1
|
Zhou Y, Ji P, Sun Q, Gao H, Liu Z. BODIPY-based small molecular probes for fluorescence and photoacoustic dual-modality imaging of superoxide anion in vivo. Talanta 2025; 294:128269. [PMID: 40334509 DOI: 10.1016/j.talanta.2025.128269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/28/2025] [Accepted: 05/03/2025] [Indexed: 05/09/2025]
Abstract
Superoxide anion contributes significantly in the pathological process of acute liver injury. Therefore, real-time in vivo imaging of superoxide anion is of great significance for understanding the pathogenesis. Nevertheless, developing superoxide anion probes that possess high sensitivity and resolution continues to be a challenge. Herein, we report the design of BODIPY-based molecule probes (BDPOS1-2) for fluorescence and photoacoustic dual-modality imaging of superoxide anion. The probes exhibited exceptional selectivity and specificity towards superoxide anion, with a "turn-on" photoacoustic and "turn-off" fluorescence response. They maintained good stability and demonstrated the response behavior to superoxide anion within the pH range of 5-10. BDPOS1-2 can be used for fluorescence imaging endogenous and exogenous superoxide anion in HepG2 cells with detection in the 670-750 nm channel. Notably, galactose-modified BDPOS2 demonstrated selective hepatocyte-targeting capability and achieved dual-modality imaging of superoxide anions during acute liver injury in live mice via capturing photoacoustic signals at 715 nm and fluorescence signals in the 650-690 nm channel. Our findings offer a powerful approach for high-sensitivity and high-resolution in vivo imaging, with considerable potential for early and precise diagnosis of liver injury.
Collapse
Affiliation(s)
- Ying Zhou
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Peihua Ji
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Qian Sun
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Hu Gao
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.
| | - Zhipeng Liu
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
2
|
Wan Y, Li W, Zhu H, Ai S, Lin W. Development of cysteine-sensitive bimodal probes for in situ monitoring of early-stage pulmonary fibrosis progression and therapeutic effects. J Mater Chem B 2025; 13:5051-5057. [PMID: 40200817 DOI: 10.1039/d5tb00183h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Pulmonary fibrosis (PF) is a chronic interstitial lung disease characterized by excessive extracellular matrix deposition and lung scarring, leading to impaired lung function, severe respiratory distress, and potentially fatal outcomes. Early diagnosis of PF is crucial for optimizing treatment strategies to improve patient prognosis. However, an activated near-infrared fluorescent (NIRF) and photoacoustic (PA) bimodal probe for non-invasive in situ imaging of PF is still lacking. In this study, we developed a novel cysteine-sensitive NIRF/PA dual-modal probe, MR-Cys, for in situ monitoring of early progression and the therapeutic response in a mouse model of PF. The probe MR-Cys selectively detects cysteine (Cys) levels in vivo, thereby activating both NIRF and PA signals. Using NIRF/PA dual-modal imaging technology, MR-Cys successfully tracked fluctuations in Cys levels within the PF mouse model. After treatment with nintedanib (OFEV), a notable decrease in both PA and NIRF signal intensities was observed in the treated mice, indicating that MR-Cys can be used to assess the therapeutic efficacy for PF. Therefore, MR-Cys not only holds great promise for early detection of pulmonary fibrosis progression, but also offers a precise monitoring tool for the optimization of personalized treatment plans.
Collapse
Affiliation(s)
- Yang Wan
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| | - Wenxiu Li
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| | - Huayong Zhu
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| | - Sixin Ai
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
3
|
Huang L, Lv F, Bin Y, Zhao J, Li C, Zhao S, Hu S, Zhang L. A Hydrogen Sulfide-Activated NIR-II Fluorescence/NIR-I Photoacoustic Dual-Ratiometric Nanoprobe With Unique Recognition Reaction for Precise Visual Diagnosis of Hepatitis Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501269. [PMID: 40270361 DOI: 10.1002/smll.202501269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/11/2025] [Indexed: 04/25/2025]
Abstract
Hydrogen sulfide (H2S) is a vital gaseous signaling molecule that plays a central role in various physiological and pathological processes. Given the complementary advantages of fluorescence (FL) and photoacoustic (PA) imaging, there is a growing demand for dual-ratiometric probes that enable precise in vivo monitoring of H2S levels. In this study, the use of 2-mercapto-1,3,4-thiadiazole (MTD) as a novel recognition group of H2S is presented for the first time, following conjugation with cyanine dyes to obtain a new PA probe Cy-MTD. To achieve dual-ratiometric imaging, Cy-MTD is incorporated into down-conversion nanoparticle (DCNP), resulting in the creation of a pioneering NIR-II FL/NIR-I PA dual-ratiometric nanoprobe DCNP@Cy-MTD. Cy-MTD undergoes the blueshift in absorption from 840 to 670 nm after reaction with H2S, enabling NIR-I ratiometric PA imaging of H2S by measuring the ratio of PA signal at 670 and 840 nm (PA670/PA840). In addition, due to the strong absorption of Cy-MTD ≈840 nm and the overlapping between the absorption spectrum of Cy-MTD and 808 nm excitation band of DCNP, the 808 nm-excited FL emission (F1550 nm,808Ex) of DCNP in DCNP@Cy-MTD nanoprobe is quenched through the competitive absorption, while it is restored upon the interaction with H2S because of the blueshift in absorption of Cy-MTD. Using the stable FL emission of DCNP under 980 nm excitation (F1550 nm,980Ex) as the reference signal, NIR-II ratiometric FL imaging (F1550 nm,808Ex/F1550 nm,980Ex) of H2S is achieved. The dual-ratiometric response features of the DCNP@Cy-MTD nanoprobe offer a significant advancement over traditional single-signal or single-modality imaging techniques. By providing enhanced accuracy and reliability, this probe allows for the diagnosis of hepatitis by monitoring the H2S, surpassing the capabilities of conventional histopathological methods, which provides a new way for more effective diagnostic strategies for liver diseases.
Collapse
Affiliation(s)
- Lixian Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Fei Lv
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yidong Bin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Jingjin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Caiying Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shengqiang Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Liangliang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
4
|
Xing W, Yang K, Zhu Y, Li X, Zhang Y, Guo L, Ge JY, Bai Y, Chen Z. Rational design of a near-infrared fluorescent probe for rapid monitoring of carboxylesterase in live cells and drug-induced liver injury mice. Anal Chim Acta 2025; 1346:343782. [PMID: 40021330 DOI: 10.1016/j.aca.2025.343782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/11/2025] [Accepted: 02/06/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Carboxylesterase (CE) is an important enzyme that mainly exists in liver cells and can catalyze the hydrolysis of esters in a variety of pharmaceuticals and xenobiotics. Real-time and non-invasive imaging of CE is of great significance for the study of CE-related metabolic diseases. Although fluorescence sensing technology is considered a promising candidate, the slow response rate (> 60 min), low sensitivity, and short emission wavelength (<650 nm) of most CE probes limit their practical application. Therefore, it is significant and urgent to develop novel fluorescent probes for the rapid diagnosis of CE-related diseases. RESULTS Herein, a near-infrared fluorescent probe, CF3-BDP-CE, has been developed by introducing acetyl as the CE recognition unit into the fluorophore meso-trifluoromethyl-BODIP for the detection of CE. CF3-BDP-CE exhibited a remarkable fluorescence enhancement at 690 nm for CE with a limit of detection of 7.9 × 10-4 U/mL. Importantly, the fast response kinetics (within 3 min) make CF3-BDP-CE superior to most reported probes. The emission turn-on mechanism was confirmed by theoretical calculation, revealing that after the hydrolysis of CF3-BDP-CE, the intramolecular charge transfer process leads to strong fluorescence. Furthermore, CF3-BDP-CE has been successfully applied to real-time imaging of endogenous CE changes in living cells and to imaging CE activity differences between tumor and normal cells. In addition, CF3-BDP-CE has been successfully used to track CE abnormalities in acetaminophen-induced liver injury model mice. SIGNIFICANCE A NIR fluorescent probe CF3-BDP-CE was developed to effectively track the dynamic change of CE fluctuation in living cells and mice, with potential applications in the diagnosis of CE-related diseases.
Collapse
Affiliation(s)
- Weitao Xing
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, PR China
| | - Kaili Yang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, PR China
| | - Yonglong Zhu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, PR China
| | - Xinyi Li
- School of Pharmacy, Changzhou University, Changzhou, 213164, PR China
| | - Yan Zhang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Linxia Guo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, PR China
| | - Jing-Yuan Ge
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, PR China.
| | - Yang Bai
- School of Pharmacy, Changzhou University, Changzhou, 213164, PR China.
| | - Zhongyan Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, PR China; Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou, 325035, PR China.
| |
Collapse
|
5
|
Xu W, Yi S, Liu J, Jiang Y, Huang J. Nitrile-aminothiol bioorthogonal near-infrared fluorogenic probes for ultrasensitive in vivo imaging. Nat Commun 2025; 16:8. [PMID: 39747031 PMCID: PMC11695607 DOI: 10.1038/s41467-024-55452-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Bioorthogonal chemistry-mediated self-assembly holds great promise for dynamic molecular imaging in living organisms. However, existing approaches are limited to nanoaggregates with 'always-on' signals, suffering from high signal-to-background ratio (SBR) and compromised detection sensitivity. Herein we report a nitrile-aminothiol (NAT) bioorthogonal fluorogenic probe (CyNAP-SS-FK) for ultrasensitive diagnosis of orthotopic hepatocellular carcinoma. This probe comprises a nitrile-substituted hemicyanine scaffold with a cysteine tail dually locked with biomarker-responsive moieties. Upon dual cleavage by tumor-specific cathepsin B and biothiols, the 1,2-aminothiol residue is exposed and spontaneously reacts with nitrile group for in situ intramolecular macrocyclization, enabling near-infrared fluorescence (NIRF) turn-on as well as self-assembly. In living male mice, such 'cleavage-click-assembly' regimen allows for real-time and ultrasensitive detection of small cancerous lesions (~2 mm in diameter) with improved SBR (~5) and extended detection window (~36 h), outperforming conventional clinical assays. This study not only presents NAT click reaction-based fluorogenic probes but also highlights a generic dual-locked design of these probes.
Collapse
Affiliation(s)
- Weiping Xu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Shujuan Yi
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Jie Liu
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, P. R. China
| | - Yuyan Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jiaguo Huang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
- Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
6
|
Hao Y, Yang Y, Wang W, Gu H, Chen W, Li C, Zhang P, Zeng R, Xu M, Chen S. Development of a Photoelectrochemical Microelectrode Using an Organic Probe for Monitoring Hydrogen Sulfide in Living Brains. Anal Chem 2024; 96:19822-19832. [PMID: 39576966 DOI: 10.1021/acs.analchem.4c05336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Hydrogen sulfide (H2S) is an important bioactive molecule that plays a significant role in various functions, particularly in the living brain, where it is closely linked to cognition, memory, and several neurological diseases. Consequently, developing effective detection methods for H2S is essential for studying brain functions and the underlying mechanisms of these diseases. This study aims to construct a novel photoelectrochemical (PEC) microelectrode Ti/TiO2@HSP for the quantitative monitoring of H2S levels in the living brain. The PEC microelectrode Ti/TiO2@HSP is formed by covalently bonding a specifically designed organic PEC probe HSP, which possesses a D-π-A structure, to the surface of TiO2 nanotubes generated via in situ anodic oxidation of titanium wire. The PEC probe HSP can effectively react with H2S and generate significant photocurrent response under long-wavelength excitation light (560 nm), thereby achieving quantitative detection of H2S. The sensor demonstrates high sensitivity and good selectivity. In vivo experiments utilizing the PEC microelectrode Ti/TiO2@HSP enable the monitoring of dynamic changes in H2S levels across various regions of the mouse brain. The findings reveal that in normal mice, the concentration of H2S in the hippocampus is significantly higher than in the striatum and cerebral cortex. Additionally, following propargylglycine drug stimulation, H2S concentrations in different brain regions were observed to decrease, with the most substantial reduction noted in the hippocampus. This suggests that cystathionine γ-lyase (CSE) is the primary enzyme responsible for H2S production in this area, while the striatum exhibits a less pronounced decrease in H2S concentration, indicating a reliance on alternative enzymatic pathways for H2S production. Therefore, this study not only successfully develops a high-performance H2S detection sensor but also provides new experimental tools and theoretical foundations for further exploring the roles of H2S in neurophysiological and pathological processes.
Collapse
Affiliation(s)
- Yuanqiang Hao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Yewen Yang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Wenhui Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Hui Gu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Chunlan Li
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, Henan Province 476000, China
| | - Peisheng Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Rongjin Zeng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, Henan Province 476000, China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| |
Collapse
|
7
|
Ahmed Taha B, Addie AJ, Saeed AQ, Haider AJ, Chaudhary V, Arsad N. Nanostructured Photonics Probes: A Transformative Approach in Neurotherapeutics and Brain Circuitry. Neuroscience 2024; 562:106-124. [PMID: 39490518 DOI: 10.1016/j.neuroscience.2024.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Neuroprobes that use nanostructured photonic interfaces are capable of multimodal sensing, stimulation, and imaging with unprecedented spatio-temporal resolution. In addition to electrical recording, optogenetic modulation, high-resolution optical imaging, and molecular sensing, these advanced probes combine nanophotonic waveguides, optical transducers, nanostructured electrodes, and biochemical sensors. The potential of this technology lies in unraveling the mysteries of neural coding principles, mapping functional connectivity in complex brain circuits, and developing new therapeutic interventions for neurological disorders. Nevertheless, achieving the full potential of nanostructured photonic neural probes requires overcoming challenges such as ensuring long-term biocompatibility, integrating nanoscale components at high density, and developing robust data-analysis pipelines. In this review, we summarize and discuss the role of photonics in neural probes, trends in electrode diameter for neural interface technologies, nanophotonic technologies using nanostructured materials, advances in nanofabrication photonics interface engineering, and challenges and opportunities. Finally, interdisciplinary efforts are required to unlock the transformative potential of next-generation neuroscience therapies.
Collapse
Affiliation(s)
- Bakr Ahmed Taha
- UKM-Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia.
| | - Ali J Addie
- Center of Industrial Applications and Materials Technology, Scientific Research Commission, Iraq
| | - Ali Q Saeed
- Computer Center / Northern Technical University, Iraq
| | - Adawiya J Haider
- Applied Sciences Department/Laser Science and Technology Branch, University of Technology, Iraq.
| | - Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi 110045, India; Centre for Research Impact & Outcome, Chitkara University, Punjab, 140401 India
| | - Norhana Arsad
- UKM-Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia.
| |
Collapse
|
8
|
Xu J, Li X, Luo Z, Li J, Yang S, Zhang T. Single Side-Chain-Modulatory of Hemicyanine for Optimized Fluorescence and Photoacoustic Dual-Modality Imaging of H 2S In Vivo. SMALL METHODS 2024; 8:e2400122. [PMID: 38564786 DOI: 10.1002/smtd.202400122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Near-infrared fluorescence (NIRF)/photoacoustic (PA) dual-modality imaging integrated high-sensitivity fluorescence imaging with deep-penetration PA imaging has been recognized as a reliable tool for disease detection and diagnosis. However, it remains an immense challenge for a molecule probe to achieve the optimal NIRF and PA imaging by adjusting the energy allocation between radiative transition and nonradiative transition. Herein, a simple but effective strategy is reported to engineer a NIRF/PA dual-modality probe (Cl-HDN3) based on the near-infrared hemicyanine scaffold to optimize the energy allocation between radiative and nonradiative transition. Upon activation by H2S, the Cl-HDN3 shows a 3.6-fold enhancement in the PA signal and a 4.3-fold enhancement in the fluorescence signal. To achieve the sensitive and selective detection of H2S in vivo, the Cl-HDN3 is encapsulated within an amphiphilic lipid (DSPE-PEG2000) to form the Cl-HDN3-LP, which can successfully map the changes of H2S in a tumor-bearing mouse model with the NIRF/PA dual-modality imaging. This work presents a promising strategy for optimizing fluorescence and PA effects in a molecule probe, which may be extended to the NIRF/PA dual-modality imaging of other disease-relevant biomarkers.
Collapse
Affiliation(s)
- Juntao Xu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Xipeng Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Zhiheng Luo
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Jiajun Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| |
Collapse
|
9
|
Xu J, Lv Z, Wang L, Wu X, Tan B, Shen XC, Chen H. Tuning Tumor Targeting and Ratiometric Photoacoustic Imaging by Fine-Tuning Torsion Angle for Colorectal Liver Metastasis Diagnosis. Chemistry 2024; 30:e202402019. [PMID: 38923040 DOI: 10.1002/chem.202402019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Photoacoustic (PA) tomography is an emerging biomedical imaging technology for precision cancer medicine. Conventional small-molecule PA probes usually exhibit a single PA signal and poor tumor targeting that lack the imaging reliability. Here, we introduce a series of cyanine/hemicyanine interconversion dyes (denoted Cy-HCy) for PA/fluorescent dual-mode probe development that features optimized ratiometric PA imaging and tunable tumor-targeting ability for precise diagnosis and resection of colorectal cancer (CRC). Importantly, Cy-HCy can be presented in cyanine (inherent tumor targeting and long NIR PA wavelength) and hemicyanine (poor tumor targeting and short NIR PA wavelength) by fine-tuning torsion angle and the ingenious transformation between cyanine and hemicyanine through regulation optically tunable group endows the NIR ratiometric PA and tunable tumor-targeting properties. To demonstrate the applicability of Cy-HCy dyes, we designed the first small-molecule tumor-targeting and NIR ratiometric PA probe Cy-HCy-H2S for precise CRC liver metastasis diagnosis, activated by H2S (a CRC biomarker). Using this probe, we not only visualized the subcutaneous tumor and liver metastatic cancers in CRC mouse models but also realized PA and fluorescence image-guided tumor excision. We expect that Cy-HCy will be generalized for creating a wide variety of inherently tumor-targeting NIR ratiometric PA probes in oncological research and practice.
Collapse
Affiliation(s)
- Jinyuan Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Zhangkang Lv
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Liping Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xingqing Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Bisui Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hua Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
10
|
Huang H, Zhou G, Meng Z, Wang X, Wang Z, Yang Y. A novel dialdehyde cellulose-based colorimetric and turn-on fluorescent probe for H 2S detection and its application in red wine. Int J Biol Macromol 2024; 280:136018. [PMID: 39326599 DOI: 10.1016/j.ijbiomac.2024.136018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/07/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Hydrogen sulfide (H2S) is considered one of the most important gaseous transmitters in the metabolic system, and the abnormal concentration of H2S is associated with a variety of diseases. Up to now, it is still a challenge to develop a portable assay for H2S even though the research about the detection of H2S is booming. Herein, a novel bifunctional dialdehyde-cellulose fluorescent probe DAC-DPD was prepared with high selectivity and sensitivity to H2S with colorimetric and fluorescent "turn-on" characteristics, and the limit of detection (LOD) of DAC-DPD for H2S was 0.831 μM. The sensing mechanism of DAC-DPD's to H2S was a Michael addition reaction confirmed by HRMS, 1H NMR and density-functional theory (DFT) calculations. DAC-DPD can be used to detect H2S in red wine samples. In Addition, the prepared DAC-DPD embedded fluorescent membrane can be used as a reliable sensing platform for rapid detection of H2S. It provided a convenient and rapid detection material, simplifying the detection process of H2S, which is of great significance for the development of cellulose-based fluorescent smart material.
Collapse
Affiliation(s)
- Huan Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Guocheng Zhou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiyuan Meng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyuan Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yiqin Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
11
|
Hong S, Gan Y, Liu D, Yu T, Zhou H, Li H, Liu F, Yin P. A novel NIR fluorescent probe for visualizing hydrogen sulfide in Alzheimer's disease. Analyst 2024; 149:4370-4377. [PMID: 39023002 DOI: 10.1039/d4an00819g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Alzheimer's disease (AD) represents a devastating form of neurodegeneration, hallmarked by a relentless erosion of memory and cognitive faculties. One key player in this complex pathology is hydrogen sulfide (H2S), a gaseous neurotransmitter that is highly concentrated in the brain. Its fluctuating levels have been compellingly linked to the onset and progression of AD. Despite the availability of numerous fluorescent probes for detecting H2S, targeted imaging of this neurotransmitter within AD models remains underexplored. To bridge this gap, we have engineered an innovative near-infrared (NIR) "turn-on" fluorescent probe, designated as probe 1. Crafted around a dicyanoisophorone scaffold, the probe incorporates a strategic methoxy modification to facilitate a bathochromic spectral shift. Impressively, upon binding with H2S, probe 1 exhibited a robust 46-fold enhancement in fluorescence at a wavelength of 680 nm. We successfully deployed this probe to visualize both exogenous and endogenous H2S in living cells and zebrafish. Further, our pathogenic investigations have corroborated that diminished H2S levels are intricately linked to an escalation in amyloid plaque formation. Most crucially, we employed probe 1 to capture real-time images of H2S concentrations within the hippocampal tissue of AD mouse models. This revealed a significant depletion in H2S levels, thereby underscoring the probe's immense potential as an effective tool for the diagnosis and prevention of Alzheimer's disease.
Collapse
Affiliation(s)
- Sai Hong
- Institute of Interdisciplinary Studies, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Yabing Gan
- Institute of Interdisciplinary Studies, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Dian Liu
- Department of Gastroenterology and Urology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, P. R. China
| | - Ting Yu
- Institute of Interdisciplinary Studies, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Huijun Zhou
- Department of Gastroenterology and Urology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, P. R. China
| | - Haitao Li
- Institute of Interdisciplinary Studies, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Feng Liu
- Institute of Interdisciplinary Studies, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Peng Yin
- Institute of Interdisciplinary Studies, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| |
Collapse
|
12
|
Wang J, Liu M, Zhang X, Wang X, Xiong M, Luo D. Stimuli-responsive linkers and their application in molecular imaging. EXPLORATION (BEIJING, CHINA) 2024; 4:20230027. [PMID: 39175888 PMCID: PMC11335469 DOI: 10.1002/exp.20230027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/16/2023] [Indexed: 08/24/2024]
Abstract
Molecular imaging is a non-invasive imaging method that is widely used for visualization and detection of biological events at cellular or molecular levels. Stimuli-responsive linkers that can be selectively cleaved by specific biomarkers at desired sites to release or activate imaging agents are appealing tools to improve the specificity, sensitivity, and efficacy of molecular imaging. This review summarizes the recent advances of stimuli-responsive linkers and their application in molecular imaging, highlighting the potential of these linkers in the design of activatable molecular imaging probes. It is hoped that this review could inspire more research interests in the development of responsive linkers and associated imaging applications.
Collapse
Affiliation(s)
- Jing Wang
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Meng Liu
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Xinyue Zhang
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Xinning Wang
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Menghua Xiong
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
- National Engineering Research Centre for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouP. R. China
| | - Dong Luo
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| |
Collapse
|
13
|
Zhu J, Graziotto ME, Cottam V, Hawtrey T, Adair LD, Trist BG, Pham NTH, Rouaen JRC, Ohno C, Heisler M, Vittorio O, Double KL, New EJ. Near-Infrared Ratiometric Fluorescent Probe for Detecting Endogenous Cu 2+ in the Brain. ACS Sens 2024; 9:2858-2868. [PMID: 38787339 DOI: 10.1021/acssensors.3c02549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Copper participates in a range of critical functions in the nervous system and human brain. Disturbances in brain copper content is strongly associated with neurological diseases. For example, changes in the level and distribution of copper are reported in neuroblastoma, Alzheimer's disease, and Lewy body disorders, such as Parkinson disease and dementia with Lewy bodies (DLB). There is a need for more sensitive techniques to measure intracellular copper levels to have a better understanding of the role of copper homeostasis in neuronal disorders. Here, we report a reaction-based near-infrared (NIR) ratiometric fluorescent probe CyCu1 for imaging Cu2+ in biological samples. High stability and selectivity of CyCu1 enabled the probe to be deployed as a sensor in a range of systems, including SH-SY5Y cells and neuroblastoma tumors. Furthermore, it can be used in plant cells, reporting on copper added to Arabidopsis roots. We also used CyCu1 to explore Cu2+ levels and distribution in post-mortem brain tissues from patients with DLB. We found significant decreases in Cu2+ content in the cytoplasm, neurons, and extraneuronal space in the degenerating substantia nigra in DLB compared with healthy age-matched control tissues. These findings enhance our understanding of Cu2+ dysregulation in Lewy body disorders. Our probe also shows promise as a photoacoustic imaging agent, with potential for applications in bimodal imaging.
Collapse
Affiliation(s)
- Jianping Zhu
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Marcus E Graziotto
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Veronica Cottam
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), The University of Sydney, Sydney, NSW 2006, Australia
| | - Tom Hawtrey
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Liam D Adair
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Benjamin G Trist
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), The University of Sydney, Sydney, NSW 2006, Australia
| | - Nguyen T H Pham
- Sydney Imaging, Core Research Facility, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jourdin R C Rouaen
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, Randwick, NSW 2052, Australia
| | - Carolyn Ohno
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Marcus Heisler
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, Randwick, NSW 2052, Australia
- School of Biomedical Sciences, University of New South Wales, Kensington, NSW 2031, Australia
| | - Kay L Double
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), The University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
14
|
Sun P, Chen HC, Guo W, Zhang Z, Sun S, Gao N, Jing YH, Wang B. A ratiometric fluorescent probe revealing the abnormality of acetylated tau by visualizing polarity in Alzheimer's disease. J Mater Chem B 2024; 12:5619-5627. [PMID: 38770837 DOI: 10.1039/d4tb00357h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Abnormal neuronal polarity leads to early deficits in Alzheimer's disease (AD) by affecting the function of axons. Precise and rapid evaluation of polarity changes is very important for the early prevention and diagnosis of AD. However, due to the limitations of existing detection methods, the mechanism related to how neuronal polarity changes in AD is unclear. Herein, we reported a ratiometric fluorescent probe characterized by neutral molecule to disclose the polarity changes in nerve cells and the brain of APP/PS1 mice. Cy7-K showed a sensitive and selective ratiometric fluorescence response to polarity. Remarkably, unlike conventional intramolecular charge transfer fluorescent probes, the fluorescence quantum yield of Cy7-K in highly polar solvents is higher than that in low polar solvents due to the transition of neutral quinones to aromatic zwitterions. Using the ratiometric fluorescence imaging, we found that beta-amyloid protein (Aβ) inhibits the expression of histone deacetylase 6, thereby increasing the amount of acetylated Tau protein (AC-Tau) and ultimately enhancing cell polarity. There was a high correlation between polarity and AC-Tau. Furthermore, Cy7-K penetrated the blood-brain barrier to image the polarity of different brain regions and confirmed that APP/PS1 mice had higher polarity than Wild-type mice. The probe Cy7-K will be a promising tool for assessing the progression of AD development by monitoring polarity.
Collapse
Affiliation(s)
- Panpan Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
- College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Hai-Chao Chen
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Wenting Guo
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Zefan Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Shihao Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Ningshuang Gao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| |
Collapse
|
15
|
Xu C, Cui K, Ye Z, Feng Y, Wang H, Liu HW. Recent Advances of Aminopeptidases-Responsive Small-Molecular Probes for Bioimaging. Chem Asian J 2024; 19:e202400052. [PMID: 38436107 DOI: 10.1002/asia.202400052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/05/2024]
Abstract
Aminopeptidases, enzymes with critical roles in human body, are emerging as vital biomarkers for metabolic processes and diseases. Aberrant aminopeptidase levels are often associated with diseases, particularly cancer. Small-molecule probes, such as fluorescent, fluorescent/photoacoustics, bioluminescent, and chemiluminescent probes, are essential tools in the study of aminopeptidases-related diseases. The fluorescent probes provide real-time insights into protein activities, offering high sensitivity in specific locations, and precise spatiotemporal results. Additionally, photoacoustic probes offer signals that are able to penetrate deeper tissues. Bioluminescent and chemiluminescent probes can enhance in vivo imaging abilities by reducing the background. This comprehensive review is focused on small-molecule probes that respond to four key aminopeptidases: aminopeptidase N, leucine aminopeptidase, Pyroglutamate aminopeptidase 1, and Prolyl Aminopeptidase, and their utilization in imaging tumors and afflicted regions. In this review, the design strategy of small-molecule probes, the variety of designs from previous studies, and the opportunities of future bioimaging applications are discussed, serving as a roadmap for future research, sparking innovations in aminopeptidase-responsive probe development, and enhancing our understanding of these enzymes in disease diagnostics and treatment.
Collapse
Affiliation(s)
- Chengyan Xu
- Department of Medicine, Shizhen College of Guizhou University of Traditional Chinese Medicine, Guiyang, 550200, China
| | - Kaixi Cui
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, 44106, United States
| | - Zhifei Ye
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yurong Feng
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Huabin Wang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Hong-Wen Liu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
16
|
Qi FY, Qiao L, Peng L, Yang Y, Zhang CH, Liu X. An activatable fluorescent-photoacoustic dual-modal probe for highly sensitive imaging of nitroxyl in vivo. Analyst 2024; 149:2299-2305. [PMID: 38516833 DOI: 10.1039/d4an00188e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Nitroxyl (HNO) plays a vital role in various biological functions and pharmacological activities, so the development of an excellent near-infrared fluorescent (NIRF) and photoacoustic (PA) dual-modality probe is crucial for understanding HNO-related physiological and pathological progression. Herein, we proposed and synthesized a novel NIRF/PA dual probe (QL-HNO) by substituting an indole with quinolinium in hemicyanine for the sensitive detection of exogenous and endogenous HNO in vivo. The designed probe showed the highest sensitivity in NIRF mode and a desirable PA signal-to-noise ratio for HNO detection in vitro and was further applied for NIRF/PA dual-modal imaging of HNO with high contrast in living cells and tumor-bearing animals. Based on the excellent performance of QL-HNO, we believe that this study provides a promising molecular tool for further understanding of HNO-related physiological and pathological progression.
Collapse
Affiliation(s)
- Fang-Yuan Qi
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Lei Qiao
- Central Laboratory of the Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Xuzhou 221116, Jiangsu, China.
| | - Lan Peng
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Yu Yang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Chong-Hua Zhang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Xianjun Liu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| |
Collapse
|
17
|
Song S, Zhao Y, Kang M, Zhang F, Wu Q, Niu N, Yang H, Wen H, Fu S, Li X, Zhang Z, Tang BZ, Wang D. An NIR-II Excitable AIE Small Molecule with Multimodal Phototheranostic Features for Orthotopic Breast Cancer Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309748. [PMID: 38165653 DOI: 10.1002/adma.202309748] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/19/2023] [Indexed: 01/04/2024]
Abstract
One-for-all phototheranostics, referring to a single component simultaneously exhibiting multiple optical imaging and therapeutic modalities, has attracted significant attention due to its excellent performance in cancer treatment. Benefitting from the superiority in balancing the diverse competing energy dissipation pathways, aggregation-induced emission luminogens (AIEgens) are proven to be ideal templates for constructing one-for-all multimodal phototheranostic agents. However, to this knowledge, the all-round AIEgens that can be triggered by a second near-infrared (NIR-II, 1000-1700 nm) light have not been reported. Given the deep tissue penetration and high maximum permissible exposure of the NIR-II excitation light, herein, this work reports for the first time an NIR-II laser excitable AIE small molecule (named BETT-2) with multimodal phototheranostic features by taking full use of the advantage of AIEgens in single molecule-facilitated versatility as well as synchronously maximizing the molecular donor-acceptor strength and conformational distortion. As formulated into nanoparticles (NPs), the high performance of BETT-2 NPs in NIR-II light-driven fluorescence-photoacoustic-photothermal trimodal imaging-guided photodynamic-photothermal synergistic therapy of orthotopic mouse breast tumors is fully demonstrated by the systematic in vitro and in vivo evaluations. This work offers valuable insights for developing NIR-II laser activatable one-for-all phototheranostic systems.
Collapse
Affiliation(s)
- Shanliang Song
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 119077
| | - Yue Zhao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Miaomiao Kang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Fei Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qian Wu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Niu Niu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hao Yang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haifei Wen
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shuang Fu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xue Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhijun Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
18
|
Yang Z, Zhong T, Mo Q, He J, Chong J, Hu X, Zhao S, Qin J. Monoamine oxidase B activatable red fluorescence probe for bioimaging in cells and zebrafish. Bioorg Chem 2024; 145:107156. [PMID: 38387393 DOI: 10.1016/j.bioorg.2024.107156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
A real-time and specific for the detection of Monoamine Oxidase B (MAO-B) to investigate the MAO-B-relevant disease development and treatment process is urgently desirable. Here, we utilized MAO-B to catalyze the conversion of propylamino groups to aldehyde groups, which was then quickly followed by a β-elimination process to produce fluorescent probes (FNJP) that may be used to detect MAO-B in vitro and in vivo. The FNJP probe possesses unique properties, including favorable reactivity (Km = 10.8 μM), high cell permeability, and NIR characteristics (λem = 610 nm). Moreover, the FNJP probe showed high selectivity for MAO-B and was able to detect endogenous MAO-B levels from a mixed population of NIH-3 T3 and HepG2 cells. MAO-B expression was found to be increased in cells under lipopolysaccharide-stimulated cellular oxidative stress in neuronal-like SH-SY5Y cells. In addition, the visualization of FNJP for MAO-B activity in zebrafish can be an effective tool for exploring the biofunctions of MAO-B. Considering these excellent properties, the FNJP probe may be a powerful tool for detecting MAO-B levels in living organisms and can be used for accurate clinical diagnoses of related diseases.
Collapse
Affiliation(s)
- Zhengmin Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China; Qiannan Medical College for Nationalities, Duyun 558003, PR China
| | - Tiantian Zhong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Qingyuan Mo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Jiman He
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Jia Chong
- Qiannan Medical College for Nationalities, Duyun 558003, PR China
| | - Xianyun Hu
- Qiannan Medical College for Nationalities, Duyun 558003, PR China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Jiangke Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
19
|
Fu Q, Yang X, Wang M, Zhu K, Wang Y, Song J. Activatable Probes for Ratiometric Imaging of Endogenous Biomarkers In Vivo. ACS NANO 2024; 18:3916-3968. [PMID: 38258800 DOI: 10.1021/acsnano.3c10659] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Dynamic variations in the concentration and abnormal distribution of endogenous biomarkers are strongly associated with multiple physiological and pathological states. Therefore, it is crucial to design imaging systems capable of real-time detection of dynamic changes in biomarkers for the accurate diagnosis and effective treatment of diseases. Recently, ratiometric imaging has emerged as a widely used technique for sensing and imaging of biomarkers due to its advantage of circumventing the limitations inherent to conventional intensity-dependent signal readout methods while also providing built-in self-calibration for signal correction. Here, the recent progress of ratiometric probes and their applications in sensing and imaging of biomarkers are outlined. Ratiometric probes are classified according to their imaging mechanisms, and ratiometric photoacoustic imaging, ratiometric optical imaging including photoluminescence imaging and self-luminescence imaging, ratiometric magnetic resonance imaging, and dual-modal ratiometric imaging are discussed. The applications of ratiometric probes in the sensing and imaging of biomarkers such as pH, reactive oxygen species (ROS), reactive nitrogen species (RNS), glutathione (GSH), gas molecules, enzymes, metal ions, and hypoxia are discussed in detail. Additionally, this Review presents an overview of challenges faced in this field along with future research directions.
Collapse
Affiliation(s)
- Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
20
|
Shen Q, Yu C. Advances in superparamagnetic iron oxide nanoparticles modified with branched polyethyleneimine for multimodal imaging. Front Bioeng Biotechnol 2024; 11:1323316. [PMID: 38333548 PMCID: PMC10851169 DOI: 10.3389/fbioe.2023.1323316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/18/2023] [Indexed: 02/10/2024] Open
Abstract
Multimodal imaging are approaches which combines multiple imaging techniques to obtain multi-aspect information of a target through different imaging modalities, thereby greatly improve the accuracy and comprehensiveness of imaging. Superparamagnetic iron oxide nanoparticles (SPIONs) modified with branched polyethyleneimine have revealed good biocompatibility and stability, high drug loading capacity and nucleic acid transfection efficiency. SPIONs have been developed as functionalized platforms which can be further modified to enhance their functionalities. Those further modifications facilitate the application of SPIONs in multimodal imaging. In this review, we discuss the methods, advantages, applications, and prospects of BPEI-modified SPIONs in multimodal imaging.
Collapse
Affiliation(s)
- Qiaoling Shen
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Chunjing Yu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
21
|
Lei S, Jiang K, Zhang C, Sun W, Pan Y, Wang D, Huang P, Lin J. A FRET-Based Ratiometric H 2S Sensor for Sensitive Optical Molecular Imaging in Second Near-Infrared Window. RESEARCH (WASHINGTON, D.C.) 2023; 6:0286. [PMID: 38162986 PMCID: PMC10755252 DOI: 10.34133/research.0286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/18/2023] [Indexed: 01/03/2024]
Abstract
Second near-infrared (NIR-II) window optical molecular imaging kicks off a new revolution in high-quality imaging in vivo, but always suffers from the hurdles of inevitable tissue autofluorescence background and NIR-II probe development. Here, we prepare a Förster resonance energy transfer-based ratiometric NIR-II window hydrogen sulfide (H2S) sensor through the combination of an H2S-responsive NIR-II cyanine dye (acceptor, LET-1055) and an H2S-inert rhodamine hybrid polymethine dye (donor, Rh930). This sensor not only exhibits high sensitivity and selectivity, but also shows rapid reaction kinetics (~20 min) and relatively low limit of detection (~96 nM) toward H2S, allowing in vivo ratiometric NIR-II fluorescence imaging of orthotopic liver and colon tumors and visualization of the drug-induced hepatic H2S fluctuations. Our findings provide the potential for advancing the feasibility of NIR-II activity-based sensing for in vivo clinical diagnosis.
Collapse
Affiliation(s)
- Shan Lei
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Shenzhen Key Laboratory of Tumor Visualization Molecular Medicine, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering,
Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Kejia Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Shenzhen Key Laboratory of Tumor Visualization Molecular Medicine, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering,
Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Chenqing Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Shenzhen Key Laboratory of Tumor Visualization Molecular Medicine, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering,
Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Wei Sun
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Shenzhen Key Laboratory of Tumor Visualization Molecular Medicine, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering,
Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yuantao Pan
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Shenzhen Key Laboratory of Tumor Visualization Molecular Medicine, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering,
Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering,
Shenzhen University, Shenzhen 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Shenzhen Key Laboratory of Tumor Visualization Molecular Medicine, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering,
Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Shenzhen Key Laboratory of Tumor Visualization Molecular Medicine, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering,
Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
22
|
Wang S, Fu Q, Su L, Wu Y, Zhu K, Yang DC, Yang XZ, Weng XL, Liu JY, Song J. Self-Reporting Molecular Prodrug for In Situ Quantitative Sensing of Drug Release by Ratiometric Photoacoustic Imaging. ACS Sens 2023; 8:4737-4746. [PMID: 38008917 DOI: 10.1021/acssensors.3c01824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Understanding the pharmacokinetics of prodrugs in vivo necessitates quantitative, noninvasive, and real-time monitoring of drug release, despite its difficulty. Ratiometric photoacoustic (PA) imaging, a promising deep tissue imaging technology with a unique capacity for self-calibration, can aid in solving this problem. Here, for the first time, a methylamino-substituted Aza-BODIPY (BDP-N) and the chemotherapeutic drug camptothecin (CPT) are joined via a disulfide chain to produce the molecular theranostic prodrug (BSC) for real-time tumor mapping and quantitative visualization of intratumoral drug release using ratiometric PA imaging. Intact BSC has an extremely low toxicity, with a maximum absorption at ∼720 nm; however, endogenous glutathione (GSH), which is overexpressed in tumors, will cleave the disulfide bond and liberate CPT (with full toxicity) and BDP-N. This is accompanied by a significant redshift in absorption at ∼800 nm, resulting in the PA800/PA720 ratio. In vitro, a linear relationship is successfully established between PA800/PA720 values and CPT release rates, and subsequent experiments demonstrate that this relationship can also be applied to the quantitative detection of intratumoral CPT release in vivo. Notably, the novel ratiometric strategy eliminates nonresponsive interference and amplifies the multiples of the signal response to significantly improve the imaging contrast and detection precision. Therefore, this research offers a viable alternative for the design of molecular theranostic agents for the clinical diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) and National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Qinrui Fu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, P. R. China
| | - Lichao Su
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) and National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Ying Wu
- State laboratory of Chemical Source Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China
| | - Kang Zhu
- State laboratory of Chemical Source Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China
| | - De-Chao Yang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) and National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xiao-Zhen Yang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) and National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xiao-Lu Weng
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) and National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Jian-Yong Liu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) and National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Jibin Song
- State laboratory of Chemical Source Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China
| |
Collapse
|
23
|
Ma Y, Li M, Sun H, Ge JY, Bai Y, Qiu L, Wu X, Chen J, Chen Z. Strategic design of an NIR probe for viscosity imaging in inflammatory and non-alcoholic steatohepatitis mice. Chem Commun (Camb) 2023; 59:14025-14028. [PMID: 37947054 DOI: 10.1039/d3cc04041k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Two novel near-infrared (NIR) fluorescent probes Cy-Vis1 and Cy-Vis2 with large Stokes shifts (>100 nm) were constructed using a "symmetry collapse" strategy. Notably, Cy-Vis2 was significantly more sensitive to viscosity than Cy-Vis1 through an enhanced intramolecular interaction strategy. The fluorescence intensities of Cy-Vis1 and Cy-Vis2 exhibited increases, by 7.6- and 19.9-fold, respectively, across the viscosity range from 0.8 cp to 359.9 cp. Cy-Vis2 was successfully used to visualize viscosity abnormalities in lipopolysaccharide (LPS)-induced inflammatory and NASH model mice.
Collapse
Affiliation(s)
- Yaogeng Ma
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Min Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Huilin Sun
- School of Pharmaceutical, Changzhou University, Changzhou 213164, P. R. China.
| | - Jing-Yuan Ge
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Yang Bai
- School of Pharmaceutical, Changzhou University, Changzhou 213164, P. R. China.
| | - Lin Qiu
- School of Pharmaceutical, Changzhou University, Changzhou 213164, P. R. China.
| | - Xuan Wu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Jiuxi Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Zhongyan Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| |
Collapse
|
24
|
Wen X, Bi S, Wang C, Zeng S. An Activated Structure Transformable Ratiometric Photoacoustic Nanoprobe for Real-Time Dynamic Monitoring of H 2S In Vivo. NANO LETTERS 2023; 23:10642-10650. [PMID: 37955992 DOI: 10.1021/acs.nanolett.3c03980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
H2S has emerged as a promising biomarker for many diseases such as colon cancer and metformin-induced hepatotoxicity. Real-time monitoring of H2S levels in vivo is significant for early accurate diagnosis of these diseases. Herein, a new accurate and reliable nanoprobe (Au NRs@Ag) was designed for real-time dynamic ratiometric photoacoustic (PA) imaging of H2S in vivo based on the endogenous H2S-triggered local surface plasmon resonance (LSPR) red-shift. The Au NRs@Ag nanoprobe can be readily converted into Au NRs@Ag2S via the endogenous H2S-activated in situ sulfurative reaction, subsequently leading to a significant red-shift of the LSPR wavelength from 808 to 980 nm and enabling accurate ratiometric PA (PA980/PA808) imaging of H2S. Moreover, dynamic ratiometric PA imaging of metformin-induced hepatotoxicity was also successfully achieved by the designed PA imaging strategy. These findings provide the possibility of designing a new ratiometric PA imaging strategy for dynamic in situ monitoring of H2S-related diseases.
Collapse
Affiliation(s)
- Xingwang Wen
- School of Physics and Electronics, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Key Laboratory for Matter Microstructure and Function of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, Hunan 410081, China
| | - Shenghui Bi
- School of Physics and Electronics, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Key Laboratory for Matter Microstructure and Function of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, Hunan 410081, China
| | - Chunxia Wang
- School of Physics and Electronics, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Key Laboratory for Matter Microstructure and Function of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, Hunan 410081, China
| | - Songjun Zeng
- School of Physics and Electronics, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Key Laboratory for Matter Microstructure and Function of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
25
|
Zhao F, Chen G, Lin X, Jiang J, Xia Y, Li X, Wang K. Novel 3RAX-based fluorescent probe for hydrogen sulfide detection and photodynamic therapy. JOURNAL OF LUMINESCENCE 2023; 263:119990. [DOI: 10.1016/j.jlumin.2023.119990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
|
26
|
Li S, Zhang G, Peng Y, Chen P, Li J, Wang X, Wang Z. Tyrosinase-activated Nanocomposites for Double-Modals Imaging Guided Photodynamic and Photothermal Synergistic Therapy. Adv Healthc Mater 2023; 12:e2300327. [PMID: 37003298 DOI: 10.1002/adhm.202300327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Tyrosinase (TYR) is an important biomarker of melanoma. The exploration of fluorescent pr-obes-based composites is beneficial to build an integrative platform for the diagnosis and treatment of melanoma. Herein, a multifunctional nanocomposite IOBOH@BSA activated by TYR is developed for selective imaging and ablation of melanoma. The chemical structure of IOBOH enables the fluorescence (FL) imaging activated by TYR, photoacoustic (PA) imaging, and photodynamic-photothermal activity by regulating the balance between radiative decay and non-radiative decay. IOBOH combined with bovine serum albumin (IOBOH@BSA) presents the response to TYR and realizes FL imaging with mitochondria-targeting in melanoma. Moreover, IOBOH@BSA shows excellent photothermal ability and is applied for PA imaging. After IOBOH@BSA is activated by TYR, the singlet oxygen generation increases obviously. IOBOH@BSA can realize TYR-activated imaging and photodynamic-photothermal therapy of melanoma. The development of TYR-activated multifunctional nanocomposites promotes the precise imaging and improves the therapeutic effect of melanoma.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Guoyang Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yanghan Peng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Peiyu Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jiguang Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xuefei Wang
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
27
|
Gu QS, Yang ZC, Chao JJ, Li L, Mao GJ, Xu F, Li CY. Tumor-Targeting Probe for Dual-Modal Imaging of Cysteine In Vivo. Anal Chem 2023; 95:12478-12486. [PMID: 37555783 DOI: 10.1021/acs.analchem.3c02134] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Cysteine (Cys) is a crucial biological thiol that has a vital function in preserving redox homeostasis in organisms. Studies have shown that Cys is closely related to the development of cancer. Thus, it is necessary to design an efficient method to detect Cys for an effective cancer diagnosis. In this work, a novel tumor-targeting probe (Bio-Cy-S) for dual-modal (NIR fluorescence and photoacoustic) Cys detection is designed. The probe exhibits high selectivity and sensitivity toward Cys. After reaction with Cys, both NIR fluorescence and photoacoustic signals are activated. Bio-Cy-S has been applied for the dual-modal detection of Cys levels in living cells, and it can be used to distinguish normal cells from cancer cells by different Cys levels. In addition, the probe is capable of facilitating dual-modal imaging for monitoring changes in Cys levels in tumor-bearing mice. More importantly, the excellent tumor-targeting ability of the probe greatly improves the signal-to-noise ratio of imaging. To the best of our knowledge, this is the first Cys probe to combine targeting and dual-modal imaging performance for cancer diagnosis.
Collapse
Affiliation(s)
- Qing-Song Gu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Zhi-Chao Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Jing-Jing Chao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Li Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Fen Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| |
Collapse
|
28
|
Wang T, Huang X, Yang S, Hu S, Zheng X, Mao G, Li Y, Zhou Y. Monitoring H 2S fluctuation during autophagic fusion of lysosomes and mitochondria using a lysosome-targeting fluorogenic probe. Anal Chim Acta 2023; 1265:341356. [PMID: 37230562 DOI: 10.1016/j.aca.2023.341356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Hydrogen sulfide (H2S) plays a cytoprotective role during mitophagy by detoxifying superfluous reactive oxygen species (ROS), and its concentration fluctuates in this process. However, no work has been reported to reveal the variation in H2S levels during autophagic fusion of lysosomes and mitochondria. Herein, we present a lysosome-targeted fluorogenic probe, named NA-HS, for real-time monitoring of H2S fluctuation for the first time. The newly synthesized probe exhibits good selectivity and high sensitivity (detection limit of 23.6 nM). Fluorescence imaging results demonstrated that NA-HS could image exogenous and endogenous H2S in living cells. Interestingly, the colocalization results revealed that the level of H2S was upregulated after autophagy began because of the cytoprotective effect, and was finally gradually reduced during subsequent autophagic fusion. This work not only affords a powerful fluorescence tool to monitor the variations in H2S levels during mitophagy, but also offers new insights into targeting small molecules for elaborating the complex cellular signal pathways.
Collapse
Affiliation(s)
- Taoyun Wang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - Xu Huang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Sheng Yang
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Shan Hu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - Xianglan Zheng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, School of Chemistry and Chemical Engineering, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, PR China
| | - Guojiang Mao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, PR China
| | - Yi Li
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, School of Chemistry and Chemical Engineering, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, PR China.
| | - Yibo Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China.
| |
Collapse
|
29
|
Yu H, Tiemuer A, Zhu Y, Sun Y, Zhang Y, Liu L, Liu Y. Albumin-based near-infrared phototheranostics for frequency upconversion luminescence/photoacoustic dual-modal imaging-guided photothermal therapy. Biomater Sci 2023. [PMID: 37183589 DOI: 10.1039/d3bm00239j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Engineering versatile phototheranostics for multimodal diagnostic imaging and effective therapy has great potential in cancer treatment. However, developing an inherently versatile molecule is a huge challenge. In this work, a near-infrared organic dye (NRh) was synthesized and further bound with bovine serum albumin (BSA) to construct facile "one-for-all" phototheranostics (NRh-BSA NPs), which exhibited enhanced frequency upconversion luminescence (FUCL, λex/em = 850/825 nm) and excellent photoacoustic (PA) and photothermal properties (λ'ex = 808 nm). Additionally, the BSA-modified phototheranostics NRh-BSA NPs showed specific accumulation in the tumor region through passive targeting. Based on the FUCL/PA dual modal imaging-guidance, the NRh-BSA NPs not only can guarantee the accuracy of imaging of the U87MG tumor sites, but also can improve the therapeutic effect on ablating tumors without recurrence by photothermal therapy (PTT). Collectively, our work proposed a novel strategy to construct versatile phototheranostics with the unique FUCL/PA imaging-guided technique for accurate cancer theranostics.
Collapse
Affiliation(s)
- Hui Yu
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Aliya Tiemuer
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yanyan Zhu
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Ye Sun
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuanyuan Zhang
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Li Liu
- Clinical Laboratory, Xiantao First People's Hospital, Xiantao, 433000, China.
| | - Yi Liu
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
- Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| |
Collapse
|
30
|
Afshari MJ, Cheng X, Duan G, Duan R, Wu S, Zeng J, Gu Z, Gao M. Vision for Ratiometric Nanoprobes: In Vivo Noninvasive Visualization and Readout of Physiological Hallmarks. ACS NANO 2023; 17:7109-7134. [PMID: 37036400 DOI: 10.1021/acsnano.3c01641] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Lesion areas are distinguished from normal tissues surrounding them by distinct physiological characteristics. These features serve as biological hallmarks with which targeted biomedical imaging of the lesion sites can be achieved. Although tremendous efforts have been devoted to providing smart imaging probes with the capability of visualizing the physiological hallmarks at the molecular level, the majority of them are merely able to derive anatomical information from the tissues of interest, and thus are not suitable for taking part in in vivo quantification of the biomarkers. Recent advances in chemical construction of advanced ratiometric nanoprobes (RNPs) have enabled a horizon for quantitatively monitoring the biological abnormalities in vivo. In contrast to the conventional probes whose dependency of output on single-signal profiles restricts them from taking part in quantitative practices, RNPs are designed to provide information in two channels, affording a self-calibration opportunity to exclude the analyte-independent factors from the outputs and address the issue. Most of the conventional RNPs have encountered several challenges regarding the reliability and sufficiency of the obtained data for high-performance imaging. In this Review, we have summarized the recent progresses in developing highly advanced RNPs with the capabilities of deriving maximized information from the lesion areas of interest as well as adapting themselves to the complex biological systems in order to minimize microenvironmental-induced falsified signals. To provide a better outlook on the current advanced RNPs, nanoprobes based on optical, photoacoustic, and magnetic resonance imaging modalities for visualizing a wide range of analytes such as pH, reactive species, and different derivations of amino acids have been included. Furthermore, the physicochemical properties of the RNPs, the major constituents of the nanosystems and the analyte recognition mechanisms have been introduced. Moreover, the alterations in the values of the ratiometric signal in response to the analyte of interest as well as the time at which the highest value is achieved, have been included for most of RNPs discussed in this Review. Finally, the challenges as well as future perspectives in the field are discussed.
Collapse
Affiliation(s)
- Mohammad Javad Afshari
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaju Cheng
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Guangxin Duan
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Ruixue Duan
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Shuwang Wu
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Jianfeng Zeng
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Mingyuan Gao
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
31
|
Ding W, Yao S, Chen Y, Wu Y, Li Y, He W, Guo Z. A Near-Infrared Fluorescent and Photoacoustic Probe for Visualizing Biothiols Dynamics in Tumor and Liver. Molecules 2023; 28:molecules28052229. [PMID: 36903474 PMCID: PMC10005096 DOI: 10.3390/molecules28052229] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Biothiols, including glutathione (GSH), homocysteine (Hcy) and cysteine (Cys), play crucial roles in various physiological processes. Though an array of fluorescent probes have been designed to visualize biothiols in living organisms, few one-for-all imaging agents for sensing biothiols with fluorescence and photoacoustic imaging capabilities have been reported, since instructions for synchronously enabling and balancing every optical imaging efficacy are deficient. Herein, a new near-infrared thioxanthene-hemicyanine dye (Cy-DNBS) has been constructed for fluorescence and photoacoustic imaging of biothiols in vitro and in vivo. Upon treatment with biothiols, the absorption peak of Cy-DNBS shifted from 592 nm to 726 nm, resulting in a strong NIR absorption as well as a subsequent turn-on PA signal. Meanwhile, the fluorescence intensity increased instantaneously at 762 nm. Then, Cy-DNBS was successfully utilized for imaging endogenous and exogenous biothiols in HepG2 cells and mice. In particular, Cy-DNBS was employed for tracking biothiols upregulation in the liver of mice triggered by S-adenosyl methionine by means of fluorescent and photoacoustic imaging methods. We expect that Cy-DNBS serves as an appealing candidate for deciphering biothiols-related physiological and pathological processes.
Collapse
Affiliation(s)
- Weizhong Ding
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Shankun Yao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210000, China
- Correspondence: (Y.C.); (W.H.); (Z.G.)
| | - Yanping Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yaheng Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210000, China
- Correspondence: (Y.C.); (W.H.); (Z.G.)
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210000, China
- Correspondence: (Y.C.); (W.H.); (Z.G.)
| |
Collapse
|
32
|
Kafuti YS, Zeng S, Liu X, Han J, Qian M, Chen Q, Wang J, Peng X, Yoon J, Li H. Observing hydrogen sulfide in the endoplasmic reticulum of cancer cells and zebrafish by using an activity-based fluorescent probe. Chem Commun (Camb) 2023; 59:2493-2496. [PMID: 36752717 DOI: 10.1039/d2cc06645a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A crucial endogenous signaling chemical, hydrogen sulfide, is involved in many physiological actions. In this work, we created the fluorescent probe ER-Nap-NBD using a naphthalimide fluorophore as the signal reporter, a 7-nitro-1,2,3-benzoxadiazole amine as the responsive moiety, and a sulfonamide part for endoplasmic reticulum targeting. ER-Nap-NBD could be detected the H2S levels in solution and in living systems (cells and zebrafish).
Collapse
Affiliation(s)
- Yves S Kafuti
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China. .,School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, Liaoning, China
| | - Shuang Zeng
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, Liaoning, China
| | - Xiaosheng Liu
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, Liaoning, China
| | - Jingjing Han
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea. .,Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Ming Qian
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, Liaoning, China
| | - Qixian Chen
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, Liaoning, China
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China. .,School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, Liaoning, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China. .,School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, Liaoning, China
| |
Collapse
|
33
|
Xu L, Chu H, Gao D, Wu Q, Sun Y, Wang Z, Ma P, Song D. Chemosensor with Ultra-High Fluorescence Enhancement for Assisting in Diagnosis and Resection of Ovarian Cancer. Anal Chem 2023; 95:2949-2957. [PMID: 36695319 DOI: 10.1021/acs.analchem.2c04705] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Fluorescence imaging-guided diagnostics is one of the most promising approaches for facile detection of tumors in situ owing to its simple operation and non-invasiveness. As a crucial biomarker for primary ovarian cancers, β-galactosidase (β-gal) has been demonstrated to be the significant molecular target for visualization of ovarian tumors. Herein, a membrane-permeable fluorescent chemosensor (namely, LAN-βgal) was synthesized for β-gal-specific detection using the d-galactose residue as a specific recognition unit and LAN-OH (ΦF = 0.47) as a fluorophore. After β-gal was digested, the fluorescence of the initially quenched LAN-βgal (ΦF < 0.001) was enhanced by up to more than 2000-fold, which exceeded the fluorescence enhancement of other previously reported probes. We also demonstrated that the chemosensor LAN-βgal could visualize endogenous β-gal and distinguish ovarian cancer cells from normal ovarian cells. Further, the chemosensor LAN-βgal was successfully applied to visualize the back tumor-bearing mouse model and peritoneal metastatic ovarian cancer model in vivo. More importantly, through in situ spraying, the proposed chemosensor was successfully employed to assist in the surgical resection of ovarian cancer tumors due to its high tumor-to-normal (T/N) tissue fluorescence ratio of 218. To the best of our knowledge, this is the highest T/N tissue fluorescence ratio ever reported. We believe that the LAN-βgal chemosensor can be utilized as a new tool for the clinical diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Lanlan Xu
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Hongyu Chu
- Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Dejiang Gao
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Qiong Wu
- Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Ying Sun
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| |
Collapse
|
34
|
Fang H, Chen Y, Jiang Z, He W, Guo Z. Fluorescent Probes for Biological Species and Microenvironments: from Rational Design to Bioimaging Applications. Acc Chem Res 2023; 56:258-269. [PMID: 36652599 DOI: 10.1021/acs.accounts.2c00643] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Some important biological species and microenvironments maintain a complex and delicate dynamic balance in life systems, participating in the regulation of various physiological processes and playing indispensable roles in maintaining the healthy development of living bodies. Disruption of their homeostasis in living organisms can cause various diseases and even death. Therefore, real time monitoring of these biological species and microenvironments during different physiological and pathological processes is of great significance. Fluorescent-probe-based techniques have been recognized as one of the most powerful tools for real time imaging in biological samples. In this Account, we introduce the representative works from our group in the field of fluorescent probes for biological imaging capable of detecting metal ions, small bioactive molecules, and the microenvironment. The design strategies of small molecule fluorescent probes and their applications in biological imaging will be discussed. By regulating the design strategy and mechanism (e.g., ICT, PeT, and FRET) of the electronic and spectral characteristics of the fluorescent platforms, these chemical probes show high selectivity and diverse functions, which can be used for imaging of various physiological and pathological processes. Through the exploration of the rational response mechanism and design strategy, combined with a variety of imaging techniques, such as super-resolution imaging, photoacoustic (PA) imaging, etc., we have realized multimode imaging of the important biological analytes from the subcellular level to the in vivo level, which provides powerful means to study the physiological and pathological functions of these species and microenvironments. This Account aims to offer insights and inspiration for the development of novel fluorescent probes for biological imaging, which could provide powerful tools for the study of chemical biology. Overall, we represent a series of turn-on/turn-off/ratiometric fluorescent/PA probes to visually and dynamically trace biological species and microenvironments in cells and even in vivo that seek higher resolution and depth molecular imaging to improve diagnostic methods and clarify new discoveries related to chemical biology. Our future efforts will be devoted to developing multiorganelle targeted fluorescent probes to study the mechanism of subcellular organelle interaction and employing various dual-mode probes of NIR II and PA imaging to investigate the development of related diseases and treat the related diseases at subcellular and in vivo levels.
Collapse
Affiliation(s)
- Hongbao Fang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), 163 Xianlin Avenue, Nanjing University, Nanjing 210023, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), 163 Xianlin Avenue, Nanjing University, Nanjing 210023, China.,Nanchuang (Jiangsu) Institute of Chemistry and Health, 3-1 Xinjinhu Road, Nanjing 211899, China
| | - Zhiyong Jiang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), 163 Xianlin Avenue, Nanjing University, Nanjing 210023, China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), 163 Xianlin Avenue, Nanjing University, Nanjing 210023, China.,Nanchuang (Jiangsu) Institute of Chemistry and Health, 3-1 Xinjinhu Road, Nanjing 211899, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), 163 Xianlin Avenue, Nanjing University, Nanjing 210023, China.,Nanchuang (Jiangsu) Institute of Chemistry and Health, 3-1 Xinjinhu Road, Nanjing 211899, China
| |
Collapse
|
35
|
H 2S Sensors: Synthesis, Optical Properties, and Selected Biomedical Applications under Visible and NIR Light. Molecules 2023; 28:molecules28031295. [PMID: 36770961 PMCID: PMC9919052 DOI: 10.3390/molecules28031295] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Hydrogen sulfide (H2S) is an essential signaling gas within the cell, and its endogenous levels are correlated with various health diseases such as Alzheimer's disease, diabetes, Down's syndrome, and cardiovascular disease. Because it plays such diverse biological functions, being able to detect H2S quickly and accurately in vivo is an area of heightened scientific interest. Using probes that fluoresce in the near-infrared (NIR) region is an effective and convenient method of detecting H2S. This approach allows for compounds of high sensitivity and selectivity to be developed while minimizing cytotoxicity. Herein, we report a review on the synthesis, mechanisms, optical properties, and selected biomedical applications of H2S sensors.
Collapse
|
36
|
Du Y, Wang H, Qin L, Zhao M, Pan C. Rational development of an ESIPT-based fluorescent probe with large Stokes shift for imaging of hydrogen sulfide in live cells. Bioorg Chem 2022; 129:106158. [PMID: 36155093 DOI: 10.1016/j.bioorg.2022.106158] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 12/26/2022]
Abstract
It is crucial to monitor hydrogen sulfide (H2S) because H2S plays a vital role in the regulation of many physiology and pathology processes. Many evidences indicate that endogenous H2S is closely associated with many diseases such as inflammation and cancers. Herein, we reported a novel fluorescent probe BTDI to monitor the fluctuation of H2S based on the excited-state intramolecular proton transfer (ESIPT) mechanism both ex vivo and in vivo. The selectivity of BTDI for H2S is significantly higher than that for biothiols and other potential anions. After the probe responded to H2S, the nucleophilic addition reaction of the H2S with probe BTDI resulted the shifting of maximum emission peak from 630 nm to 542 nm and the fluorescent signals change from red to green emission along with a large Stokes shift (240 nm). Moreover, BTDI can be successfully applied to detect extracellular and endogenous H2S in living cells through fluorescent cell-imaging, which provides a promising tool for the specific recognition of H2S in complex biological systems.
Collapse
Affiliation(s)
- Yuting Du
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China.
| | - Hongliang Wang
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Lu Qin
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Miao Zhao
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Caixia Pan
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| |
Collapse
|
37
|
A “turn-on” chalcone-based probe for hydrogen sulfide and imaging applications in lysosomes of living cells and zebrafish. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
38
|
Li J, Lei D, Ma Z, Zu B, Dou X. A General Twisted Intramolecular Charge Transfer Triggering Strategy by Protonation for Zero-Background Fluorescent Turn-On Sensing. J Phys Chem Lett 2022; 13:10871-10881. [PMID: 36394325 DOI: 10.1021/acs.jpclett.2c02847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The exploration of organic fluorescent sensing materials and mechanisms is of great significance, especially for the deep understanding of twisted intramolecular charge transfer (TICT). Here, the electron-donating ability of a chemically protonated amino group and the corresponding excitation primarily ensure the occurrence of excited-state intramolecular proton transfer. Due to the hybridization of the amino group from sp3 to sp2, the steric hindrance effect and conjugative effect together boost the rotation efficiency of the TICT process and the complete elimination of the background fluorescent signal. Furthermore, a sharp turn-on fluorescent detection of trace nitrite particulate with a diameter of 0.44 μm was realized. In addition, this protonation-induced change in the amino group configuration was verified through around nine categories of compounds. We expect this modulation of the photochemical activity path of the TICT process would greatly facilitate the exploration of novel fluorescent sensing mechanisms.
Collapse
Affiliation(s)
- Jiguang Li
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Lei
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Zhiwei Ma
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baiyi Zu
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xincun Dou
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
Lee KW, Chen H, Wan Y, Zhang Z, Huang Z, Li S, Lee CS. Innovative probes with aggregation-induced emission characteristics for sensing gaseous signaling molecules. Biomaterials 2022; 289:121753. [DOI: 10.1016/j.biomaterials.2022.121753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/08/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022]
|
40
|
Kong L, Lu W, Cao X, Wei Y, Sun J, Wang Y. The design strategies and biological applications of probes for the gaseous signaling molecule hydrogen sulfide. J Mater Chem B 2022; 10:7924-7954. [PMID: 36107014 DOI: 10.1039/d2tb01210c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
H2S, the smallest and simplest biological thiol in living systems, is the third member of the family of signaling mediators. H2S participates in the regulation of a series of complex physiological and pathological functions in the body, making it a critical fulcrum that balances health and disease in human physiology. Small-molecule fluorescent probes have been proven to possess the unique advantages of high temporal and spatial resolution, good biocompatibility and high sensitivity, and thus their use is a powerful approach for monitoring the level and dynamics of H2S in living cells and organisms and better understanding its basic cellular functions. The field of small-molecule fluorescent probes for monitoring the complex biological activities of H2S in vivo has been thriving in recent years. Herein, we systematically summarize the latest developments in the field of fluorescent probes for the detection of H2S, illustrate their biological applications according to the classification of target-responsive sites, and emphasize the development direction and challenges of H2S-responsive fluorescent probes, hoping to give implications of researchers on fluorescent probes for future research.
Collapse
Affiliation(s)
- Lingxiu Kong
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong Province, China.
| | - Wenjuan Lu
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong Province, China.
| | - Xiaoli Cao
- Jinan Municipal Center for Disease Control and Prevention, Jinan 250021, Shandong, China
| | - Yongchun Wei
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong Province, China.
| | - Jiarao Sun
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong Province, China.
| | - Yanfeng Wang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong Province, China.
| |
Collapse
|
41
|
Wu L, Zeng W, Ishigaki Y, Zhang J, Bai H, Harimoto T, Suzuki T, Ye D. A Ratiometric Photoacoustic Probe with a Reversible Response to Hydrogen Sulfide and Hydroxyl Radicals for Dynamic Imaging of Liver Inflammation. Angew Chem Int Ed Engl 2022; 61:e202209248. [DOI: 10.1002/anie.202209248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Luyan Wu
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Wenhui Zeng
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yusuke Ishigaki
- Department of Chemistry Faculty of Science Hokkaido University N10 W8, North-ward Sapporo 060-0810 Japan
| | - Junya Zhang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - He Bai
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Takashi Harimoto
- Department of Chemistry Faculty of Science Hokkaido University N10 W8, North-ward Sapporo 060-0810 Japan
| | - Takanori Suzuki
- Department of Chemistry Faculty of Science Hokkaido University N10 W8, North-ward Sapporo 060-0810 Japan
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
42
|
Ma Y, Guo B, Ge JY, Chen L, Lv N, Wu X, Chen J, Chen Z. Rational Design of a Near-Infrared Ratiometric Probe with a Large Stokes Shift: Visualization of Polarity Abnormalities in Non-Alcoholic Fatty Liver Model Mice. Anal Chem 2022; 94:12383-12390. [PMID: 36049122 DOI: 10.1021/acs.analchem.2c01972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tracking liver polarity with noninvasive and dynamic imaging techniques is helpful to better understand the non-alcoholic fatty liver (NAFL). Herein, a novel near-infrared (NIR) fluorescent probe Cy-Mp is constructed using a "symmetry collapse" strategy. The structure modification leads to the conversion of locally excited state fluorescence to charge transfer state fluorescence. Cy-Mp emits at near-infrared (NIR) wavelengths with high photostability as well as a large Stokes shift. Cy-Mp exhibits a ratiometric response to polarity, providing more accurate analysis of intracellular polarity via the built-in internal reference correction. Most importantly, the in vivo studies indicate that Cy-Mp can accumulate in the liver and the decreased polarity in the liver of mice with NAFL is verified by the ratiometric imaging, implying the great potential of Cy-Mp in the diagnosis of NAFL.
Collapse
Affiliation(s)
- Yaogeng Ma
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Bingjie Guo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Jing-Yuan Ge
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Lepeng Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Ningning Lv
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Xuan Wu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325035, P. R. China
| | - Jiuxi Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Zhongyan Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| |
Collapse
|
43
|
Wang B, Leng J, Wang X, Zhao W. Reversible AIE-active fluorescent probe with a large emission peak shift for ratiometric detection of food freshness indicator H 2S. Food Chem 2022; 386:132768. [PMID: 35349897 DOI: 10.1016/j.foodchem.2022.132768] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/01/2022] [Accepted: 03/20/2022] [Indexed: 11/26/2022]
Abstract
It is crucial to on-site monitor H2S for addressing the concerns associated with food safety. We rationally prepared an AIE-active fluorescent probe (CLBZ) with the aggregated state conversion for sensing H2S in a ratiometric response manner. CLBZ displayed ratiometric response, fast response time (5 s), well-resolved emission peak shift (147 nm) and high selectivity towards H2S, and it can be used as a reversible and reusable probe. The probe-based test strip was also developed to conveniently detect H2S generated during food spoilage in the absence of laboratory instruments. It achieved the consistent results and sensitivity with that determined by the colony forming unit (CFU) assay. These results paved a successful way to develop an effective analytical method for food quality and safety.
Collapse
Affiliation(s)
- Beibei Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Juncai Leng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaoqian Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
44
|
Pan C, Wu F, Mao J, Wu W, Zhao G, Ji W, Ma W, Yu P, Mao L. Highly Stable and Selective Sensing of Hydrogen Sulfide in Living Mouse Brain with NiN 4 Single-Atom Catalyst-Based Galvanic Redox Potentiometry. J Am Chem Soc 2022; 144:14678-14686. [PMID: 35925758 DOI: 10.1021/jacs.2c04695] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hydrogen sulfide (H2S) is recognized as a gasotransmitter and multifunctional signaling molecule in the central nervous system. Despite its essential neurofunctions, the chemical dynamics of H2S during physiological and pathological processes remains poorly understood, emphasizing the significance of H2S sensor development. However, the broadly utilized electrochemical H2S sensors suffer from low stability and sensitivity loss in vivo due to sulfur poisoning-caused electrode passivation. Herein, we report a high-performance H2S sensor that combines single-atom catalyst strategy and galvanic redox potentiometry to overcome the issue. Atomically dispersed NiN4 active sites on the sensing interface promote electrochemical H2S oxidation at an extremely low potential to drive spontaneous bipolarization of a single carbon fiber. Bias-free potentiometric sensing at open-circuit condition minimizes sulfur accumulation on the electrode surface, thus significantly enhancing the stability and sensitivity. The resulting sensor displays high selectivity to H2S against physiological interferents and enables real-time accurate quantification of H2S-releasing behavior in the living mouse brain.
Collapse
Affiliation(s)
- Cong Pan
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Fei Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Wenjie Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| |
Collapse
|
45
|
Construction of an in vivo NIR fluorescent probe for revealing the correlation between inflammation and mitochondrial hydrogen sulfide and viscosity. Bioorg Chem 2022; 129:106107. [DOI: 10.1016/j.bioorg.2022.106107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
|
46
|
Wu L, Zeng W, Ishigaki Y, Zhang J, Bai H, Harimoto T, Suzuki T, Ye D. A Ratiometric Photoacoustic Probe with a Reversible Response to Hydrogen Sulfide and Hydroxyl Radicals for Dynamic Imaging of Liver Inflammation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Luyan Wu
- Nanjing University Chemistry CHINA
| | | | | | | | - He Bai
- Nanjing University chemistry CHINA
| | | | | | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Chemistry 163 Xianlin Road, 210023 Nanjing CHINA
| |
Collapse
|
47
|
Wu R, Chen Z, Huo H, Chen L, Su L, Zhang X, Wu Y, Yao Z, Xiao S, Du W, Song J. Ratiometric Detection of H 2S in Liver Injury by Activated Two-Wavelength Photoacoustic Imaging. Anal Chem 2022; 94:10797-10804. [PMID: 35829734 DOI: 10.1021/acs.analchem.2c01571] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metformin is commonly used for clinical treatment of type-2 diabetes, but long-term or overdose intake of metformin usually causes selective upregulation of H2S level in the liver, resulting in liver injury. Therefore, tracking the changes of H2S content in the liver would contribute to the prevention and diagnosis of liver injury. However, in the literature, there are few reports on ratiometric PA molecular probes for H2S detection in drug-induced liver injury (DILI). Accordingly, here we developed a H2S-activated ratiometric PA probe, namely BDP-H2S, based Aza-BODIPY dye for detecting the H2S upregulation of metformin-induced liver injury. Due to the intramolecular charge transfer (ICT) effect, BDP-H2S exhibited a strong PA signal at 770 nm. Following the response to H2S, its ICT effect was recovered which showed a decrement of PA770 and an enhancement of PA840. The ratiometric PA signal (PA840/PA770) showed excellent H2S selectivity response with a low limit of detection (0.59 μM). Bioimaging experiments demonstrated that the probe has been successfully used for ratiometric PA imaging of H2S in cells and metformin-induced liver injury in mice. Overall, the designed probe emerges as a powerful tool for noninvasive and accurate imaging of H2S level and tracking its distribution and variation in liver in-real time.
Collapse
Affiliation(s)
- Rongrong Wu
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zhongxiang Chen
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Hongqi Huo
- Department of Nuclear Medicine, Han Dan Central Hospital, Handan, Hebei 056001, P. R. China
| | - Lanlan Chen
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Lichao Su
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xuan Zhang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Ying Wu
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zhicun Yao
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Shenggan Xiao
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Wei Du
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Jibin Song
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
48
|
Meng T, Ma W, Fan M, Tang W, Duan X. Enhancing the Contrast of Tumor Imaging for Image-Guided Surgery Using a Tumor-Targeting Probiotic with the Continuous Expression of a Biomarker. Anal Chem 2022; 94:10109-10117. [PMID: 35802615 DOI: 10.1021/acs.analchem.2c01200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tumor recurrence commonly results from tumor-positive resection margins and metastatic lesions. The complete removal of tumor-positive margins is particularly essential in clinics. Thus, we designed a strategy based on Escherichia coli Nissle 1917 (EcN) nitroreductase (NTR) with a polyethylene glycol (PEG) polymer coating (PC-EcN-NTR) to specifically target and colonize in tumors for high-contrast tumor imaging by providing a large amount of NTR as biomarkers in situ. NTR is a favorable biomarker for tumor detection and imaging. The nfsB-encoding plasmid with a 16S promoter was transfected into EcN for the continuous and stable expression of NTR (E. coli. NfsB). PC-EcN-NTR can accumulate and proliferate for a long time in tumors to substantially express NTR. When the NTR-activated fluorescence (FL) probe was sprayed on the tumor, the tumor region showed fluorescence signals within 5 min. Compared to the tumor without colonization with bacteria, the PC-EcN-NTR-colonized tumors displayed 3.15× enhanced fluorescence signals. Furthermore, the fluorescence signals of the whole tumor can last at least 3 h, which is suitable for a long and meticulous surgical operation. More importantly, in the PC-EcN-NTR-harboring tumor, obvious FL appeared even at the very edge (approximately 200 μm away from the edge) of the tumor tissue. A TCF-Based near-infrared-II fluorescent probe (probe 2) was designed and synthesized. Results similar to those of probe 1 were observed when probe 2 was used for in vivo tumor imaging, which further proved the generality of the enhancing ability of the tumor-targeting probiotic. This strategy will hopefully guide the surgical resection of tumors via monitoring intense NTR activity. It may spur the use of tumor-targeting probiotic and enzyme-activated fluorescent probes for the processes of tumor diagnosis and image-guided surgery.
Collapse
Affiliation(s)
- Tianjiao Meng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China
| | - Wenbo Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China
| | - Mengyue Fan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China
| | - Wei Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China
| | - Xinrui Duan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China
| |
Collapse
|
49
|
Subasinghe SAAS, Pautler RG, Samee MAH, Yustein JT, Allen MJ. Dual-Mode Tumor Imaging Using Probes That Are Responsive to Hypoxia-Induced Pathological Conditions. BIOSENSORS 2022; 12:478. [PMID: 35884281 PMCID: PMC9313010 DOI: 10.3390/bios12070478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 05/02/2023]
Abstract
Hypoxia in solid tumors is associated with poor prognosis, increased aggressiveness, and strong resistance to therapeutics, making accurate monitoring of hypoxia important. Several imaging modalities have been used to study hypoxia, but each modality has inherent limitations. The use of a second modality can compensate for the limitations and validate the results of any single imaging modality. In this review, we describe dual-mode imaging systems for the detection of hypoxia that have been reported since the start of the 21st century. First, we provide a brief overview of the hallmarks of hypoxia used for imaging and the imaging modalities used to detect hypoxia, including optical imaging, ultrasound imaging, photoacoustic imaging, single-photon emission tomography, X-ray computed tomography, positron emission tomography, Cerenkov radiation energy transfer imaging, magnetic resonance imaging, electron paramagnetic resonance imaging, magnetic particle imaging, and surface-enhanced Raman spectroscopy, and mass spectrometric imaging. These overviews are followed by examples of hypoxia-relevant imaging using a mixture of probes for complementary single-mode imaging techniques. Then, we describe dual-mode molecular switches that are responsive in multiple imaging modalities to at least one hypoxia-induced pathological change. Finally, we offer future perspectives toward dual-mode imaging of hypoxia and hypoxia-induced pathophysiological changes in tumor microenvironments.
Collapse
Affiliation(s)
| | - Robia G. Pautler
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Md. Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Jason T. Yustein
- Integrative Molecular and Biomedical Sciences and the Department of Pediatrics in the Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Matthew J. Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA;
| |
Collapse
|
50
|
Chen R, Ye H, Fang T, Liu S, Yi L, Cheng L. An NBD tertiary amine is a fluorescent quencher and/or a weak green-light fluorophore in H 2S-specific probes. Org Biomol Chem 2022; 20:4128-4134. [PMID: 35510487 DOI: 10.1039/d2ob00442a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The thiolysis of NBD piperazinyl amine (NBD-PZ) is highly selective for H2S over GSH and has been widely used for the development of many H2S fluorescent probes. Whether the NBD amine in H2S-specific probes could be a fluorescent quencher should be further clarified, because NBD amines have been used as environment-sensitive fluorophores for many years. Here, we compared the properties of NBD-based secondary and tertiary amines under the same conditions. For example, the emission of NBD-N(Et)2 is much smaller in water and less responsive to changes in polarity than that of NBD-NHEt. The emission of NBD-PZ-TPP is also smaller than that of NBD-NH-TPP both in aqueous buffer and in live cells. In addition, confocal bioimaging signals of NBD-PZ-TPP with excitation at 405 nm and 454 nm are much weaker than that at 488 nm. Based on these results as well as the previous work on NBD-based probes, we discuss and summarize the design strategies and sensing mechanisms for different NBD-based H2S probes. Moreover, NBD-PZ-TPP may be a useful tool for reaction with and imaging of mitochondrial H2S in live cells. This work should be useful for clarification of the roles of NBD in H2S-specific fluorescent probes as well as for facilitating the development of future NBD-based probes.
Collapse
Affiliation(s)
- Ruirui Chen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Haishun Ye
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P. R. China.
| | - Tian Fang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Shanshan Liu
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P. R. China.
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P. R. China.
| | - Longhuai Cheng
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|