaic efficiency (FE) of 73.1% towards C2H4 at -1.1 V vs. reversible hydrogen electrode (RHE) in 0.1 mol L-1 CsI aqueous solution, outperforming all porous metal-organic compounds to date. The presence of iodide-induced {Cu(II)·Cu(I)} sites was verified through in situ synchrotron X-ray diffraction and absorption spectroscopy, electron paramagnetic resonance spectroscopy, coupled with modelling, shedding light on the mechanism of CO2 electroreduction over unique {Cu(II)·Cu(I)} sites.
Collapse
Affiliation(s)
- Yaguang Peng
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yinlin Chen
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, UK
| | - Zi Wang
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, UK
| | - Yaoyu Yin
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangnan Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huanyan Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiapeng Jiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Wenling Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ran Duan
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Pei Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiahao Yang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hengan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueqing Xing
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sihai Yang
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, UK; Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
2
|
Wang Y, Chen C, Zhang L. The facile preparation of mixed-valence metal-organic frameworks through reduction. Chem Commun (Camb) 2025; 61:6929-6932. [PMID: 40223584 DOI: 10.1039/d5cc00031a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
A facile strategy was applied to prepare Cu(I)/Cu(II) MOFs, where the Cu(I) amount and porous structure can be adjusted by the degree of reduction and the size of HKUST-1, by partially reducing HKUST-1 with hydrazine hydrate at room temperature. The Cu(I)/Cu(II) MOFs exhibit excellent catalytic capability in the Cu(I)-catalyzed azide alkyne cycloaddition.
Collapse
Affiliation(s)
- Yunshi Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Cen Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Liying Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| |
Collapse
|
3
|
Ahmad Aljafree NF, Ahmad MF, Abd Aziz U, Borzehandani MY, Mohamad Jaafar A, Asib N, Nguyen HL, Mohamed Tahir MI, Mohammad Latif MA, Cordova KE, Abdul Rahman MB. Calcium l-Malate and d-Tartarate Frameworks as Adjuvants for the Sustainable Delivery of a Fungicide. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17672-17683. [PMID: 38109287 DOI: 10.1021/acsami.3c11697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Agrichemical adjuvants that combine a highly selective, efficient, and active mode of operation are critically needed to realize a more sustainable approach to their usage. Herein, we report the synthesis and full characterization of two new metal-organic frameworks (MOFs), termed UPMOF-1 and UPMOF-2, that were constructed from eco-friendly Ca2+ ions and naturally occurring, low-molecular weight plant acids, l-malic and d-tartaric acid, respectively. Upon structural elucidation of both MOFs, a widely used fungicide, hexaconazole (Hex), was loaded on the structures, reaching binding affinities of -5.0 and -3.5 kcal mol-1 and loading capacities of 63% and 62% for Hex@UPMOF-1 and Hex@UPMOF-2, respectively, as a result of the formation of stable host-guest interactions. Given the framework chemistry of the MOFs and their predisposition to disassembly under relevant agricultural conditions, the sustained release kinetics were determined to show nearly quantitative release (98% and 95% for Hex@UPMOF-1 and Hex@UPMOF-2, respectively) after >500 h, a release profile drastically different than the control (>80% release in 24 h), from which the high efficiency of these new systems was established. To confirm their high selectivity and activity, in vitro and in vivo studies were performed to illustrate the abilities of Hex@UPMOF-1 and Hex@UPMOF-2 to combat the known aggressive pathogen Ganoderma boninense that causes basal stem rot disease in oil palm. Accordingly, at an extremely low concentration of 0.05 μg mL-1, both Hex@UPMOF-1 and Hex@UPMOF-2 were demonstrated to completely inhibit (100%) G. boninense growth, and during a 26 week in vivo nursery trial, the progression of basal stem rot infection was completely halted upon treatment with Hex@UPMOF-1 and Hex@UPMOF-2 and seedling growth was accelerated given the additional nutrients supplied via the disassembly of the MOFs. This study represents a significant step forward in the design of adjuvants to support the environmentally responsible use of agrichemical crop protection.
Collapse
Affiliation(s)
- Nurul Farhana Ahmad Aljafree
- Foundry of Reticular Materials for Sustainability, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohamad Firdaus Ahmad
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Umar Abd Aziz
- Foundry of Reticular Materials for Sustainability, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mostafa Yousefzadeh Borzehandani
- Foundry of Reticular Materials for Sustainability, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Adila Mohamad Jaafar
- Foundry of Reticular Materials for Sustainability, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norhayu Asib
- Foundry of Reticular Materials for Sustainability, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Ha L Nguyen
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Mohamed Ibrahim Mohamed Tahir
- Foundry of Reticular Materials for Sustainability, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Muhammad Alif Mohammad Latif
- Foundry of Reticular Materials for Sustainability, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Kyle E Cordova
- Foundry of Reticular Materials for Sustainability, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Integrated Materials Systems (iMS) Research Unit, Advanced Research Centre, Royal Scientific Society, Amman 11941, Jordan
| | - Mohd Basyaruddin Abdul Rahman
- Foundry of Reticular Materials for Sustainability, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
4
|
He D, Dong N, Li Y, Liu D, You T. A ratiometric electrochemical aptasensor for Ochratoxin A detection based on electroactive Cu-MOF and DNA conjugates resembling the structure of Bidens pilosa. Anal Chim Acta 2025; 1342:343661. [PMID: 39919856 DOI: 10.1016/j.aca.2025.343661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/30/2024] [Accepted: 01/12/2025] [Indexed: 02/09/2025]
Abstract
BACKGROUND Ochratoxin A (OTA) represents a naturally occurring mycotoxin with a serious hazard to the health of individuals because of carcinogenic and teratogenic properties. To date, various analytical methods have been developed for the detection of OTA, among which aptamer-based electrochemical sensing has attracted significant attention due to its rapidity and high sensitivity. As a subtype of aptamer-based electrochemical sensing, ratiometric electrochemical methods further exhibit excellent anti-interference capability. However, their analytical performance remains limited by the labor-intensive and resource-consuming modification of electroactive signal molecules, as well as the restricted specific surface area of the electrodes. RESULT Here, we develop a ratiometric electrochemical aptasensor functionalized with Bidens pilosa-like DNA-gold structures and copper-based metal-organic frameworks (Cu-MOFs) for OTA detection. Cu-MOFs served as a substrate for electrode modification, performing two key roles: 1) providing a large surface area for aptamer immobilization, and 2) generating one current signal. Double-stranded DNA-gold nanoparticles (dsDNA-AuNPs) were assembled through Au-S bonding. The dsDNA-AuNPs conjugates, structurally resembling Bidens pilosa, could load more dsDNA and connect to Cu-MOFs via π-π stacking. When OTA was present, the aptamer-OTA complex was stripped from the aptasensor, reducing the amount of Fc-Apt, thus decreasing the corresponding Fc current (IFc). Simultaneously, the decreased interfacial resistance caused an increase in the Cu-MOF current (ICu), providing the decreased IFc/ICu ratio as a quantitative indicator. The aptasensor exhibited a linear detection range from 0.01 ng mL-1 to 300 ng mL-1, with a detection limit of 0.002 ng mL-1 for OTA. SIGNIFICANCE The developed electrochemical ratiometric aptasensor demonstrated high reproducibility and stability, and it was successfully applied to maize sample analysis, underscoring its practical applicability. Moreover, it provides a promising strategy for the application of Cu-MOF-based electrochemical aptasensors. Furthermore, the modification procedures of the developed aptasensor were simplified by preparing dsDNA-AuNPs in solution rather than assembling them step-by-step on the electrode surface.
Collapse
Affiliation(s)
- Donghao He
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Na Dong
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
5
|
Li YX, Shen JX, Diao ZJ, Qi SC, Liu XQ, Sun LB. Loosening metal nodes in metal-organic frameworks to facilitate the regulation of valence. FUNDAMENTAL RESEARCH 2025; 5:158-164. [PMID: 40166119 PMCID: PMC11955052 DOI: 10.1016/j.fmre.2022.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/09/2022] [Accepted: 08/28/2022] [Indexed: 11/28/2022] Open
Abstract
The valence of metal nodes in metal-organic frameworks (MOFs) determines their performance in applications while developing an efficient approach for valence regulation is challenging. Here we present a strategy to make the valence regulation much easier by loosening metal nodes by thermal pretreatment. The typical MOF, HKUST-1, with the tunable valence of Cu nodes, was used as a proof of concept. Thermal pretreatment (producing HK-T) changes the chemical environment and loosens Cu nodes, endowing them with enhanced reducibility. In the subsequent vapor-induced reduction, the yield of Cu+ from Cu2+ conversion in HK-T (producing HK-T-V) reaches 69%, which is higher than that in pristine HKUST-1 (producing HK-V) with a Cu+ yield of 19% as well as the reported yields of target-valence metal nodes in various MOFs (6%-30%). The obtained HK-T-V possessing abundant Cu+ sites can capture 0.809 mmol/g thiophene in adsorptive desulfurization, 2.5 times higher than HK-V and superior to most reported adsorbents.
Collapse
Affiliation(s)
- Yu-Xia Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Jia-Xin Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Ze-Jiu Diao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Shi-Chao Qi
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xiao-Qin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
6
|
Park SH, Kim HM, Díaz-Ramírez ML, Lee S, Jeong NC. Hydroquinone-treated Cu 3(BTC) 2: a mixed-valence Cu(I/II) MOF catalyst for efficient cycloadditions. Chem Commun (Camb) 2024; 60:14577-14580. [PMID: 39508490 DOI: 10.1039/d4cc04294h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
We present mixed-valence Cu(I)1Cu(II)2(BTC)2 [henceforth Cu(I/II)-HKUST-1], post-synthetically prepared via the hydroquinone (H2Q) treatment of Cu(II)3(BTC)2 (also referred to as HKUST-1) and its subsequent catalytic activity. This Cu(I/II)-HKUST-1 exhibits exceptional structural integrity and superior catalytic performance in the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction between phenylacetylene and benzyl azide. These findings highlight the potential of mixed-valence Cu-based MOFs as effective and sustainable heterogeneous catalysts for organic transformations, paving the way for future advancements in MOF-based catalysis.
Collapse
Affiliation(s)
- Sun Ho Park
- Department of Physics & Chemistry, DGIST, Daegu 42988, Korea.
| | - Hye Mi Kim
- Department of Physics & Chemistry, DGIST, Daegu 42988, Korea.
| | - Mariana L Díaz-Ramírez
- Department of Physics & Chemistry, DGIST, Daegu 42988, Korea.
- Center for Basic Science, DGIST, Daegu 42988, Korea
| | - Sunggi Lee
- Department of Physics & Chemistry, DGIST, Daegu 42988, Korea.
- Center for Basic Science, DGIST, Daegu 42988, Korea
| | - Nak Cheon Jeong
- Department of Physics & Chemistry, DGIST, Daegu 42988, Korea.
- Center for Basic Science, DGIST, Daegu 42988, Korea
| |
Collapse
|
7
|
Kang MS, Heo I, Park SH, Bae J, Kim S, Kim G, Kim BH, Jeong NC, Yoo WC. Time-efficient atmospheric water harvesting using Fluorophenyl oligomer incorporated MOFs. Nat Commun 2024; 15:9793. [PMID: 39532870 PMCID: PMC11557930 DOI: 10.1038/s41467-024-53853-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Adsorption-based atmospheric water harvesting (AWH) has the potential to address water scarcity in arid regions. However, developing adsorbents that effectively capture water at a low relative humidity (RH < 30%) and release it with minimal energy consumption remains a challenge. Herein, we report a fluorophenyl oligomer (FO)-incorporated metal-organic framework (MOF), HKUST-1 (FO@HK), which exhibits fast adsorption kinetics at low RH levels and facile desorption by sunlight. The incorporated fluorophenyl undergoes vapor-phase polymerization at the metal center to generate fluorophenyl oligomers that enhance the hydrolytic stability of FO@HK while preserving its characteristic water sorption behavior. The FO@HK exhibited vapor sorption rates of 8.04 and 11.76 L kg-1MOF h-1 at 20 and 30% RH, respectively, which are better than the state-of-the-art AWH sorbents. Outdoor tests using a solar-driven large-scale AWH device demonstrate that the sorbent can harvest 264.8 mL of water at a rate of 2.62 L kg-1MOF per day. This study provides a ubiquitous strategy for transforming water-sensitive MOFs into AWH sorbents.
Collapse
Affiliation(s)
- Min Seok Kang
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan, 15588, Republic of Korea
| | - Incheol Heo
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan, 15588, Republic of Korea
| | - Sun Ho Park
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Jinhee Bae
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Sangyeop Kim
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan, 15588, Republic of Korea
| | - Gyuchan Kim
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan, 15588, Republic of Korea
| | - Byung-Hyun Kim
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan, 15588, Republic of Korea
- Department of Chemical and Molecular Engineering, Hanyang University, ERICA, Ansan, 15588, Republic of Korea
| | - Nak Cheon Jeong
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
- Center for Basic Science, DGIST, Daegu, 42988, Republic of Korea.
| | - Won Cheol Yoo
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan, 15588, Republic of Korea.
- Department of Chemical and Molecular Engineering, Hanyang University, ERICA, Ansan, 15588, Republic of Korea.
| |
Collapse
|
8
|
Hu J, Yan L, Cao Z, Geng B, Cao X, Liu B, Guo J, Zhu J. Tumor Microenvironment Activated Cu Crosslinked Near-Infrared Sonosensitizers for Visualized Cuproptosis-Enhanced Sonodynamic Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407196. [PMID: 39331855 DOI: 10.1002/advs.202407196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/19/2024] [Indexed: 09/29/2024]
Abstract
Reactive oxygen species (ROS)-mediated sonodynamic therapy (SDT) holds increasing potential in treating deep-seated tumor owing to the high tissue-penetration depth. However, the inevitable accumulation of sonosensitizers in normal tissues not only make it difficult to realize the in situ SDT, but also induces sonodynamic effects in normal tissues. Herein, this work reports the passivation and selective activation strategies for the sonodynamic and near-infrared (NIR) imaging performances of an intelligent antitumor theranostic platform termed Cu-IR783 nanoparticles (NPs). Owing to the ruptured coordination bond between IR783 with Cu ions by responding to tumor microenvironment (TME), the selective activation of IR783 only occurred in tumor tissues to achieve the visualized in-situ SDT. The tumor-specific released Cu ions not only realized the cascade amplification of ROS generation through Cu+-mediated Fenton-like reaction, but also triggered cuproptosis through Cu+-induced DLAT oligomerization and mitochondrial dysfunction. More importantly, the immunosuppressive TME can be reversed by the greatly enhanced ROS levels and high-efficiency cuproptosis, ultimately inducing immunogenic cell death that promotes robust systemic immune responses for the eradication of primary tumors and suppression of distant tumors. This work provides a distinct paradigm of the integration of SDT, CDT, and cuproptosis in a controlled manner to achieve visualized in-situ antitumor therapy.
Collapse
Affiliation(s)
- Jinyan Hu
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Lang Yan
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Zhi Cao
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Bijiang Geng
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Xiqian Cao
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Bing Liu
- Department of Urology, The Third Affiliated Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jiaming Guo
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Jiangbo Zhu
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
9
|
He W, Li X, Dai X, Shao L, Fu Y, Xu D, Qi W. Redox Concomitant Formation Method for Fabrication of Cu(I)-MOF/Polymer Composites with Antifouling Properties. Angew Chem Int Ed Engl 2024; 63:e202411539. [PMID: 39034298 DOI: 10.1002/anie.202411539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Marine biofouling, which is one of the technical challenges hindering the growth of the marine economy, has been controlled using cuprous oxide (Cu2O) nanoparticles due to the exceptional antifouling properties of Cu(I) ions. However, Cu2O nanoparticles have encountered bottlenecks due to explosive releases of Cu+ ions, high toxicity at elevated doses, and long-term instability. Here, we present a novel method called Redox Concomitant Formation (RCF) for fabricating a hierarchical Cu(I) metal-organic framework polypyrrole (Cu(I)-MOF/PPy) composite. This method enables in situ phase transition via successive redox reactions that change the chemical valence state and coordination mode of Cu(II)-MOF, resulting in a new structure of Cu(I)-MOF while creating a PPy layer surrounded by the hierarchical structure. Owing to the steady release of Cu+ ions from the Cu(I) sites and photothermal properties of PPy, Cu(I)-MOF/PPy exhibits superior and broad-spectrum resistance to marine bacteria, algae, and surface-adhered biofilms in complex biological environments, as well as long-term stability, resulting in 100 % eradication efficiency under solar-driven heating. Mechanistic insights into successive structural redox reactions and formation using the RCF method are provided in detail, enabling the fabrication of novel MOFs with the desired composition and structure for a wide range of potential applications.
Collapse
Affiliation(s)
- Wenxiu He
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Xiangyu Li
- Shenyang National Laboratory for Materials Science, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Xueya Dai
- Institute of Metal Research, Shenyang National Laboratory for Materials Science, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Lei Shao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Wei Qi
- Institute of Metal Research, Shenyang National Laboratory for Materials Science, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| |
Collapse
|
10
|
Marazani LG, Gascon-Perez V, Pathak A, Tricarico M, Tan JC, Zaworotko MJ, Wheatley AEH, Makhubela BCE, Mehlana G. Water sorption studies with mesoporous multivariate monoliths based on UiO-66. MATERIALS ADVANCES 2024; 5:7679-7689. [PMID: 39247387 PMCID: PMC11379059 DOI: 10.1039/d4ma00522h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024]
Abstract
Hierarchical linker thermolysis has been used to enhance the porosity of monolithic UiO-66-based metal-organic frameworks (MOFs) containing 30 wt% 2-aminoterephthalic acid (BDC-NH2) linker. In this multivariate (i.e. mixed-linker) MOF, the thermolabile BDC-NH2 linker decomposed at ∼350 °C, inducing mesopore formation. The nitrogen sorption of these monolithic MOFs was probed, and an increase in gas uptake of more than 200 cm3 g-1 was observed after activation by heating, together with an increase in pore volume and mean pore width, indicating the creation of mesopores. Water sorption studies were conducted on these monoliths to explore their performance in that context. Before heating, monoUiO-66-NH2-30%-B showed maximum water vapour uptake of 61.0 wt%, which exceeded that reported for either parent monolith, while the highly mesoporous monolith (monoUiO-66-NH2-30%-A) had a lower maximum water vapour uptake of 36.2 wt%. This work extends the idea of hierarchical linker thermolysis, which has been applied to powder MOFs, to monolithic MOFs for the first time and supports the theory that it can enhance pore sizes in these materials. It also demonstrates the importance of hydrophilic functional groups (in this case, NH2) for improving water uptake in materials.
Collapse
Affiliation(s)
- Linia Gedi Marazani
- Department of Chemical Sciences, Faculty of Science and Technology, Midlands State University P Bag 9055 Senga Road Gweru Zimbabwe
| | - Victoria Gascon-Perez
- Bernal Institute, Department of Chemical Sciences, University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Ayush Pathak
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Michele Tricarico
- Department of Engineering Science, University of Oxford Parks Road Oxford OX1 3PJ UK
| | - Jin-Chong Tan
- Department of Engineering Science, University of Oxford Parks Road Oxford OX1 3PJ UK
| | - Michael J Zaworotko
- Bernal Institute, Department of Chemical Sciences, University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Andrew E H Wheatley
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Banothile C E Makhubela
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences, Faculty of Science, University of Johannesburg Auckland Park 2006 South Africa
| | - Gift Mehlana
- Department of Chemical Sciences, Faculty of Science and Technology, Midlands State University P Bag 9055 Senga Road Gweru Zimbabwe
| |
Collapse
|
11
|
Inchausti A, Mollfulleda R, Swart M, Perles J, Herrero S, Baonza VG, Taravillo M, Lobato Á. Torsion Effects Beyond the δ Bond and the Role of π Metal-Ligand Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401293. [PMID: 38569515 PMCID: PMC11220682 DOI: 10.1002/advs.202401293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Previous studies on bimetallic paddlewheel compounds have established a direct correlation between metal-metal distance and ligand torsion angles, leading to the rule that higher torsion results in longer metal-metal bond distances. Here, the new discovery based on diarylformamidinate Ru₂⁵⁺ paddlewheel compounds [Ru2Cl(DArF)4] that show an opposite behavior is reported: higher torsions lead to shorter metal-metal distances. This discovery challenges the assumption that internal rotation solely impacts the δ bond. By combining experimental and theoretical techniques, it is demostrated that this trend is associated with previously overlooked π metal-ligand interactions. These π metal-ligand interactions are a direct consequence of the paddlewheel structure and the conjugated nature of the bidentate ligands. This findings offer far-reaching insights into the influence of equatorial ligands and their π-conjugation characteristics on the electronic properties of paddlewheel complexes. That this effect is not exclusive of diruthenium compounds but also occurs in other bimetallic cores such as ditungsten or dirhodium is demonstrated, and with other ligands showing allyl type conjugation. These results provide a novel approach for fine-tuning the properties of these compounds with significant implications for materials design.
Collapse
Affiliation(s)
- Almudena Inchausti
- MALTA‐Consolider Team and Departamento de Química FísicaUniversidad Complutense de MadridPlz. Ciencias 2MadridE‐28040Spain
| | - Rosa Mollfulleda
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de Girona, Campus de MontiliviParc UdGCataloniaGironaE–17003Spain
| | - Marcel Swart
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de Girona, Campus de MontiliviParc UdGCataloniaGironaE–17003Spain
- ICREA Pg. Lluís Companys 23Barcelona08010Spain
| | - Josefina Perles
- Laboratorio de Difracción de Rayos X de MonocristalServicio Interdepartamental de Investigación, Universidad Autónoma de MadridMadridE‐28049Spain
| | - Santiago Herrero
- MatMoPol Research Group, Departamento de Química InorgánicaUniversidad Complutense de MadridPlz. Ciencias 2MadridE‐28040Spain
| | - Valentín G. Baonza
- MALTA‐Consolider Team and Departamento de Química FísicaUniversidad Complutense de MadridPlz. Ciencias 2MadridE‐28040Spain
| | - Mercedes Taravillo
- MALTA‐Consolider Team and Departamento de Química FísicaUniversidad Complutense de MadridPlz. Ciencias 2MadridE‐28040Spain
| | - Álvaro Lobato
- MALTA‐Consolider Team and Departamento de Química FísicaUniversidad Complutense de MadridPlz. Ciencias 2MadridE‐28040Spain
| |
Collapse
|
12
|
Lee B, Go B, Jung B, Park J. Unlocking High Porosity: Post-Synthetic Solvothermal Treatment of Cu-Paddlewheel Based Metal-Organic Cages. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308393. [PMID: 38150648 DOI: 10.1002/smll.202308393] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Metal-organic cages (MOCs) have garnered significant attention due to their unique discrete structures, intrinsic porosity, designability, and tailorability. However, weak inter-cage interactions, such as van der Waals forces and hydrogen bonding can cause solid-state MOCs to lose structural integrity during desolvation, leading to the loss of porosity. In this work, a novel strategy to retain the permanent porosity of Cu-paddlewheel-based MOCs, enabling their use as heterogeneous catalysts is presented. Post-synthetic solvothermal treatments in non-coordinating solvents, mesitylene, and p-xylene, effectively preserve the packing structures of solvent-evacuated MOCs while preventing cage agglomeration. The resulting MOCs exhibit an exceptional N2 sorption capacity, with a high surface area (SBET = 1934 m2 g-1 for MOP-23), which is among the highest reported for porous MOCs. Intriguingly, while the solvothermal treatment reduced Cu(II) to Cu(I) in the Cu-paddlewheel clusters, the MOCs with mixed-valenced Cu(I)/Cu(II) maintained their crystallinity and permanent porosity. The catalytic activities of these MOCs are successfully examined in copper(I)-catalyzed hydrative amide synthesis, highlighting the prospect of MOCs as versatile reaction platforms.
Collapse
Affiliation(s)
- Byeongchan Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Bogyeong Go
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Byunghyuck Jung
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Jinhee Park
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Dalseong-gun, Daegu, 42988, Republic of Korea
| |
Collapse
|
13
|
Zeng CM, Luo SY, Wang X, Cao FL, Zhang ZS, Zhang WH, Dai CL, Young DJ. A Porphyrin-Based 3D Metal-Organic Framework Featuring [Cu 8Cl 6] 10+ Cluster Secondary Building Units: Synthesis, Structure Elucidation, Anion Exchange, and Peroxidase-Like Activity. Chem Asian J 2024; 19:e202400237. [PMID: 38563626 DOI: 10.1002/asia.202400237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
Herein, we report a rare example of cationic three-dimensional (3D) metal-organic framework (MOF) of [Cu5Cl3(TMPP)]Cl5 ⋅ xSol (denoted as Cu-TMPP; H2TMPP=meso-tetrakis (6-methylpyridin-3-yl) porphyrin; xSol=encapsulated solvates) supported by [Cu8Cl6]10+ cluster secondary building units (SBUs) wherein the eight faces of the Cl--based octahedron are capped by eight Cu2+. Surface-area analysis indicated that Cu-TMPP features a mesoporous structure and its solvate-like Cl- counterions can be exchanged by BF4 -, PF6 -, and NO3 -. The polyvinylpyrrolidone (PVP) coated Cu-TMPP (denoted as Cu-TMPP-PVP) demonstrated good ROS generating ability, producing ⋅OH in the absence of light (peroxidase-like activity) and 1O2 on light irradiation (650 nm; 25 mW cm-2). This work highlights the potential of Cu-TMPP as a functional carrier of anionic guests such as drugs, for the combination therapy of cancer and other diseases.
Collapse
Affiliation(s)
- Chun-Mei Zeng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Song-Yu Luo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng-Lin Cao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ze-Sheng Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Chun-Lei Dai
- Department of Cardiothoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - David J Young
- Glasgow College UESTC, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
14
|
Yan D, Zhang J, Yuan F, Zhang X. Visualized detection of water by modified metal organic framework-199 and its portable test paper with reversible color change. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124151. [PMID: 38492464 DOI: 10.1016/j.saa.2024.124151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Herein, we fabricate a melamine modified metal organic framework-199 composite (MOF-199@melamine), of which the structure is affected by the dynamics of the guest H2O molecule with significant color change. It realizes the visualized quantitative detection of water in a variety of organic solvents within 30 s. Moreover, DMF restored the original structure by replacing H2O molecules, realizing the regeneration of the materials. On this basis, PTFE-MOF-199@melamine test paper is developed to portably detect water content in organic solvents (maximum 0 %-98 % (v/v) water content) and ambient relative humidity (11-85 %). The test paper can be recycled four times with a regeneration rate higher than 90 %. The results are expected to solve the problems of existed electrochemical or fluorescence strategy such as the complicated operation process and signal output/reading system.
Collapse
Affiliation(s)
- Dingfan Yan
- College of Urban Construction, Nanjing Tech University, Puzhu Road 30, Nanjing 211816, PR China
| | - Jinbo Zhang
- College of Urban Construction, Nanjing Tech University, Puzhu Road 30, Nanjing 211816, PR China
| | - Fang Yuan
- College of Urban Construction, Nanjing Tech University, Puzhu Road 30, Nanjing 211816, PR China.
| | - Xiaokuan Zhang
- College of Urban Construction, Nanjing Tech University, Puzhu Road 30, Nanjing 211816, PR China
| |
Collapse
|
15
|
Walker SE, Chant W, Thoonen S, Tuck KL, Turner DR. Stabilization of Lantern-Type Metal-Organic Cages (MOCs) by Protective Control of Ligand Exchange Rates. Chemistry 2024; 30:e202400072. [PMID: 38366309 DOI: 10.1002/chem.202400072] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/18/2024]
Abstract
Self-assembling systems in nature display remarkable complexity with assemblies of different sub-units to generate functional species. Synthetic analogues of such systems are a challenge, often requiring the ability to bias distributions that are under thermodynamic assembly control. Using lantern-type MOCs (metal-organic cages) as a prototypical self-assembling system, herein we explore the role that steric bulk plays in controlling the exchange rate of ligands in paddlewheel-based assemblies, and thus the stability of cages, in competitive self-assembling scenarios. The effective lifetime of the lantern-type MOCs varies over an order of magnitude depending on the steric bulk proximal to the metal nodes with lifetimes of the cages ranging from tens of minutes to several hours. The bulk of the coordinating solvents likewise reduces the rate of ligand exchange, and thus yields longer-lived species. Understanding this subtle effect has implications for controlling the stability of complex assemblies in competitive environments with implications for guest release and application.
Collapse
Affiliation(s)
- Samuel E Walker
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - William Chant
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Shannon Thoonen
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Kellie L Tuck
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - David R Turner
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
16
|
Zhang Z, Ma X, Li Y, Ma N, Wang M, Liu W, Peng J, Liu Y, Li Y. Heterovalent Metal Pair Sites on Metal-Organic Framework Ordered Macropores for Multimolecular Co-Activation. J Am Chem Soc 2024; 146:8425-8434. [PMID: 38488481 DOI: 10.1021/jacs.3c14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The precise design of catalytic metal centers with multiple chemical states to facilitate sophisticated reactions involving multimolecular activation is highly desirable but challenging. Herein, we report an ordered macroporous catalyst with heterovalent metal pair (HMP) sites comprising CuII-CuI on the basis of a microporous metal-organic framework (MOF) system. This macroporous HMP catalyst with proximity heterovalent dual copper sites, whose distance is controlled to ∼2.6 Å, on macropore surface exhibits a co-activation behavior of ethanol at CuII and alkyne at CuI, and avoids microporous restriction, thereby promoting additive-free alkyne hydroboration reaction. The desired yield enhances dramatically compared with the pristine MOF and ordered macroporous MOF both with solely isovalent CuII-CuII sites. Density functional theory calculations reveal that the Cu-HMP sites can stabilize the Bpin-CuII-CuI-alkyne intermediate and facilitate C-B bond formation, resulting in a smooth alkyne hydroboration process. This work provides new perspectives to design multimolecular activation catalysts for sophisticated matter transformations.
Collapse
Affiliation(s)
- Zhong Zhang
- School of Chemistry, Dalian University of Technology Dalian 116024, China
| | - Xujiao Ma
- School of Chemistry, Dalian University of Technology Dalian 116024, China
| | - Yameng Li
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Nana Ma
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Ming Wang
- School of Chemistry, Dalian University of Technology Dalian 116024, China
| | - Wei Liu
- School of Chemistry, Dalian University of Technology Dalian 116024, China
| | - Jiahui Peng
- School of Chemistry, Dalian University of Technology Dalian 116024, China
| | - Yiwei Liu
- School of Chemistry, Dalian University of Technology Dalian 116024, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Li Z, Li X, Yang Y, Li Q, Gong J, Liu X, Liu B, Zheng G, Zhang S. Novel multifunctional environmentally friendly degradable zeolitic imidazolate frameworks@poly (γ-glutamic acid) hydrogel with efficient dye adsorption function. Int J Biol Macromol 2024; 261:129929. [PMID: 38311139 DOI: 10.1016/j.ijbiomac.2024.129929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Recently, metal-organic frameworks (MOFs) have been widely developed due to the rich porosity, excellent framework structure and multifunctional nature. Meanwhile, a series of MOFs crystals and MOF-based composites have been emerged. However, the widespread applications of MOFs are hindered by challenges such as rigidity, fragility, solution instability, and processing difficulties. In this study, we addressed these limitations by employing an in-situ green growth approach to prepare a zeolitic imidazolate frameworks-8@poly (γ-glutamic acid) hydrogel (ZIF-8@γ-PGA) with hierarchical structures. This innovative method effectively resolves the inherent issues associated with MOFs. Furthermore, the ZIF-8@γ-PGA hydrogel is utilized for dye adsorption, demonstrating an impressive maximum adsorption capacity of 1130 ± 1 mg/g for methylene blue (MB). The adsorption behavior exhibits an excellent agreement with both the kinetic model and isotherm. Meanwhile, because the adsorbent raw materials are all green non-toxic materials, multiple applications of materials can also be realized. Significantly, the results of antibacterial experiments showed that the ZIF-8@γ-PGA hydrogel after in-situ growth of ZIF-8 had better antibacterial properties. Thus, the ZIF-8@γ-PGA hydrogel has great potential for development in wound dressings, sustained drug owing to its biocompatibility and antibacterial activity.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes/Key Laboratory of Advanced Textile Composites of Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Xiao Li
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes/Key Laboratory of Advanced Textile Composites of Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Yuzhou Yang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes/Key Laboratory of Advanced Textile Composites of Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Qiujin Li
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes/Key Laboratory of Advanced Textile Composites of Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Jixian Gong
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes/Key Laboratory of Advanced Textile Composites of Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Xiuming Liu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes/Key Laboratory of Advanced Textile Composites of Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Bing Liu
- Ningxia Shenju Agricultural Technology Development Co., Ltd., Zhongwei 755001, PR China
| | - Guobao Zheng
- Agricultural Biotechnology Centre, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia 750002
| | - Songnan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes/Key Laboratory of Advanced Textile Composites of Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| |
Collapse
|
18
|
Jin H, Zeng W, Qian W, Li L, Ji P, Li Z, He D. Fast and In-Depth Reconstruction of Two-Dimension Cobalt-Based Zeolitic Imidazolate Framework in Glucose Oxidation Processes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8151-8157. [PMID: 38306191 DOI: 10.1021/acsami.3c18585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Currently, metal-organic frameworks (MOFs) have emerged as viable candidates for enduring electrode materials in nonenzyme glucose sensing. However, given the inherent water susceptibility of MOFs and their complete self-reconstruction during the process of electrochemical oxygen evolution in alkaline conditions, we are motivated to explore the truth of MOFs catalyzing glucose oxidation. In this work, we fabricated a two-dimensional cobalt-based zeolitic imidazolate framework (ZIF-L) as the electrode material for catalyzing glucose oxidation in alkaline conditions. Our explorations revealed that while the initial glucose catalytic response varied among ZIF-L samples with differing thicknesses, the ultimate steady-state catalytic performance remained largely consistent. This phenomenon arose from the transformation of ZIF-L with distinct thicknesses into CoOOH with uniform morphological and structural characteristics during the glucose catalysis process. And in situ Raman spectroscopy elucidated the sustained equilibrium within the glucose catalytic system, wherein the dynamic interconversion between CoOOH and Co(OH)2 governs the overall process. This study contributes to an enhanced understanding of the glucose catalytic mechanism aspects of nonenzymatic glucose sensor electrode materials, offering insights that serve as inspiration for the development of advanced glucose electrode materials.
Collapse
Affiliation(s)
- Huihui Jin
- National Engineering Laboratory for Fiber Optic Sensing Technology, School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
- Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Weihao Zeng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Wei Qian
- Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Lun Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Pengxia Ji
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zhengying Li
- National Engineering Laboratory for Fiber Optic Sensing Technology, School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Daping He
- Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
19
|
León-Alcaide L, López-Cabrelles J, Esteve-Rochina M, Ortí E, Calbo J, Huisman BAH, Sessolo M, Waerenborgh JC, Vieira BJC, Mínguez Espallargas G. Implementing Mesoporosity in Zeolitic Imidazolate Frameworks through Clip-Off Chemistry in Heterometallic Iron-Zinc ZIF-8. J Am Chem Soc 2023; 145:23249-23256. [PMID: 37813379 PMCID: PMC10603776 DOI: 10.1021/jacs.3c08017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Indexed: 10/11/2023]
Abstract
Bond breaking has emerged as a new tool to postsynthetically modify the pore structure in metal-organic frameworks since it allows us to obtain pore environments in structures that are inaccessible by other techniques. Here, we extend the concept of clip-off chemistry to archetypical ZIF-8, taking advantage of the different stabilities of the bonds between imidazolate and Zn and Fe metal atoms in heterometallic Fe-Zn-ZIF-8. We demonstrate that Fe centers can be removed selectively without affecting the backbone of the structure that is supported by the Zn atoms. This allows us to create mesopores within the highly stable ZIF-8 structure. The strategy presented, combined with control of the amount of iron centers incorporated into the structure, permits porosity engineering of ZIF materials and opens a new avenue for designing novel hierarchical porous frameworks.
Collapse
Affiliation(s)
- Luis León-Alcaide
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Javier López-Cabrelles
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - María Esteve-Rochina
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Enrique Ortí
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Joaquín Calbo
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Bas A. H. Huisman
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Michele Sessolo
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - João C. Waerenborgh
- Centro
de Ciências e Tecnologias Nucleares, DECN, Instituto Superior
Técnico, Universidade de Lisboa, Bobadela LRS 2695-066, Portugal
| | - Bruno J. C. Vieira
- Centro
de Ciências e Tecnologias Nucleares, DECN, Instituto Superior
Técnico, Universidade de Lisboa, Bobadela LRS 2695-066, Portugal
| | | |
Collapse
|
20
|
Li YX, Li KD, Qian XY, Liu XQ, Sun LB. Photo-Induced Construction and Recovery of Cu + Sites in Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302885. [PMID: 37264726 DOI: 10.1002/smll.202302885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Indexed: 06/03/2023]
Abstract
The adjustment of the valence state of metal ions is crucial for various applications because peculiar activity originates from metal ions with specific valence. Cu+ can interact with molecules possessing unsaturated bonds like CO via π-complexation, while Cu2+ doesn't have such ability. Meanwhile, Cu+ sites are easily oxidized to Cu2+ , leading to the loss of activity. Despite great efforts, the development of a facile method to construct and recover Cu+ sites remains a pronounced challenge. Here, for the first time a facile photo-induced strategy is reported to fabricate Cu+ sites in metal-organic frameworks (MOFs) and recover Cu+ after oxidation. The Cu2+ precursor was loaded on NH2 -MIL-125, a typical visible-light responsive Ti-based MOF. Visible light irradiation triggers the formation of Ti3+ from Ti4+ in framework, which reduces the supported Cu2+ in the absence of any additional reducing agent, thus simplifying the process for Cu+ generation significantly. Due to π-complexation interaction, the presence of Cu+ results in remarkably enhanced CO capture capacity (1.16 mmol g-1 ) compared to NH2 -MIL-125 (0.49 mmol g-1 ). More importantly, Cu+ can be recovered conveniently via re-irradiation when it is oxidized to Cu2+ , and the oxidation-recovery process is reversible.
Collapse
Affiliation(s)
- Yu-Xia Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ke-Di Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xin-Yu Qian
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiao-Qin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
21
|
Ju H, Tang Q, Xu Y, Bai X, Pu C, Liu T, Liu S, Zhang L. Prussian blue analogue-derived hollow metal oxide heterostructure for high-performance supercapacitors. Dalton Trans 2023; 52:12948-12957. [PMID: 37646327 DOI: 10.1039/d3dt01966g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Supercapacitors (SCs) have been the subject of considerable interest because of their distinct advantages. The performance of SCs is directly affected by the electrode materials. Metal oxides derived from Prussian blue analogues (PBAs) are often used as electrode materials for SCs. Herein, we developed a multi-step strategy to fabricate ternary hollow metal oxide (CuO/NiO/Co3O4) heterostructures. The core-shell structured PBA (NiHCC@CuHCC) with Ni-based PBA (NiHCC) as the core and Cu-based PBA (CuHCC) as the shell was prepared by a crystal seed method. The ternary metal oxide (CuO/NiO/Co3O4) with a hollow structure was obtained by calcinating NiHCC@CuHCC. The prepared CuO/NiO/Co3O4 demonstrates an excellent specific capacitance of 262.5 F g-1 at 1 A g-1, which is 27.4% and 16.2% higher than those of CuO/Co3O4 and NiO/Co3O4, respectively. In addition, the material showed outstanding cycling stability with a capacitance retention of 107.9% after 3000 cycles. The two-electrode system constructed with CuO/NiO/Co3O4 and nitrogen-doped graphene hydrogel (NDGH) demonstrates a stable and high energy density of 27.1 W h kg-1 at a power density of 1037.5 W kg-1. The capacitance retention rate was 100.7% after 4000 cycles. The reason for the excellent electrochemical properties could be the synergistic effect of the introduced heterojunction of CuO/NiO, the hollow structure, and various metal oxides. This strategy can greatly inspire the construction of SC electrodes.
Collapse
Affiliation(s)
- Hui Ju
- College of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China.
- Research Centre of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Qianqian Tang
- College of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China.
| | - Yong Xu
- College of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China.
| | - Xiaojing Bai
- College of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China.
| | - Chenjin Pu
- College of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China.
| | - Tongchen Liu
- College of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China.
| | - Shuxin Liu
- College of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China.
| | - Lin Zhang
- Research Centre of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, China
| |
Collapse
|
22
|
Liang Y, Zhang Z, Su X, Feng X, Xing S, Liu W, Huang R, Liu Y. Coordination Defect-Induced Frustrated Lewis Pairs in Polyoxo-metalate-Based Metal-Organic Frameworks for Efficient Catalytic Hydrogenation. Angew Chem Int Ed Engl 2023; 62:e202309030. [PMID: 37488072 DOI: 10.1002/anie.202309030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Precise control of the structure and spatial distance of Lewis acid (LA) and Lewis base (LB) sites in a porous system to construct efficient solid frustrated Lewis pair (FLP) catalyst is vital for industrial application but remains challenging. Herein, we constructed FLP sites in a polyoxometalate (POM)-based metal-organic framework (MOF) by introducing coordination-defect metal nodes (LA) and surface-basic POM with abundant oxygen (LB). The well-defined and unique spatial conformation of the defective POM-based MOF ensure that the distance between LA and LB is at ~4.3 Å, a suitable distance to activate H2 . This FLP catalyst can heterolytically dissociate H2 into active Hδ- , thus exhibiting high activity in hydrogenation, which is 55 and 2.7 times as high as that of defect-free POM-based MOF and defective MOF without POM, respectively. This work provides a new avenue toward precise design multi-site catalyst to achieve specific activation of target substrate for synergistic catalysis.
Collapse
Affiliation(s)
- Yan Liang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Zhong Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xiaofang Su
- School of Chemistry and Chemical Engineering, Henan Normal University, Henan, 453007, China
| | - Xiao Feng
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Songzhu Xing
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Wei Liu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Rui Huang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yiwei Liu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
23
|
Guo QY, Wang Z, Feng X, Fan Y, Lin W. Generation and Stabilization of a Dinickel Catalyst in a Metal-Organic Framework for Selective Hydrogenation Reactions. Angew Chem Int Ed Engl 2023; 62:e202306905. [PMID: 37418318 DOI: 10.1002/anie.202306905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/09/2023]
Abstract
Although many monometallic active sites have been installed in metal-organic frameworks (MOFs) for catalytic reactions, there are no effective strategies to generate bimetallic catalysts in MOFs. Here we report the synthesis of a robust, efficient, and reusable MOF catalyst, MOF-NiH, by adaptively generating and stabilizing dinickel active sites using the bipyridine groups in MOF-253 with the formula of Al(OH)(2,2'-bipyridine-5,5'-dicarboxylate) for Z-selective semihydrogenation of alkynes and selective hydrogenation of C=C bonds in α,β-unsaturated aldehydes and ketones. Spectroscopic studies established the dinickel complex (bpy⋅- )NiII (μ2 -H)2 NiII (bpy⋅- ) as the active catalyst. MOF-NiH efficiently catalyzed selective hydrogenation reactions with turnover numbers of up to 192 and could be used in five cycles of hydrogenation reactions without catalyst leaching or significant decrease of catalytic activities. The present work uncovers a synthetic strategy toward solution-inaccessible Earth-abundant bimetallic MOF catalysts for sustainable catalysis.
Collapse
Affiliation(s)
- Qing-Yun Guo
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Zitong Wang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Xuanyu Feng
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Yingjie Fan
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
24
|
Bivián-Castro EY, Flores-Alamo M, Escudero R, Gómez-Vidal V, Segoviano-Garfias JJN, Castañeda-Contreras J, Saavedra-Arroyo QE. Synthesis and Characterization of a New Cu(II) Paddle-Wheel-like Complex with 4-Vinylbenzoate as an Inorganic Node for Metal-Organic Framework Material Design. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4866. [PMID: 37445180 DOI: 10.3390/ma16134866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
A new Cu(II) paddle-wheel-like complex with 4-vinylbenzoate was synthesized using acetonitrile as the solvent. The complex was characterized by X-ray crystal diffraction, FT-IR, diffuse reflectance spectroscopy, thermogravimetric, differential scanning calorimetric, magnetic susceptibility, and electronic paramagnetic resonance analyses. The X-ray crystal diffraction analysis indicated that each copper ion was bound at an equatorial position to four oxygen atoms from the carboxylate groups of the 4-vinylbenzoate ligand in a square-based pyramidal geometry. The distance between the copper ions was 2.640(9) Å. The acetonitrile molecules were coordinated at the axial position to the copper ions. Exposure of the Cu(II) complex to humid air promoted the gradual replacement of the coordinated acetonitrile by water molecules, but the complex structure integrity remained. The EPR spectra exhibited signals attributed to the presence of a mixture of the monomeric (S = ½) and dimeric (S = 1) copper species in a possible 3:1 ratio. The magnetic studies revealed a peak at 50-100 K, which could be associated with the oxygen absorption capacity of the Cu(II)-vba complex.
Collapse
Affiliation(s)
- Egla Yareth Bivián-Castro
- Centro Universitario de los Lagos, Universidad de Guadalajara, Av. Enrique Díaz de León 1144, Col. Paseos de la Montaña, Lagos de Moreno 47460, Jalisco, Mexico
| | - Marcos Flores-Alamo
- Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Exterior S/N, Coyoacán, Mexico City 04510, Mexico
| | - Roberto Escudero
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Exterior S/N, Coyoacán, Mexico City 04510, Mexico
| | - Virginia Gómez-Vidal
- Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Exterior S/N, Coyoacán, Mexico City 04510, Mexico
| | - José J N Segoviano-Garfias
- División de Ciencias de la Vida, Carr. Irapuato-Silao Km. 12.5, Ex-Hacienda El Copal, Irapuato 36821, Guanajuato, Mexico
| | - Jesus Castañeda-Contreras
- Centro Universitario de los Lagos, Universidad de Guadalajara, Av. Enrique Díaz de León 1144, Col. Paseos de la Montaña, Lagos de Moreno 47460, Jalisco, Mexico
| | | |
Collapse
|
25
|
Massahud E, Ahmed H, Babarao R, Ehrnst Y, Alijani H, Darmanin C, Murdoch BJ, Rezk AR, Yeo LY. Acoustomicrofluidic Defect Engineering and Ligand Exchange in ZIF-8 Metal-Organic Frameworks. SMALL METHODS 2023; 7:e2201170. [PMID: 36855216 DOI: 10.1002/smtd.202201170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/19/2023] [Indexed: 06/09/2023]
Abstract
A way through which the properties of metal-organic frameworks (MOFs) can be tuned is by engineering defects into the crystal structure. Given its intrinsic stability and rigidity, however, it is difficult to introduce defects into zeolitic imidazolate frameworks (ZIFs)-and ZIF-8, in particular-without compromising crystal integrity. In this work, it is shown that the acoustic radiation pressure as well as the hydrodynamic stresses arising from the oscillatory flow generated by coupling high frequency (MHz-order) hybrid surface and bulk acoustic waves into a suspension of ZIF-8 crystals in a liquid pressure transmitting medium is capable of driving permanent structural changes in their crystal lattice structure. Over time, the enhancement in the diffusive transport of guest molecules into the material's pores as a consequence is shown to lead to expansion of the pore framework, and subsequently, the creation of dangling-linker and missing-linker defects, therefore offering the possibility of tuning the type and extent of defects engineered into the MOF through the acoustic exposure time. Additionally, the practical utility of the technology is demonstrated for one-pot, simultaneous solvent-assisted ligand exchange under ambient conditions, for sub-micron-dimension ZIF-8 crystals and relatively large ligands-more specifically 2-aminobenzimidazole-without compromising the framework porosity or overall crystal structure.
Collapse
Affiliation(s)
- Emily Massahud
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC, 3000, Australia
| | - Heba Ahmed
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC, 3000, Australia
| | - Ravichandar Babarao
- Manufacturing Business Unit, Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing, Clayton, VIC, 3168, Australia
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Yemima Ehrnst
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC, 3000, Australia
| | - Hossein Alijani
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC, 3000, Australia
| | - Connie Darmanin
- Department of Mathematical and Physical Sciences, School of Engineering, Computing and Mathematical Sciences, La Trobe University, Melbourne, VIC, 3086, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Billy J Murdoch
- RMIT Microscopy and Microanalysis Facility, STEM College, RMIT University, Melbourne, VIC, 3000, Australia
| | - Amgad R Rezk
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC, 3000, Australia
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC, 3000, Australia
| |
Collapse
|
26
|
Wang Y, Li T, Li L, Lin RB, Jia X, Chang Z, Wen HM, Chen XM, Li J. Construction of Fluorinated Propane-Trap in Metal-Organic Frameworks for Record Polymer-Grade Propylene Production under High Humidity Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207955. [PMID: 36659826 DOI: 10.1002/adma.202207955] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Propane/propene (C3 H8 /C3 H6 ) separation is essential in the petrochemical industry but challenging because of their similar physical and chemical properties. Adsorptive separation with C3 H8 -selective porous materials can energy-efficiently produce high-purity C3 H6 , which is highly promising for replacing conventional cryogenic distillation but suffers from unsatisfactory performance. Herein, through the precise incorporation of fluorinated functional groups into the confined pore space, a new fluorinated metal-organic framework (FDMOF-2) featuring the unique and strong C3 H8 -trap is successfully constructed. FDMOF-2 exhibits an unprecedented C3 H8 capture capacity of 140 cm3 cm-3 and excellent C3 H8 /C3 H6 (1:1, v/v) selectivity up to 2.18 (298 K and 1 bar), thus setting new benchmarks for all reported porous materials. Single-crystal X-ray diffraction studies reveal that the tailored pore confinement in FDMOF-2 provides stronger and multiple attractive interactions with C3 H8 , enabling excellent binding affinities. Breakthrough experiments demonstrate that C3 H8 can be directly extracted from various C3 H8 /C3 H6 mixtures with FDMOF-2, affording an outstanding C3 H6 production (501 mmol L-1 ) with over 99.99% purity. Benefiting from the robust framework and hydrophobic ligands, the separation performance of FDMOF-2 can be well maintained even under 70% relative humidity conditions.
Collapse
Affiliation(s)
- Yong Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Tong Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Libo Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Rui-Biao Lin
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xiaoxia Jia
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Zeyu Chang
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Hui-Min Wen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiao-Ming Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jinping Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| |
Collapse
|
27
|
Xu S, Guo X, Qiao Z, Zhong C. Facile in Situ Polymer Functionalization Approach for Constructing Water-Resistant Metal–Organic Frameworks. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Shanshan Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Xiangyu Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Zhihua Qiao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Chongli Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| |
Collapse
|
28
|
Tang P, Xie XX, Huang ZY, Kuang ZY, Cai SL, Zhang WG, Zheng SR. Two Cu( i) coordination polymers based on a new benzimidazolyl-tetrazolyl heterotopic ligand for visible-light-driven photocatalytic dye degradation. CrystEngComm 2023. [DOI: 10.1039/d2ce01497a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two Cu(i) CPs based on a new heterotopic tripodal ligand were constructed and their visible-light-driven photocatalytic performance were studied.
Collapse
Affiliation(s)
- Ping Tang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, P. R. China
| | - Xue-Xian Xie
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, P. R. China
| | - Zi-Yuan Huang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, P. R. China
| | - Zhi-Yang Kuang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, P. R. China
| | - Song-Liang Cai
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, P. R. China
| | - Wei-Guang Zhang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, P. R. China
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510006, China
| | - Sheng-Run Zheng
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
29
|
Lv Y, Su J, Gu Y, Tian B, Ma J, Zuo JL, Ding M. Atomically Precise Integration of Multiple Functional Motifs in Catalytic Metal-Organic Frameworks for Highly Efficient Nitrate Electroreduction. JACS AU 2022; 2:2765-2777. [PMID: 36590266 PMCID: PMC9795565 DOI: 10.1021/jacsau.2c00502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/09/2023]
Abstract
Ammonia production plays a central role in modern industry and agriculture with a continuous surge in its demand, yet the current industrial Haber-Bosch process suffers from low energy efficiency and accounts for high carbon emissions. Direct electrochemical conversion of nitrate to ammonia therefore emerges as an appealing approach with satisfactory sustainability while reducing the environmental impact from nitrate pollution. To this end, electrocatalysts for efficient conversion of eight-electron nitrate to ammonia require collective contributions at least from high-density reactive sites, selective reaction pathways, efficient multielectron transfer, and multiproton transport processes. Here, we report a catalytic metal-organic framework (two-dimensional (2D) In-MOF In8) catalyst integrated with multiple functional motifs with atomic precision, including uniformly dispersed, high-density, single-atom catalytic sites, high proton conductivity (efficient proton transport channel), high electron conductivity (promoted by the redox-active ligands), and confined microporous environments. These eventually lead to a direct and efficient electrochemical reduction of nitrate to ammonia and record high yield rate, FE, and selectivity for NH3 production. A novel "dynamic ligand dissociation" mechanism provides an unprecedented working principle that allows for the use of a high-quality MOF crystalline structure to function as highly ordered, high-density, single-atom catalyst (SAC)-like catalytic systems and ensures the maximum utilization of the metal centers within the MOF structure. Further, the atomically precise assembly of multiple functional motifs within a MOF catalyst offers an effective and facile strategy for the future development of framework-based enzyme-mimic systems.
Collapse
Affiliation(s)
- Yang Lv
- Key
Laboratory of Mesoscopic Chemistry, State Key Laboratory of Coordination
Chemistry, State Key Laboratory of Analytical Chemistry for Life Sciences,
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jian Su
- Key
Laboratory of Mesoscopic Chemistry, State Key Laboratory of Coordination
Chemistry, State Key Laboratory of Analytical Chemistry for Life Sciences,
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- School
of Chemistry and Chemical Engineering, Nanjing
University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Yuming Gu
- Key
Laboratory of Mesoscopic Chemistry, State Key Laboratory of Coordination
Chemistry, State Key Laboratory of Analytical Chemistry for Life Sciences,
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Jiangsu
Key Laboratory of Advanced Organic Materials, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bailin Tian
- Key
Laboratory of Mesoscopic Chemistry, State Key Laboratory of Coordination
Chemistry, State Key Laboratory of Analytical Chemistry for Life Sciences,
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Ma
- Key
Laboratory of Mesoscopic Chemistry, State Key Laboratory of Coordination
Chemistry, State Key Laboratory of Analytical Chemistry for Life Sciences,
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Jiangsu
Key Laboratory of Advanced Organic Materials, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Lin Zuo
- Key
Laboratory of Mesoscopic Chemistry, State Key Laboratory of Coordination
Chemistry, State Key Laboratory of Analytical Chemistry for Life Sciences,
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mengning Ding
- Key
Laboratory of Mesoscopic Chemistry, State Key Laboratory of Coordination
Chemistry, State Key Laboratory of Analytical Chemistry for Life Sciences,
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Beijing
National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
30
|
Zhang Q, Hong Y, Wang Y, Guo Y, Wang K, Wu H, Zhang C. Recent advances in pillar‐layered metal‐organic frameworks with interpenetrated and non‐interpenetrated topologies as supercapacitor electrodes. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qichun Zhang
- City University of Hong Kong Department of Physics and Materials Science 83 Tat Chee Ave, Kowloon Tong 999077 Hong Kong HONG KONG
| | - Ye Hong
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China CHINA
| | - Yuting Wang
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China CHINA
| | - Yuxuan Guo
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China CHINA
| | - Kuaibing Wang
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China CHINA
| | - Hua Wu
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China. College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, P. R CHINA
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, China CHINA
| |
Collapse
|
31
|
Crystalline hydrogen bonding of water molecules confined in a metal-organic framework. Commun Chem 2022; 5:51. [PMID: 36697686 PMCID: PMC9814150 DOI: 10.1038/s42004-022-00666-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/10/2022] [Indexed: 01/28/2023] Open
Abstract
Hydrogen bonding (H-bonding) of water molecules confined in nanopores is of particular interest because it is expected to exhibit chemical features different from bulk water molecules due to their interaction with the wall lining the pores. Herein, we show a crystalline behavior of H-bonded water molecules residing in the nanocages of a paddlewheel metal-organic framework, providing in situ and ex situ synchrotron single-crystal X-ray diffraction and Raman spectroscopy studies. The crystalline H-bond is demonstrated by proving the vibrational chain connectivity arising between hydrogen bond and paddlewheel Cu-Cu bond in sequentially connected Cu-Cu·····coordinating H2O·····H-bonded H2O and by proving the spatial ordering of H-bonded water molecules at room temperature, where they are anticipated to be disordered. Additionally, we show a substantial distortion of the paddlewheel Cu2+-centers that arises with water coordination simultaneously. Also, we suggest the dynamic coordination bond character of the H-bond of the confined water, by which an H-bond transitions to a coordination-bond at the Cu2+-center instantaneously after dissociating a previously coordinated H2O.
Collapse
|
32
|
Li H, Luo S, Zhang L, Zhao Z, Wu M, Li W, Liu FQ. Water- and Acid-Sensitive Cu 2O@Cu-MOF Nano Sustained-Release Capsules with Superior Antifouling Behaviors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1910-1920. [PMID: 34928132 DOI: 10.1021/acsami.1c18288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Marine biofouling is one of the technical bottlenecks restricting the development of the global marine economy. Among the commercial self-polishing antifouling coatings, cuprous oxide is an irreplaceable component because of its efficiency and broad-spectrum antibacterial activity. However, one of the biggest obstacles to achieving long-term antifouling is the "initial burst and final decay" of cuprous oxide in the coating. Here, we lock the copper ions by establishing an antifouling unit composed of Cu2O (core) and Cu-based metal-organic framework (Cu-MOF, shell). Cu-MOF is densely grown in situ on the periphery of Cu2O by acid proton etching. The shell structure of Cu-MOF can effectively improve the stability of the internal Cu2O and thus achieve the stable and slow release of copper ions. Furthermore, Cu2O@Cu-MOF nanocapsules can also achieve active defense by rapid and complete dissolution of Cu2O@Cu-MOF at local acidic microenvironment (pH ≤ 5) where the adhesion of fouling organisms occurs. Super-resolution fluorescence microscopy is used to explain the sterilization mechanism. Relying on the water- and acid-sensitive properties of Cu-MOF shell, the stable, controlled and efficient release of copper ions has been achieved for the Cu2O@Cu-MOF nanocapsules in the self-polishing antifouling coatings. Thus, these controlled-release nanocapsules make long-term antifouling promising.
Collapse
Affiliation(s)
- Huali Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuwen Luo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Liuqin Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zilong Zhao
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Min Wu
- Offshore Oil Production Plant of Sinopec Shengli Oilfield Company, Dongying 257237, China
| | - Weihua Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Fa-Qian Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
33
|
Zhou X, Jin H, Xia BY, Davey K, Zheng Y, Qiao SZ. Molecular Cleavage of Metal-Organic Frameworks and Application to Energy Storage and Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104341. [PMID: 34605072 DOI: 10.1002/adma.202104341] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The physicochemical properties of metal-organic frameworks (MOFs) significantly depend on composition, topology, and porosity, which can be tuned via synthesis. In addition to a classic direct synthesis, postsynthesis modulations of MOFs, including ion exchange, installation, and destruction, can significantly expand the application. Because of a limitation of the qualitative hard and soft acids and bases (HSAB) theory, posttreatment permits regulation of MOF structure by cleaving chemical bonds at the molecular level. Here, methods of coordination bond scission to tailor the structure are critically appraised and the application to energy storage and conversion is assessed. MOF structures synthesized by molecular-level coordination bond cleavage are described and the corresponding MOFs for electrocatalysis and renewable battery applications are evaluated. Significant emphasis is placed on various coordination bond cleavage to tune properties, including chemical groups, electronic structures, and morphologies. The review concludes with a critical perspective on practical application, together with challenges and future outlook for this emerging field.
Collapse
Affiliation(s)
- Xianlong Zhou
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Huanyu Jin
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan, 430074, China
- National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Kenneth Davey
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yao Zheng
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
34
|
Ashouri V, Adib K, Nasrabadi MR, Ghalkhani M. Preparation of the extruded UiO-66-based Metal-Organic Framework for the diazinon removal from the real samples. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Choi DS, Kim DW, Lee JH, Chae YS, Kang DW, Hong CS. Diamine Functionalization of a Metal-Organic Framework by Exploiting Solvent Polarity for Enhanced CO 2 Adsorption. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38358-38364. [PMID: 34342422 DOI: 10.1021/acsami.1c10659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Diamine-appended metal-organic frameworks (MOFs) exhibit exceptional CO2 adsorption capacities over a wide pressure range because of the strong interaction between basic amine groups and acidic CO2. Given that their high CO2 working capacity is governed by solvent used during amine functionalization, a systematic investigation on solvent effect is essential but not yet demonstrated. Herein, we report a facile one-step solvent exchange route for the diamine functionalization of MOFs with open metal sites, using an efficient method to maximize diamine loading. We employed an MOF, Mg2(dobpdc) (dobpdc4- = 4,4'-dioxido-3,3'-biphenyldicarboxylate), which contains high-density open metal sites. Indirect grafting with N-ethylethylenediamine (een) was performed with a minimal amount of methanol (MeOH) via multiple MeOH exchanges and diamine functionalization, resulting in a top-tier CO2 adsorption capacity of 16.5 wt %. We established the correlation between N,N-dimethylformamide (DMF) loading and infrared peaks, which provides a simple method for determining the amount of the remaining DMF in Mg2(dobpdc). All interactions among Mg, DMF, diamine, and solvent were analyzed by van der Waals (vdw)-corrected density functional theory (DFT) calculations to elucidate the effect of chemical potential on diamine grafting.
Collapse
Affiliation(s)
- Doo San Choi
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Dae Won Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yun Seok Chae
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Dong Won Kang
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
36
|
Wang Y, Yang Q, Yi F, Lu R, Chen Y, Liu C, Li X, Wang C, Yan H. NH 2-UiO-66 Coated with Two-Dimensional Covalent Organic Frameworks: High Stability and Photocatalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29916-29925. [PMID: 34139846 DOI: 10.1021/acsami.1c06008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The poor stability and low catalytic activity of NH2-UiO-66 in basic solutions require the reactions to be conducted in acidic solutions, which seriously hinders its potential photocatalytic application. Herein, we report that NH2-UiO-66 coated with two-dimensional covalent organic frameworks (COFs) via imine bond connection presents not only high photocatalytic activity but also high stability and adaptability to the solution environment. The NH2-UiO-66/COF hybrid material was fabricated through the Schiff base reaction of NH2-UiO-66 with 4,4',4″-(1,3,5-triazine-2,4,6-triyl)trianiline (TAPT) and 2,4,6-triformylphloroglucinol (TP). The hybrid material showed high stability in an alkaline environment, with only 4.7% of NH2-UiO-66 decomposed after the photocatalytic reaction. The optimum photocatalytic H2 evolution rate was 8.44 mmol·h-1·g-1 when triethanolamine was used as an electron-donating agent. The results presented here illustrate the possibility for effectively improving both the photocatalytic performance and stability of NH2-UiO-66 by coupling with COFs.
Collapse
Affiliation(s)
- Yongchao Wang
- Department of Chemistry and Chemical Engineering, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Qing Yang
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Fangli Yi
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Ruowei Lu
- Department of Chemistry and Chemical Engineering, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Yanxia Chen
- Department of Chemistry and Chemical Engineering, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Cheng Liu
- Department of Chemistry and Chemical Engineering, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Xinyu Li
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Cuijuan Wang
- Department of Chemistry and Chemical Engineering, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Hongjian Yan
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
37
|
Abstract
Nowadays, the rapidly growing population, climate change, and environment pollution put heavy pressure on fresh water resources. The atmosphere is the immense worldwide and available water source. The Adsorptive Water Harvesting from the Atmosphere (AWHA) method is considered a promising alternative to desalination technologies for remote arid regions. The development of novel adsorbents with advanced water-adsorption properties is a prerequisite for practical realization of this method. Metal–organic frameworks (MOFs) are a novel class of porous crystalline solids that bring a great potential for AWHA due to their extremely high specific surface area, porosity, and tailored adsorption properties. This work addresses MIL-160 as a water adsorbent for AWHA. The water-adsorption equilibrium of MIL-160 was studied by volumetric method, the isosteric heat of adsorption was calculated, and finally, the potential of MIL-160 for AWHA was evaluated for climatic conditions of the deserts of Saudi Arabia, Mongolia, the Sahara, Atacama, and Mojave as reference arid regions. MIL-160 was shown to ensure a maximum specific water productivity of 0.31–0.33 gH2O/gads per cycle. High fractions of water extracted (0.90–0.98) and collected (0.48–0.97) could be achieved at a regeneration temperature of 80 °C with natural cooling of the condenser by ambient air. The specific energy consumption for water production varied from 3.5 to 6.8 kJ/g, which is acceptable if solar heat is used to drive the desorption. The AWHA method employing MIL-160 is a promising way to achieve a fresh water supply in remote arid areas.
Collapse
|
38
|
Xia Z, Jia X, Ge X, Ren C, Yang Q, Hu J, Chen Z, Han J, Xie G, Chen S, Gao S. Tailoring Electronic Structure and Size of Ultrastable Metalated Metal-Organic Frameworks with Enhanced Electroconductivity for High-Performance Supercapacitors. Angew Chem Int Ed Engl 2021; 60:10228-10238. [PMID: 33474801 DOI: 10.1002/anie.202100123] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Indexed: 11/09/2022]
Abstract
Utilization of metal-organic frameworks (MOFs) as electrodes for energy storage/conversion is challenging because of the low chemical stability and poor electrical conductivity of MOFs in electrolytes. A nanoscale MOF, Co0.24 Ni0.76 -bpa-200, possessing ultrahigh stability with uncommon semiconductor behavior (σ=4.2×10-3 S m-1 ) was fabricated. The MOF comprises a robust hydrophobic paddlewheel and an optimized Co/Ni ratio, with consequent control over MOF size and the degree of conjugation of the coligand. A DFT study revealed that appropriate Ni2+ doping reduces the activation energy of the system, thus providing a higher carrier concentration, and the strongly delocalized N-donor ligand notably increases the metal-ligand orbital overlap to achieve efficient charge migration, leading to continuous through-bond (-CoNi-N-CoNi-)∞ conduction paths. These structural features endow the MOF with a good cycling stability of 86.5 % (10 000 cycles) and a high specific capacitance of 1927.14 F g-1 among pristine MOF-based electrodes.
Collapse
Affiliation(s)
- Zhengqiang Xia
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China
| | - Xu Jia
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China
| | - Xi Ge
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China
| | - Chongting Ren
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China
| | - Qi Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China
| | - Jun Hu
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore, Singapore
| | - Jing Han
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China
| | - Shengli Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China
| |
Collapse
|
39
|
Zhou X, Dong J, Zhu Y, Liu L, Jiao Y, Li H, Han Y, Davey K, Xu Q, Zheng Y, Qiao SZ. Molecular Scalpel to Chemically Cleave Metal-Organic Frameworks for Induced Phase Transition. J Am Chem Soc 2021; 143:6681-6690. [PMID: 33887909 DOI: 10.1021/jacs.1c02379] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A bottom-up chemical synthesis of metal-organic frameworks (MOFs) permits significant structural diversity because of various combinations of metal centers and different organic linkers. However, fabrication generally complies with the classic hard and soft acids and bases (HSAB) theory. This restricts direct synthesis of desired MOFs with converse Lewis type of metal ions and ligands. Here we present a top-down strategy to break this limitation via the structural cleavage of MOFs to trigger a phase transition using a novel "molecular scalpel". A conventional CuBDC MOF (BDC = 1,4-benzenedicarboxylate) prepared from a hard acid (Cu2+) metal and a hard base ligand was chemically cleaved by l-ascorbic acid acting as chemical scalpel to fabricate a new Cu2BDC structure composed of a soft acid (Cu1+) and a hard base (BDC). Controlled phase transition was achieved by a series of redox steps to regulate the chemical state and coordination number of Cu ions, resulting in a significant change in chemical composition and catalytic activity. Mechanistic insights into structural cleavage and rearrangement are elaborated in detail. We show this novel strategy can be extended to general Cu-based MOFs and supramolecules for nanoscopic casting of unique architectures from existing ones.
Collapse
Affiliation(s)
- Xianlong Zhou
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Juncai Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yihan Zhu
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lingmei Liu
- Physical Sciences and Engineering Division, Advanced Membranes and Porous Materials Centre, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Yan Jiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Huan Li
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Yu Han
- Physical Sciences and Engineering Division, Advanced Membranes and Porous Materials Centre, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Kenneth Davey
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan
| | - Yao Zheng
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
40
|
Xia Z, Jia X, Ge X, Ren C, Yang Q, Hu J, Chen Z, Han J, Xie G, Chen S, Gao S. Tailoring Electronic Structure and Size of Ultrastable Metalated Metal–Organic Frameworks with Enhanced Electroconductivity for High‐Performance Supercapacitors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhengqiang Xia
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710127 China
| | - Xu Jia
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710127 China
| | - Xi Ge
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710127 China
| | - Chongting Ren
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710127 China
| | - Qi Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710127 China
| | - Jun Hu
- School of Chemical Engineering Northwest University Xi'an Shaanxi 710069 China
| | - Zhong Chen
- School of Materials Science and Engineering Nanyang Technological University Nanyang Avenue 639798 Singapore Singapore
| | - Jing Han
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710127 China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710127 China
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710127 China
| | - Shengli Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710127 China
| |
Collapse
|
41
|
Bae J, Lee CY, Jeong NC. Weak Coordination Bond of Chloromethane: A Unique Way to Activate Metal Node Within an Unstable Metal–Organic Framework
DUT
‐34. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12268] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jinhee Bae
- Department of Emerging Materials Science, DGIST Daegu 42988 Korea
| | - Chang Yeon Lee
- Department of Energy and Chemical Engineering Incheon National University Incheon 22012 Korea
| | - Nak Cheon Jeong
- Department of Emerging Materials Science, DGIST Daegu 42988 Korea
| |
Collapse
|
42
|
Jia M, Su J, Su P, Li W. Vapor-assisted self-conversion of basic carbonates in metal-organic frameworks. NANOSCALE 2021; 13:5069-5076. [PMID: 33650619 DOI: 10.1039/d0nr07700c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Incorporation of nanoparticles has been considered as an efficient method for enhancing the adsorption performance of metal-organic frameworks (MOFs). Alkali metal compounds possess outstanding affinity to acidic CO2. In this study, a robust self-conversion strategy is reported for improving the carbon capture performance of MOFs, through directly transforming partial metal centers to basic carbonate (BC) nanoparticles. Based on the hydrolysis of coordination bonds induced by water impurity in solvents and the decarboxylation of linkers under thermal and alkaline conditions, the self-loading of BC in MOFs can be realized by solvent vapor-assisted thermal treatment. Since water impurity causes limited self-conversion and excess organic solvent can purify MOFs, the BC-MOF materials maintain good crystallinity and even show superior porosity. Owing to the increased specific surface areas, open metal sites, and alkalinity of BC, the prepared MOF composites exhibit substantially improved CO2 capture performance with good balance between capacity and selectivity. For example, after self-conversion with ethanol solvent, the CO2 adsorption capacity and CO2/N2 (15 : 85) selectivity at 298 K and 100 kPa increase from 3.7 mmol g-1 and 11.4 to 5.8 mmol g-1 and 29.2, respectively.
Collapse
Affiliation(s)
- Miaomiao Jia
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, P.R. China.
| | - Jingyi Su
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, P.R. China.
| | - Pengcheng Su
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, P.R. China.
| | - Wanbin Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, P.R. China.
| |
Collapse
|
43
|
Singh C, Mukhopadhyay S, Hod I. Metal-organic framework derived nanomaterials for electrocatalysis: recent developments for CO 2 and N 2 reduction. NANO CONVERGENCE 2021; 8:1. [PMID: 33403521 PMCID: PMC7785767 DOI: 10.1186/s40580-020-00251-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/16/2020] [Indexed: 05/05/2023]
Abstract
In recent years, we are witnessing a substantially growing scientific interest in MOFs and their derived materials in the field of electrocatalysis. MOFs acting as a self-sacrificing template offer various advantages for the synthesis of carbon-rich materials, metal oxides, and metal nanostructures containing graphitic carbon-based materials benefiting from the high surface area, porous structure, and abundance of metal sites and organic functionalities. Yet, despite recent advancement in the field of MOF-derived materials, there are still several significant challenges that should be overcomed, to obtain better control and understanding on the factors determining their chemical, structural and catalytic nature. In this minireview, we will discuss recently reported advances in the development of promising methods and strategies for the construction of functional MOF-derived materials and their application as highly-active electrocatalysts for two important energy-related reactions: nitrogen reduction to produce ammonia, and CO2 reduction into carbon-based fuels. Moreover, a discussion containing assessments and remarks on the possible future developments of MOF-derived materials toward efficient electrocatalysis is included.
Collapse
Affiliation(s)
- Chanderpratap Singh
- Department of Chemistry and Ilse, Katz Institute for Nanoscale Science and Technology, Ben- Gurion University of Negev, 8410501, Beer-Sheva, Israel
| | - Subhabrata Mukhopadhyay
- Department of Chemistry and Ilse, Katz Institute for Nanoscale Science and Technology, Ben- Gurion University of Negev, 8410501, Beer-Sheva, Israel
| | - Idan Hod
- Department of Chemistry and Ilse, Katz Institute for Nanoscale Science and Technology, Ben- Gurion University of Negev, 8410501, Beer-Sheva, Israel.
| |
Collapse
|
44
|
Ryu U, Jee S, Rao PC, Shin J, Ko C, Yoon M, Park KS, Choi KM. Recent advances in process engineering and upcoming applications of metal-organic frameworks. Coord Chem Rev 2021; 426:213544. [PMID: 32981945 PMCID: PMC7500364 DOI: 10.1016/j.ccr.2020.213544] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/25/2022]
Abstract
Progress in metal-organic frameworks (MOFs) has advanced from fundamental chemistry to engineering processes and applications, resulting in new industrial opportunities. The unique features of MOFs, such as their permanent porosity, high surface area, and structural flexibility, continue to draw industrial interest outside the traditional MOF field, both to solve existing challenges and to create new businesses. In this context, diverse research has been directed toward commercializing MOFs, but such studies have been performed according to a variety of individual goals. Therefore, there have been limited opportunities to share the challenges, goals, and findings with most of the MOF field. In this review, we examine the issues and demands for MOF commercialization and investigate recent advances in MOF process engineering and applications. Specifically, we discuss the criteria for MOF commercialization from the views of stability, producibility, regulations, and production cost. This review covers progress in the mass production and formation of MOFs along with future applications that are not currently well known but have high potential for new areas of MOF commercialization.
Collapse
Key Words
- 2,4-DNT, 2,4-dinitrotoluene
- 4-NP, 4-nitrophenol
- ABS, acrylonitril-butadiene-styrene
- BET, Brunauer–Emmett–Teller
- CA, Cellulose-acetate
- CEES, 2-Chloroethyl ethyl sulfide
- CIE, Commission international ed’Eclairage
- CNF, Cellulose nanofiber
- CNG, compressed natural gas
- CVD, Chemical vapor deposition
- CWA, Chemical warfare agent
- CWC, Chemical weapons convention
- Commercialization
- DCP, Diethylchlorophosphonate
- DDM, n-dodecyl β-D-maltoside
- DEF, N,N-Diethyl formamide
- DFP, Diisopropyl fluorophosphate
- DFT, Density functional theory
- DIFP, Diisopropylfluorophosphate
- DLS, Dynamic light scattering
- DMA, Dimethylacetamide
- DMF, N,N-Dimethyl formamide
- DMMP, Dimethyl methylphosphonate
- DRIFTS, Diffuse reflectance infrared fourier transform spectroscopy
- Dispersion
- E. Coli, Escherichia coli
- ECS, Extrusion-crushing-sieving
- EDLCs, Electrochemical double-layer capacitors
- EPA, Environmental protection agency
- EXAFS, Extended X-ray absorption fine structure
- FT-IR, Fourier-transform infrared spectroscopy
- Fn, Fusobacterium nucleatum
- Future applications
- GC–MS, Gas chromatography–mass spectrometry
- GRGDS, Gly-Arg-Gly-Asp-Ser
- ILDs, Interlayer dielectrics
- ITRS, International technology roadmap for semiconductors
- LED, Light-emitting diode
- LIBs, Lithium-ion batteries
- LMOF, Luminescent metal–organic framework
- LOD, Limit of detection
- MB, methylene blue
- MBC, Minimum bactericidal concentration
- MIC, Minimum inhibitory concentration
- MIM, Metal-insulator–metal
- MMP, Methyl methylphosphonate
- MOF, metal–organic framework
- MOGs, Metal-organic gels
- MRA, mesoporous ρ-alumina
- MRSA, Methicillin-resistant staphylococcus aureus
- MVTR, Moisture vapor transport rate
- Mass production
- Metal–organic framework
- NMP, N-methyl-2-pyrrolidone
- NMR, Nuclear magnetic resonance
- PAN, Polyacrylonitrile
- PANI, Polyaniline
- PEG-CCM, polyethylene-glycol-modified mono-functional curcumin
- PEI, Polyetherimide
- PEMFCs, Proton-exchange membrane fuel cells
- PM, Particulate matter
- POM, Polyoxometalate
- PPC, Polypropylene/polycarbonate
- PS, Polystyrene
- PSM, Post-synthetic modification
- PVA, Polyvinyl alcohol
- PVB, Polyvinyl Butyral
- PVC, Polyvinylchloride
- PVF, Polyvinylformal
- PXRD, Powder x-ray diffraction
- Pg, Porphyromonas gingivalis
- RDX, 1,3,5-trinitro-1,3,5-triazinane
- ROS, Reactive oxygen species
- SALI, Solvent assisted ligand incorporation
- SBU, Secondary building unit
- SCXRD, Single-crystal X-ray diffraction
- SEM, Scanning electron microscope
- SIBs, Sodium-ion batteries
- SSEs, Solid-state electrolytes
- STY, space–time yield, grams of MOF per cubic meter of reaction mixture per day of synthesis
- Shaping
- TEA, Triethylamine
- TIPS-HoP, Thermally induced phase separation-hot pressing
- TNP, 2,4,6-trinitrophenol
- TNT, 2,4,6-trinitrotoluene
- UPS, Ultraviolet photoelectron spectroscopy
- VOC, Volatile organic compound
- WHO, World health organization
- WLED, White light emitting diode
- XPS, X-ray photoelectron spectroscopy
- ZIF, zeolitic imidazolate framework
- hXAS, Hard X-ray absorption spectroscopy
- sXAS, Soft X-ray absorption spectroscopy
Collapse
Affiliation(s)
- UnJin Ryu
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Seohyeon Jee
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Purna Chandra Rao
- Department of Chemistry & Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeeyoung Shin
- Department of Mechanical Systems Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Institute of Advanced Materials & Systems, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Changhyun Ko
- Institute of Advanced Materials & Systems, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
- Department of Applied Physics, College of Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Minyoung Yoon
- Department of Chemistry & Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyo Sung Park
- Corporation R&D, Research Park, LG Chem, LG Science Park, 30, Magokjungang-10-Ro, Gangseo-Gu, Seoul, Republic of Korea
| | - Kyung Min Choi
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
- Institute of Advanced Materials & Systems, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
| |
Collapse
|
45
|
Ju H, Liu XD, Tao CY, Yang F, Liu XL, Luo X, Zhang L. A novel edge-rich structure of CuO/Co3O4 derived from Prussian blue analogue as a high-rate and ultra-stable electrode for efficient capacitive storage. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Yang S, Karve VV, Justin A, Kochetygov I, Espín J, Asgari M, Trukhina O, Sun DT, Peng L, Queen WL. Enhancing MOF performance through the introduction of polymer guests. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213525] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Zhang D, Du P, Liu J, Zhang R, Zhang Z, Han Z, Chen J, Lu X. Encapsulation of Porphyrin-Fe/Cu Complexes into Coordination Space for Enhanced Selective Oxidative Dehydrogenation of Aromatic Hydrazides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004679. [PMID: 33206474 DOI: 10.1002/smll.202004679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/03/2020] [Indexed: 06/11/2023]
Abstract
The encapsulation of specific nanoentities into hollow nanomaterials derived from metal organic frameworks has attracted continuous and growing research attentions owing to their unique structural properties and unusual synergistic functions. Herein, using the phase transformation of uniform rhombi dodecahedron ZIF-67, hollow nano-shell with a well-defined morphology is successfully prepared. Particularly, the iron-oxygen complex, that is formed by the interaction between TCPP-Fe/Cu (TCPP = tetrakis(4-carboxyphenyl)-porphyrin) and oxygen, can be acted as an ideal proton acceptor for practical organic reactions. Considering the unique adaptability of hollow ZIFs (named HZ) to the transformation of encapsulated TCPP-Fe/Cu bimetallic catalytic active sites, a heterogeneous catalyst (defined as HZ@TCPP-Fe/Cu) through morphology-controlled thermal transformation and rear assemble processes is designed and constructed. Under heterogeneous conditions, HZ@TCPP-Fe/Cu serves as a multifunctional molecular selector to promote the oxidative dehydrogenation of different aromatic hydrazide derivatives with high selectivity toward primary carbon among primary, secondary, and tertiary carbons that are unachievable by other traditional homogeneous catalysts. The high catalytic activity, selectivity, and recyclability of the catalyst proposed here are attractive advantages for an alternative route to the environmentally benign transformation of aromatic hydrazides to aromatic azobenzene.
Collapse
Affiliation(s)
- Dongxu Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Peiyao Du
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Jia Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhengang Han
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Jing Chen
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| |
Collapse
|
48
|
Kang X, Li L, Sheveleva A, Han X, Li J, Liu L, Tuna F, McInnes EJL, Han B, Yang S, Schröder M. Electro-reduction of carbon dioxide at low over-potential at a metal-organic framework decorated cathode. Nat Commun 2020; 11:5464. [PMID: 33122645 PMCID: PMC7596083 DOI: 10.1038/s41467-020-19236-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/22/2020] [Indexed: 11/24/2022] Open
Abstract
Electrochemical reduction of carbon dioxide is a clean and highly attractive strategy for the production of organic products. However, this is hindered severely by the high negative potential required to activate carbon dioxide. Here, we report the preparation of a copper-electrode onto which the porous metal–organic framework [Cu2(L)] [H4L = 4,4′,4″,4′′′-(1,4-phenylenebis(pyridine-4,2,6-triyl))tetrabenzoic acid] can be deposited by electro-synthesis templated by an ionic liquid. This decorated electrode shows a remarkable onset potential for reduction of carbon dioxide to formic acid at −1.45 V vs. Ag/Ag+, representing a low value for electro-reduction of carbon dioxide in an organic electrolyte. A current density of 65.8 mA·cm−2 at −1.8 V vs. Ag/Ag+ is observed with a Faradaic efficiency to formic acid of 90.5%. Electron paramagnetic resonance spectroscopy confirms that the templated electro-synthesis affords structural defects in the metal–organic framework film comprising uncoupled Cu(II) centres homogenously distributed throughout. These active sites promote catalytic performance as confirmed by computational modelling. Electrochemical reduction of carbon dioxide is a highly attractive strategy for the production of organic products of economic value. Here, the authors report the electrochemical reduction of carbon dioxide to formic acid over a copper-based metal–organic framework decorated electrode at low over-potential.
Collapse
Affiliation(s)
- Xinchen Kang
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Lili Li
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Alena Sheveleva
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Xue Han
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Jiangnan Li
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Lifei Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, 100190, Beijing, China
| | - Floriana Tuna
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.,Photon Science Institute, University of Manchester, Manchester, M13 9PL, UK
| | - Eric J L McInnes
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, 100190, Beijing, China.
| | - Sihai Yang
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Martin Schröder
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
49
|
Liu X, Wang X, Kapteijn F. Water and Metal-Organic Frameworks: From Interaction toward Utilization. Chem Rev 2020; 120:8303-8377. [PMID: 32412734 PMCID: PMC7453405 DOI: 10.1021/acs.chemrev.9b00746] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Indexed: 12/25/2022]
Abstract
The steep stepwise uptake of water vapor and easy release at low relative pressures and moderate temperatures together with high working capacities make metal-organic frameworks (MOFs) attractive, promising materials for energy efficient applications in adsorption devices for humidity control (evaporation and condensation processes) and heat reallocation (heating and cooling) by utilizing water as benign sorptive and low-grade renewable or waste heat. Emerging MOF-based process applications covered are desiccation, heat pumps/chillers, water harvesting, air conditioning, and desalination. Governing parameters of the intrinsic sorption properties and stability under humid conditions and cyclic operation are identified. Transport of mass and heat in MOF structures, at least as important, is still an underexposed topic. Essential engineering elements of operation and implementation are presented. An update on stability of MOFs in water vapor and liquid systems is provided, and a suite of 18 MOFs are identified for selective use in heat pumps and chillers, while several can be used for air conditioning, water harvesting, and desalination. Most applications with MOFs are still in an exploratory state. An outlook is given for further R&D to realize these applications, providing essential kinetic parameters, performing smart engineering in the design of systems, and conceptual process designs to benchmark them against existing technologies. A concerted effort bridging chemistry, materials science, and engineering is required.
Collapse
Affiliation(s)
- Xinlei Liu
- Catalysis
Engineering, Chemical Engineering Department, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Chemical
Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China
- Tianjin
Key Laboratory of Membrane Science and Desalination Technology, State
Key Laboratory of Chemical Engineering, Tianjin University, 300072 Tianjin, China
| | - Xuerui Wang
- Catalysis
Engineering, Chemical Engineering Department, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- State
Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu
National Synergetic Innovation Center for Advanced Materials, College
of Chemical Engineering, Nanjing Tech University, 210009 Nanjing, China
| | - Freek Kapteijn
- Catalysis
Engineering, Chemical Engineering Department, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
50
|
Jia M, Mai L, Li Z, Li W. Air-thermal processing of hierarchically porous metal-organic frameworks. NANOSCALE 2020; 12:14171-14179. [PMID: 32602519 DOI: 10.1039/d0nr02899a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal-organic frameworks (MOFs) show great potential for various applications. The functions of MOFs are closely related to their porous structures and lattice integrities. However, the generally existing guest solvent/linker molecules and crystalline defects will alter internal microstructures and microenvironments of MOFs. Meanwhile, although MOFs have tailorable pore structures within the range of microspores, the achievement of meso/macropores in MOFs is of scientific interest. Herein, a versatile air-thermal processing (ATP) strategy is reported to remove the residual molecules and incompletely coordinated linkers in MOFs. Through processing MOFs in confined space, the thermalized and pressurized air can assist the filling solvents and partially/totally uncoordinated linkers to overcome the energy barrier of escape, and then maximize MOF porosity. The obtained MOF materials with hierarchical micro/mesoporous structures display substantially improved adsorption capacities and selectivities. For example, CuBTC-A shows 36%, 72%, 22%, and 86% enhancements in surface area, pore volume, CO2 uptake, and CO2/N2 selectivity, respectively. Moreover, by adjusting processing temperature, the ATP strategy is available for fabricating MOF materials with hierarchically micro/meso/macroporous superstructures under modulator/template-free conditions.
Collapse
Affiliation(s)
- Miaomiao Jia
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, P.R. China.
| | | | | | | |
Collapse
|