1
|
Gąsecka M, Drzewiecka K, Magdziak Z, Krzesiński W, Proch J, Niedzielski P. Early Response of the Populus nigra L. × P. maximowiczii Hybrid to Soil Enrichment with Metals. Int J Mol Sci 2024; 25:12520. [PMID: 39684231 DOI: 10.3390/ijms252312520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
This study aimed to investigate the response of Populus nigra L. × Populus maximowiczii to the addition of selected metals in soil. Rooted cuttings were planted in pots containing soil enriched with equimolar concentrations of Pb, Zn, Al, Ni, and Cu (500 mL of 4 mM solutions of single metal salts: (Pb(NO3)2; Zn(NO3)2 × 6H2O; Al(NO3)3 × 9H2O; Ni(NO3)2 × 6H2O; or Cu(NO3)2 × 3H2O). Growth parameters, metal accumulation, and physiological and biochemical parameters were assessed after four weeks of cultivation, simulating early response conditions. The results showed diverse metal accumulation in poplar organs, along with an increase in biomass and minor changes in gas exchange parameters or chlorophyll fluorescence. Among low-molecular-weight organic acids, citric and succinic acids were dominant in the rhizosphere, and roots with malonic acid were also present in the shoots. Only p-coumaric acid was found in the phenolic profile of the roots. The shoots contained both phenolic acids and flavonoids, and their profile was diversely modified by particular metals. Sucrose and fructose content increased in shoots that underwent metal treatments, with glucose increasing only in Cu and Al treatments. Principal component analysis (PCA) revealed variations induced by metal treatments across all parameters. Responses to Pb and Zn were partially similar, while Cu, Ni, or Al triggered distinct reactions. The results indicate the adaptation of P. nigra L. × P. maximowiczii to soil containing elevated levels of metals, along with potential for soil remediation and metal removal. However, further studies are needed to evaluate the effect of differences in early responses to particular metals on plant conditions from a long-term perspective.
Collapse
Affiliation(s)
- Monika Gąsecka
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland
| | - Kinga Drzewiecka
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland
| | - Zuzanna Magdziak
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland
| | - Włodzimierz Krzesiński
- Department of Vegetable Crops, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594 Poznan, Poland
| | - Jędrzej Proch
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| | - Przemysław Niedzielski
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| |
Collapse
|
2
|
Ouamnina A, Alahyane A, Elateri I, Boutasknit A, Abderrazik M. Relationship between Phenolic Compounds and Antioxidant Activity of Some Moroccan Date Palm Fruit Varieties ( Phoenix dactylifera L.): A Two-Year Study. PLANTS (BASEL, SWITZERLAND) 2024; 13:1119. [PMID: 38674529 PMCID: PMC11054137 DOI: 10.3390/plants13081119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024]
Abstract
In Morocco, the abundance of low-value varieties in the oases may provide an opportunity to capitalize on this richness to create new nutraceutical food products. In this context, the phenolic profile and antioxidant capacity of four Moroccan date varieties were analyzed. Our results indicate that the levels of total polyphenols, total flavonoids and total condensed tannins vary, respectively, from 91.86 to 364.35 mg GAE/100 g of dry weight (DW), 46.59 to 111.80 mg QE/100 g DW and 16.10 to 42.03 mg CE/100 g DW during the 2021 harvest season. Furthermore, during the 2022 harvest season, these contents vary, respectively, from 119.13 to 410.39 mg GAE/100 g DW, 59.30 to 110.85 mg QE/100 g DW and 21.93 to 53.95 mg CE/100 g DW. The results of the HPLC-UV-VIS analysis revealed that, in all four varieties, gallic acid was and remained one of the major compounds in the date extracts. In addition, a high antioxidant activity of date extracts was particularly observed in the three tests, namely ferric reducing power (FRAP), ferrous ion chelating capacity (FIC) and the phosphomolybdate test. This richness in phenolic compounds makes low-value dates a source of active ingredient that can replace the synthetic antioxidants used in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Abdoussadeq Ouamnina
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Departement of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.O.)
- Agrobiotechnology and Bioengineering Center, CNRST-labeled Research Unit (AgroBiotech-URL-CNRST-05 Center), Cadi Ayyad University, Marrakech 40000, Morocco
| | - Abderrahim Alahyane
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Departement of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.O.)
- Agrobiotechnology and Bioengineering Center, CNRST-labeled Research Unit (AgroBiotech-URL-CNRST-05 Center), Cadi Ayyad University, Marrakech 40000, Morocco
- Higher Institute of Nursing Professions and Health Techniques of Guelmim (ISPITSG), Guelmin 81000, Morocco
| | - Imane Elateri
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Departement of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.O.)
- Agrobiotechnology and Bioengineering Center, CNRST-labeled Research Unit (AgroBiotech-URL-CNRST-05 Center), Cadi Ayyad University, Marrakech 40000, Morocco
| | | | - Mohamed Abderrazik
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Departement of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.O.)
- Agrobiotechnology and Bioengineering Center, CNRST-labeled Research Unit (AgroBiotech-URL-CNRST-05 Center), Cadi Ayyad University, Marrakech 40000, Morocco
| |
Collapse
|
3
|
Zou X, Xu T, Zhao T, Xia J, Zhu F, Hou Y, Lu B, Zhang Y, Yang X. Phytosterol organic acid esters: Characterization, anti-inflammatory properties and a delivery strategy to improve mitochondrial function. Curr Res Food Sci 2024; 8:100702. [PMID: 38487178 PMCID: PMC10937313 DOI: 10.1016/j.crfs.2024.100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/16/2024] [Accepted: 02/15/2024] [Indexed: 03/17/2024] Open
Abstract
Phytosterol organic acid esters are important food resources and the components of biomembrane structure. Due to the lack of extraction and synthesis techniques, more research has been focused on phytosterols, and the research on phytosterol acid esters have encountered a bottleneck, but phytosterol acid esters confer substantial benefits to human health. In this study, stigmasteryl vanillate (VAN), stigmasteryl protocatechuate (PRO) and stigmasteryl sinapate (SIN) were prepared through the Steglich reaction. The processes are promotable and the products reach up to 95% purity. In addition, their stability was evaluated by differential scanning calorimetry and thermogravimetric analysis. HPLC analysis revealed an enhancement in water solubility after esterification with phenolic acid. In an in vitro digestion model, the bioaccessibility of stigmasteryl phenolates was significantly higher than that of stigmasterols (STIs). Regarding the anti-inflammatory properties, VAN, PRO, and SIN exhibit superior effects against TNF-α induced pro-inflammatory responses compared to STI. All stigmasteryl phenolates supplementation increased the ATP production, the basal, and maximal oxygen consumption rate in mitochondrial stress test. Overall, we present a synthesis method for stigmasteryl phenolates. It will contribute to the development and research of phytosterol acid ester analysis, functions and utilization in food. Moreover, the nutrient-stigmasterol hybrids tactic we have constructed is practical and can become a targeted mitochondrial delivery strategy with enhanced anti-inflammatory effects.
Collapse
Affiliation(s)
- Xinyue Zou
- Department of Chemistry, China Agricultural University, Beijing, 100193, China
| | - Ting Xu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products, Ministry of Agriculture and Rural Affair, Interdisciplinary Research Center on Optical Agricultural and Food Engineering, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - Tian Zhao
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products, Ministry of Agriculture and Rural Affair, Interdisciplinary Research Center on Optical Agricultural and Food Engineering, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - Jing Xia
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products, Ministry of Agriculture and Rural Affair, Interdisciplinary Research Center on Optical Agricultural and Food Engineering, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - Feifan Zhu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Yu Hou
- Liangzhu Laboratory, Zhejiang University, No. 1369 West Wenyi Road, Hangzhou, 311121, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products, Ministry of Agriculture and Rural Affair, Interdisciplinary Research Center on Optical Agricultural and Food Engineering, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - Yunfei Zhang
- Department of Chemistry, China Agricultural University, Beijing, 100193, China
| | - Xuan Yang
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products, Ministry of Agriculture and Rural Affair, Interdisciplinary Research Center on Optical Agricultural and Food Engineering, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
4
|
Precupas A, Popa VT. Impact of Sinapic Acid on Bovine Serum Albumin Thermal Stability. Int J Mol Sci 2024; 25:936. [PMID: 38256010 PMCID: PMC10815719 DOI: 10.3390/ijms25020936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The thermal stability of bovine serum albumin (BSA) in Tris buffer, as well as the effect of sinapic acid (SA) on protein conformation were investigated via calorimetric (differential scanning microcalorimetry-μDSC), spectroscopic (dynamic light scattering-DLS; circular dichroism-CD), and molecular docking approaches. μDSC data revealed both the denaturation (endotherm) and aggregation (exotherm) of the protein, demonstrating the dual effect of SA on protein thermal stability. With an increase in ligand concentration, (i) protein denaturation shifts to a higher temperature (indicating native form stabilization), while (ii) the aggregation process shifts to a lower temperature (indicating enhanced reactivity of the denatured form). The stabilization effect of SA on the native structure of the protein was supported by CD results. High temperature (338 K) incubation induced protein unfolding and aggregation, and increasing the concentration of SA altered the size distribution of the protein population, as DLS measurements demonstrated. Complementary information offered by molecular docking allowed for the assessment of the ligand binding within the Sudlow's site I of the protein. The deeper insight into the SA-BSA interaction offered by the present study may serve in the clarification of ligand pharmacokinetics and pharmacodynamics, thus opening paths for future research and therapeutic applications.
Collapse
Affiliation(s)
| | - Vlad Tudor Popa
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania;
| |
Collapse
|
5
|
Rodríguez-Blázquez S, Gómez-Mejía E, Rosales-Conrado N, León-González ME, García-Sánchez B, Miranda R. Valorization of Prunus Seed Oils: Fatty Acids Composition and Oxidative Stability. Molecules 2023; 28:7045. [PMID: 37894525 PMCID: PMC10609056 DOI: 10.3390/molecules28207045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Prunus fruit seeds are one of the main types of agri-food waste generated worldwide during the processing of fruits to produce jams, juices and preserves. To valorize this by-product, the aim of this work was the nutritional analysis of peach, apricot, plum and cherry seeds using the official AOAC methods, together with the extraction and characterization of the lipid profile of seed oils using GC-FID, as well as the measurement of the antioxidant activity and oxidative stability using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging method. Chemometric tools were required for data evaluation and the obtained results indicated that the main component of seeds were oils (30-38%, w). All seed oils were rich in oleic (C18:1n9c) and linoleic (C18:2n6c) acids and presented heart-healthy lipid indexes. Oil antioxidant activity was estimated in the range IC50 = 20-35 mg·mL-1, and high oxidative stability was observed for all evaluated oils during 1-22 storage days, with the plum seed oil being the most antioxidant and stable over time. Oxidative stability was also positively correlated with oleic acid content and negatively correlated with linoleic acid content. Therefore, this research showed that the four Prunus seed oils present interesting healthy characteristics for their use and potential application in the cosmetic and nutraceutical industries.
Collapse
Affiliation(s)
- Sandra Rodríguez-Blázquez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Complutense Avenue, 28040 Madrid, Spain; (S.R.-B.); (E.G.-M.); (N.R.-C.)
- Department of Chemical Engineering and Materials, Faculty of Chemistry, Complutense University of Madrid, Complutense Avenue, 28040 Madrid, Spain; (B.G.-S.); (R.M.)
| | - Esther Gómez-Mejía
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Complutense Avenue, 28040 Madrid, Spain; (S.R.-B.); (E.G.-M.); (N.R.-C.)
| | - Noelia Rosales-Conrado
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Complutense Avenue, 28040 Madrid, Spain; (S.R.-B.); (E.G.-M.); (N.R.-C.)
| | - María Eugenia León-González
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Complutense Avenue, 28040 Madrid, Spain; (S.R.-B.); (E.G.-M.); (N.R.-C.)
| | - Beatriz García-Sánchez
- Department of Chemical Engineering and Materials, Faculty of Chemistry, Complutense University of Madrid, Complutense Avenue, 28040 Madrid, Spain; (B.G.-S.); (R.M.)
| | - Ruben Miranda
- Department of Chemical Engineering and Materials, Faculty of Chemistry, Complutense University of Madrid, Complutense Avenue, 28040 Madrid, Spain; (B.G.-S.); (R.M.)
| |
Collapse
|
6
|
In Vitro and In Vivo Anti-Inflammatory Effects of TEES-10®, a Mixture of Ethanol Extracts of Ligularia stenocephala Matsum. & Koidz. and Secale cereale L. Sprout, on Gingivitis and Periodontitis. Dent J (Basel) 2022; 10:dj10080143. [PMID: 36005241 PMCID: PMC9406350 DOI: 10.3390/dj10080143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Gingivitis and periodontitis are inflammatory disorders caused by dental plaque and calculus. These disorders often lead to tooth loss if not treated properly. Although antibiotics can be used, it is hard to treat them due to the difficulty in supplying effective doses of antibiotics to lesion areas and side effects associated with long-term use of antibiotics. In the present study, attempts were made to provide in vitro and in vivo evidence to support anti-inflammatory activities of TEES-10®, a mixture of ethanol extracts of Ligularia stenocephala (LSE) and Secale cereale L. sprout (SCSE) toward gingivitis and periodontitis by performing the following experiments. TEES-10® with a ratio of 6:4 (LSE:SCSE) showed the best effects in both stimulating the viability and inhibiting the cytotoxicity. In in vitro experiments, TEES-10® showed an ability to scavenge 2,2-diphenyl-1-picrylhydrazyl and superoxide radicals and remove ROS generated in periodontal ligament cells treated with lipopolysaccharide. TEES-10® also enhanced the viability of stem cells from human exfoliated deciduous teeth and stimulated the osteogenic differentiation of deciduous teeth cells. In in vivo experiments using rats with induced periodontitis, TEES-10® significantly decreased inflammatory cell infiltration and the numbers of osteoclasts, increased alveolar process volume and the numbers of osteoblasts, decreased serum levels of IL-1β and TNF-α (pro-inflammatory cytokines), and increased serum levels of IL-10 and IL-13 (anti-inflammatory cytokines). These results strongly support the theory that TEES-10® has the potential to be developed as a health functional food that can treat and prevent gingival and periodontal diseases and improve dental health.
Collapse
|
7
|
Shahid M, Raish M, Ahmad A, Bin Jardan YA, Ansari MA, Ahad A, Alkharfy KM, Alaofi AL, Al-Jenoobi FI. Sinapic Acid Ameliorates Acetic Acid-Induced Ulcerative Colitis in Rats by Suppressing Inflammation, Oxidative Stress, and Apoptosis. Molecules 2022; 27:4139. [PMID: 35807383 PMCID: PMC9268465 DOI: 10.3390/molecules27134139] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Ulcerative colitis (UC) is a long-term condition which results in inflammation and ulcers of the colon and rectum. The key indications of active disease are abdominal pain and diarrhea mixed with blood. Aims: We explore the underlying colon protective mechanism of sinapic acid (SA) against acetic acid (AA) induced ulcerative colitis in rats. The implications of inflammation, oxidative stress, and apoptosis are studied. Methodology: Twenty-four rats were distributed into four categories, normal control (NC), ulcerative colitis (UC), ulcerative Colitis with SA 40 mg/kg (SA 40 mg/kg + AA), and ulcerative colitis with prednisolone (PRDL 10 mg/kg + AA), and were pretreated orally with saline, saline and SA (40 mg/kg/day) or PRDL (10 mg/kg/day) respectively, for 7 days. UC was prompted by trans-rectal administration of 4% AA on the 5th day, colon tissues were surgically removed for gross morphology and histological inspection, oxidative stress, and inflammatory markers and immunoblot analysis of Bax, caspase-3, and Bcl-2. Results: Macroscopic and histological inspection demonstrated that both SA 40 mg/kg and PRDL (10 mg/kg/day) significantly ameliorates colonic injuries. In addition, both pretreatments significantly ameliorates AA-induced UC, oxidative stress, as indicated by suppressed malondialdehyde (MDA), nitric oxide (NO) levels and restoring antioxidant/oxidant balance as indicated by catalase and glutathione levels, suppressed inflammation via inhibiting cytokines TNF-α, IL-6, inflammatory markers MPO, PGE2, COX-2 and NF-κB and inhibiting the protein expression of Bax and caspase-3 apoptotic protein and increasing the anti-apoptotic protein, Bcl-2 thereby inhibiting apoptosis. Conclusion: Sinapic acid significantly ameliorates AA induced UC in rats by suppressing inflammation, oxidative stress, and apoptosis in colonic tissues which exhibits its potential for the management of UC.
Collapse
Affiliation(s)
- Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (Y.A.B.J.); (A.A.); (A.L.A.); (F.I.A.-J.)
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (Y.A.B.J.); (A.A.); (A.L.A.); (F.I.A.-J.)
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (K.M.A.)
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (Y.A.B.J.); (A.A.); (A.L.A.); (F.I.A.-J.)
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (Y.A.B.J.); (A.A.); (A.L.A.); (F.I.A.-J.)
| | - Khalid M. Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (K.M.A.)
| | - Ahmed L. Alaofi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (Y.A.B.J.); (A.A.); (A.L.A.); (F.I.A.-J.)
| | - Fahad I. Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (Y.A.B.J.); (A.A.); (A.L.A.); (F.I.A.-J.)
| |
Collapse
|
8
|
Pan Y, Li H, Zhang B, Deng Z, Shahidi F. Antioxidant interactions among hydrophilic and lipophilic dietary phytochemicals based on inhibition of low-density lipoprotein and DNA damage. J Food Biochem 2022; 46:e14267. [PMID: 35674209 DOI: 10.1111/jfbc.14267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022]
Abstract
Antioxidant interaction among hydrophilic phytochemicals (caffeic acid, p-coumaric acid) and lipophilic phytochemicals (β-carotene, lycopene) in different mole ratios (n/n, 1:9, 3:7, 5:5, 7:3, 9:1) was evaluated. Assays performed were based on the scavenging activity of hydrogen peroxide (H2 O2 ), the inhibition of low-density lipoprotein oxidation (ox-LDL) and DNA damage in vitro, using isobological analysis, synergistic rate (SR), and combination index (CI). Results showed that groups containing higher ratios of hydrophilic phytochemicals exhibited synergism while those containing higher ratios of lipophilic phytochemicals showed antagonism. Meanwhile, groups containing caffeic acid (e.g., caffeic acid:β-carotene, 9:1) with more hydroxyl groups showed higher synergism (SR = 0.76 ± 0.02, CI = 0.77 ± 0.03) than groups containing p-coumaric acid (e.g., p-coumaric acid:β-carotene, 9:1, SR = 0.88 ± 0.04, CI = 0.82 ± 0.05) on the scavenging activity of H2 O2 . Groups that contained lycopene (caffeic acid: lycopene, 9:1) with a higher ability of regeneration by phenolic acids showed more significant synergism (SR = 0.70 ± 0.02, CI = 0.79 ± 0.03) than groups containing β-carotene (e.g., caffeic acid:β-carotene, 9:1, SR = 1.00 ± 0.03, CI = 0.98 ± 0.04) on the inhibition of DNA damage. This study provided a basis for antioxidant interactions among phytochemicals against ox-LDL and DNA damage in vivo. In addition, the choice of appropriate ratios and structures of hydrophilic and lipophilic phytochemicals should be considered in the diet and formulation of functional foods.
Collapse
Affiliation(s)
- Yao Pan
- School of Public Health, University of Nanchang, Nanchang, China.,Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.,State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, China.,Institute for Advanced Study, University of Nanchang, Nanchang, China
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
9
|
Echeverria L, da Silva C, Danesi EDG, Porciuncula BDA, Bolanho Barros BC. Characterization of okara and rice bran and their application as fat substitutes in chicken nugget formulations. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Jaskiw GE, Xu D, Obrenovich ME, Donskey CJ. Small phenolic and indolic gut-dependent molecules in the primate central nervous system: levels vs. bioactivity. Metabolomics 2022; 18:8. [PMID: 34989922 DOI: 10.1007/s11306-021-01866-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 12/12/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION A rapidly growing body of data documents associations between disease of the brain and small molecules generated by gut-microbiota (GMB). While such metabolites can affect brain function through a variety of mechanisms, the most direct action would be on the central nervous system (CNS) itself. OBJECTIVE Identify indolic and phenolic GMB-dependent small molecules that reach bioactive concentrations in primate CNS. METHODS We conducted a PubMed search for metabolomic studies of the primate CNS [brain tissue or cerebrospinal fluid (CSF)] and then selected for phenolic or indolic metabolites that (i) had been quantified, (ii) were GMB-dependent. For each chemical we then conducted a search for studies of bioactivity conducted in vitro in human cells of any kind or in CNS cells from the mouse or rat. RESULTS 36 metabolites of interests were identified in primate CNS through targeted metabolomics. Quantification was available for 31/36 and in vitro bioactivity for 23/36. The reported CNS range for 8 metabolites 2-(3-hydroxyphenyl)acetic acid, 2-(4-hydroxyphenyl)acetic acid, 3-(3-hydroxyphenyl)propanoic acid, (E)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid [caffeic acid], 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2-acetamido-3-(1H-indol-3-yl)propanoic acid [N-acetyltryptophan], 1H-indol-3-yl hydrogen sulfate [indoxyl-3-sulfate] overlapped with a bioactive concentration. However, the number and quality of relevant studies of CNS neurochemistry as well as of bioactivity were highly limited. Structural isomers, multiple metabolites and potential confounders were inadequately considered. CONCLUSION The potential direct bioactivity of GMB-derived indolic and phenolic molecules on primate CNS remains largely unknown. The field requires additional strategies to identify and prioritize screening of the most promising small molecules that enter the CNS.
Collapse
Affiliation(s)
- George E Jaskiw
- Psychiatry Service 116(A), Veterans Affairs Northeast Ohio Healthcare System (VANEOHS), 10701 East Blvd., Cleveland, OH, 44106, USA.
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Dongyan Xu
- Psychiatry Service 116(A), Veterans Affairs Northeast Ohio Healthcare System (VANEOHS), 10701 East Blvd., Cleveland, OH, 44106, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Mark E Obrenovich
- Pathology and Laboratory Medicine Service, VANEOHS, Cleveland, OH, USA
- Research Service, VANEOHS, Cleveland, OH, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Curtis J Donskey
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Research, Education and Clinical Center (GRECC), VANEOHS, Cleveland, OH, USA
| |
Collapse
|
11
|
de Santana Neto DC, Ferreira VCDS, Araújo ÍBDS, Meireles BRLDA, Cordeiro ÂMTDM, da Silva FAP. Solid–liquid extraction of bioactive compounds from Spondias mombin L. by-products: optimization and identification of phenolic profile. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-021-00209-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
12
|
Leal JG, Piccoli BC, Oliveira CS, D’Avila da Silva F, Omage FB, Rocha JBTD, Sonego MS, Segatto NV, Seixas FK, Collares TV, da Silva RS, Sarturi JM, Dornelles L, Faustino MAF, Rodrigues OED. Synthesis, antioxidant and antitumoral activity of new 5′-arylchalcogenyl-3′- N-( E)-feruloyl-3′, 5′-dideoxy-amino-thymidine (AFAT) derivatives. NEW J CHEM 2022. [DOI: 10.1039/d2nj03487e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A new multitarget arylchalcogenyl zidovudine derivative is disclosed. The compounds showed a prominent antioxidant and antitumoral activity with no overt sign of toxicity for in vivo evaluations.
Collapse
Affiliation(s)
- Julliano G. Leal
- Department of Chemistry, LabSelen-NanoBio, Federal University of Santa Maria, CEP 97105-900, Santa Maria, RS, Brazil
| | - Bruna Candia Piccoli
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Cláudia Sirlene Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Fernanda D’Avila da Silva
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Folorunsho Bright Omage
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Mariana Souza Sonego
- Technological Development Center, Cancer Biotechnology Laboratory, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Natália Vieira Segatto
- Technological Development Center, Cancer Biotechnology Laboratory, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fabiana Kommling Seixas
- Technological Development Center, Cancer Biotechnology Laboratory, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Tiago Veiras Collares
- Technological Development Center, Cancer Biotechnology Laboratory, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Rafael Santos da Silva
- Department of Chemistry, LabSelen-NanoBio, Federal University of Santa Maria, CEP 97105-900, Santa Maria, RS, Brazil
| | - Joelma Menegazzi Sarturi
- Department of Chemistry, LabSelen-NanoBio, Federal University of Santa Maria, CEP 97105-900, Santa Maria, RS, Brazil
| | - Luciano Dornelles
- Department of Chemistry, LabSelen-NanoBio, Federal University of Santa Maria, CEP 97105-900, Santa Maria, RS, Brazil
| | | | - Oscar E. D. Rodrigues
- Department of Chemistry, LabSelen-NanoBio, Federal University of Santa Maria, CEP 97105-900, Santa Maria, RS, Brazil
| |
Collapse
|
13
|
Kaur P, Singh Sandhu K, Singh Purewal S, Kaur M, Kumar Singh S. Rye: A wonder crop with industrially important macromolecules and health benefits. Food Res Int 2021; 150:110769. [PMID: 34865784 DOI: 10.1016/j.foodres.2021.110769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/16/2021] [Accepted: 10/18/2021] [Indexed: 01/21/2023]
Abstract
Rye (Secale cereale) is a rich source of macromolecules, especially starch, fiber, and proteins which encourages the researchers and industries to use it for various purposes including bakery products, beverages and edible films formulation. However, despite many nutritional and health benefiting properties, rye has not been explored up to its full potential. Interest of consumers in formulating foods with high fiber and phenolic compounds has generated our interest in compiling the detailed information on rye. The present review on rye grains summarizes the existing scientific data on rye macronutrients (starch, arabinoxylan, β-glucan, fructan and proteins) and their corresponding industrial importance. Detailed description in this review unfolds the potential of rye grains for human nutrition. This review provides comprehensive knowledge and fills the remaining gap between the previous and latest scientific findings. Comprehensive information on rye nutrients along with health benefits will help to open a new era for scientific world and industrial sectors.
Collapse
Affiliation(s)
- Pinderpal Kaur
- Department of Food Science and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Kawaljit Singh Sandhu
- Department of Food Science and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India.
| | - Sukhvinder Singh Purewal
- Department of Food Science and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Maninder Kaur
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, India
| | | |
Collapse
|
14
|
Raish M, Ahmad A, Bin Jardan YA, Shahid M, Alkharfy KM, Ahad A, Ansari MA, Abdelrahman IA, Al-Jenoobi FI. Sinapic acid ameliorates cardiac dysfunction and cardiomyopathy by modulating NF-κB and Nrf2/HO-1 signaling pathways in streptozocin induced diabetic rats. Biomed Pharmacother 2021; 145:112412. [PMID: 34768051 DOI: 10.1016/j.biopha.2021.112412] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/24/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
Hyperglycemia and hyperlipidemia-arbitrated mitochondrial oxidative insult is key reason for cardiac dysfunction and cardiomyopathy. Sinapic acid (SA) is a hydroxycinnamic acid (a polyphenolic acid) present in multiple plants and possesses several pharmacological activities. In this study, we examined the cardio protective effects of SA on streptozotocin (STZ)-induced cardiac insults. STZ and both STZ induced diabetes and normal control rats were administered with 20 and 40 mg/kg SA for 12 weeks. STZ rats demonstrated hyperglycemia and hyperlipidemia. Additionally, STZ administered rats exhibited various histological changes in the cardiac muscles and significantly enhanced CK-MB and LDH. The significant enhancement of oxidative stress, inflammation, and apoptotic markers, and the capacity to curb oxidative stress was significantly abridged in the STZ induced diabetic heart. Chronic treatment with SA (20-40 mg/kg) ameliorated the increased level of glucose, lipid, and cardiac function markers and curtailed histological changes in the cardiac muscles. Chronic treatment also repressed inflammation, oxidative stress and apoptosis thereby and restoring antioxidant defenses in the myocardium of STZ induced diabetic rats. STZ induced cardiac dysfunction and cardiomyopathy by promoting inflammation and oxidative stress. Sinapic acid ameliorates cardiac dysfunction and cardiomyopathy via improvement of hyperglycemia, hyperlipidemia, inflammation, oxidative stress, and apoptosis. Thus, SA possesses possible therapeutic value for the prevention of diabetic cardiac dysfunction and cardiomyopathy via the NRF2/HO-1 and NF-κB pathways.
Collapse
Affiliation(s)
- Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid M Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Fahad I Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
15
|
Aly AA, Zaky EA, Elhabeby BS, Alessa H, Hameed AM, Aljohani M, Nassan MA, Kadasah S, Mohamed ES, Alghamdi AA. Effect of Thyme Addition on some Chemical and Biological Properties of Sunflower Oil. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
16
|
Anti-Inflammatory Potential of Complex Extracts of Ligularia stenocephala Matsum. & Koidz. and Secale cereale L. Sprout in Chronic Gingivitis: In Vitro Investigation and Randomized Clinical Trial. Antioxidants (Basel) 2021; 10:antiox10101586. [PMID: 34679720 PMCID: PMC8533477 DOI: 10.3390/antiox10101586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022] Open
Abstract
Complex extracts of Ligularia stenocephala Matsum. & Koidz. (LSE) and Secale cereale L. sprout (SCSE) (TEES-10®) were prepared. The purposes of the study were to evaluate anti-inflammatory activities of TEES-10® in vitro and to observe resolution of gingivitis in human with oral administration of TEES-10®. The effects of TEES-10® on normal periodontal ligament (PDL) cell viability, lipopolysaccharide (LPS) induced PDL cell viability and the changes of inflammatory mediator expression were evaluated in vitro. In the clinical trial, 150 mg of TEES-10® powder containing capsule was administered twice daily to the test group, while the control group administered placebos in a total 100 participants with gingivitis. Probing depth (PD), bleeding on probing (BOP), clinical attachment loss, gingival index (GI) and plaque index (PI) were measured at baseline and 4 weeks. Administering TEES-10® showed significant increase in PDL cell viability compared to administering LSE or SCSE alone. In addition, treating TEES-10® to LPS induced PDL cell significantly increased PDL cell viability compared to control. TEES-10® suppressed expression of NF-κB, p-ERK, ERK, COX-2, c-Fos and p-STAT and promoted expression of PPARγ in LPS induced PDL cells. In the clinical trial, significant improvement of GI and BOP was observed in the test group at 4 weeks. In addition, the number of patients diagnosed with gingivitis was significantly reduced in the test group at 4 weeks. Salivary MMP-8 and MMP-9 was also significantly decreased compared to placebo group. Within the limitations of this study, the TEES-10® would have an anti-inflammatory potential clinically in the chronic gingivitis patients.
Collapse
|
17
|
Roasa J, De Villa R, Mine Y, Tsao R. Phenolics of cereal, pulse and oilseed processing by-products and potential effects of solid-state fermentation on their bioaccessibility, bioavailability and health benefits: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Wang L, Pan F, Luo T. Sinapic Acid Attenuates Rheumatoid Arthritis Through Reducing Inflammation and Oxidative Stress by Downregulating IκB Kinase. J Interferon Cytokine Res 2021; 41:347-354. [PMID: 34543128 DOI: 10.1089/jir.2021.0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sinapic acid (SA) was reported to protect against inflammation in various types of diseases. However, the role of SA in rheumatoid arthritis remains unclear. This study was designed to investigate the role of SA on rheumatoid arthritis. Rheumatoid arthritis mouse model was established by collagen immunization [collagen-induced arthritis (CIA)]. Histological analysis of articular cartilage tissue was carried out by hematoxylin and eosin (H&E) staining. Serum concentrations of tumor necrosis factor alpha and interleukin 6 were determined through enzyme-linked immunosorbent assay (ELISA). Oxidative damage indexes such as superoxide dismutase activity, malondialdehyde detection, glutathione detection, and catalase were determined by biochemical analysis. The protein levels of related genes were determined using Western blot. In CIA model, SA treatment attenuated paw swelling and clinical score of arthritis, attenuated articular cartilage tissues edema and infiltration of inflammatory cells, suppressed inflammatory cytokines release, and attenuated oxidative damage indexes. Mechanically, SA suppressed immune responses through inhibiting the IκB kinase (IKKs). SA attenuates rheumatoid arthritis through reducing inflammation and oxidative stress by downregulating IKKs.
Collapse
Affiliation(s)
- Long Wang
- Department of Traditional Chinese Medicine, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Fang Pan
- Department of Rheumatism, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Tao Luo
- Department of Rheumatology and Pain, Traditional Chinese Medicine Hospital of Dianjiang Chongqing, Chongqing, China
| |
Collapse
|
19
|
Sinapic Acid Controls Inflammation by Suppressing NLRP3 Inflammasome Activation. Cells 2021; 10:cells10092327. [PMID: 34571975 PMCID: PMC8470482 DOI: 10.3390/cells10092327] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
A natural phenolic acid compound, sinapic acid (SA), is a cinnamic acid derivative that contains 3,5-dimethoxyl and 4-hydroxyl substitutions in the phenyl ring of cinnamic acid. SA is present in various orally edible natural herbs and cereals and is reported to have antioxidant, antitumor, anti-inflammatory, antibacterial, and neuroprotective activities. Although the anti-inflammatory function of SA has been reported, the effect of SA on the NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome has not been explored. In the present study, to elucidate the anti-inflammatory mechanism of SA, we examined whether SA modulates the NLRP3 inflammasome. We found that SA blocked caspase-1 activation and IL-1β secretion by inhibiting NLRP3 inflammasome activation in bone marrow-derived macrophages (BMDMs). Apoptosis-associated speck-like protein containing CARD (ASC) pyroptosome formation was consistently blocked by SA treatment. SA specifically inhibited NLRP3 activation but not the NLRC4 or AIM2 inflammasomes. In addition, SA had no significant effect on the priming phase of the NLRP3 inflammasome, such as pro-IL-1β and NLRP3 inflammasome expression levels. Moreover, we found that SA attenuated IL-1β secretion in LPS-induced systemic inflammation in mice and reduced lethality from endotoxic shock. Our findings suggest that the natural compound SA has potential therapeutic value for the suppression of NLRP3 inflammasome-associated inflammatory diseases.
Collapse
|
20
|
Unraveling the Bioactive Profile, Antioxidant and DNA Damage Protection Potential of Rye ( Secale cereale) Flour. Antioxidants (Basel) 2021; 10:antiox10081214. [PMID: 34439463 PMCID: PMC8389031 DOI: 10.3390/antiox10081214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 01/11/2023] Open
Abstract
Six different solvents were used as extraction medium (water, methanol, ethanol, acidified methanol, benzene and acetone) to check their phenolics extraction efficacy from flour of two rye cultivars. Rye extracts with different solvents were further analyzed for the estimation of phytochemicals and antioxidant properties. Different tests (TPC, TAC, DPPH, FRAP, ABTS, RPA and CTC) were performed to check the antioxidant properties and tannin contents in extracts. A bioactive profile of a rye cultivar indicated the presence of total phenolic compounds (0.08-2.62 mg GAE/g), total antioxidant capacity (0.9-6.8 mg AAE/g) and condensed tannin content (4.24-9.28 mg CE/100 g). HPLC was done to check phenolics in rye extract with the best solvent (water), which indicated the presence of Catechol (91.1-120.4 mg/100 g), resorcinol (52-70.3 mg/100 g), vanillin (1.3-5.5 mg/100 g), ferulic acid (1.4-1.5 mg/100 g), quercetin (4.6-4.67 mg/100 g) and benzoic acid (5.3 mg/100 g) in rye extracts. The presence of DNA damage protection potential in rye extracts indicates its medicinal importance. Rye flour could be utilized in the preparation of antioxidant-rich health-benefiting food products.
Collapse
|
21
|
Rifna EJ, Misra NN, Dwivedi M. Recent advances in extraction technologies for recovery of bioactive compounds derived from fruit and vegetable waste peels: A review. Crit Rev Food Sci Nutr 2021; 63:719-752. [PMID: 34309440 DOI: 10.1080/10408398.2021.1952923] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fruits and vegetables are the most important commodities of trade value among horticultural produce. They are utilized as raw or processed, owing to the presence of health-promoting components. Significant quantities of waste are produced during fruits and vegetables processing that are majorly accounted by waste peels (∼90-92%). These wastes, however, are usually exceptionally abundant in bioactive molecules. Retrieving these valuable compounds is a core objective for the valorization of waste peel, besides making them a prevailing source of beneficial additives in food and pharmaceutical industry. The current review is focused on extraction of bioactive compounds derived from fruit and vegetable waste peels and highlights the supreme attractive conventional and non-conventional extraction techniques, such as microwave-assisted, ultrasound assisted, pulsed electric fields, pulsed ohmic heating, pressurized liquid extraction, supercritical fluid extraction, pressurized hot water, high hydrostatic pressure, dielectric barrier discharge plasma extraction, enzyme-assisted extraction and the application of "green" solvents say as well as their synergistic effects that have been applied to recover bioactive from waste peels. Superior yields achieved with non-conventional technologies were identified to be of chief interest, considering direct positive economic consequences. This review also emphasizes leveraging efficient, modern extraction technologies for valorizing abundantly available low-cost waste peel, to achieve economical substitutes, whilst safeguarding the environment and building a circular economy. It is supposed that the findings discussed though this review might be a valuable tool for fruit and vegetable processing industry to imply an economical and effectual sustainable extraction methods, converting waste peel by-product to a high added value functional product.
Collapse
Affiliation(s)
- E J Rifna
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - N N Misra
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Madhuresh Dwivedi
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
22
|
Martín-Diana AB, Tomé-Sánchez I, García-Casas MJ, Martínez-Villaluenga C, Frías J, Rico D. A Novel Strategy to Produce a Soluble and Bioactive Wheat Bran Ingredient Rich in Ferulic Acid. Antioxidants (Basel) 2021; 10:antiox10060969. [PMID: 34208721 PMCID: PMC8234745 DOI: 10.3390/antiox10060969] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/20/2022] Open
Abstract
Wheat bran (WB) is a byproduct from the milling industry that contains bioactive compounds beneficial to human health. The aim of this work was on the one hand, increasing extractability of antioxidant and anti-inflammatory compounds (specifically ferulic acid, FA), through enzymatic hydrolysis combined with hydrothermal treatment (HT) and high hydrostatic pressure (HHP). On the other hand, enhancing the stability of final ingredient applying spray-drying (SPD) and microencapsulation (MEC). The use of HT increased FA, total phenolics (TP), and antioxidant capacity (AC) in WB hydrolysates, regardless the HT duration. However, the HT tested (30 min, HT30) produced a loss in anti-inflammatory activity (AIA). The combination of HT (15 min, HT15) with HHP increased AIA of the WB. SPD enhanced the TP yield in WB with no significant effect of inlet temperature (up to 140 °C) on phenolic profile mainly composed of trans-FA and smaller amounts of cis-FA and apigenin diglucosides. SPD caused a temperature-dependent increase in AC (160 °C > 140 °C > 130 °C). SPD inlet temperatures affected total solids yield (from 22 to 36%), with the highest values at 140 °C. The use of HHP in combination with HT resulted in >2-fold increase in total solids yield.
Collapse
Affiliation(s)
- Ana Belén Martín-Diana
- Agricultural Technological Institute of Castile and Leon (ITACyL), Government of Castile and Leon, Ctra. de Burgos Km. 119, Finca Zamadueñas, 47071 Valladolid, Spain; (M.J.G.-C.); (D.R.)
- Correspondence: ; Tel.: +34-983-41-0366
| | - Irene Tomé-Sánchez
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain; (I.T.-S.); (C.M.-V.); (J.F.)
| | - María Jesús García-Casas
- Agricultural Technological Institute of Castile and Leon (ITACyL), Government of Castile and Leon, Ctra. de Burgos Km. 119, Finca Zamadueñas, 47071 Valladolid, Spain; (M.J.G.-C.); (D.R.)
| | - Cristina Martínez-Villaluenga
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain; (I.T.-S.); (C.M.-V.); (J.F.)
| | - Juana Frías
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain; (I.T.-S.); (C.M.-V.); (J.F.)
| | - Daniel Rico
- Agricultural Technological Institute of Castile and Leon (ITACyL), Government of Castile and Leon, Ctra. de Burgos Km. 119, Finca Zamadueñas, 47071 Valladolid, Spain; (M.J.G.-C.); (D.R.)
| |
Collapse
|
23
|
Research progress on the antioxidant biological activity of beer and strategy for applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Ansari MA, Raish M, Bin Jardan YA, Ahmad A, Shahid M, Ahmad SF, Haq N, Khan MR, Bakheet SA. Sinapic acid ameliorates D-galactosamine/lipopolysaccharide-induced fulminant hepatitis in rats: Role of nuclear factor erythroid-related factor 2/heme oxygenase-1 pathways. World J Gastroenterol 2021; 27:592-608. [PMID: 33642831 PMCID: PMC7901048 DOI: 10.3748/wjg.v27.i7.592] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/30/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sinapic acid (SA) has been shown to have various pharmacological properties such as antioxidant, antifibrotic, anti-inflammatory, and anticancer activities. Its mechanism of action is dependent upon its ability to curb free radical production and protect against oxidative stress-induced tissue injuries. AIM To study the hepatoprotective effects of SA against lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced acute liver failure (ALF) in rats. METHODS Experimental ALF was induced with an intraperitoneal (i.p.) administration of 8 μg LPS and 800 mg/kg D-GalN in normal saline. SA was administered orally once daily starting 7 d before LPS/D-GalN treatment. RESULTS Data showed that SA ameliorates acute liver dysfunction, decreases serum levels of alanine transaminase (ALT), and aspartate aminotransferase (AST), as well as malondialdehyde (MDA) and NO levels in ALF model rats. However, pretreatment with SA (20 mg/kg and 40 mg/kg) reduced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and levels of inflammatory cytokines (tumor necrosis factor-α and interleukin 6). Also, SA increased the activity of the nuclear factor erythroid-related factor 2/heme oxygenase-1 (Nrf2/HO-1) signaling pathway. CONCLUSION In conclusion, SA offers significant protection against LPS/D-GalN-induced ALF in rats by upregulating Nrf2/HO-1 and downregulating NF-κB.
Collapse
Affiliation(s)
- Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh Fayaz Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nazrul Haq
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Rashid Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
25
|
Yun UJ, Yang DK. Sinapic Acid Inhibits Cardiac Hypertrophy via Activation of Mitochondrial Sirt3/SOD2 Signaling in Neonatal Rat Cardiomyocytes. Antioxidants (Basel) 2020; 9:E1163. [PMID: 33233476 PMCID: PMC7700612 DOI: 10.3390/antiox9111163] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 01/07/2023] Open
Abstract
Sinapic acid (SA) is a naturally occurring phenolic compound with antioxidant properties. It also has a wide range of pharmacological properties, such as anti-inflammatory, anticancer, and hepatoprotective properties. The present study aimed to evaluate the potential pharmacological effects of SA against hypertrophic responses in neonatal rat cardiomyocytes. In order to evaluate the preventive effect of SA on cardiac hypertrophy, phenylephrine (PE)-induced hypertrophic cardiomyocytes were treated with subcytotoxic concentrations of SA. SA effectively suppressed hypertrophic responses, such as cell size enlargement, sarcomeric rearrangement, and fetal gene re-expression. In addition, SA significantly inhibited the expression of mitogen-activated protein kinase (MAPK) proteins as pro-hypertrophic factors and protected the mitochondrial functions from hypertrophic stimuli. Notably, SA activated Sirt3, a mitochondrial deacetylase, and SOD2, a mitochondrial antioxidant, in hypertrophic cardiomyocytes. SA also inhibited oxidative stress in hypertrophic cardiomyocytes. However, the protective effect of SA was significantly reduced in Sirt3-silenced hypertrophic cardiomyocytes, indicating that SA exerts its beneficial effect through Sirt3/SOD signaling. In summary, this is the first study to reveal the potential pharmacological action and inhibitory mechanism of SA as an antioxidant against cardiac hypertrophy, suggesting that SA could be utilized for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Ui Jeong Yun
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea;
| | - Dong Kwon Yang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do 54596, Korea
| |
Collapse
|
26
|
Shakeel F, Haq N, Alanazi FK, Alanazi SA, Alsarra IA. Solubility of sinapic acid in various (Carbitol + water) systems: computational modeling and solution thermodynamics. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY 2020; 142:1437-1446. [DOI: 10.1007/s10973-020-09451-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/14/2020] [Indexed: 06/22/2023]
|
27
|
Lee D, Jo MG, Kim SY, Chung CG, Lee SB. Dietary Antioxidants and the Mitochondrial Quality Control: Their Potential Roles in Parkinson's Disease Treatment. Antioxidants (Basel) 2020; 9:antiox9111056. [PMID: 33126703 PMCID: PMC7692176 DOI: 10.3390/antiox9111056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Advances in medicine and dietary standards over recent decades have remarkably increased human life expectancy. Unfortunately, the chance of developing age-related diseases, including neurodegenerative diseases (NDDs), increases with increased life expectancy. High metabolic demands of neurons are met by mitochondria, damage of which is thought to contribute to the development of many NDDs including Parkinson’s disease (PD). Mitochondrial damage is closely associated with the abnormal production of reactive oxygen species (ROS), which are widely known to be toxic in various cellular environments, including NDD contexts. Thus, ways to prevent or slow mitochondrial dysfunction are needed for the treatment of these NDDs. In this review, we first detail how ROS are associated with mitochondrial dysfunction and review the cellular mechanisms, such as the mitochondrial quality control (MQC) system, by which neurons defend against both abnormal production of ROS and the subsequent accumulation of damaged mitochondria. We next highlight previous studies that link mitochondrial dysfunction with PD and how dietary antioxidants might provide reinforcement of the MQC system. Finally, we discuss how aging plays a role in mitochondrial dysfunction and PD before considering how healthy aging through proper diet and exercise may be salutary.
Collapse
Affiliation(s)
- Davin Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
| | - Min Gu Jo
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
| | - Seung Yeon Kim
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
| | - Chang Geon Chung
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
- Correspondence: (C.G.C.); (S.B.L.)
| | - Sung Bae Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
- Correspondence: (C.G.C.); (S.B.L.)
| |
Collapse
|
28
|
Alaofi AL. Sinapic Acid Ameliorates the Progression of Streptozotocin (STZ)-Induced Diabetic Nephropathy in Rats via NRF2/HO-1 Mediated Pathways. Front Pharmacol 2020; 11:1119. [PMID: 32792955 PMCID: PMC7390867 DOI: 10.3389/fphar.2020.01119] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetic neuropathy (DN) is a complicated inauspicious outcome of diabetes, like other abnormalities of diabetes the cause of DN is still vague and it may be the result of various pathological conditions leading up to end-stage renal failure. The present study examines the efficacy of sinapic acid (SA) in streptozotocin (STZ)-induced DN nephropathy and the linked pathway. Twenty-four rats were equally divided randomly into four categories: Normal control (NC), STZ, STZ + SA 20 mg/kg bw, and STZ + SA 40 mg/kg bw. After 8 weeks they were evaluated for ratio of renal index, the fasting blood glucose (FBG), blood urea nitrogen (BUN), 24 h urea protein, serum creatinine (SCr), reduced glutathione peroxidase (GPx), superoxide dismutase (SOD), lipid peroxidation (MDA), tumor necrosis factor α (TNFα), interleukin (IL)-6, as well as lipid profile total cholesterol (TC), total triglycerides (TG), very low density lipoprotein (VLDL), low density lipoprotein (LDL), and high density lipoprotein (HDL) levels. Additionally, histomorphology and ultrastructure of the kidneys were also assessed. Protein expression levels of transforming growth factor-β1 (TGF-β1), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), IκBα protein (IkBα), anti-apoptotic protein BCl2, nuclear factor kappa B (NF-kB), and Bax were examined. We observed that SA 20 mg/kg bw and 40 mg/kg bw pretreatment significantly and dose-dependently upregulated the protein expression of HO-1, Nrf2, IKBα, and Bcl-2 but downregulated the protein expression of NF-κB, proposing that the nephroprotective mechanism of SA is due to its antioxidant and anti-inflammatory activity; SA prevents the release of cytokines and inflammatory markers (TNFα and IL-6), upregulates antioxidant defense enzymes, and reduces lipid peroxidation, as well as nitric oxide, and anti-apoptotic activity, which may be influenced by the regulation of TNF-α, IL-6, Bcl-2, NF-kB, and BaX via the Nrf2/HO-1 pathway in STZ induced DN. Thus, our results suggest that SA ameliorates the development of STZ-induced DN in rats via NRF2/HO-1 mediated pathways. Further comprehensive studies are required for complete elucidation of the fundamental mechanisms.
Collapse
Affiliation(s)
- Ahmed L. Alaofi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
Stanely Mainzen Prince P, Dey P, Roy SJ. Sinapic acid safeguards cardiac mitochondria from damage in isoproterenol-induced myocardial infarcted rats. J Biochem Mol Toxicol 2020; 34:e22556. [PMID: 32627257 DOI: 10.1002/jbt.22556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/30/2020] [Accepted: 05/15/2020] [Indexed: 11/11/2022]
Abstract
Myocardial infarction (MI) is a life-threatening disease. In this study, we examined the anti-mitochondrial damaging effects of sinapic acid (SA) in isoproterenol (ISO)-induced myocardial infarcted rats. Myocardial infarcted rats were prepared by injecting ISO (100 mg/kg body weight) on the 9th and 10th day. Rats were pretreated and cotreated with SA (12 mg/kg body weight) orally, daily for 10 days. A considerable increase in serum lactate dehydrogenase, creatine kinase, myoglobin, and cardiac troponin-T was noticed in the ISO-induced rats. ISO also significantly amplified lipid peroxidation and calcium ions, and depleted the antioxidant system and mitochondrial enzymes in rat's heart mitochondria. SA treatment improved the distorted above- mentioned biochemical parameters in ISO-treated rats with its anti-mitochondrial damaging effects. This ultrastructural study on heart mitochondria and in vitro studies also confirmed the effects of SA. The current findings are suggestive of SA's cardioprotective effects.
Collapse
Affiliation(s)
- P Stanely Mainzen Prince
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Pinaki Dey
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - S J Roy
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| |
Collapse
|
30
|
Singh HP, Singh TG, Singh R. Sinapic acid attenuates cisplatin-induced nephrotoxicity through peroxisome proliferator-activated receptor gamma agonism in rats. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2020; 12:146-154. [PMID: 32742113 PMCID: PMC7373114 DOI: 10.4103/jpbs.jpbs_220_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 01/07/2020] [Indexed: 01/16/2023] Open
Abstract
AIM The aim of this study was to investigate the involvement of peroxisome proliferator-activated receptor gamma (PPAR-γ) in renal protection offered by sinapic acid in cisplatin-induced nephrotoxicity in male rats. MATERIALS AND METHODS Nephrotoxicity was induced by single dose of cisplatin (5 mg/kg, intraperitoneal [i.p.]) in rats. Cisplatin-induced nephrotoxicity was assessed by measuring serum creatinine, creatinine clearance, urea, uric acid, potassium, magnesium levels, fractional excretion of sodium, and microproteinuria in rats. Superoxide anion generation, thiobarbituric acid reactive substances, myeloperoxidase activity, and reduced glutathione levels were measured to assess oxidative stress in renal tissues. Hematoxylin and eosin stain showed renal histological changes. RESULTS The significant changes in serum and urinary parameters, elevated oxidative stress, and renal histological changes established the induction of nephrotoxicity. Sinapic acid treatment (20 and 40 mg/kg, orally [p.o.]) provides dose-dependent and significant (P < 0.05) nephroprotection against cisplatin-mediated nephrotoxicity in rats. Nephroprotective effect of sinapic acid was abolished by PPAR-γ inhibitor, bisphenol A diglycidyl ether (30 mg/kg, i.p.) in rats. CONCLUSION It is concluded that PPAR-γ agonism serves as one of the mechanisms in sinapic acid-mediated renoprotection.
Collapse
Affiliation(s)
- Hardevinder Pal Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
- Department of Pharmacy, Government Medical College, Patiala, Punjab, India
| | | | - Randhir Singh
- Department of Pharmacology, MM College of Pharmacy, Maharishi Markandeshwar University, Ambala, Haryana, India
| |
Collapse
|
31
|
Microbiological, Biochemical, and Functional Aspects of Fermented Vegetable and Fruit Beverages. J CHEM-NY 2020. [DOI: 10.1155/2020/5790432] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, the request for the functional beverages that promote health and wellness has increased. In fact, fermented juices are an excellent delivering means for bioactive components. Their production is of crucial importance to supply probiotics, in particular, for people with particulars needs like dairy-product allergic consumers and vegetarians. This review focuses on recent findings regarding the microbial composition and the health benefits of fermented fruit and vegetable beverages by lactic acid bacteria, kefir grains, and SCOBY as well as discussing the metabolites resulting from these fermentations process. Moreover, limits that could restrain their production at the industrial level and solutions that have been proposed to overcome these constraints are also reviewed.
Collapse
|
32
|
Bin Jardan YA, Ansari MA, Raish M, Alkharfy KM, Ahad A, Al-Jenoobi FI, Haq N, Khan MR, Ahmad A. Sinapic Acid Ameliorates Oxidative Stress, Inflammation, and Apoptosis in Acute Doxorubicin-Induced Cardiotoxicity via the NF- κB-Mediated Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3921796. [PMID: 32258120 PMCID: PMC7085847 DOI: 10.1155/2020/3921796] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/04/2020] [Accepted: 02/19/2020] [Indexed: 01/01/2023]
Abstract
In the present study, we explored SA's activity against DOX-induced cardiotoxicity and revealed its underlying mechanisms. Male Wistar rats (weight, 190-210g; n = 6) were randomly divided into four groups: group I, normal control; group II, DOX 15 mg/kg via intraperitoneal (ip) route; group III, administered DOX+SA 20 mg/kg; and group IV, administered DOX+captopril (CAP 30 mg/kg). SA and CAP were administered orally for seven days, and DOX (15 mg/kg) was injected intraperitoneally an hour before SA treatment on the fifth day. Forty-eight hours after DOX administration, animals were anesthetized and sacrificed for molecular and histology experiments. SA significantly mitigated the myocardial effects of DOX, and following daily administration, it reduced serum levels of lactate dehydrogenase (LDH) and creatine kinase isoenzyme-MB to near normal values. Levels of oxidative stress markers, glutathione-peroxidase, superoxide dismutase, and catalase, in the cardiac tissue were significantly increased, whereas malondialdehyde levels decreased after SA treatment in DOX-administered rats. Furthermore, DOX caused an inflammatory reaction by elevating the levels of proinflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and endothelin- (ET-) 1, as well as nuclear factor kappa-B (NF-κB) expression. Daily administration of SA significantly repressed TNF-α, IL-1β, ET-1, and NF-κB levels. caspase-3 and Bax expression, bcl-2-like protein and caspase-3 activities and levels. Overall, we found that SA could inhibit DOX-induced cardiotoxicity by inhibiting oxidative stress, inflammation, and apoptotic damage.
Collapse
Affiliation(s)
- Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq Ahmad Ansari
- Department Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid M. Alkharfy
- Department Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad I. Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nazrul Haq
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Rashid Khan
- Department Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ajaz Ahmad
- Department Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
33
|
|
34
|
Multi-spectroscopic and computational evaluation on the binding of sinapic acid and its Cu(II) complex with bovine serum albumin. Food Chem 2019; 301:125254. [DOI: 10.1016/j.foodchem.2019.125254] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 11/20/2022]
|
35
|
Kishida K, Matsumoto H. Urinary excretion rate and bioavailability of chlorogenic acid, caffeic acid, p-coumaric acid, and ferulic acid in non-fasted rats maintained under physiological conditions. Heliyon 2019; 5:e02708. [PMID: 31720464 PMCID: PMC6838876 DOI: 10.1016/j.heliyon.2019.e02708] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/29/2018] [Accepted: 10/18/2019] [Indexed: 12/19/2022] Open
Abstract
Hydroxycinnamic acids (HAs) are one of the major classes of phenolic compounds and epidemiological studies have suggested that they have beneficial health effects. This study aimed to determine the urinary excretion rate of chlorogenic acid, caffeic acid, p-coumaric acid, and ferulic acid in non-fasted rats and to estimate their bioavailability under physiological conditions. Previous studies have primarily used fasted animals, which exhibit severe changes in various physiological processes. Furthermore, the food matrix can affect HA bioavailability. Thus, our studies using non-fasted rats under physiological conditions may allow for a more accurate determination of both the HA urinary excretion rate and the bioavailability of HAs. HAs were successively gavaged to rats at a dose of 40 mg/kg body weight (BW) with a wash-out period of one week. The rats were fed the AIN-93M diet throughout the experiment. The urine was collected at time intervals of 0–6 h, 6–24 h, and 24–48 h after HA administration. Ingested HAs, except chlorogenic acid, were primarily excreted in the urine within 0–6 h as free forms or conjugated (glucuronidated and/or sulfated) forms. The majority of the ingested chlorogenic acid was detected in the urine at 6–24 h or 24–48 h as caffeic acid, p-coumaric acid, ferulic acid, and their conjugates. The total urinary excretion rate (% of the dose) at 48 h was ferulic acid (73.2%) > caffeic acid (61.6%) > p-coumaric acid (54.1%) >> chlorogenic acid (4.9%). The percentages of the conjugates in the urine differed amongst the rats gavaged with the individual HAs (74% for chlorogenic acid, 83% for caffeic acid, 68% for p-coumaric acid, and 96% for ferulic acid), which may be explained by their distinct bioactivities. These data reveal that caffeic acid, p-coumaric acid, and ferulic acid are much more bioavailable than chlorogenic acid, even though they are excreted more rapidly than chlorogenic acid. Our findings may provide additional insight into the health benefits of HAs and how they function in the body.
Collapse
Affiliation(s)
- Kunihiro Kishida
- Department of Science and Technology on Food Safety, Kindai University, Japan
| | - Harumi Matsumoto
- Department of Science and Technology on Food Safety, Kindai University, Japan
| |
Collapse
|
36
|
Kulichová K, Sokol J, Nemeček P, Maliarová M, Maliar T, Havrlentová M, Kraic J. Phenolic compounds and biological activities of rye (Secale cereale L.) grains. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0103] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AbstractThe rye flour is, together with the wheat flour, the basic ingredient used in traditional bread baking. The rye grain contains many compounds with significant impacts on the consumer. Considering that, various biologically active phytochemicals were determined in extracts from mature grains of 19 rye genotypes (Secale cereale L.). The content of total phenols, flavonoids, phenolic acids and thiols, as well as antioxidant activities and inhibitory activities against trypsin, thrombin, and urokinase were analyzed by spectrophotometric methods. The vanillic acid, vanillin, p-coumaric acid, and t-ferulic acid were analyzed in particular by high performance liquid chromatography (HPLC). The observed differences in the amounts and activities between rye genotypes reflected variations in their genetic background. Rye grain is a remarkable source of specific phytochemicals. Genetic diversity in rye makes it possible to identify individual genotypes that have a unique content and biological activity of compounds deposited in mature grains. One subgroup of rye genotypes had higher values of antioxidant properties and concentrations of polyphenols. Other sub-group had higher proteinase inhibitory activities and contents of polyphenols. The third sub-group contained as though the universal genotypes, i.e. genotypes with average values in nearly all the measured parameters.
Collapse
Affiliation(s)
- Katarína Kulichová
- Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701Trnava, Slovakia
| | - Jozef Sokol
- Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701Trnava, Slovakia
| | - Peter Nemeček
- Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701Trnava, Slovakia
| | - Mária Maliarová
- Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701Trnava, Slovakia
| | - Tibor Maliar
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701Trnava, Slovakia
| | - Michaela Havrlentová
- Research Institute of Plant Production, National Agricultural and Food Centre, Bratislavská cesta 122, 92168Piešťany, Slovakia
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701Trnava, Slovakia
| | - Ján Kraic
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701Trnava, Slovakia
- Research Institute of Plant Production, National Agricultural and Food Centre, Bratislavská cesta 122, 92168Piešťany, Slovakia
| |
Collapse
|
37
|
Neelam, Khatkar A, Sharma KK. Phenylpropanoids and its derivatives: biological activities and its role in food, pharmaceutical and cosmetic industries. Crit Rev Food Sci Nutr 2019; 60:2655-2675. [PMID: 31456411 DOI: 10.1080/10408398.2019.1653822] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phenylpropanoids and their derivatives are plant secondary metabolites widely present in fruits, vegetables, cereal grains, beverages, spices and herbs. They are known to have multifaceted effects which include antimicrobial, antioxidant, anti-inflammatory, antidiabetic, anticancer activities and as well as exhibits renoprotective, neuroprotective, cardioprotective and hepatoprotective effects. Owing to their antioxidant, antimicrobial and photoprotective properties, these compounds have wide application in the food (preservation, packaging films and edible coating), pharmaceutical, cosmetic and other industries such as textile (colorant), biofuel (antioxidant additive) and sensors (sensing biologically relevant molecules). Phenylpropanoids are present in commercially available dietary supplements and skin care products. In this review, we have presented the current knowledge on the biosynthesis, occurrence, biological activities of phenylpropanoids and their derivatives, along with the mechanism of action and their potential applications in various industries.
Collapse
Affiliation(s)
- Neelam
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Anurag Khatkar
- Department of Pharmaceutical sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Krishna Kant Sharma
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
38
|
Sánchez-Marzo N, Lozano-Sánchez J, Cádiz-Gurrea MDLL, Herranz-López M, Micol V, Segura-Carretero A. Relationships Between Chemical Structure and Antioxidant Activity of Isolated Phytocompounds from Lemon Verbena. Antioxidants (Basel) 2019; 8:antiox8080324. [PMID: 31434276 PMCID: PMC6719922 DOI: 10.3390/antiox8080324] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/12/2019] [Accepted: 08/17/2019] [Indexed: 12/17/2022] Open
Abstract
Over the last few years, people have been concerned about the narrow relationship between nutrition and health leading to an increasing demand of nutraceutical products and functional food. Lemon verbena (Lippia citriodora Kunth) has been traditionally used for respiratory, digestive, and muscular diseases, showing effects that are promoted by the antioxidant activity of its phytoconstituents. The antioxidant power of several lemon verbena extracts has been tested but its isolated compounds activity has not been described. The aim of the present work was to isolate phytochemicals from a commercial lemon verbena extract through a semi-preparative high-performance liquid chromatography approach for further evaluation of its individual antioxidant activity using three different methods. The structure-antioxidant activity relationships revealed the influence of substitutions in the strong antioxidant power exerted by glycosylated phenylpropanoids, in contrast to the low antioxidant capacity showed by iridoids. Development of enriched extracts in these compounds could lead to greater antioxidant effects and improved functional ingredients to prevent chronic diseases.
Collapse
Affiliation(s)
- Noelia Sánchez-Marzo
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, University of Granada, Campus of Cartuja, 18071 Granada, Spain.
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento s/n., Edificio BioRegion, 18016 Granada, Spain.
| | - María de la Luz Cádiz-Gurrea
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento s/n., Edificio BioRegion, 18016 Granada, Spain
- Department of Analytical Chemistry, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain
| | - María Herranz-López
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Vicente Micol
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
- CIBER: CB12/03/30038, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (ISCIII), 07122 Palma de Mallorca, Spain
| | - Antonio Segura-Carretero
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento s/n., Edificio BioRegion, 18016 Granada, Spain
- Department of Analytical Chemistry, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
39
|
Alam MA. Anti-hypertensive Effect of Cereal Antioxidant Ferulic Acid and Its Mechanism of Action. Front Nutr 2019; 6:121. [PMID: 31448280 PMCID: PMC6692439 DOI: 10.3389/fnut.2019.00121] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 07/23/2019] [Indexed: 12/17/2022] Open
Abstract
Ferulic acid is a simple phenolic acid found mainly in cereals and grains, used as an antioxidant and food preservative. Recent evidence suggests that ferulic acid possess anti-inflammatory, anti-diabetic, anticancer, and cardioprotective properties. Several investigations also have shown that ferulic acid rich food might prevent hypertension. As a potent scavenger of free radicals (ROS, reactive oxygen species), ferulic acid attenuates oxidative stress, which is responsible for lowering elevated blood-pressure through improved endothelial function and increased bioavailability of the nitric oxide in the arterial vasculature. This review article describes the role of ferulic acid in the pathophysiology of vascular dysfunction and hypertension along with highlighted the merit of further scientific and clinical exploration.
Collapse
Affiliation(s)
- Md Ashraful Alam
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
40
|
Aly A, Maraei R, Abou El-Leel O. Comparative study of some bioactive compounds and their antioxidant activity of some berry types. POTRAVINARSTVO 2019. [DOI: 10.5219/1132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Berries are wealthy in bioactive compounds like phenolic compounds and flavonoids that are deemed antioxidants and are great important to health. This research was performed to examine, recognize and compare bioactive compounds in certain types of berries and their antioxidant activity. The data show that blue berry, black berry and Egyptian black mulberry contain the highest content of most bioactive compounds such as phenolic compounds, flavonoids and tannins, while long mulberry and red currant berry have the lowest content for most of these compounds. They therefore, contain the highest value of antioxidant activity. The chemical composition of the berries varies depending on cultivar, variety, location of growth, environmental conditions and harvest time, as well as post-harvest treatments therefore the composition differed from berry fruit to another. Thus, berry fruits are very useful in nutrition to protect the body from many diseases because of its containment of these compounds, which act as free radicals scavenger that harm the body and thus rid the body of many harmful toxins.
Collapse
|
41
|
Balagangadharan K, Trivedi R, Vairamani M, Selvamurugan N. Sinapic acid-loaded chitosan nanoparticles in polycaprolactone electrospun fibers for bone regeneration in vitro and in vivo. Carbohydr Polym 2019; 216:1-16. [PMID: 31047045 DOI: 10.1016/j.carbpol.2019.04.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/23/2022]
Abstract
Sinapic acid (SA) is a plant-derived phenolic compound known for its multiple biological properties, but its role in the promotion of bone formation is not yet well-studied. Moreover, the delivery of SA is hindered by its complex hydrophobic nature, limiting its bioavailability. In this study, we fabricated a drug delivery system using chitosan nanoparticles (nCS) loaded with SA at different concentrations. These were incorporated into polycaprolactone (PCL) fibers via an electrospinning method. nCS loaded with 50 μM SA in PCL fibers promoted osteoblast differentiation. Furthermore, SA treatment activated the osteogenesis signaling pathways in mouse mesenchymal stem cells. A critical-sized rat calvarial bone defect model system identified that the inclusion of SA into PCL/nCS fibers accelerated bone formation. Collectively, these data suggest that SA promoted osteoblast differentiation in vitro and bone formation in vivo, possibly by activating the TGF-β1/BMP/Smads/Runx2 signaling pathways, suggesting SA might have therapeutic benefits in bone regeneration.
Collapse
Affiliation(s)
- Kalimuthu Balagangadharan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ritu Trivedi
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow 226031, Uttar Pradesh, India
| | - Mariappanadar Vairamani
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
42
|
Hernández-Chávez G, Martinez A, Gosset G. Metabolic engineering strategies for caffeic acid production in Escherichia coli. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2018.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
43
|
Li X, Lin J, Ding X, Xuan J, Hu Z, Wu D, Zhu X, Feng Z, Ni W, Wu A. The protective effect of sinapic acid in osteoarthritis: In vitro and in vivo studies. J Cell Mol Med 2019; 23:1940-1950. [PMID: 30604480 PMCID: PMC6378178 DOI: 10.1111/jcmm.14096] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/16/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022] Open
Abstract
The anti-inflammatory effect of sinapic acid (SA) has been reported in several studies. However, whether SA has the same effect on osteoarthritis (OA) has yet to be clearly elucidated. We designed a series of in vitro and in vivo procedures to verify the above conjecture. Compared with controls, SA-pretreated human chondrocytes showed lower levels of interleukin (IL)-1β-induced IL-6, prostaglandin E2 (PGE2), nitric oxide (NO) and tumour necrosis factor-α (TNF-α) in vitro. Meanwhile, SA could also reverse the degradation of type II collage and aggrecan, as well as the overproduction of matrix metalloproteinase-9 (MMP-9) and matrix metalloproteinase-13 (MMP-13), inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and a disintegrin and metalloproteinase thrombospondin motifs (ADAMTS)-5. Furthermore, activation of nuclear factor κB (NF-κB), which was induced by IL-1β, was also inhibited by SA through the pathway of nuclear factor-erythroid 2-related factor-2 (Nrf2)/heme oxygenase 1. In vivo, SA could delay the progress of mice OA models. We propose that SA may be applied as a potential therapeutic drug in OA treatment.
Collapse
Affiliation(s)
- Xiaobin Li
- Department of Orthopaedic SurgeryThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jian Lin
- Department of Orthopaedic SurgeryThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiaoxia Ding
- Department of Chemoradiation OncologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jiangwei Xuan
- Department of Orthopaedic SurgeryThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zhichao Hu
- Department of Orthopaedic SurgeryThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Dengying Wu
- Department of Orthopaedic SurgeryThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xingyu Zhu
- The Second Clinical Medical School of the Wenzhou Medical UniversityWenzhouChina
| | - Zhenhua Feng
- Department of Orthopaedic SurgeryThe Second Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Wenfei Ni
- Department of Orthopaedic SurgeryThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Aimin Wu
- Department of Orthopaedic SurgeryThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
44
|
Chavarria D, Fernandes C, Silva T, Garrido J, Remião F, Oliveira PJ, Borges F. Bioisosteric OH- to SH-replacement changes the antioxidant profile of ferulic acid. Org Biomol Chem 2019; 17:9646-9654. [DOI: 10.1039/c9ob01875a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new ferulic acid-based thiophenol was synthesized and the differences in the antioxidant properties of the natural and the synthetic compounds were investigated.
Collapse
Affiliation(s)
- Daniel Chavarria
- CIQUP/Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
- Portugal
| | - Carlos Fernandes
- CIQUP/Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
- Portugal
| | - Tiago Silva
- CIQUP/Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
- Portugal
| | - Jorge Garrido
- Department of Chemical Engineering
- School of Engineering (ISEP)
- Polytechnic of Porto
- 4200-072 Porto
- Portugal
| | - Fernando Remião
- UCIBIO-REQUIMTE
- Laboratory of Toxicology
- Department of Biological Sciences
- Faculty of Pharmacy
- University of Porto
| | - Paulo J. Oliveira
- CNC - Center for Neuroscience and Cell Biology
- University of Coimbra
- Cantanhede
- Portugal
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
- Portugal
| |
Collapse
|
45
|
Minor cereals exhibit superior antioxidant effects on human epithelial cells compared to common wheat cultivars. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2018.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
46
|
HUSSAIN ANWAR, KAUL RAJKUMARI. Formulation and Characterization of Buckwheat-Barley Supplemented Multigrain Biscuits. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2018. [DOI: 10.12944/crnfsj.6.3.30] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The current study was carried out on biscuits by incorporating barley flour (10%) and buckwheat flour (10%, 20%, 30%, 40% and 50%) into wheat flour. Biscuits were evaluated for physico-chemical, functional and sensory attributes. All the blended samples exhibited high fiber, fat, ash, carbohydrate and mineral contents when compared to those prepared from 100% wheat flour. Considering the taste, flavour, texture and overall acceptability, 10% buckwheat flour incorporated biscuit (70:20:10::WF:BF:BWF) was found to be at the top among the blends. The incorporation of buckwheat flour increased the DPPH scavenging potential hence increased the functional property of blended product.
Collapse
Affiliation(s)
- ANWAR HUSSAIN
- Krishi Vigyan Kendra, Nyoma (SKUAST-K)Ladakh, 194404, India
| | - RAJKUMARI KAUL
- Division of Food Science and Technology, SKUAST-J,180009, India
| |
Collapse
|
47
|
Huang X, Pan Q, Mao Z, Zhang R, Ma X, Xi Y, You H. Sinapic Acid Inhibits the IL-1β-Induced Inflammation via MAPK Downregulation in Rat Chondrocytes. Inflammation 2018; 41:562-568. [PMID: 29243030 DOI: 10.1007/s10753-017-0712-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease frequently seen in the elderly population. Sinapic acid (SA), a commonly found phenolic acid, has been pharmacologically evaluated for its anti-inflammation effects in various studies. To explore its potential therapeutic role for OA, rat chondrocytes were treated with IL-1β (10 ng/ml) with different concentrations of SA in vitro. Our study revealed that SA could inhibit the IL-1β-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2). Consistent with these findings, the increased protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase (Cox)-2 could also be downregulated by SA. Moreover, SA could also suppress the IL-1β-induced expression of matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) in chondrocytes. Furthermore, our data found that SA could suppress the IL-1β-induced mitogen-activated protein kinase (MAPK) pathway activation. In general, this paper elucidates that sinapic acid inhibits the IL-1β-induced inflammation via MAPK pathways and may be a good agent for the treatment of OA.
Collapse
Affiliation(s)
- Xiaojian Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Qiaokou District, Wuhan, Hubei, 430030, China
| | - Qiyong Pan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Qiaokou District, Wuhan, Hubei, 430030, China
| | - Zekai Mao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Qiaokou District, Wuhan, Hubei, 430030, China
| | - Rui Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Qiaokou District, Wuhan, Hubei, 430030, China
| | - Xiaohu Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Qiaokou District, Wuhan, Hubei, 430030, China
| | - Yang Xi
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Qiaokou District, Wuhan, Hubei, 430030, China
| | - Hongbo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Qiaokou District, Wuhan, Hubei, 430030, China.
| |
Collapse
|
48
|
Jia Y, He Y, Lu F. The structure-antioxidant activity relationship of dehydrodiferulates. Food Chem 2018; 269:480-485. [PMID: 30100463 DOI: 10.1016/j.foodchem.2018.07.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/15/2022]
Abstract
In this study, 11 dehydrodiferulic acids (DFAs) and 8 diethyl dehydrodiferulates (DEFs) were synthesized and evaluated by Trolox equivalent antioxidant capacity (TEAC) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) assays for their antioxidant properties to understand the Structure-Antioxidant Activity Relationship (SAR) of these dehydrodiferulates. In both assays, the order of antioxidant activity for all tested ferulic acid dimers were consistent except for 3-(4-Hydroxy-3-methoxy-benzylidene)-5-(4-hydroxy-3-methoxy-phenyl)-3H-furan-2-one (2, 8-8-lactone DC DFA, not occurred naturally) being the best antioxidant by TEAC test. The order of antioxidant activity of diferulic acid ethyl esters, evaluated by both assays, was not consistent; however, TEAC and DPPH assays provided consistent results for certain set of ethyl diferulates. In this study most of dimeric ferulates, with three exceptions, showed higher radical-scavenging efficacy than the monomers. Comparing the antioxidant activities of the tested diferulates suggested that the phenolic hydroxyl group, electron donating methoxyl group, and stable conjugated transient structures dictate the antioxidant activity of diferulates.
Collapse
Affiliation(s)
- Yuan Jia
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Ying He
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Fachuang Lu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
49
|
Sengupta P, Ganguly A, Bose A. A phenolic acid based colourimetric 'naked-eye' chemosensor for the rapid detection of Cu(II) ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 198:204-211. [PMID: 29547822 DOI: 10.1016/j.saa.2018.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
The crucial role of chemosensor for the immediate recognition of environment pollutant motivates the researchers to develop variety of sensing protocols. Of various chemosensory protocols, the colour change observed by the naked eye is considered to be a conceivable and on-site way to indicate the presence of an analyte. We herein report a colourimetric and commercially available absorption probe, sinapic acid (SA) that is completely ready to use for "on-site" visual determination of copper ions. The molecule, SA is well-known phenolic acid, often utilized for its antibacterial activity. In this work, for the first time, we are exploring its ability to work as an efficient Cu2+ sensor. This sensor molecule selectively detected Cu2+ ions by changing its colour from colourless to pink within detection limit of 64.5nM, which is much lower than other reported sensor molecules and the suggested limit by World Health Organization (WHO) and U. S. Environmental Protection Agency (EPA) guidelines. The sensing mechanism was investigated through UV-vis and 1H NMR titration along with ESI-MS spectroscopy and further confirmed by DFT computational studies. Studies revealed the participation of hydroxyl group (OH) and methoxy group (OMe) of SA in complexation with Cu2+. The binding stoichiometry of SA to Cu2+ was found to be 1:2 through Job's plot and ESI-MS analysis. Importantly, paper strips of SA were prepared which could be used for a rapid "on-site" determination of Cu2+ containing samples.
Collapse
Affiliation(s)
- Priti Sengupta
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Aniruddha Ganguly
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, India
| | - Adity Bose
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata 700073, India.
| |
Collapse
|
50
|
Microencapsulation of Thai rice grass (O. Sativa cv. Khao Dawk Mali 105) extract incorporated to form bioactive carboxymethyl cellulose edible film. Food Chem 2018; 242:239-246. [DOI: 10.1016/j.foodchem.2017.09.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 09/07/2017] [Accepted: 09/12/2017] [Indexed: 01/16/2023]
|