1
|
Mutoh K, Yahagi T, Takano S, Kawakita S, Iwasa T, Taketsugu T, Tsukuda T, Nakashima T. A nearly perfect icosahedral Ir@Au 12 superatom with superior photoluminescence obtained by ligand engineering. Chem Sci 2025; 16:8240-8246. [PMID: 40191123 PMCID: PMC11969237 DOI: 10.1039/d5sc00561b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/28/2025] [Indexed: 04/09/2025] Open
Abstract
Heterometal doping and the introduction of surface ligands drastically alter the optical and photophysical properties of gold-based superatoms by modulating their electronic structures and the excited state dynamics. In this study, we investigate how the structures and the optical properties of an Ir@Au12 superatom capped by a diphosphine ligand, bis[benzo[b]phosphindole]ethane (bbpe), in which the rotation of the phenyl groups is prohibited, differ from those capped by the conventional diphosphine ligands, such as 1,2-bis(diphenylphosphino)ethane (dppe) and bis(diphenylphosphino)methane (dppm). The co-reduction of Ir(iii)- and Au(i)-precursors under mild reaction conditions yielded homoleptically capped [IrAu12(bbpe)6]3+ clusters (IrAu12-b) as the primary product. Single crystal X-ray diffraction analysis of IrAu12-b revealed the formation of a nearly perfect icosahedral Ir@Au12 superatomic core, in which the central Ir atom is equidistant from each vertex Au atom. The energy gap between occupied 1P and unoccupied 1D superatomic orbitals of IrAu12-b was larger than that of its dppm-capped counterpart, [IrAu12(dppm)6]3+ as evidenced by a blue shift (140 nm) of the photoluminescence (PL) wavelength and DFT calculations. IrAu12-b exhibited PL at 596 nm with a high quantum yield of 87% in deaerated CH2Cl2 due to the expanded 1P-1D energy gap and the restricted molecular motions of the bbpe ligands.
Collapse
Affiliation(s)
- Katsuya Mutoh
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University Sumiyoshi-ku Osaka 558-8585 Japan
| | - Teppei Yahagi
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University Sumiyoshi-ku Osaka 558-8585 Japan
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo Bunkyo-ku Tokyo 113-0033 Japan
| | - Sonomi Kawakita
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University Sumiyoshi-ku Osaka 558-8585 Japan
| | - Takeshi Iwasa
- Department of Chemistry, Faculty of Science, Hokkaido University North 10 West 5 Sapporo Hokkaido 060-0810 Japan
- WPI-ICReDD, Hokkaido University Sapporo Hokkaido 060-0810 Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University North 10 West 5 Sapporo Hokkaido 060-0810 Japan
- WPI-ICReDD, Hokkaido University Sapporo Hokkaido 060-0810 Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo Bunkyo-ku Tokyo 113-0033 Japan
| | - Takuya Nakashima
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University Sumiyoshi-ku Osaka 558-8585 Japan
| |
Collapse
|
2
|
Chen Z, Zuo D, Zhao L, Chen Y, Sun F, Wang L, Shen H, Tang Q. Electrochemical dechlorination promotes syngas production in N-heterocyclic carbene protected Au 13 nanoclusters. Chem Sci 2025:d5sc00896d. [PMID: 40353190 PMCID: PMC12062892 DOI: 10.1039/d5sc00896d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/26/2025] [Indexed: 05/14/2025] Open
Abstract
Surface ligands play an important role in dictating the structure and catalytic properties of metal nanoclusters. Recently, a novel class of Au clusters protected by N-heterocyclic carbenes (NHCs) and halogens has been synthesized; however, the dynamic stability of the Au-NHCs/Au-halogen interface in real electrochemical environments as well as the influence of the ligand layer on the catalytic process remains obscure. Herein, we combined first-principles simulations with experiments to investigate the metal-ligand interface interaction of the classical [Au13(NHCMe)9Cl3]2+ cluster and its unique potential to promote electrocatalytic CO2 reduction to syngas. Our simulations revealed the facile shedding of chlorine ligands from the surface of the Au13 core upon electrochemical biasing, and the more negative the applied potential, the faster the kinetics of the Au-Cl bond cleavage. By contrast, the Au-NHC interface is highly stable, indicating the greater stability of Au-C bonds over the Au-Cl bonds under electrochemical conditions. Interestingly, the exposed icosahedral Au in dechlorinated [Au13(NHCMe)9Cl2]3+ cluster is capable of efficiently catalyzing electrochemical CO2 reduction to generate CO and H2 with comparable barriers in a wide potential range, showcasing its strong potential for syngas formation. Our predictions are further corroborated by experimental electrochemical data, where X-ray photoelectron spectroscopy (XPS) verified halogen stripping under acid or neutral media, and the activated Au13 cluster demonstrated enhanced catalytic efficacy for syngas formation with a CO : H2 ratio of approximately 0.8 to 1.2 across a broad potential range of -0.50 to -1.20 V. This work reveals an exciting frontier in the understanding of ligand etching dynamics in NHC-protected metal nanoclusters, and particularly, the catalytic preference for syngas production is revealed for the first time in gold-based nanoclusters, which is distinctive from previously reported Au nanoclusters that mainly produce CO.
Collapse
Affiliation(s)
- Zhimin Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University Chongqing 401331 China
| | - Dongjie Zuo
- School of Energy Materials and Chemistry, Inner Mongolia University Hohhot 010021 China
| | - Lancheng Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo Shandong 255049 China
| | - Yuping Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University Chongqing 401331 China
| | - Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University Chongqing 401331 China
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo Shandong 255049 China
| | - Hui Shen
- School of Energy Materials and Chemistry, Inner Mongolia University Hohhot 010021 China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University Chongqing 401331 China
| |
Collapse
|
3
|
Bian G, Chen D, Chen Y, Zhang W, Fang L, You Q, Wang R, Gu W, Zhou Y, Yan N, Zhuang S, Ji S, Zhou M, Wang C, Liao L, Tang Q, Yang J, Wu Z. Remove the innermost atom of a magnetic multi-shell gold nanoparticle for near-unity conversion of CO 2 to CO. SCIENCE ADVANCES 2025; 11:eadu1996. [PMID: 40203115 PMCID: PMC11980848 DOI: 10.1126/sciadv.adu1996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/05/2025] [Indexed: 04/11/2025]
Abstract
Few reports on paramagnetic metal nanoparticles with atomic precision and their difficult tailoring retard the insightful investigation of metal nanoparticle paramagnetism. Herein, we introduced a thiol-iodine mixture ligand-protecting strategy to successfully synthesize multi-shell paramagnetic [Au127I4(TBBT)48 (I: iodine, TBBT: 4-tert-butylphenylthiolate)]. The innermost Au atom was successfully removed via thiol induction without altering the structure framework to produce diamagnetic Au126I4(TBBT)48 with local ligand arrangement changed (butterfly effect), which could be further transformed into paramagnetic [Au126I4(TBBT)48]+ via hydrogen peroxide oxidation. The spin populations of both paramagnetic nanoparticles are more densely distributed on surface iodine than sulfur. Diamagnetic Au126I4(TBBT)48 exhibited a Faradaic efficiency of ~100% at -0.57 volt during the electrocatalytic reduction of carbon dioxide to carbon monoxide, while paramagnetic Au127I4(TBBT)48 and [Au126I4(TBBT)48]+ exhibited the maximum Faradaic efficiency of 87% at -0.67 volt and 90% at -0.57 volt, respectively, indicating the spin-catalytic activity correlation.
Collapse
Affiliation(s)
- Guoqing Bian
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Dong Chen
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yuping Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Wei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Liang Fang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, P. R. China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, P. R. China
| | - Runguo Wang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, P. R. China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, P. R. China
| | - Yue Zhou
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, P. R. China
| | - Nan Yan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, P. R. China
| | - Shengli Zhuang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, P. R. China
| | - Shiyu Ji
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chengming Wang
- Instruments’ Center for Physical Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, P. R. China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Jun Yang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
4
|
Wan XK, Liu TT, Li NL, Dai Q, Wei J, Wang QM. Tailoring Atomically Precise Gold Nanoclusters for Boosting Selective Hydrogenation of Nitrostyrene with H 2. ACS NANO 2025; 19:11371-11380. [PMID: 40080798 DOI: 10.1021/acsnano.5c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Hydrogenation reactions represent some of the most extensively studied topics within the field of catalysis. A novel alkynyl and phosphine coprotected [Au34(PhC≡C)14(Ph3P)6](SO3CF3)2(1) nanocluster has been synthesized, and its structure was determined by single crystal X-ray diffraction (SCXRD). Density functional theory calculation shows that 1 features an 18-electron superatomic molecule character with a configuration of (1σ)2(1n)2(1π)2(2σ)2(1σ*)2(3σ)2(2n)2(3n)2(1π*),2 which is significantly different from previously reported 18-electron metal nanoclusters. In comparison with some gold nanoclusters with similar composition or size but different ligands or surface coordination structures, except for the ligand effect (different kinds of ligands), the surface coordination structure involving the Au(I) sites derived from the PhC≡C-Au-C≡CPh monomeric staple motif and the steric hindrance of PhC≡C and Ph3P on the surface of 1, and the special electronic structure play a critical role in ensuring the enhanced catalytic performance of 1/TiO2 toward the chemoselective hydrogenation of 4-nitrostyrene with H2. The turnover frequency (TOF) of 1322.5 h-1 and the turnover number (TON) of 23500 represent the highest values observed among the gold nanocluster-based catalysts toward the same reaction. It presents an example of tailoring the surface coordination structure to modulate the catalytic performance, and offers valuable insights for the rational design and synthesis of catalysts to trade off the catalytic activity and selectivity at the atomic level.
Collapse
Affiliation(s)
- Xian-Kai Wan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Ting-Ting Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Nian-Ling Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Qi Dai
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Jianyu Wei
- School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, P. R. China
| | - Quan-Ming Wang
- Department of Chemistry, Tsinghua University, Beijing 10084, P. R. China
| |
Collapse
|
5
|
Muduli G, Vaddamanu M, Sathyanarayana A, Siddhant K, Rawat A, Hisano K, Tsutsumi O, Prabusankar G. N-Alkyl Chain Induced Molecular Aggregation in Mononuclear Gold(I)-N-Heterocyclic Carbene Complexes for Blue Light Emitting Applications. Chem Asian J 2025; 20:e202401356. [PMID: 39745861 DOI: 10.1002/asia.202401356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/04/2025]
Abstract
The gold(I) N-heterocyclic carbene (NHC) molecule exhibits outstanding luminescent properties along with high thermal stability due to its strong carbene gold bond. Gold(I)-NHC complexes are known to emit green to yellow color, while blue emission is limited. Herewith, we report the photoluminescence and thermal stability correlation between blue emitting mononuclear gold(I)-NHC chloride complexes, N-(9-anthracenyl)-N'(n-alkyl)imidazol-2-ylidene gold(I) chloride (alkyl=n-butyl (1), n-pentyl (2), n-hexyl (3)). These complexes were synthesized by transmetallation route and characterized by FT-IR, NMR, TGA, and single crystal X-ray diffraction analysis. The solid-state study reveals a unique molecular packing due to hydrogen bonding, aurophilic interaction, and CH⋅⋅⋅π interactions in all 1-3. In addition, the π⋅⋅⋅π stacking has been found in 1. All these complexes show good thermal stability due to the strong metal-ligand bond strength along with crystal packing. In addition, 1-3 emits a blue colour in both solution and crystalline state. The quantum yield in the crystalline state was found to be higher for 1 (22.44 %) compared to 2 (9.90 %), and 3 (14.98 %). A similar high quantum yield for blue-emitting gold(I)-NHC chloride complex is rare. This promising quantum yield for 1 can be ascribed to the crystal packing effect. The theoretical calculations were carried out to understand the electronic and structural properties of 1-3. Computational studies revealed the origin of the luminescence behaviour of complexes. The blue light emitting thin film and LED are demonstrated using 1 exhibited the emission peak at the blue region with Commission Internationale de L'Eclairage (CIE) coordinates near the National Television Standards Committee (NTSC) value.
Collapse
Affiliation(s)
- Gopendra Muduli
- Organometallics and Materials Chemistry Lab, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India
| | - Moulali Vaddamanu
- Organometallics and Materials Chemistry Lab, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India
| | - Arruri Sathyanarayana
- Laboratory of Polymer Materials Chemistry, Department of Applied Chemistry, College of Life Science, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Kumar Siddhant
- Laboratory of Polymer Materials Chemistry, Department of Applied Chemistry, College of Life Science, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Arushi Rawat
- Laboratory of Polymer Materials Chemistry, Department of Applied Chemistry, College of Life Science, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Kyohei Hisano
- Laboratory of Polymer Materials Chemistry, Department of Applied Chemistry, College of Life Science, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Osamu Tsutsumi
- Laboratory of Polymer Materials Chemistry, Department of Applied Chemistry, College of Life Science, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Ganesan Prabusankar
- Organometallics and Materials Chemistry Lab, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India
| |
Collapse
|
6
|
Zhang J, Zhang Y, Qin Z, Li Z, Tong Z, Zhao Z, Gascón JA, Li G. How Carbene Ligands Transform AuAg Alloy Nanoclusters for Electrocatalytic Urea Synthesis. Angew Chem Int Ed Engl 2025; 64:e202420993. [PMID: 39562294 DOI: 10.1002/anie.202420993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
Metal nanoclusters stabilized by N-heterocyclic carbene (NHC) ligands have attracted increasing interest for their special structures and diverse applications. However, developing synthetic strategies and extending the database of NHC-protected nanoclusters are still challenging tasks. In this work, a novel and rapid synthetic method is developed to prepare AuAg alloy nanocluster ligated by carbene based on the reactivity of nanoclusters. The rod-like carbene-capped bimetal nanocluster, [Au13Ag12(PPh3)8(BMIm)2I8]SbF6 (Au13Ag12 : BMIm), was achieved and characterized by a series of techniques. The alloy nanocluster consists of two vertex-sharing icosahedrons and carbene ligands, phosphine ligands, and I atoms. Interestingly, the introduced carbene ligands show strong coordination capabilities with Au, enhancing the interaction between metal core and ligands. To the best of our knowledge, the carbene-capped Au13Ag12 : BMIm nanocluster is the first of its kind to show higher thermostability and higher sensitivity to light compared with the homogeneously capped analogue nanocluster ([Au13Ag12(PPh3)10I8]SbF6). Density functional theory calculations attribute these properties to a unique delocalization of electrons within the frontier orbitals. Finally, the Au13Ag12 : BMIm anchored on NiFe-LDH exhibits remarkable electrocatalytic activity in the electrosynthesis of urea from NO3 - and CO2, achieving a urea production rate of 29.5 mmol gcat -1 h-1 with a Faradaic efficiency of 34 % at -0.5 V (vs. RHE).
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, University of, 100049, China, China
| | - Yifei Zhang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, China
| | - Zhaoxian Qin
- Chemical and biomolecular engineering, Georgia Institute of Technology, Atlanta, 30332, USA
| | - Zhiwen Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, University of, 100049, China, China
| | - Zhaohui Tong
- Chemical and biomolecular engineering, Georgia Institute of Technology, Atlanta, 30332, USA
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, China
| | - José A Gascón
- Department of Chemistry & Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Gao Li
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, University of, 100049, China, China
| |
Collapse
|
7
|
Dong YY, Liu CY, Shi WQ, Guan ZJ, Wang QM. A Stable Open-Shelled Au 26 Nanocluster with Remarkable Performance in Selective Oxidation of Benzyl Alcohol. Angew Chem Int Ed Engl 2025; 64:e202420314. [PMID: 39853822 DOI: 10.1002/anie.202420314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/26/2025]
Abstract
Open metal sites are crucial in catalysis. We have used a "loose coordination strategy" (LCS) to preorganize open metal sites in gold cluster catalysts. A gold nanocluster with composition of [Au26(3,4-Me2-Ph-form)9(iPr2-imy)3(Me2S)](BF4)2 (iPr2-imy=1,3-Diisopropylimidazolium tetrafluoroborate, 3,4-Me2-Ph-form=N,N'-Di(3,4-dimethyl-phenyl)formamidine) (Au26) has been obtained by one pot synthesis, i.e. the direct reduction of Me2SAuCl in the presence of N-heterocyclic carbenes and amidinate ligands. ESI-TOF-MS reveals that the Me2S ligand is detached from the cluster to form open sites. The accessibility of the exposed Au atoms has been confirmed quantitatively by luminescent titration with 2-naphthalenethiol. Surprisingly, Au26 has 15 valence electrons, and the presence of an unpaired electron is confirmed by superconducting quantum interference device (SQUID) and electron paramagnetic resonance (EPR). This open-shelled Au26 not only shows unexpected high stability but also exhibits excellent catalytic performance toward the selective oxidation of benzyl alcohol to benzaldehyde, achieving a remarkable turnover number up to 100670.
Collapse
Affiliation(s)
- Yuan-Yuan Dong
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, P.R. China
| | - Chun-Yu Liu
- Jiangsu Engineering Research Centre for Digital Textile Inkjet Printing Key Laboratory of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu, 214122, P. R. China
| | - Wan-Qi Shi
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, P.R. China
| | - Zong-Jie Guan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Quan-Ming Wang
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
8
|
Shi WQ, Zeng L, Long ZC, Guan ZJ, Han XS, Hu F, Zhou M, Wang QM. Ligand Effects on Luminescence of Atomically Precise Gold Nanoclusters. J Phys Chem Lett 2025:2204-2211. [PMID: 39982974 DOI: 10.1021/acs.jpclett.4c03544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
Great efforts have been made to establish the structure-property relationships of ligand-protected metal nanoclusters. An alkynyl-protected gold nanocluster Au28(tBuC6H4C≡C)20 (Au28-C2) was synthesized and structurally characterized. It has an isostructural metal kernel and a quite similar ligand shell to its counterpart Au28(tBuC6H4S)20 (Au28-S), which provides a valuable platform for studying ligand effects on the luminescence of clusters. The emission intensity of Au28-C2 in solution is ∼10-fold that of Au28-S. The only structural difference between these two clusters is the donor atom or group, i.e., C≡C for Au28-C2 versus S for Au28-S. Temperature-dependent experiments indicate that the two Au28 clusters have different thermodynamic behaviors and radiative processes. The study on the excited-state dynamics by transient absorption spectroscopy indicates that Au28-C2 has a larger triplet-state population than Au28-S. This work shows important ligand effects on the emission properties of metal nanoclusters, which provide new perspectives for the designed synthesis of functional metal nanoclusters.
Collapse
Affiliation(s)
- Wan-Qi Shi
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China
| | - Linlin Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zhen-Chao Long
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China
| | - Zong-Jie Guan
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China
- Department of Chemistry, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Xu-Shuang Han
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China
| | - Feng Hu
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Quan-Ming Wang
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
9
|
Maity S, Kolay S, Chakraborty S, Devi A, Rashi, Patra A. A comprehensive review of atomically precise metal nanoclusters with emergent photophysical properties towards diverse applications. Chem Soc Rev 2025; 54:1785-1844. [PMID: 39670813 DOI: 10.1039/d4cs00962b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Atomically precise metal nanoclusters (MNCs) composed of a few to hundreds of metal atoms represent an emerging class of nanomaterials with a precise composition. With the size approaching the Fermi wavelength of electrons, their energy levels are well-separated, leading to molecule-like properties, like discrete single electronic transitions, tunable photoluminescence (PL), inherent structural anisotropy, and distinct redox behavior. Extensive synthetic efforts and electronic structure revelation have expanded applicability of MNCs in catalysis, optoelectronics, and biology. This review highlights the intriguing photophysical and electrochemical behaviors of MNCs and their regulatory parameters and applications. Initially, we present a brief discussion on the evolution of MNCs from gas-phase naked metal clusters to monolayer ligand-protected MNCs along with representative studies on their electronic structure. Due to their quantized molecular orbitals, they often exhibit PL, which can be regulated based on their capping ligands, number of atoms, crystal packing, presence of heterometal, and surrounding environment. Apart from PL, the relaxation pathways of MNCs on an ultrafast time scale have been extensively studied, which significantly differ from that of plasmonic metal nanoparticles. Moreover, their interaction with high-intensity light results in unique non-linear optical properties. The synergy between MNCs in a hierarchical self-assembled structure has been exploited to enhance their PL by precisely tuning their non-covalent interactions. Moreover, several NC-based hybrids have been designed to exhibit efficient electron or energy transfer in the photoexcited state. In the next section, we briefly focus on the redox behavior of NCs and facile electron transfer to suitable substrates, which result in enzyme-like catalytic activity. Utilizing these photophysical and electrochemical behaviors, NCs are widely employed in catalysis, optical sensing, and light-harvesting applications, which are also discussed in this review. In the final section, conclusions and open questions for the NC research community are included. This review will provide a comprehensive view of the emerging physicochemical properties of MNCs, thereby enabling an understanding for their precise modulation in future.
Collapse
Affiliation(s)
- Subarna Maity
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sarita Kolay
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Sikta Chakraborty
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Aarti Devi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Rashi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| |
Collapse
|
10
|
Suzuki R, Chen Y, Ogawa Y, Enokido M, Kitagawa Y, Hasegawa Y, Konishi K, Shichibu Y. Theory-Directed Ligand-Shell Engineering of Ultrasmall Gold Clusters: Remarkable Effects of Ligand Arrangement on Optical Properties. J Phys Chem Lett 2025; 16:1432-1439. [PMID: 39887033 DOI: 10.1021/acs.jpclett.4c03486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Ligand-shell engineering of ultrasmall metal clusters is a burgeoning research field aiming to develop cluster-specific properties. However, predicting these properties prior to synthesis is challenging due to their high sensitivity to geometric and/or electronic variations in ultrasmall metal cores, hindering further exploration. In this study, we present a theory-directed ligand-shell design and significant red-shift in absorption of a prolate-shaped [Au8(diphosphine)4Cl2]2+ cluster by synthesizing and characterizing enantiopure octagold clusters bearing chiral BINAP-type ligands [BINAP = 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl]. Crystallographic analysis reveals the predesigned ligand arrangement and twisted gold-core framework. The enantiomeric clusters show significant changes in both absorption and photoluminescence compared with a previous Au8 analogue and exhibit chiroptical signals. Furthermore, theoretical calculations visually unveil the atomic level origins of their optical and chiroptical absorption characteristics. This work not only highlights the effectiveness of ligand-shell engineering in creating unique photophysical properties but also offers a viable, theory-guided strategy for designing and functionalizing ligated metal clusters.
Collapse
Affiliation(s)
- Rintaro Suzuki
- Graduate School of Environmental Science, Hokkaido University, North 10 West 5, Sapporo 060-0810, Japan
| | - Yuxiang Chen
- Graduate School of Environmental Science, Hokkaido University, North 10 West 5, Sapporo 060-0810, Japan
| | - Yuri Ogawa
- Graduate School of Environmental Science, Hokkaido University, North 10 West 5, Sapporo 060-0810, Japan
| | - Masaki Enokido
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 13 West 8, Sapporo 060-8628, Japan
| | - Yuichi Kitagawa
- Faculty of Engineering, Hokkaido University, North 13 West 8, Sapporo 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, North 21 West 10, Sapporo 001-0021, Japan
| | - Yasuchika Hasegawa
- Faculty of Engineering, Hokkaido University, North 13 West 8, Sapporo 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, North 21 West 10, Sapporo 001-0021, Japan
| | - Katsuaki Konishi
- Graduate School of Environmental Science, Hokkaido University, North 10 West 5, Sapporo 060-0810, Japan
- Faculty of Environmental Earth Science, Hokkaido University, North 10 West 5, Sapporo 060-0810, Japan
| | - Yukatsu Shichibu
- Graduate School of Environmental Science, Hokkaido University, North 10 West 5, Sapporo 060-0810, Japan
- Faculty of Environmental Earth Science, Hokkaido University, North 10 West 5, Sapporo 060-0810, Japan
| |
Collapse
|
11
|
Kulkarni VK, Albright EL, Zeinizade E, Steele E, Chen J, Ding L, Malola S, Takano S, Harrington K, Kwon N, Levchenko TI, Nambo M, Tsukuda T, Häkkinen H, Stamplecoskie K, Zheng G, Crudden CM. Impact of Ligand Structure on Biological Activity and Photophysical Properties of NHC-Protected Au 13 Nanoclusters. J Am Chem Soc 2025; 147:4017-4025. [PMID: 39841867 DOI: 10.1021/jacs.4c12072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
N-heterocyclic carbene (NHC)-protected gold nanoclusters display high stability and high photoluminescence, making them well-suited for fluorescence imaging and photodynamic therapeutic applications. We report herein the synthesis of two bisNHC-protected Au13 nanoclusters with π-extended aromatic systems. Depending on the position of the π-extended aromatic system, changes to the structure of the ligand shell in the cluster are observed, with the ability to correlate increases in rigidity with increases in fluorescence quantum yield. Density functional theory analysis reveals that both synthesized Au13 nanoclusters are 8-electron superatoms but have distinct differences in the characteristics of the lowest unoccupied single-electron states. Qualitatively, this implies different mechanisms for excitations and their decay over the fundamental energy gap. Stability and photophysical studies were carried out to provide the emission lifetime and optical purity of the two clusters. Active intracellular uptake of the nanoclusters was confirmed in vitro using confocal microscopy in human epithelial carcinoma cells. Reactive oxygen species production was measured at 7% efficiency. The high cluster stability, photoluminescence quantum yields, and efficient cellular uptake in cancer cells suggest potential for these nanoclusters as highly efficient and tunable nanomedical platforms.
Collapse
Affiliation(s)
- Viveka K Kulkarni
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Emily L Albright
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Elham Zeinizade
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Emily Steele
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Juan Chen
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Lili Ding
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Sami Malola
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Departments of Chemistry and Physics, Nanoscience Centre, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Shinjiro Takano
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kristen Harrington
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Nahyun Kwon
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Tetyana I Levchenko
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Masakazu Nambo
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8602, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Tatsuya Tsukuda
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hannu Häkkinen
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Departments of Chemistry and Physics, Nanoscience Centre, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Kevin Stamplecoskie
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Gang Zheng
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Cathleen M Crudden
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
12
|
Sullivan AI, Steele EA, Takano S, Zeinizade E, Chen J, Malola S, Siddhant K, Häkkinen H, Stamplecoskie KG, Tsukuda T, Zheng G, Crudden CM. Diving into Unknown Waters: Water-Soluble Clickable Au 13 Nanoclusters Protected with N-Heterocyclic Carbenes for Bio-Medical Applications. J Am Chem Soc 2025; 147:4230-4238. [PMID: 39841626 DOI: 10.1021/jacs.4c14240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The use of gold nanoclusters in biomedical applications has been steadily increasing in recent years. However, water solubility is a key factor for these applications, and water-soluble gold nanoclusters are often difficult to isolate and susceptible to exchange or oxidation in vivo. Herein, we report the isolation of N-heterocyclic carbene (NHC)-protected atomically precise gold nanoclusters functionalized with triethylene glycol monomethyl ether groups. These clusters are highly luminescent and water soluble and are shown to be stable in biological media. Importantly, the core structure, stability, and high quantum yield of the nanoclusters were conserved after backbone modification. Depending on the nature of the halide group, clusters have high stability in simulated biofluids and resist attack by glutathione. In vivo studies show that no abnormal cellular morphology is introduced in the kidney, liver, or spleen of mice treated with [Au13(NHC)5Br2]Br3 nanoclusters protected by 1,8-dimethylnaphthyl-linked NHCs. This cluster has a blood elimination half-life of 0.68 h. Functionalization of the wingtip groups of the cluster with azide groups is demonstrated, and complete reaction of all 10 azide groups with strained alkynes is shown, highlighting the potential of these clusters in biological settings.
Collapse
Affiliation(s)
- Angus I Sullivan
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Emily A Steele
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Shinjiro Takano
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Elham Zeinizade
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Juan Chen
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Sami Malola
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Departments of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Kumar Siddhant
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Hannu Häkkinen
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Departments of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Kevin G Stamplecoskie
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Tatsuya Tsukuda
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Gang Zheng
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Cathleen M Crudden
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
13
|
Zhou M, Zhou C, Chen S, Xiong L, Jin S, Zhu M. Synthesis, Structural Characterization, and Electronic Structure Analysis of F 2-type Superatomic Molecules. Inorg Chem 2024; 63:23772-23779. [PMID: 39606902 DOI: 10.1021/acs.inorgchem.4c03934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The investigation of bonding interactions between superatoms continues to be a largely unexplored area of study. In this study, we present the synthesis and characterization of two F2-type superatomic molecules [Au2Ag25(C7H4NOS)13(DPPB)3] and [Au9Ag18(C5H4NS)11(DPPM)5]2+ (Au2Ag25 and Au9Ag18 for short, respectively). The overall structures were confirmed via X-ray crystallography, revealing the horizontal expansion of the biicosahedral Au2Ag21 yielding [Au2Ag25(C7H4NOS)13(DPPB)3] and vertical expansion of the biicosahedral Au8Ag15 yielding [Au9Ag18(C5H4NS)11(DPPM)5]2+. Furthermore, their electronic structures were elucidated through density functional theory (DFT) calculations. Spectroscopic analysis of electronic absorption characteristics, in conjunction with Tamm-Dancoff approximation DFT (TDA-DFT) calculations, revealed that the Au2Ag21(+9) and Au8Ag15(+9) cores were analogues of the F2 molecule in electronic configuration.
Collapse
Affiliation(s)
- Manman Zhou
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Chuanjun Zhou
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Shuang Chen
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Lin Xiong
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, P. R. China
| | - Shan Jin
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Manzhou Zhu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China
| |
Collapse
|
14
|
Chang Y, Wang J, Guo H, Yao W, Xie H, Li L, Liu X. Temperature-dependent luminescent copper nanoclusters with noncovalent interactions for determination of β-galactosidase activity. Mikrochim Acta 2024; 191:768. [PMID: 39607597 DOI: 10.1007/s00604-024-06844-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
The synthesis of a novel bidentate ligand-protected copper nanocluster via a solid-state strategy is reported. Single-crystal X-ray diffraction analysis result reveals that the copper nanocluster features an octahedral core (Cu6) coordinated by six ligands. Noncovalent interactions (C-H…π and π…π) exist between the copper nanoclusters. The copper nanocluster displays luminescence even at 250 °C. The luminescence intensity is linearly correlated with temperature changes. The copper nanocluster can assemble into luminescent nanosheets whose emission is quenched by 4-nitrophenol. Spectroscopic analysis and theoretical calculations results demonstrate that the inner filter effect and electron transfer cause the above quenching effect. A probe based on luminescent nanosheets was constructed for β-galactosidase activity determination. The linearity range is 3.3-91.8 U·L-1, and the limit of detection is 0.45 U·L-1. This probe was also evaluated for determination of the β-galactosidase activity in human serum via spiking experiments. The recoveries ranged from 96.2% to 101.8%.
Collapse
Affiliation(s)
- Yanping Chang
- Department of Chemistry and Environment, Jiaying University, Meisong Road 100, Meizhou, 514015, Guangdong, P. R. China
| | - Jingyi Wang
- Department of Chemistry and Environment, Jiaying University, Meisong Road 100, Meizhou, 514015, Guangdong, P. R. China
| | - Hongwei Guo
- Department of Chemistry and Environment, Jiaying University, Meisong Road 100, Meizhou, 514015, Guangdong, P. R. China
| | - Wanqing Yao
- Department of Chemistry and Environment, Jiaying University, Meisong Road 100, Meizhou, 514015, Guangdong, P. R. China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, Wen'er West Road 712, Hangzhou, 310003, Zhejiang, P. R. China
| | - Long Li
- Department of Chemistry and Environment, Jiaying University, Meisong Road 100, Meizhou, 514015, Guangdong, P. R. China.
| | - Xianhu Liu
- Department of Chemistry and Environment, Jiaying University, Meisong Road 100, Meizhou, 514015, Guangdong, P. R. China.
| |
Collapse
|
15
|
Zuo D, Guo H, Xu Q, He A, Li Z, Li S, Shen H. N-Heterocyclic carbene-stabilized gold-copper nanoclusters: synthesis, bonding and mechanochromism. NANOSCALE 2024; 16:20228-20234. [PMID: 39397709 DOI: 10.1039/d4nr03320e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
N-Heterocyclic carbene (NHC) ligands have emerged as highly effective surface ligands for the protection and functionalization of metal nanoclusters (NCs). However, research on NHC-stabilized metal NCs, including their synthesis, structure, properties, and applications, is still in its early stages. In this study, we present the first gold-copper alloy cluster protected by both NHC and alkyne ligands, denoted as Au3Cu(iPrNHCiPr)(PA)4 (abbreviated as Au3Cu, where iPrNHCiPr is a bidentate N-heterocyclic carbene ligand with isopropyl as the N-substituent, and PA is a phenylethynyl group). The precise composition of Au3Cu was confirmed through the utilization of electrospray ionization mass spectrometry (ESI-MS), and its structure was determined via X-ray single-crystal diffraction. It is worth noting that although the Au3Cu clusters do not display substantial light emission when exposed to UV lamps, they are capable of emitting green fluorescence subsequent to undergoing mechanical milling (λem = 500 nm). Powder X-ray diffraction (PXRD) analysis reveals that this transition is attributed to a crystalline-amorphous transformation of the cluster crystals. These atomically precise alloy clusters are expected to serve as a model for further investigation into the principles of mechanical milling of metal clusters for discolouration.
Collapse
Affiliation(s)
- Dongjie Zuo
- The College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Huifang Guo
- The College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Qinghua Xu
- The College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Ayisha He
- The College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Zilin Li
- The College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Simin Li
- The College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Hui Shen
- The College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
16
|
Jia T, Cheng PM, Zhang MX, Liu WD, Li CY, Su HF, Long LS, Zheng LS, Kong XJ. Ln III/Cu I Bimetallic Nanoclusters with Enhanced NIR-II Luminescence. J Am Chem Soc 2024; 146:28618-28623. [PMID: 39400366 DOI: 10.1021/jacs.4c09447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Coinage-metal clusters with excellent luminescence properties have attracted considerable interest due to their intriguing structures and potential applications. However, achieving strong near-infrared (NIR) luminescence in these clusters is highly challenging. Here, we have successfully synthesized the first LnIII/CuI bimetallic clusters, formulated as [LnCu54O6Cl3(2-MeO-PhC≡C)36] (ClO4)6 (Ln = Yb for YbCu54, Er for ErCu54, and Gd for GdCu54). Single crystal X-ray diffraction showed that the LnCu54 clusters have a three-layered core-shell structure, consisting of (LnO6)@Cu18Cl3@Cu36 units protected by 36 2-MeO-PhC≡C- ligands. Notably, the YbCu54 cluster exhibits significant NIR-II luminescence at 986 nm with the solid quantum efficiency of 33.3%, the highest among Cu clusters with NIR-II emission. This work not only reports the first category of LnIII/CuI clusters but also presents a method to enhance NIR luminescence in coinage-metal clusters through the incorporation of LnIII ions.
Collapse
Affiliation(s)
- Tao Jia
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Pei-Ming Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ming-Xuan Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei-Dong Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chong-Yang Li
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hai-Feng Su
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
17
|
Luo L, Liu Z, Mazumder A, Jin R. Raising Near-Infrared Photoluminescence Quantum Yield of Au 42 Quantum Rod to 50% in Solutions and 75% in Films. J Am Chem Soc 2024; 146. [PMID: 39360944 PMCID: PMC11487566 DOI: 10.1021/jacs.4c11703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024]
Abstract
Highly emissive gold nanoclusters (NCs) in the near-infrared (NIR) region are of wide interest, but challenges arise from the excessive nonradiative dissipation. Here, we demonstrate an effective suppression of the motions of surface motifs on the Au42(PET)32 rod (PET = 2-phenylethanethiolate) by noncoordinative interactions with amide molecules and accordingly raise the NIR emission (875/1045 nm peaks) quantum yield (QY) from 18% to 50% in deaerated solution at room temperature, which is rare in Au NCs. Cryogenic photoluminescence measurements indicate that amide molecules effectively suppress the vibrations associated with the Au-S staple motifs on Au42 and also enhance the radiative relaxation, both of which lead to stronger emission. When Au42 NCs are embedded in a polystyrene film containing amide molecules, the PLQY is further boosted to 75%. This research not only produces a highly emissive material but also provides crucial insights for the rational design of NIR emitters and advances the potential of atomically precise Au NCs for diverse applications.
Collapse
Affiliation(s)
- Lianshun Luo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zhongyu Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Abhrojyoti Mazumder
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
18
|
Yuan X, Ye Z, Malola S, Shekhah O, Jiang H, Hu X, Wang JX, Wang H, Shkurenko A, Jia J, Guillerm V, Mohammed OF, Chen X, Zheng N, Häkkinen H, Eddaoudi M. Synthesis and crystallization of a carboxylate functionalized N-heterocyclic carbene-based Au 13 cluster with strong photo-luminescence. Chem Sci 2024:d4sc04594g. [PMID: 39290588 PMCID: PMC11403932 DOI: 10.1039/d4sc04594g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Here we report the synthesis and crystallization of a -COOH-capped N-heterocyclic carbene (NHC)-protected Au13 cluster. The single-crystal structure of the -COOH-capped NHC-Au13 cluster reveals a classic icosahedral core with one Au atom in its center. The icosahedral core is surrounded by five NHC ligands with pseudo C5 symmetry and exposed carboxyls in a pentagonal antiprism fashion. The detailed formula of the Au cluster was identified as Au13(bi-NHC carboxyl)5Cl2 (hereafter abbreviated as Au13-c). The density functional theory (DFT) calculations confirm that Au13-c is an electronically stable eight-electron super-atom cluster and elucidate its optical transitions in the UV-Vis range. The Au13-c cluster exhibits excellent thermal and chemical stability under bio-relevant conditions. Additionally, this cluster shows a strong red emission in DMF and H2O with an excellent quantum yield (QY) of 40% and 12.6%, respectively. The high QY of Au13-c enables its use in cell imaging on both cancer and noncancerous cells.
Collapse
Affiliation(s)
- Xiting Yuan
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia +966 544700025
| | - Zichen Ye
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Sami Malola
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä FI-40014 Jyväskylä Finland
| | - Osama Shekhah
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia +966 544700025
| | - Hao Jiang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Xinyan Hu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jian-Xin Wang
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia +966 544700025
- Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Hong Wang
- Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Aleksander Shkurenko
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia +966 544700025
| | - Jiangtao Jia
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia +966 544700025
| | - Vincent Guillerm
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia +966 544700025
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Xiaolan Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä FI-40014 Jyväskylä Finland
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia +966 544700025
| |
Collapse
|
19
|
Feng Y, Lv Y, Wei X, Yu H, Kang X, Zhu M. Relationship between Structural Defects and Free Electrons in Icosahedral Nanoclusters. J Phys Chem Lett 2024; 15:8910-8916. [PMID: 39172035 DOI: 10.1021/acs.jpclett.4c02179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
According to the classic superatom model, metal nanoclusters with a "magic number" of free valence electrons display high stability, manifesting as the closed-shell-dependent electronic robustness. The icosahedral nanobuilding blocks containing eight free electrons were the most common in constructing metal nanoclusters; however, the structure defect-dependent variations of the free electron count in icosahedral configurations are still far from thorough research. Here, we reported a hydride-containing [Pt2Ag15(SAdm)4(DPPOE)4H]2+ nanocluster with two largely defective Pt1Ag8 icosahedral cores. Together with previously reported complete or slightly defective icosahedra in metal nanoclusters, the largely defective Pt1Ag8 core provided important clues to reveal the evolutionary mode of structural defects and free electrons in icosahedral nanoclusters; the free electron count of icosahedron was reduced two-by-two (i.e., from 8e to 6e and then to 4e) accompanied by the structure defection. Overall, the work presented a novel Pt2Ag15 nanocluster with a largely defective core structure that enables an atomic-level understanding of the relationship between structural defects and free electrons in icosahedral nanoclusters.
Collapse
Affiliation(s)
- Yan Feng
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Ying Lv
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
20
|
DeJesus JF, Jacob SI, Phung QM, Mimura K, Aramaki Y, Ooi T, Nambo M, Crudden CM. If the Crown Fits: Sterically Demanding N-Heterocyclic Carbene Promotes the Formation of Au 8Pt Nanoclusters. J Am Chem Soc 2024; 146:23806-23813. [PMID: 39141005 DOI: 10.1021/jacs.4c04873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
While N-heterocyclic carbenes (NHCs) have recently been shown to be effective ligands for gold nanoclusters, very few examples of heterometallic clusters incorporating nongroup 11 metals are known. We present herein an Au-Pt NHC cluster featuring a crown-shaped [Au8Pt(NHC)8]2+ core, produced in high yield without the need for chromatographic purification. The method was largely independent of the substitution pattern of the NHC backbone; however, bulky wingtip groups were needed for clean conversion to the Au8Pt cluster. Clusters were characterized using single crystal X-ray diffraction, multinuclear nuclear magnetic resonance, electrospray ionization mass spectroscopy, and ultraviolet-visible spectroscopy, and electrochemical features of the cluster are also presented. A detailed analysis of the in-progress reaction mixture by ESI-MS supports the direct involvement of Au-H species as intermediates in cluster formation. These studies further demonstrate that NHC wingtip sterics play a key part in determining the nature of the initial cluster species, providing critical information for the generation of new NHC-stabilized nanoclusters.
Collapse
Affiliation(s)
- Joseph F DeJesus
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
| | - Samuel I Jacob
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
| | - Quan Manh Phung
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Koichi Mimura
- Department of Earth and Environmental Sciences, Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8602, Japan
| | - Yoshitaka Aramaki
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Takashi Ooi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Masakazu Nambo
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Cathleen M Crudden
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
21
|
Tan Y, Li K, Xu J, Li Q, Yang S, Chai J, Pei Y, Jia D, Zhu M. A single-gold-atom addition regulates sharp redshift in the fluorescence of atomically precise nanoclusters. NANOSCALE 2024; 16:15663-15669. [PMID: 39058368 DOI: 10.1039/d4nr01963f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The manipulation of emission peaks at the atomic level and the investigation of the fluorescent origin mechanism are important issues. In this study, a phosphine-mediated modification method was employed on Au36(TBBT)24 nanocluster to produce a new gold nanocluster Au37(TBBT)21(TPP)2. The structural comparison revealed that Au37(TBBT)21(TPP)2 has a structural framework similar to that of Au36(TBBT)24 except for the reconstruction of its surface motifs, the addition of one gold atom into the kernel, and local structural distortion. Interestingly, compared with Au36(TBBT)24, the emission peak of Au37(TBBT)21(TPP)2 is red-shifted into the NIR-II windows (972 nm vs. 1152 nm in CDCl3) with a quantum yield of 1.5%. Furthermore, the origin of the NIR-II fluorescence in Au37(TBBT)21(TPP)2 and the red-shift mechanism of the emission peak were explored by combining the crystal structure and DFT calculations. The results reveal that the insertion of the 37th gold atom into the core can increase the contribution of the gold atoms to the HOMO orbitals and change the origin of their fluorescence from local excitation (LE) to inter fragment charge transfer (IFCT).
Collapse
Affiliation(s)
- Yesen Tan
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China.
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Kang Li
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China.
| | - Jingjing Xu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Qinzhen Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China.
| | - Dianzeng Jia
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
22
|
Dong W, Zhang F, Li T, Zhong Y, Hong L, Shi Y, Jiang F, Zhu H, Lu M, Yao Q, Xu W, Wu Z, Bai X, Zhang Y. Triple-Phosphorescent Gold Nanoclusters Enabled by Isomerization of Terminal Thiouracils in the Surface Motifs. J Am Chem Soc 2024; 146:22180-22192. [PMID: 39087925 DOI: 10.1021/jacs.4c01291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Metal nanoclusters (NCs) hold great promise for expressing multipeak emission based on their well-defined total structure with diverse luminescent centers. Herein, we report the surface motif-dictated triple phosphorescence of Au NCs with dynamic color turning. The deprotonation-triggered isomerization of terminal thiouracils can evolve into a mutual transformation among their hierarchical motifs, thus serving a multipeak-emission expression with good tailoring. More importantly, the underlying electron transfer is thoroughly identified by excluding the radiative and nonradiative energy transfer, where electrons flow from the first phosphorescent state to the last two ones. The findings shed light on finely tailing motifs at the molecular level to motivate studies on customizable luminescence characteristics of metal NCs.
Collapse
Affiliation(s)
- Weinan Dong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Fujun Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Tingting Li
- College of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130012, China
| | - Yuan Zhong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Le Hong
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yujia Shi
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Feng Jiang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Haifeng Zhu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Min Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Qiaofeng Yao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Key Laboratory of Organic Integrated Circuits, Ministry of Education, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Wenwu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
23
|
Yang Z, Xie J. Golden insights from a silver superatom. Natl Sci Rev 2024; 11:nwae267. [PMID: 39176169 PMCID: PMC11339602 DOI: 10.1093/nsr/nwae267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/28/2024] [Indexed: 08/24/2024] Open
Affiliation(s)
- Zhucheng Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| |
Collapse
|
24
|
He WM, Hu JH, Cui YJ, Li J, Si YB, Wang SB, Zhao YJ, Zhou Z, Ma LF, Zang SQ. Filling the gaps in icosahedral superatomic metal clusters. Natl Sci Rev 2024; 11:nwae174. [PMID: 38887544 PMCID: PMC11182670 DOI: 10.1093/nsr/nwae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 06/20/2024] Open
Abstract
Chemically modified superatoms have emerged as promising candidates in the new periodic table, in which Au13 and its doped M n Au13- n have been widely studied. However, their important counterpart, Ag13 artificial element, has not yet been synthesized. In this work, we report the synthesis of Ag13 nanoclusters using strong chelating ability and rigid ligands, that fills the gaps in the icosahedral superatomic metal clusters. After further doping Ag13 template with different degrees of Au atoms, we gained insight into the evolution of their optical properties. Theoretical calculations show that the kernel metal doping can modulate the transition of the excited-state electronic structure, and the electron transfer process changes from local excitation (LE) to charge transfer (CT) to LE. This study not only enriches the families of artificial superatoms, but also contributes to the understanding of the electronic states of superatomic clusters.
Collapse
Affiliation(s)
- Wei-Miao He
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jia-Hua Hu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yu-Jia Cui
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- School of Science, Xuchang University, Xuchang 461000, China
| | - Yu-Bing Si
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuai-Bo Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yu-Jing Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhan Zhou
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Lu-Fang Ma
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
25
|
Li S, Li NN, Dong XY, Zang SQ, Mak TCW. Chemical Flexibility of Atomically Precise Metal Clusters. Chem Rev 2024; 124:7262-7378. [PMID: 38696258 DOI: 10.1021/acs.chemrev.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ligand-protected metal clusters possess hybrid properties that seamlessly combine an inorganic core with an organic ligand shell, imparting them exceptional chemical flexibility and unlocking remarkable application potential in diverse fields. Leveraging chemical flexibility to expand the library of available materials and stimulate the development of new functionalities is becoming an increasingly pressing requirement. This Review focuses on the origin of chemical flexibility from the structural analysis, including intra-cluster bonding, inter-cluster interactions, cluster-environments interactions, metal-to-ligand ratios, and thermodynamic effects. In the introduction, we briefly outline the development of metal clusters and explain the differences and commonalities of M(I)/M(I/0) coinage metal clusters. Additionally, we distinguish the bonding characteristics of metal atoms in the inorganic core, which give rise to their distinct chemical flexibility. Section 2 delves into the structural analysis, bonding categories, and thermodynamic theories related to metal clusters. In the following sections 3 to 7, we primarily elucidate the mechanisms that trigger chemical flexibility, the dynamic processes in transformation, the resultant alterations in structure, and the ensuing modifications in physical-chemical properties. Section 8 presents the notable applications that have emerged from utilizing metal clusters and their assemblies. Finally, in section 9, we discuss future challenges and opportunities within this area.
Collapse
Affiliation(s)
- Si Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Na-Na Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C W Mak
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR 999077, China
| |
Collapse
|
26
|
Kim JS, Park N, Kwak SJ, Jeon Y, Lee G, Kim Y, Lee WB, Park J. Structure Effects of Ligands in Gold-Ligand Complexes for Controlled Formation of Gold Nanoclusters. ACS NANO 2024; 18:14244-14254. [PMID: 38758709 DOI: 10.1021/acsnano.3c12695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Metal nanoclusters (NCs) are a special class of nanoparticles composed of a precise number of metal atoms and ligands. Because the proportion of ligands to metal atoms is high in metal NCs, the ligand type determines the physical properties of metal NCs. Furthermore, ligands presumably govern the entire formation process of the metal NCs. However, their roles in the synthesis, especially as factors in the uniformity of metal NCs, are not understood. It is because the synthetic procedure of metal NCs is highly convoluted. The synthesis is initiated by the formation of various metal-ligand complexes, which have different numbers of atoms and ligands, resulting in different coordinations of metal. Moreover, these complexes, as actual precursors to metal NCs, undergo sequential transformations into a series of intermediate NCs before the formation of the desired NCs. Thus, to resolve the complicated synthesis of metal NCs and achieve their uniformity, it is important to investigate the reactivity of the complexes. Herein, we utilize a combination of mass spectrometry, density functional theory, and electrochemical measurements to understand the ligand effects on the reactivity of AuI-thiolate complexes toward the reductive formation of Au NCs. We discover that the stability of the complexes can be increased by either van der Waals interactions induced by the long carbon chain of ligands or by non-thiol functional groups in the ligands, which additionally coordinate with AuI in the complexes. Such structural effects of thiol ligands determine the reduction reactivity of the complexes and the amount of NaBH4 required for the controlled synthesis of the Au NCs.
Collapse
Affiliation(s)
- Ji Soo Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Namjun Park
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Jae Kwak
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Yonggoon Jeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Gyuhan Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Younhwa Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Jungwon Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| |
Collapse
|
27
|
Tang J, Xu N, Ren A, Ma L, Xu W, Han Z, Chen Z, Li Q. Two-Orders-of-Magnitude Enhancement of Photoinitiation Activity via a Simple Surface Engineering of Metal Nanoclusters. Angew Chem Int Ed Engl 2024; 63:e202403645. [PMID: 38530138 DOI: 10.1002/anie.202403645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Development of high-performance photoinitiator is the key to enhance the printing speed, structure resolution and product quality in 3D laser printing. Here, to improve the printing efficiency of 3D laser nanoprinting, we investigate the underlying photochemistry of gold and silver nanocluster initiators under multiphoton laser excitation. Experimental results and DFT calculations reveal the high cleavage probability of the surface S-C bonds in gold and silver nanoclusters which generate multiple radicals. Based on this understanding, we design several alkyl-thiolated gold nanoclusters and achieve a more than two-orders-of-magnitude enhancement of photoinitiation activity, as well as a significant improvement in printing resolution and fabrication window. Overall, this work for the first time unveils the detailed radical formation pathways of gold and silver nanoclusters under multiphoton activation and substantially improves their photoinitiation sensitivity via surface engineering, which pushes the limit of the printing efficiency of 3D laser lithography.
Collapse
Affiliation(s)
- Jin Tang
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ning Xu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - An Ren
- The State Key Laboratory of Fluid Power and Mechatronic Systems. School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Liang Ma
- The State Key Laboratory of Fluid Power and Mechatronic Systems. School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wenwu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Zhongkang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zijie Chen
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qi Li
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
28
|
Niihori Y, Kosaka T, Negishi Y. Triplet-triplet annihilation-based photon upconversion using nanoparticles and nanoclusters. MATERIALS HORIZONS 2024; 11:2304-2322. [PMID: 38587491 DOI: 10.1039/d4mh00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The phenomenon of photon upconversion (UC), generating high-energy photons from low-energy photons, has attracted significant attention. In particular, triplet-triplet annihilation-based UC (TTA-UC) has been achieved by combining the excitation states of two types of molecules, called the sensitizer and emitter (or annihilator). With TTA-UC, it is possible to convert weak, incoherent near-infrared (NIR) light, which constitutes half of the solar radiation intensity, into ultraviolet and visible light that are suitable for the operation of light-responsive functional materials or devices such as solar cells and photocatalysts. Research on TTA-UC is being conducted worldwide, often employing materials with high intersystem crossing rates, such as metal porphyrins, as sensitizers. This review summarizes recent research and trends in triplet energy transfer and TTA-UC for semiconductor nanoparticles or nanocrystals with diameters in the nanometer range, also known as quantum dots, and for ligand-protected metal nanoclusters, which have even smaller well-defined sub-nanostructures. Concerning nanoparticles, transmitter ligands have been applied on the surface of the nanoparticles to efficiently transfer triplet excitons formed inside the nanoparticles to emitters. Applications are expanding to solid-state UC devices that convert NIR light to visible light. Additionally, there is active research in the development of sensitizers using more cost-effective and environmentally friendly elements. Regarding metal nanoclusters, methods have been established for the evaluation of excited states, deepening the understanding of luminescent properties and excited relaxation processes.
Collapse
Affiliation(s)
- Yoshiki Niihori
- Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Taiga Kosaka
- Graduate School of Science, Department of Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuichi Negishi
- Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Graduate School of Science, Department of Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
29
|
Peter BD, Pei W, Andrew GN, Zhou S, Luo Z. A luminescent Ag 8(DPPY) 6(PhCC) 6 cluster with a triangular superatomic Ag 8 core. NANOSCALE 2024; 16:8090-8095. [PMID: 38563406 DOI: 10.1039/d4nr00527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We have synthesized single crystals of a highly stable Ag8 nanocluster protected by six ligands of diphenyl-2-phosphinic pyridine (DPPY) plus six ligands of phenylacetylene (PhCC). This Ag8(DPPY)6(PhCC)6 cluster bears a triangular superatomic Ag8 core, with the vertex and edge Ag atoms (quasi-triangle Ag6) being protected by both P and N bidentate coordination of the six DPPY ligands; meanwhile, the six PhCC ligands via μ3-C coordination form coordination on the two central Ag atoms capped on both sides of the triangle facet. Apart from the well-organized coordination of the two ligands pertaining to the balanced interactions with the Ag8 core, this Ag8 nanocluster exhibits superatomic stability with two delocalized valence electrons (1S2||1P0), assuming that the six PhCC ligands fix 6 localized electrons from the Ag atoms. Interestingly, the Ag8(DPPY)6(PhCC)6 NCs display temperature-dependent dual emissions at 330 and 535 nm under deep ultraviolet excitation. TD-DFT calculations reproduced the experimental spectrum, shedding light on the nature of excitation states and metal-ligand interactions in such a superatomic metal cluster.
Collapse
Affiliation(s)
- Blessing D Peter
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Pei
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Gaya N Andrew
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Si Zhou
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China.
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
30
|
Fujiwara Y, Ito S, Koyasu K, Tsukuda T. Gas-Phase Structures of [Au 21(SR) 14] - and [Au 17(SR) 10] - with Eight Electrons: Can They Support an Icosahedral Au 13 Core? J Phys Chem A 2024; 128:3119-3125. [PMID: 38626761 DOI: 10.1021/acs.jpca.4c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
A prototypical thiolate (RS)-protected gold cluster [Au25(SR)18]- has high stability due to specific geometric and electronic structures: an icosahedral (Ih) Au13 core with a closed electronic shell containing eight electrons is completely protected by six units of Au2(SR)3. Nevertheless, collisional excitation of [Au25(SR)18]- in a vacuum induces the sequential release of Au4(SR)4 to form [Au21(SR)14]- and [Au17(SR)10]- both containing eight electrons. To answer a naive question of whether these fragments bear an Ih Au13(8e) core, the geometrical structures of [Au21(SC3H7)14]- and [Au17(SC3H7)10]- in the gas phase were examined by the combination of anion photoelectron spectroscopy and density functional theory (DFT) calculation of simplified models of [Au21(SCH3)14]- and [Au17(SCH3)10]-. We concluded that [Au21(SC3H7)14]- retains a slightly distorted Ih Au13(8e) core, while [Au17(SC3H7)10]- has an amorphous Au13 core composed of triangular Au3, tetrahedral Au4, and prolate Au7 units. DFT calculations on putative species [Au19(SCH3)12]- and [Au18(SCH3)11]- suggested that the Ih Au13(8e) core undergoes dramatic structural deformation due to mechanical stress from μ2 ligation of only one RS.
Collapse
Affiliation(s)
- Yuki Fujiwara
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shun Ito
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kiichirou Koyasu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
31
|
Liu Z, Luo L, Kong J, Kahng E, Zhou M, Jin R. Bright near-infrared emission from the Au 39(SR) 29 nanocluster. NANOSCALE 2024; 16:7419-7426. [PMID: 38529816 DOI: 10.1039/d4nr00677a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The synthesis of atomically precise gold nanoclusters with high photoluminescence quantum yield (PLQY) in the near-infrared (NIR) region and understanding their photoluminescence mechanism are crucial for both fundamental science and practical applications. Herein, we report a highly luminescent, molecularly pure Au39(PET)29 (PET = 2-phenylethanethiolate) nanocluster with PLQY of 19% in the NIR range (915 nm). Steady state and time-resolved PL analyses, as well as temperature-dependent PL measurements reveal the emission nature of Au39(PET)29, which consists of prompt fluorescence (weak), thermally activated delayed fluorescence (TADF), and phosphorescence (predominant). Furthermore, strong dipole-dipole interaction in the solid-state (e.g., Au39(PET)29 nanoclusters embedded in a polystyrene thin-film) is found to narrow the energy gap between the S1 and T1 states, which results in faster intersystem crossing and reverse intersystem crossing; thus, the ratio of TADF to phosphorescence varies and the total PLQY is increased to 32%. This highly luminescent nanocluster holds promise in imaging, sensing and optoelectronic applications.
Collapse
Affiliation(s)
- Zhongyu Liu
- Department of Chemistry, Carnegie Mellon University. Pittsburgh, PA 15213, USA.
| | - Lianshun Luo
- Department of Chemistry, Carnegie Mellon University. Pittsburgh, PA 15213, USA.
| | - Jie Kong
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China. Hefei, Anhui 230026, China
| | - Ellen Kahng
- Department of Chemistry, Carnegie Mellon University. Pittsburgh, PA 15213, USA.
| | - Meng Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China. Hefei, Anhui 230026, China
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University. Pittsburgh, PA 15213, USA.
| |
Collapse
|
32
|
Shen H, Xu J, Fu Z, Wei X, Kang X, Shi W, Zhu M. Photoluminescence Quenching of Hydrophobic Ag 29 Nanoclusters Caused by Molecular Decoupling during Aqueous Phase Transfer and EmissionRecovery through Supramolecular Recoupling. Angew Chem Int Ed Engl 2024; 63:e202317995. [PMID: 38191987 DOI: 10.1002/anie.202317995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
Exploiting emissive hydrophobic nanoclusters for hydrophilic applications remains a challenge because of photoluminescence (PL) quenching during phase transfer. In addition, the mechanism underlying PL quenching remains unclear. In this study, the PL-quenching mechanism was examined by analyzing the atomically precise structures and optical properties of a surface-engineered Ag29 nanocluster with an all-around-carboxyl-functionalized surface. Specifically, phase-transfer-triggered PL quenching was justified as molecular decoupling, which directed an unfixed cluster surface and weakened the radiative transition. Furthermore, emission recovery of the quenched nanoclusters was accomplished by using a supramolecular recoupling approach through the glutathione-addition-induced aggregation of cluster molecules, wherein the restriction of intracluster motion and intercluster rotation strengthened the radiative transition of the clusters. The results of this work offer a new perspective on structure-emission correlations for atomically precise nanoclusters and hopefully provide insight into the fabrication of highly emissive cluster-based nanomaterials for downstream hydrophilic applications.
Collapse
Affiliation(s)
- Honglei Shen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Jiawei Xu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Ziwei Fu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| |
Collapse
|
33
|
Bernt F, Leonhardt CM, Schatz D, Wegner HA. Synthesis and investigation of a meta[6]cycloparaphenylene gold(I) N-heterocyclic carbene complex. Chem Commun (Camb) 2024; 60:3055-3058. [PMID: 38381535 DOI: 10.1039/d3cc06225b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Meta[n]cycloparaphenylenes (m[n]CPPs) as well as N-heterocyclic carbene (NHC) gold(I)-complexes are intriguing building blocks for material and life sciences due to their extraordinary structures resulting in unique photophysical properties. Herein, we report the combination of a m[6]CPP with a N-heterocyclic carbene serving as a ligand in a linear gold(I)-complex possessing the form [AuBr(NHC)]. Solid-state structures of both the precursor and the complex are presented and discussed. Moreover, we investigated the luminescence properties of both the imidazolium intermediate and the corresponding gold(I)-complex.
Collapse
Affiliation(s)
- Felix Bernt
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, Giessen 35392, Germany.
- Centre for Materials Research (ZfM/LaMa), Justus Liebig University Giessen, Heinrich Buff Ring 16, Giessen 35392, Germany
| | - Christopher M Leonhardt
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, Giessen 35392, Germany.
- Centre for Materials Research (ZfM/LaMa), Justus Liebig University Giessen, Heinrich Buff Ring 16, Giessen 35392, Germany
| | - Dominic Schatz
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, Giessen 35392, Germany.
- Centre for Materials Research (ZfM/LaMa), Justus Liebig University Giessen, Heinrich Buff Ring 16, Giessen 35392, Germany
| | - Hermann A Wegner
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, Giessen 35392, Germany.
- Centre for Materials Research (ZfM/LaMa), Justus Liebig University Giessen, Heinrich Buff Ring 16, Giessen 35392, Germany
| |
Collapse
|
34
|
Albright EL, Levchenko TI, Kulkarni VK, Sullivan AI, DeJesus JF, Malola S, Takano S, Nambo M, Stamplecoskie K, Häkkinen H, Tsukuda T, Crudden CM. N-Heterocyclic Carbene-Stabilized Atomically Precise Metal Nanoclusters. J Am Chem Soc 2024; 146:5759-5780. [PMID: 38373254 DOI: 10.1021/jacs.3c11031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
This perspective highlights advances in the preparation and understanding of metal nanoclusters stabilized by organic ligands with a focus on N-heterocyclic carbenes (NHCs). We demonstrate the need for a clear understanding of the relationship between NHC properties and their resulting metal nanocluster structure and properties. We emphasize the importance of balancing nanocluster stability with the introduction of reactive sites for catalytic applications and the importance of a better understanding of how these clusters interact with their environments for effective use in biological applications. The impact of atom-scale simulations, development of atomic interaction potentials suitable for large-scale molecular dynamics simulations, and a deeper understanding of the mechanisms behind synthetic methods and physical properties (e.g., the bright fluorescence displayed by many clusters) are emphasized.
Collapse
Affiliation(s)
- Emily L Albright
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Tetyana I Levchenko
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Viveka K Kulkarni
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Angus I Sullivan
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Joseph F DeJesus
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University Furo, Chikusa, Nagoya 464-8602, Japan
| | - Sami Malola
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Departments of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Shinjiro Takano
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masakazu Nambo
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University Furo, Chikusa, Nagoya 464-8602, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Kevin Stamplecoskie
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Hannu Häkkinen
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Departments of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Tatsuya Tsukuda
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Cathleen M Crudden
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University Furo, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
35
|
Si WD, Zhang C, Zhou M, Wang Z, Feng L, Tung CH, Sun D. Arylgold nanoclusters: Phenyl-stabilized Au 44 with thermal-controlled NIR single/dual-channel phosphorescence. SCIENCE ADVANCES 2024; 10:eadm6928. [PMID: 38354237 PMCID: PMC10866543 DOI: 10.1126/sciadv.adm6928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Arylation of gold holds paramount importance in the domain of organometallic chemistry; however, the exploration of arylgold nanoclusters remains in its infancy primarily due to the synthetic challenge. Here, we present a facile and effective arylation strategy to directly synthesize two arylgold nanoclusters (Au44a and Au44b), by using tetraarylborates, capable of transferring aryl fragments to metal centers. X-ray crystallography reveals that both Au44 nanoclusters contain an Au44 kernel co-protected by six aryl groups, two tetrahydrothiophene, and 16 alkynyl-ether ligands, the latter is generated in situ through Williamson ether reaction during the assembly processes. Notably, Au44 nanoclusters exhibit near-infrared (NIR) phosphorescence (λmax = 958 nm) and microsecond radiative relaxation at ambient condition, which is a thermal-controlled single/dual-channel phosphorescent emission revealed by temperature-dependent NIR, time-resolved emission, and femtosecond/nanosecond transition absorption spectra. This work represents a breakthrough in using aryl as protective ligands for the construction of gold nanoclusters, which is poised to have a transformative impact on organometallic nanoclusters.
Collapse
Affiliation(s)
- Wei-Dan Si
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
| | - Chengkai Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, People’s Republic of China
| | - Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
| |
Collapse
|
36
|
Liu Z, Luo L, Jin R. Visible to NIR-II Photoluminescence of Atomically Precise Gold Nanoclusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309073. [PMID: 37922431 DOI: 10.1002/adma.202309073] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/23/2023] [Indexed: 11/05/2023]
Abstract
Atomically precise gold nanoclusters (NCs) have emerged as a new class of precision materials and attracted wide interest in recent years. One of the unique properties of such nanoclusters pertains to their photoluminescence (PL), for it can widely span visible to near-infrared-I and -II wavelengths (NIR-I/II), and even beyond 1700 nm by manipulating the size, structure, and composition. The current research efforts focus on the structure-PL correlation and the development of strategies for raising the PL quantum yields, which is nontrivial when moving from the visible to the near-infrared wavelengths, especially in the NIR-II regions. This review summarizes the recent progress in the field, including i) the types of PL observed in gold NCs such as fluorescence, phosphorescence, and thermally activated delayed fluorescence, as well as dual emission; ii) some effective strategies that are devised to improve the PL quantum yield (QY) of gold NCs, such as heterometal doping, surface rigidification, and core phonon engineering, with double-digit QYs for the NIR PL on the horizons; and iii) the applications of luminescent gold NCs in bioimaging, photosensitization, and optoelectronics. Finally, the remaining challenges and opportunities for future research are highlighted.
Collapse
Affiliation(s)
- Zhongyu Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| | - Lianshun Luo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| |
Collapse
|
37
|
Deng G, Ki T, Liu X, Chen Y, Lee K, Yoo S, Tang Q, Bootharaju MS, Hyeon T. Tailoring the subshell and electronic structure of an atomically precise AuAg alloy nanocluster. Chem Commun (Camb) 2024; 60:1289-1292. [PMID: 38197160 DOI: 10.1039/d3cc04432g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Manipulating the atomic-level structure of the subshell of a nanocluster while preserving the inner and outer shell structure is challenging. We present the synthesis and molecular structure of an alkynyl-protected Au34Ag27 nanocluster, which exhibits distinct third shell atomic arrangement, electronic structure, and optical properties from those of the Au34Ag28 nanocluster.
Collapse
Affiliation(s)
- Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeyoung Ki
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yuping Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China.
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China.
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
38
|
Tan Y, Sun G, Jiang T, Liu D, Li Q, Yang S, Chai J, Gao S, Yu H, Zhu M. Symmetry Breaking Enhancing the Activity of Electrocatalytic CO 2 Reduction on an Icosahedron-Kernel Cluster by Cu Atoms Regulation. Angew Chem Int Ed Engl 2024; 63:e202317471. [PMID: 38072830 DOI: 10.1002/anie.202317471] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Indexed: 12/19/2023]
Abstract
Recently, CO2 hydrogenation had a new breakthrough resulting from the design of catalysts to effectively activate linear CO2 with symmetry-breaking sites. However, understanding the relationship between symmetry-breaking sites and catalytic activity at the atomic level is still a great challenge. In this study, a set of gold-copper alloy Au13 Cux (x=0-4) nanoclusters were used as research objects to show the symmetry-controlled breaking structure on the surface of nanoclusters with the help of manipulability of the Cu atoms. Among them, Au13 Cu3 nanocluster displays the highest degree of symmetry-breaking on its crystal structure compared with the other nanoclusters in the family. Where the three copper atoms occupying the surface of the icosahedral kernel unevenly with one copper atom is coordinately unsaturated (CuS2 motif relative to CuS3 motif). As expected, Au13 Cu3 has an excellent hydrogenation activity of CO2 , in which the current density is as high as 70 mA cm-2 (-0.97 V) and the maximum FECO reaches 99 % at -0.58 V. Through the combination of crystal structures and theoretical calculations, the excellent catalytic activity of Au13 Cu3 is revealed to be indeed closely related to its asymmetric structure.
Collapse
Affiliation(s)
- Yesen Tan
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Guilin Sun
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Tingting Jiang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Dong Liu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Qinzhen Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Shan Gao
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| |
Collapse
|
39
|
Isozaki K, Iseri K, Saito R, Ueda K, Nakamura M. Dual Catalysis of Gold Nanoclusters: Photocatalytic Cross-Dehydrogenative Coupling by Cooperation of Superatomic Core and Molecularly Modified Staples. Angew Chem Int Ed Engl 2024; 63:e202312135. [PMID: 37926682 DOI: 10.1002/anie.202312135] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023]
Abstract
Thiolate-protected gold nanoclusters (AuNCs) have attracted significant attention as nano-catalysts, revealing a superatomic core and gold-thiolate staples as distinct structural units. Here, we demonstrate the unprecedented dual catalytic activity of thiolate-protected [Au25 (SR)18 ]- nanoclusters, involving both photosensitized 1 O2 generation by the Au13 superatomic core and catalytic carbon-carbon bond formation facilitated by Au2 (SR)3 staples. This synergistic combination of two different catalytic units enables efficient cross-dehydrogenative coupling of terminal alkynes and tertiary aliphatic amines to afford propargylamines in high yields of up to 93 %. Mixed-ligand AuNCs bearing both thiolate and alkynyl ligands revealed the intermediacy of the alkynyl-exchanged AuNCs toward both photosensitization and C-C bond-forming catalytic cycles. Density functional theory calculations also supported the intermediacy of the alkynyl-exchanged AuNCs. Thus, the use of ligand-protected metal nanoclusters has enabled the development of an exceptional multifunctional catalyst, wherein distinct nanocluster components facilitate cooperative photo- and chemo-catalysis.
Collapse
Affiliation(s)
- Katsuhiro Isozaki
- International Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenta Iseri
- International Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Ryohei Saito
- International Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kyosuke Ueda
- International Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masaharu Nakamura
- International Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
40
|
Zhou M, Li K, Pei Y, Jin S, Zhu M. Effect of Specific Heavy Doping of Silver Atoms into the Icosahedral Au 13 on Electronic Structure and Catalytic Performance. J Phys Chem Lett 2023; 14:11715-11724. [PMID: 38112385 DOI: 10.1021/acs.jpclett.3c02884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The exploration of specific heavy doping of silver atoms into icosahedral Au13 clusters and their electronic structures and properties has been somewhat limited. Herein, we report two heavily Ag doped nanoclusters, [Au7Ag6(C7H4NOS)4(Dppf)3Cl]0 and [Au7Ag6(C7H4NOS)3(Dppf)3Cl](SbF6) (Au7Ag6-0 and Au7Ag6-1, respectively) [C7H4NOSH = 2-mercaptobenzoxazole, and Dppf = 1,1'-bis(diphenylphosphino)ferrocene]. The electronic structures and superatomic orbitals of nanoclusters were determined by density functional theory (DFT) calculations, and the energy degeneracy of the superatomic orbitals of Au7Ag6-1 is higher than that of Au7Ag6-0. Transient absorption spectroscopy was performed, revealing that Au7Ag6-0 significantly extends the excited-state lifetime. Both nanoclusters were supported on activated carbon for the oxygen reduction reaction. DFT calculations confirm that the catalytic activities mainly stem from the carbon atom of ferrocene rather than the iron atom. This study not only sheds light on the preparation of icosahedral alloy clusters but also provides insights into the regulation of icosahedral superatomic structure and electrocatalytic properties.
Collapse
Affiliation(s)
- Manman Zhou
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Kang Li
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Shan Jin
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, P. R. China
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, P. R. China
| |
Collapse
|
41
|
Chen Z, Sun F, Tang Q. Thermal Stability and Electronic Properties of N-Heterocyclic Carbene-Protected Au 13 Nanocluster and Phosphine-Protected Analogues. J Phys Chem Lett 2023; 14:10648-10656. [PMID: 38031664 DOI: 10.1021/acs.jpclett.3c02965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Despite significant advances in manufacturing atomically precise gold nanoclusters protected by various ligands, there is a limited understanding of the thermal stability dynamics and electronic properties of ligand effects. We conducted ab initio molecular dynamics (AIMD) simulations on the well-characterized [Au13(NHCMe)9Cl3]2+ nanocluster and its counterpart [Au13(PMe3)9Cl3]2+ cluster to evaluate the thermal stability induced by N-heterocyclic carbene (NHC) and phosphine ligands. The result shows that under vacuum conditions, [Au13(PMe3)9Cl3]2+ is more stable than [Au13(NHCMe)9Cl3]2+, and both lead to metal nucleation decomposition, breaking into the Au12 fragment and L-Au-Cl (L = NHCMe or PMe3) complexes eventually. The optical and electronic properties of these two clusters change significantly due to ligand alteration. Furthermore, we have designed a novel [Au13(NHCMe)(PMe3)8Cl3]2+ cluster coprotected by NHC and phosphine ligands, displaying higher thermal stability than the homoligand protected [Au13(NHCMe)9Cl3]2+ and [Au13(PMe3)9Cl3]2+. Our hypothetical species are an interesting model for nanostructured materials, facilitating the experimental exploration of cluster synthesis and catalytic applications.
Collapse
Affiliation(s)
- Zhimin Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| |
Collapse
|
42
|
Wang M, Li S, Tang X, Zuo D, Jia Y, Guo S, Guan ZJ, Shen H. One-step preparation of Pt/Ag nanoclusters for CO 2 transformation. Phys Chem Chem Phys 2023; 25:30373-30380. [PMID: 37909301 DOI: 10.1039/d3cp02736h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Structurally precise metal nanoclusters with a facile synthetic process and high catalytic performance have been long pursued. These atomically precise nanocatalysts are regarded as model systems to study structure-performance relationships, surface coordination chemistry, and the reaction mechanism of heterogeneous metal catalysts. Nevertheless, the research on silver-based nanoclusters for driving chemical transformations is sluggish in comparison to gold counterparts. Herein, we report the one-step synthesis of Pt/Ag alloy nanoclusters of [PtAg9(C18H12Br3P)7Cl3](C18H12Br3P), which are highly active in catalysing cycloaddition reactions of CO2 and epoxides. The cluster was obtained in a rather simple way with the reduction of silver and platinum salts in the presence of ligands in one pot. The molecular structure of the titled cluster describes the protection of the Pt-centred Ag9 crown by the shell of phosphine ligands and halides. Its electronic structure, as revealed by density function theoretical calculations, adopts a superatomic geometry with 1S21P6 configuration. Interestingly, the cluster displays high activity in the formation of cyclic carbonates from CO2 under mind conditions.
Collapse
Affiliation(s)
- Meng Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Xiongkai Tang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dongjie Zuo
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Yanyuan Jia
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Shuo Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Zong-Jie Guan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
43
|
Liu J, Sato Y, Kulkarni VK, Sullivan AI, Zhang W, Crudden CM, Hein JE. Insights into the synthesis of NHC-stabilized Au nanoclusters through real-time reaction monitoring. Chem Sci 2023; 14:10500-10507. [PMID: 37800004 PMCID: PMC10548510 DOI: 10.1039/d3sc02077k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/20/2023] [Indexed: 10/07/2023] Open
Abstract
Atomically precise gold nanoclusters (AuNCs) are interesting nanomaterials with potential applications in catalysis, bioimaging and optoelectronics. Their compositions and properties are commonly evaluated by various analytical techniques, including UV-vis spectroscopy, NMR spectroscopy, ESI mass spectrometry, and single-crystal X-ray diffraction. While these techniques have provided detailed insights into the structure and properties of nanoclusters, synthetic methods still suffer from a lack of in situ and real-time reaction monitoring methodologies. This limits insight into the mechanism of formation of AuNCs and hinders attempts at optimization. We have demonstrated the utility of HPLC-MS as a monitoring methodology in the synthesis of two NHC-protected gold nanoclusters: [Au13(NHC)9Cl3]2+ and [Au24(NHC)14Cl2H3]3+. Herein we show that HPLC coupled with mass spectrometry and 13C NMR spectroscopy of labelled derivatives enables new insight into critical reaction dynamics of AuNCs synthesis and rapid reaction optimization.
Collapse
Affiliation(s)
- Junliang Liu
- Department of Chemistry, The University of British Columbia Vancouver BC V6T 1Z1 Canada
| | - Yusuke Sato
- Department of Chemistry, The University of British Columbia Vancouver BC V6T 1Z1 Canada
| | - Viveka K Kulkarni
- Department of Chemistry, Queen's University Kingston ON K7L 3N6 Canada
- Carbon to Metal Coatings Institute, Queen's University Kingston ON Canada
| | - Angus I Sullivan
- Department of Chemistry, Queen's University Kingston ON K7L 3N6 Canada
- Carbon to Metal Coatings Institute, Queen's University Kingston ON Canada
| | - Wenyu Zhang
- Department of Chemistry, The University of British Columbia Vancouver BC V6T 1Z1 Canada
| | - Cathleen M Crudden
- Department of Chemistry, Queen's University Kingston ON K7L 3N6 Canada
- Carbon to Metal Coatings Institute, Queen's University Kingston ON Canada
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Nagoya 464-8602 Japan
| | - Jason E Hein
- Department of Chemistry, The University of British Columbia Vancouver BC V6T 1Z1 Canada
- Acceleration Consortium, University of Toronto ON Canada
- Department of Chemistry, University of Bergen N-5007 Bergen Norway
| |
Collapse
|
44
|
Wang M, Chen Y, Tang C. Recent Advances in Ligand Engineering for Gold Nanocluster Catalysis: Ligand Library, Ligand Effects and Strategies. Chem Asian J 2023; 18:e202300463. [PMID: 37552000 DOI: 10.1002/asia.202300463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/02/2023] [Indexed: 08/09/2023]
Abstract
Advances in new ligands in the last decade facilitated in-depth studies on the property-relationship of gold nanoclusters and promoted the rational synthesis and related applications of such materials. Currently, more and more new ligands are being explored; thus, the ligand library of AuNCs is being expanded fast, which also enables investigation of ligand effects of AuNCs via direct comparison of different ligating shell with the identical gold core. It is now widely accepted that ligands influence the properties of AuNCs enormously including stability, catalysis, photoluminescence among others. These studies inspired ligand engineering of AuNCs. One of the goals for ligand engineering is to develop ligated AuNC catalysts in which the ligands are able to exert big-enough influence on electronic and steric control over catalysis as in a transition-metal or an enzyme system. Although increasing attention is paid to the further expansion of ligand library, the investigation of design principles and strategies regarding ligands are still in their infant stage. This review summarizes the ligands for AuNC synthesis, the ligand effects on stability and catalysis, and recently developed strategies in promoting AuNC catalytic performance via ligand manipulation.
Collapse
Affiliation(s)
- Mengyue Wang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institution National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yu Chen
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institution National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Department of Medicinal Chemistry, Southwest Medical University, Luzhou, 646000, P. R. China
| | - Cen Tang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institution National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| |
Collapse
|
45
|
Wang M, Li S, Chen H, Sun X, Sun J, Jia Y, Guo S, Sun C, Shen H. DppfCuBH 4: new reducing agents for the synthesis of ferrocene-functionalized metal nanoclusters. Dalton Trans 2023. [PMID: 37449919 DOI: 10.1039/d3dt01461d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
A facile synthesis of atomically precise metal nanoclusters, especially those decorated with functional groups, is the prerequisite for finding applications in special fields and studying structure-and-property relationships. The exploration of simple and efficient synthetic prototypes for introducing functional ligands (such as ferrocene) into cluster moieties is thus of high interest. In this work, a type of reducing agent of dppfCuBH4 (dppf is 1,1'-bis(diphenyphosphino)ferrocene) is introduced for the first time to prepare ferrocene-functionalized metal nanoclusters. Two new clusters of [Ag25Cu4(dppf)6(3-F-PhCC)12Cl6]3+ (1) and [Ag4(dppf)5Cl2]2+ (2) have been obtained from the simple synthetic method. The two compounds have been fully characterized by advanced techniques of electrospray ionization mass spectroscopy (ESI-MS), nuclear magnetic resonance (NMR), and ultraviolet-visible spectroscopy (UV-Vis). The total structure of the clusters, as determined by X-ray single-crystal diffraction, describes the Ag13@Ag12Cu4(dppf)6(3-F-PhCC)12Cl6 core-shell structure of 1 and [Ag2Cl(dppf)2]+-dppf-[Ag2Cl(dppf)2]+ polymeric structure of 2. This work opens the door to employing dppfCuBH4 as a functional reducing agent to discover many underlying metal nanoclusters and even other nanomaterials which feature ferrocene-groups.
Collapse
Affiliation(s)
- Meng Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Huijun Chen
- College of Food Science and Pharmaceutical Engineering, Wuzhou University, Guangxi, 543000, China
| | - Xueli Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Jing Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Yanyuan Jia
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Shuo Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Cunfa Sun
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China.
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
46
|
Ma XH, Li J, Luo P, Hu JH, Han Z, Dong XY, Xie G, Zang SQ. Carbene-stabilized enantiopure heterometallic clusters featuring EQE of 20.8% in circularly-polarized OLED. Nat Commun 2023; 14:4121. [PMID: 37433775 DOI: 10.1038/s41467-023-39802-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/29/2023] [Indexed: 07/13/2023] Open
Abstract
Bright and efficient chiral coinage metal clusters show promise for use in emerging circularly polarized light-emitting materials and diodes. To date, highly efficient circularly polarized organic light-emitting diodes (CP-OLEDs) with enantiopure metal clusters have not been reported. Herein, through rational design of a multidentate chiral N-heterocyclic carbene (NHC) ligand and a modular building strategy, we synthesize a series of enantiopure Au(I)-Cu(I) clusters with exceptional stability. Modulation of the ligands stabilize the chiral excited states of clusters to allow thermally activated delayed fluorescence, resulting in the highest orange-red photoluminescence quantum yields over 93.0% in the solid state, which is accompanied by circularly polarized luminescence. Based on the solution process, a prototypical orange-red CP-OLED with a considerably high external quantum efficiency of 20.8% is prepared. These results demonstrate the extensive designability of chiral NHC ligands to stabilize polymetallic clusters for high performance in chiroptical applications.
Collapse
Affiliation(s)
- Xiao-Hong Ma
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Jing Li
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Peng Luo
- College of Chemistry and Chemical Engineering Henan Polytechnic University, 454000, Jiaozuo, China
| | - Jia-Hua Hu
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Zhen Han
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China.
- College of Chemistry and Chemical Engineering Henan Polytechnic University, 454000, Jiaozuo, China.
| | - Guohua Xie
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, 430072, Wuhan, China.
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
47
|
Yu JH, Yuan ZR, Xu J, Wang JG, Azam M, Li TD, Li YZ, Sun D. Monoarsine-protected icosahedral cluster [Au 13(AsPh 3) 8Cl 4] +: comparative studies on ligand effect and surface reactivity with its stibine analogue. Chem Sci 2023; 14:6564-6571. [PMID: 37350827 PMCID: PMC10283507 DOI: 10.1039/d3sc01311a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/28/2023] [Indexed: 06/24/2023] Open
Abstract
Ligand shells of gold nanoclusters play important roles in regulating their molecular and electronic structures. However, the similar but distinct impacts of the homologous analogues of the protecting ligands remain elusive. The C2v symmetric monoarsine-protected cluster [Au13(AsPh3)8Cl4]+ (Au13As8) was facilely prepared by direct reduction of (Ph3As)AuCl with NaBH4. This cluster is isostructural with its previously reported stibine analogue [Au13(SbPh3)8Cl4]+ (Au13Sb8), enabling a comparative study between them. Au13As8 exhibits a blue-shifted electronic absorption band, and this is probably related to the stronger π-back donation interactions between the Au13 core and AsPh3 ligands, which destabilize its superatomic 1P and 1D orbitals. In comparison to the thermodynamically less stable Au13Sb8, Au13As8 achieves a better trade-off between catalytic stability and activity, as demonstrated by its excellent catalytic performance towards the aldehyde-alkyne-amine (A3) coupling reaction. Moreover, the ligand exchange reactions between Au13As8 with phosphines, as exemplified by PPh3 and Ph2P(CH2)2PPh2, suggest that Au13As8 may be a good precursor cluster for further cluster preparation through the "cluster-to-cluster" route.
Collapse
Affiliation(s)
- Jiu-Hong Yu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan 250353 P. R. China
| | - Zhi-Rui Yuan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan 250353 P. R. China
| | - Jing Xu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan 250353 P. R. China
| | - Jin-Gui Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan 250353 P. R. China
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Tian-Duo Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan 250353 P. R. China
| | - Ying-Zhou Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan 250353 P. R. China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University Ji'nan 250100 P. R. China
| |
Collapse
|
48
|
Muniz CN, Archer CA, Applebaum JS, Alagaratnam A, Schaab J, Djurovich PI, Thompson ME. Two-Coordinate Coinage Metal Complexes as Solar Photosensitizers. J Am Chem Soc 2023. [PMID: 37319428 DOI: 10.1021/jacs.3c02825] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Generating sustainable fuel from sunlight plays an important role in meeting the energy demands of the modern age. Herein, we report two-coordinate carbene-metal-amide (cMa, M = Cu(I) and Au(I)) complexes that can be used as sensitizers to promote the light-driven reduction of water to hydrogen. The cMa complexes studied here absorb visible photons (εvis > 103 M-1 cm-1), maintain long excited-state lifetimes (τ ∼ 0.2-1 μs), and perform stable photoinduced charge transfer to a target substrate with high photoreducing potential (E+/* up to -2.33 V vs Fc+/0 based on a Rehm-Weller analysis). We pair these coinage metal complexes with a cobalt-glyoxime electrocatalyst to photocatalytically generate hydrogen and compare the performance of the copper- and gold-based cMa complexes. We also find that the two-coordinate complexes herein can perform photodriven hydrogen production from water without the addition of the cobalt-glyoxime electrocatalyst. In this "catalyst-free" system, the cMa sensitizer partially decomposes to give metal nanoparticles that catalyze water reduction. This work identifies two-coordinate coinage metal complexes as promising abundant metal, solar fuel photosensitizers that offer exceptional tunability and photoredox properties.
Collapse
Affiliation(s)
- Collin N Muniz
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Claire A Archer
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jack S Applebaum
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Anushan Alagaratnam
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jonas Schaab
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Peter I Djurovich
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Mark E Thompson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
49
|
Haraguchi N, Ogiwara N, Kumabe Y, Kikkawa S, Yamazoe S, Tachikawa T, Uchida S. Size-Controlled Synthesis of Luminescent Few-Atom Silver Clusters via Electron Transfer in Isostructural Redox-Active Porous Ionic Crystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300743. [PMID: 36828792 DOI: 10.1002/smll.202300743] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Indexed: 06/08/2023]
Abstract
Ag clusters with a controlled number of atoms have received significant interest because they show size-dependent catalytic, optical, electronic, or magnetic properties. However, the synthesis of size-controlled, ligand-free, and air-stable Ag clusters with high yields has not been well-established. Herein, it is shown that isostructural porous ionic crystals (PICs) with redox-active polyoxometalates (POMs) can be used to synthesize Ag clusters via electron transfer from POMs to Ag+ . Ag clusters with average numbers of three, four, or six atoms emitting blue, green, or red colors, respectively, are formed and stabilized in the PICs under ambient conditions without any protecting ligands. The cluster size solely correlates with the degree of electron transfer, which is controlled by the reduction time and types of ions or elements of the PICs. Thus, advantages have been taken of POMs as electron sources and PICs as scaffolds to demonstrate a convenient method to obtain few-atom Ag clusters.
Collapse
Affiliation(s)
- Naoya Haraguchi
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Naoki Ogiwara
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Yoshitaka Kumabe
- Molecular Photoscience Research Center, Kobe University, Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Takashi Tachikawa
- Molecular Photoscience Research Center, Kobe University, Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan
| | - Sayaka Uchida
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
50
|
Xiao WC, Nie QB, Luo GG. Secondary hierarchical complexity in double-stranded cluster helicates covered by NNNNN type pincer ligands. Dalton Trans 2023; 52:6239-6243. [PMID: 37128862 DOI: 10.1039/d3dt00912b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We designed and synthesized a new tripyridine dipyrrolide pincer ligand, which could be doubly deprotonated to provide five-nitrogen-donor sites and then utilized to prepare a subnanometric chiral silver cluster. The cluster belongs to an S4 point group and shows a double-stranded helicate. DFT calculations were performed to analyze the electronic structure of the cluster. Interestingly, through hierarchical intercluster interactions, the cluster helicates evolve into complex secondary structures including a right-handed helix and a folded sheet, both of which are reminiscent of secondary structures of proteins, i.e., an α-helix and an antiparallel β-sheet.
Collapse
Affiliation(s)
- Wang-Chuan Xiao
- School of Resources and Chemical Engineering, Sanming University, Sanming, 365004, P. R. China
| | - Qing-Bin Nie
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, P. R. China.
| | - Geng-Geng Luo
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China.
- State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|