1
|
Niboucha N, Jubinville É, Péloquin L, Clop A, Labrie S, Goetz C, Fliss I, Jean J. Reuterin Enhances the Efficacy of Peracetic Acid Against Multi-species Dairy Biofilm. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10351-y. [PMID: 39264555 DOI: 10.1007/s12602-024-10351-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Biofilms may contain pathogenic and spoilage bacteria and can become a recurring problem in the dairy sector, with a negative impact on product quality and consumer health. Peracetic acid (PAA) is one of the disinfectants most frequently used to control biofilm formation and persistence. Though effective, it cannot be used at high concentrations due to its corrosive effect on certain materials and because of toxicity concerns. The aim of this study was to test the possibility of PAA remaining bactericidal at lower concentrations by using it in conjunction with reuterin (3-hydroxypropionaldehyde). We evaluated the efficacy of PAA in pure form or as BioDestroy®, a PAA-based commercial disinfectant, on three-species biofilms formed by dairy-derived bacteria, namely Pseudomonas azotoformans PFlA1, Serratia liquefaciens Sl-LJJ01, and Bacillus licheniformis Bl-LJJ01. Minimum inhibitory concentrations of the three agents were determined for each bacterial species and the fractional inhibitory concentrations were then calculated using the checkerboard assay. The minimal biofilm eradication concentration (MBEC) of each antibacterial combination was then calculated against mixed-species biofilm. PAA, BioDestroy®, and reuterin showed antibiofilm activity against all bacteria within the mixed biofilm at respectively 760 ppm, 450 ppm, and 95.6 mM. The MBEC was lowered significantly to 456 ppm, 337.5 ppm, and 71.7 mM, when exposed to reuterin for 16 h followed by contact with disinfectant. Combining reuterin with chemical disinfection shows promise in controlling biofilm on food contact surfaces, especially for harsh or extended treatments. Furthermore, systems with reuterin encapsulation and nanotechnologies could be developed for sustainable antimicrobial efficacy without manufacturing disruptions.
Collapse
Affiliation(s)
- Nissa Niboucha
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Éric Jubinville
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Laurence Péloquin
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Amandine Clop
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Steve Labrie
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Coralie Goetz
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Ismaïl Fliss
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Julie Jean
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada.
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
2
|
Purnawita W, Rahayu WP, Lioe HN, Nurjanah S, Wahyudi ST. Potential molecular mechanism of reuterin on the inhibition of Aspergillus flavus conidial germination: An in silico study. J Food Sci 2024; 89:1167-1186. [PMID: 38193164 DOI: 10.1111/1750-3841.16904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024]
Abstract
Reuterin is a natural antifungal agent derived from certain strains of Limosilactobacillus reuteri. Our previous study revealed that 6 mM reuterin inhibited completely the conidial germination of aflatoxigenic Aspergillus flavus. This study investigated the potential molecular mechanism of reuterin in inhibiting A. flavus conidial germination, which was pre-assumed that it correlated to the inhibition of some essential enzyme activity involved in conidial germination, specifically 1,3-β-glucan synthase, chitin synthase, and catalases (catalase, bifunctional catalase-peroxidase, and spore-specific catalase). The complex of 1,3-β-glucan synthase and chitin synthase with reuterin had a lower binding affinity than that with the substrate. Conversely, the complex of catalases with reuterin had a higher binding affinity than that with the substrate. It was suggested that 1,3-β-glucan synthase and chitin synthase tended to bind the substrate rather than bind reuterin. In contrast, catalases tended to bind reuterin rather than bind the substrate. Therefore, reuterin could be a potential inhibitor of catalases but may not be an inhibitor of 1,3-β-glucan synthase and chitin synthase. In this in silico study, we predicted that the potential molecular mechanism of reuterin in inhibiting A. flavus conidial germination was due to the inhibition of catalases activities by competitively binding to the enzymes active sites, thus resulting in the accumulation of reactive oxygen species in cells, leading to cells damage. PRACTICAL APPLICATION: This in silico study revealed that reuterin is a potential inhibitor of catalases in A. flavus, thereby interfering with the antioxidant system during conidial germination. This finding shows that reuterin can be used as an antifungal agent in food or agricultural products, inhibiting conidial germination completely.
Collapse
Affiliation(s)
- Widiati Purnawita
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor, Indonesia
| | - Winiati Pudji Rahayu
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor, Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural University), Bogor, Indonesia
| | - Hanifah Nuryani Lioe
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor, Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural University), Bogor, Indonesia
| | - Siti Nurjanah
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor, Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural University), Bogor, Indonesia
| | - Setyanto Tri Wahyudi
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural University), Bogor, Indonesia
- Tropical Biopharmaca Research Center, IPB University (Bogor Agricultural University), Bogor, Indonesia
| |
Collapse
|
3
|
Asare PT, Greppi A, Geirnaert A, Pennacchia A, Babst A, Lacroix C. Glycerol and reuterin-producing Limosilactobacillus reuteri enhance butyrate production and inhibit Enterobacteriaceae in broiler chicken cecal microbiota PolyFermS model. BMC Microbiol 2023; 23:384. [PMID: 38053034 PMCID: PMC10696668 DOI: 10.1186/s12866-023-03091-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Administering probiotic strains of Limosilactobacillus reuteri to poultry has been shown to improve poultry performance and health. Some strains of L. reuteri taxa can produce reuterin, a broad-spectrum antimicrobial compound from glycerol conversion, with high inhibitory activity against enterobacteria. However, little is known about the metabolism of glycerol in the complex chicken cecal microbiota nor the effect of glycerol, either alone or combined with L. reuteri on the microbiota. In this study, we investigated the effect of L. reuteri PTA5_F13, a high-reuterin-producing chicken strain and glycerol, alone or combined, on broiler chicken cecal microbiota composition and activity using the continuous PolyFermS model recently developed to mimic chicken cecal fermentation. METHODS Three independent PolyFermS chicken cecal microbiota models were inoculated with immobilized cecal microbiota from different animals and operated continuously. The effects of two additional levels of glycerol (50 and 100 mM) with or without daily supplementation of chicken-derived L. reuteri PTA5_F13 (107 CFU/mL final concentration) were tested in parallel second-stage reactors continuously inoculated with the same microbiota. We analyzed the complex chicken gut microbiota structure and dynamics upon treatment using 16S rRNA metabarcoding and qPCR. Microbiota metabolites, short-chain and branched-chain fatty acids, and glycerol and reuterin products were analyzed by HPLC in effluent samples from stabilized reactors. RESULTS Supplementation with 100 mM glycerol alone and combined with L. reuteri PTA5_F13 resulted in a reproducible increase in butyrate production in the three modelled microbiota (increases of 18 to 25%). Glycerol alone resulted also in a reduction of Enterobacteriaceae in two of the three microbiota, but no effect was detected for L. reuteri alone. When both treatments were combined, all microbiota quantitatively inhibited Enterobacteriaceae, including in the last model that had very high initial concentrations of Enterobacteriaceae. Furthermore, a significant 1,3-PDO accumulation was measured in the effluent of the combined treatment, confirming the conversion of glycerol via the reuterin pathway. Glycerol supplementation, independent of L. reuteri addition, did not affect the microbial community diversity. CONCLUSIONS Glycerol induced a stable and reproducible butyrogenic activity for all tested microbiota and induced an inhibitory effect against Enterobacteriaceae that was strengthened when reuterin-producing L. reuteri was spiked daily. Our in vitro study suggests that co-application of L. reuteri PTA5_F13 and glycerol could be a useful approach to promote chicken gut health by enhancing metabolism and protection against Enterobacteriaceae.
Collapse
Affiliation(s)
- Paul Tetteh Asare
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, LFV D 20, Schmelzbergstrasse 7, CH-8042, Zurich, Switzerland
- Present address: Gnubiotics Sciences SA, Epalinges, Switzerland
| | - Anna Greppi
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, LFV D 20, Schmelzbergstrasse 7, CH-8042, Zurich, Switzerland
| | - Annelies Geirnaert
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, LFV D 20, Schmelzbergstrasse 7, CH-8042, Zurich, Switzerland
| | - Alessia Pennacchia
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, LFV D 20, Schmelzbergstrasse 7, CH-8042, Zurich, Switzerland
| | - Angela Babst
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, LFV D 20, Schmelzbergstrasse 7, CH-8042, Zurich, Switzerland
| | - Christophe Lacroix
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, LFV D 20, Schmelzbergstrasse 7, CH-8042, Zurich, Switzerland.
| |
Collapse
|
4
|
Sun MC, Li DD, Chen YX, Fan XJ, Gao Y, Ye H, Zhang T, Zhao C. Insights into the Mechanisms of Reuterin against Staphylococcus aureus Based on Membrane Damage and Untargeted Metabolomics. Foods 2023; 12:4208. [PMID: 38231661 DOI: 10.3390/foods12234208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
Reuterin is a dynamic small-molecule complex produced through glycerol fermentation by Limosilactobacillus reuteri and has potential as a food biopreservative. Despite its broad-spectrum antimicrobial activity, the underlying mechanism of action of reuterin is still elusive. The present paper aimed to explore the antibacterial mechanism of reuterin and its effects on membrane damage and the intracellular metabolome of S. aureus. Our results showed that reuterin has a minimum inhibitory concentration of 18.25 mM against S. aureus, based on the 3-hydroxypropionaldehyde level. Key indicators such as extracellular electrical conductivity, membrane potential and permeability were significantly increased, while intracellular pH, ATP and DNA were markedly decreased, implying that reuterin causes a disruption to the structure of the cell membrane. The morphological damage to the cells was confirmed by scanning electron microscopy. Subsequent metabolomic analysis identified significant alterations in metabolites primarily involved in lipid, amino acid, carbohydrate metabolism and phosphotransferase system, which is crucial for cell membrane regulation and energy supply. Consequently, these findings indicated that the antibacterial mechanism of reuterin initially targets lipid and amino acid metabolism, leading to cell membrane damage, which subsequently results in energy metabolism disorder and, ultimately, cell death. This paper offers innovative perspectives on the antibacterial mechanism of reuterin, contributing to its potential application as a food preservative.
Collapse
Affiliation(s)
- Mao-Cheng Sun
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Dian-Dian Li
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yu-Xin Chen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Xiu-Juan Fan
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yu Gao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
5
|
Zabed HM, Akter S, Rupani PF, Akor J, Zhang Y, Zhao M, Zhang C, Ragauskas AJ, Qi X. Biocatalytic gateway to convert glycerol into 3-hydroxypropionic acid in waste-based biorefineries: Fundamentals, limitations, and potential research strategies. Biotechnol Adv 2023; 62:108075. [PMID: 36502965 DOI: 10.1016/j.biotechadv.2022.108075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Microbial conversion of bioenergy-derived waste glycerol into value-added chemicals has emerged as an important bioprocessing technology due to its eco-friendliness, feasible technoeconomics, and potential to provide sustainability in biodiesel and bioethanol production. Glycerol is an abundant liquid waste from bioenergy plants with a projected volume of 6 million tons by 2025, accounting for about 10% of biodiesel and 2.5% of bioethanol yields. 3-Hydroxypropionic acid (3-HP) is a major product of glycerol bioconversion, which is the third largest biobased platform compound with expected market size and value of 3.6 million tons/year and USD 10 billion/year, respectively. Despite these biorefinery values, 3-HP biosynthesis from glycerol is still at an immature stage of commercial exploitation. The main challenges behind this immaturity are the toxic effects of 3-HPA on cells, the distribution of carbon flux to undesirable pathways, low tolerance of cells to glycerol and 3-HP, co-factor dependence of enzymes, low enzyme activity and stability, and the problems of substrate inhibition and specificity of enzymes. To address these challenges, it is necessary to understand the fundamentals of glycerol bioconversion and 3-HP production in terms of metabolic pathways, related enzymes, cell factories, midstream process configurations, and downstream 3-HP recovery, as discussed in this review critically and comprehensively. It is equally important to know the current challenges and limitations in 3-HP production, which are discussed in detail along with recent research efforts and remaining gaps. Finally, possible research strategies are outlined considering the recent technological advances in microbial biosynthesis, aiming to attract further research efforts to achieve a sustainable and industrially exploitable 3-HP production technology. By discussing the use of advanced tools and strategies to overcome the existing challenges in 3-HP biosynthesis, this review will attract researchers from many other similar biosynthesis technologies and provide a common gateway for their further development.
Collapse
Affiliation(s)
- Hossain M Zabed
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Suely Akter
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Parveen Fatemah Rupani
- Department of Chemical Engineering, Ku Luven, Jan De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Joseph Akor
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Yufei Zhang
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Mei Zhao
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Cunsheng Zhang
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; UTK-ORNL Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Xianghui Qi
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China; School of Life Sciences, Guangzhou University, Guangzhou 510,006, Guangdong Province, China.
| |
Collapse
|
6
|
Limosilactobacillus reuteri Regulating Intestinal Function: A Review. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation9010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Probiotics have extensive use in daily life, due to the function of the changing intestinal metabolism and material conversion processes, wherein they remodel the intestinal microbiota, regulate the intestinal function and affect the organism’s health. Limosilactobacillus reuteri (L. reuteri), originally discovered in breast milk and currently reported to be present within the gut of almost all vertebrates and mammals, is an intestinal probiotic with prebiotic efficacy. Most L. reuteri have good intestinal colonization and bacteriocin secretion abilities, which can increase the expression of the mucin (mucoprotein) genes 2 MUC2 and MUC13, which in turn promote the development and maturation of intestinal organoids, and augment mucin secretion. In enteritis patients, L. reuteri downregulates α Tumor necrosis factor-α, (TNF-α), Interleukin-6 (IL-6), IL-8, and IL-12 expression to attenuate inflammation. It also induces the host’s production of immunoglobulin A (IGA), which manipulates the intestinal microbial community, inhibiting the growth of pathogens. L. reuteri has been widely used in daily life. with in-depth studies having been conducted on the prebiotic effects of L. reuteri. However, the complexity of its application in a clinical setting is still unclear because the pathogenesis of various diseases still requires a large amount of data and theoretical support.
Collapse
|
7
|
Sun MC, Hu ZY, Li DD, Chen YX, Xi JH, Zhao CH. Application of the Reuterin System as Food Preservative or Health-Promoting Agent: A Critical Review. Foods 2022; 11:foods11244000. [PMID: 36553742 PMCID: PMC9778575 DOI: 10.3390/foods11244000] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The reuterin system is a complex multi-component antimicrobial system produced by Limosilactobacillus reuteri by metabolizing glycerol. The system mainly includes 3-hydroxypropionaldehyde (3-HPA, reuterin), 3-HPA dimer, 3-HPA hydrate, acrolein and 3-hydroxypropionic acid, and has great potential to be applied in the food and medical industries due to its functional versatility. It has been reported that the reuterin system possesses regulation of intestinal flora and anti-infection, anti-inflammatory and anti-cancer activities. Typically, the reuterin system exerts strong broad-spectrum antimicrobial properties. However, the antimicrobial mechanism of the reuterin system remains unclear, and its toxicity is still controversial. This paper presents an updated review on the biosynthesis, composition, biological production, antimicrobial mechanisms, stability, toxicity and potential applications of the reuterin system. Challenges and opportunities of the use of the reuterin system as a food preservative or health-promoting agent are also discussed. The present work will allow researchers to accelerate their studies toward solving critical challenges obstructing industrial applications of the reuterin system.
Collapse
Affiliation(s)
- Mao-Cheng Sun
- College of Plant Science, Jilin University, Changchun 130062, China
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Zi-Yi Hu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Dian-Dian Li
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yu-Xin Chen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jing-Hui Xi
- College of Plant Science, Jilin University, Changchun 130062, China
- Correspondence: (J.-H.X.); (C.-H.Z.)
| | - Chang-Hui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
- Correspondence: (J.-H.X.); (C.-H.Z.)
| |
Collapse
|
8
|
Pyo SH, Sayed M, Örn OE, Amorrortu Gallo J, Fernandez Ros N, Hatti-Kaul R. A facile process for adipic acid production in high yield by oxidation of 1,6-hexanediol using the resting cells of Gluconobacter oxydans. Microb Cell Fact 2022; 21:223. [PMID: 36307807 PMCID: PMC9617331 DOI: 10.1186/s12934-022-01947-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022] Open
Abstract
Background Adipic acid (AA) is one of the most important industrial chemicals used mainly for the production of Nylon 6,6 but also for making polyurethanes, plasticizers, and unsaturated polyester resins, and more recently as a component in the biodegradable polyester poly(butylene adipate terephthalate) (PBAT). The main route for AA production utilizes benzene as feedstock and generates copious amounts of the greenhouse gas NO2. Hence, alternative clean production routes for AA from renewable bio-based feedstock are drawing increasing attention. We have earlier reported the potential of Gluconobacter oxydans cells to oxidize 1,6-hexanediol, a potentially biobased diol to AA. Results The present report involves a study on the effect of different parameters on the microbial transformation of 1,6-hexanediol to adipic acid, and subsequently testing the process on a larger lab scale for achieving maximal conversion and yield. Comparison of three wild-type strains of G. oxydans DSM50049, DSM2003, and DSM2343 for the whole-cell biotransformation of 10 g/L 1,6-hexanediol to adipic acid in batch mode at pH 7 and 30 °C led to the selection of G. oxydans DSM50049, which showed 100% conversion of the substrate with over 99% yield of adipic acid in 30 h. An increase in the concentrations of the substrate decreased the degree of conversion, while the product up to 25 g/L in batch and 40 g/L in fed-batch showed no inhibition on the conversion. Moreover, controlling the pH of the reaction at 5–5.5 was required for the cascade oxidation reactions to work. Cell recycling for the biotransformation resulted in a significant decrease in activity during the third cycle. Meanwhile, the fed-batch mode of transformation by intermittent addition of 1,6-hexanediol (30 g in total) in 1 L scale resulted in complete conversion with over 99% yield of adipic acid (approximately 37 g/L). The product was recovered in a pure form using downstream steps without the use of any solvent. Conclusion A facile, efficient microbial process for oxidation of 1,6-hexanediol to adipic acid, having potential for scale up was demonstrated. The entire process is performed in aqueous medium at ambient temperatures with minimal greenhouse gas emissions. The enzymes involved in catalyzing the oxidation steps are currently being identified. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01947-6.
Collapse
Affiliation(s)
- Sang-Hyun Pyo
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, 22100, Lund, Sweden.
| | - Mahmoud Sayed
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, 22100, Lund, Sweden.,Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Oliver Englund Örn
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, 22100, Lund, Sweden
| | - Jorge Amorrortu Gallo
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, 22100, Lund, Sweden
| | - Nídia Fernandez Ros
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, 22100, Lund, Sweden
| | - Rajni Hatti-Kaul
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, 22100, Lund, Sweden
| |
Collapse
|
9
|
Ramirez Garcia A, Hurley K, Marastoni G, Diard M, Hofer S, Greppi A, Hardt WD, Lacroix C, Sturla SJ, Schwab C. Pathogenic and Commensal Gut Bacteria Harboring Glycerol/Diol Dehydratase Metabolize Glycerol and Produce DNA-Reactive Acrolein. Chem Res Toxicol 2022; 35:1840-1850. [PMID: 36116084 PMCID: PMC9580524 DOI: 10.1021/acs.chemrestox.2c00137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 12/20/2022]
Abstract
Bacteria harboring glycerol/diol dehydratase (GDH) encoded by the genes pduCDE metabolize glycerol and release acrolein during growth. Acrolein has antimicrobial activity, and exposure of human cells to acrolein gives rise to toxic and mutagenic responses. These biological responses are related to acrolein's high reactivity as a chemical electrophile that can covalently bind to cellular nucleophiles including DNA and proteins. Various food microbes and gut commensals transform glycerol to acrolein, but there is no direct evidence available for bacterial glycerol metabolism giving rise to DNA adducts. Moreover, it is unknown whether pathogens, such as Salmonella Typhymurium, catalyze this transformation. We assessed, therefore, acrolein formation by four GDH-competent strains of S. Typhymurium grown under either aerobic or anaerobic conditions in the presence of 50 mM glycerol. On the basis of analytical derivatization with a heterocyclic amine, all wild-type strains were observed to produce acrolein, but to different extents, and acrolein production was not detected in fermentations of a pduC-deficient mutant strain. Furthermore, we found that, in the presence of calf thymus DNA, acrolein-DNA adducts were formed as a result of bacterial glycerol metabolism by two strains of Limosilactobacillus reuteri, but not a pduCDE mutant strain. The quantification of the resulting adducts with increasing levels of glycerol up to 600 mM led to the production of up to 1.5 mM acrolein and 3600 acrolein-DNA adducts per 108 nucleosides in a model system. These results suggest that GDH-competent food microbes, gut commensals, and pathogens alike have the capacity to produce acrolein from glycerol. Further, the acrolein production can lead to DNA adduct formation, but requires high glycerol concentrations that are not available in the human gut.
Collapse
Affiliation(s)
- Alejandro Ramirez Garcia
- Laboratory
of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
- Laboratory
of Toxicology, Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Katherine Hurley
- Laboratory
of Toxicology, Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Giovanni Marastoni
- Laboratory
of Toxicology, Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Médéric Diard
- Biozentrum, University of Basel, Basel 4056, Switzerland
- Institute
of Microbiology, Department of Biology, ETH Zürich, Zürich 8093, Switzerland
| | - Sophie Hofer
- Laboratory
of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Anna Greppi
- Laboratory
of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Wolf-Dietrich Hardt
- Institute
of Microbiology, Department of Biology, ETH Zürich, Zürich 8093, Switzerland
| | - Christophe Lacroix
- Laboratory
of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Shana J. Sturla
- Laboratory
of Toxicology, Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Clarissa Schwab
- Laboratory
of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
- Department
of Biological and Chemical Engineering, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
10
|
Van Holm W, Verspecht T, Carvalho R, Bernaerts K, Boon N, Zayed N, Teughels W. Glycerol strengthens probiotic effect of Limosilactobacillus reuteri in oral biofilms: a synergistic synbiotic approach. Mol Oral Microbiol 2022; 37:266-275. [PMID: 36075698 DOI: 10.1111/omi.12386] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/13/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022]
Abstract
Both in vitro and in vivo studies have shown that the probiotic Limosilactobacillus reuteri can improve oral health. L. reuteri species are known to produce the antimicrobial 'reuterin' from glycerol. In order to further increase its antimicrobial activity, this study evaluated the effect of the combined use of glycerol and Limosilactobacillus reuteri (ATCC PTA 5289) in view of using a synergistic synbiotic over a probiotic. An antagonistic agar growth and a multispecies biofilm model showed that the antimicrobial potential of the probiotic was significantly enhanced against periodontal pathobionts and anaerobic commensals when supplemented with glycerol. Synbiotic biofilms also showed a significant reduction in inflammatory expression of human oral keratinocytes (HOK-18A), but only when the keratinocytes were preincubated with the probiotic. Probiotic preincubation of keratinocytes or probiotic- and synbiotic treatment of biofilms alone were insufficient to significantly reduce inflammatory expression. Overall, this study shows that combining glycerol with the probiotic L. reuteri into a synergistic synbiotic can greatly improve the effectiveness of the latter. One sentence summary: The use of a synbiotic formulation of Limosilactobacillus reuteri with glycerol over the probiotic improves antimicrobial effects and reduced inflammatory response to oral biofilms. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wannes Van Holm
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Kapucijnenvoer 33, Leuven, 3000, Belgium.,Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Coupure links 653, Gent, 9000, Belgium
| | - Tim Verspecht
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Kapucijnenvoer 33, Leuven, 3000, Belgium.,Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Coupure links 653, Gent, 9000, Belgium
| | - Rita Carvalho
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Kapucijnenvoer 33, Leuven, 3000, Belgium
| | - Kristel Bernaerts
- Bio- and Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, University of Leuven (KU Leuven), Leuven Chem&Tech, Celestijnenlaan 200F (bus 2424), Leuven, 3001, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Coupure links 653, Gent, 9000, Belgium
| | - Naiera Zayed
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Kapucijnenvoer 33, Leuven, 3000, Belgium.,Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Coupure links 653, Gent, 9000, Belgium.,Faculty of Pharmacy, Menoufia University, Egypt
| | - Wim Teughels
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Kapucijnenvoer 33, Leuven, 3000, Belgium
| |
Collapse
|
11
|
Glycerol Utilization as a Sole Carbon Source Disrupts the Membrane Architecture and Solventogenesis in Clostridium beijerinckii NCIMB 8052. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Efficient bioconversion of abundant waste glycerol to value-added chemicals calls for a wider range of fermentative workhorses that can catabolize glycerol. In this study, we used quantitative gene expression and solvent profiling, qualitative metabolite analysis, and enzyme activity assays to investigate the factors that limit glycerol utilization as a sole carbon source by Clostridium beijerinckii NCIMB 8052. C. beijerinckii NCIMB 8052 did not produce acetate, acetone and butanol on glycerol. Congruently, the genes encoding the coenzyme A transferase subunits (ctfAB) and bifunctional acetaldehyde-CoA/alcohol dehydrogenase (adhE) were down-regulated up to 135- and 21-fold, respectively, at 12 h in glycerol-grown cells compared to glucose-grown cells. Conversely, NADH-dependent butanol dehydrogenase A (bdhA) was upregulated 2-fold. Glycerol dehydrogenase (gldA) and dihydroxyacetone kinase (subunit dhaK) were upregulated up to 5- and 881-fold, respectively. Glyceraldehyde-3-phosphate dehydrogenase (gapdh) showed mostly similar expression profiles at 12 h on glucose and glycerol. At 24 h, gapdh was downregulated 1.5-fold, while NADP+-dependent gapdh was upregulated up to 1.9-fold. Glycerol-grown cells showed higher or similar activity profiles for all solventogenic enzymes studied, compared to glucose-grown cells. Butyraldehyde (3 g/L) supplementation led to the production of ~0.1 g/L butanol, whilst butyrate (3.5 g/L) supplementation produced 0.7 and 0.5 g/L acetone and butanol, respectively, with glycerol. Further, the long chain saturated fatty acids cyclopentaneundecanoic acid, methyl ester and hexadecanoic acid, butyl ester were detected in glucose- but not in glycerol-grown cells. Collectively, growth on glycerol appears to disrupt synthesis of saturated long chain fatty acids, as well as solventogenesis in C. beijerinckii NCIMB 8052.
Collapse
|
12
|
Liang B, Sun G, Zhang X, Nie Q, Zhao Y, Yang J. Recent Advances, Challenges and Metabolic Engineering Strategies in the Biosynthesis of 3-Hydroxypropionic Acid. Biotechnol Bioeng 2022; 119:2639-2668. [PMID: 35781640 DOI: 10.1002/bit.28170] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2022] [Accepted: 06/29/2022] [Indexed: 11/07/2022]
Abstract
As an attractive and valuable platform chemical, 3-hydroxypropionic acid (3-HP) can be used to produce a variety of industrially important commodity chemicals and biodegradable polymers. Moreover, the biosynthesis of 3-HP has drawn much attention in recent years due to its sustainability and environmental friendliness. Here, we focus on recent advances, challenges and metabolic engineering strategies in the biosynthesis of 3-HP. While glucose and glycerol are major carbon sources for its production of 3-HP via microbial fermentation, other carbon sources have also been explored. To increase yield and titer, synthetic biology and metabolic engineering strategies have been explored, including modifying pathway enzymes, eliminating flux blockages due to byproduct synthesis, eliminating toxic byproducts, and optimizing via genome-scale models. This review also provides insights on future directions for 3-HP biosynthesis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bo Liang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Guannan Sun
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xinping Zhang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Qingjuan Nie
- Foreign Languages School, Qingdao Agricultural University, Qingdao, China
| | - Yukun Zhao
- Pony Testing International Group, Qingdao, China
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
13
|
Evaluation of the effectivity of reuterin in pectin edible coatings to extend the shelf-life of strawberries during cold storage. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
Gui X, Yang Z, Li MD. Effect of Cigarette Smoke on Gut Microbiota: State of Knowledge. Front Physiol 2021; 12:673341. [PMID: 34220536 PMCID: PMC8245763 DOI: 10.3389/fphys.2021.673341] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Cigarette smoke is a representative source of toxic chemical exposures to humans, and the adverse consequences of cigarette smoking are mediated by its effect on both neuronal and immune-inflammatory systems. Cigarette smoking also is a major risk factor for intestinal disorders, such as Crohn's disease and peptic ulcer. On the other hand, cigarette smoking is protective against developing ulcerative colitis. The effects of cigarette smoking on intestinal disorders include changes in intestinal irrigation and microbiome, increases in permeability of the mucosa, and impaired mucosal immune responses. However, the underlying mechanism linking cigarette smoking with intestinal microbiota dysbiosis is largely unknown. In this communication, we first review the current knowledge about the mechanistic interaction between cigarette smoke and intestinal microbiota dysbiosis, which include the likely actions of nicotine, aldehydes, polycyclic aromatic hydrocarbons, heavy metals, volatile organic compounds and toxic gases, and then reveal the potential mechanisms of the lung-gut cross talk and skin-gut cross talk in regulating the balance of intestinal microbiota and the interrelation of intestinal microbiota dysbiosis and systemic disorders.
Collapse
Affiliation(s)
- Xiaohua Gui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Diez-Echave P, Martín-Cabrejas I, Garrido-Mesa J, Langa S, Vezza T, Landete JM, Hidalgo-García L, Algieri F, Mayer MJ, Narbad A, García-Lafuente A, Medina M, Rodríguez-Nogales A, Rodríguez-Cabezas ME, Gálvez J, Arqués JL. Probiotic and Functional Properties of Limosilactobacillus reuteri INIA P572. Nutrients 2021; 13:1860. [PMID: 34072532 PMCID: PMC8228662 DOI: 10.3390/nu13061860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Limosilactobacillus reuteri INIA P572 is a strain able to produce the antimicrobial compound reuterin in dairy products, exhibiting a protective effect against some food-borne pathogens. In this study, we investigated some probiotic properties of this strain such as resistance to gastrointestinal passage or to colonic conditions, reuterin production in a colonic environment, and immunomodulatory activity, using different in vitro and in vivo models. The results showed a high resistance of this strain to gastrointestinal conditions, as well as capacity to grow and produce reuterin in a human colonic model. Although the in vitro assays using the RAW 264.7 macrophage cell line did not demonstrate direct immunomodulatory properties, the in vivo assays using a Dextran Sulphate Sodium (DSS)-induced colitic mice model showed clear immunomodulatory and protective effects of this strain.
Collapse
Affiliation(s)
- Patricia Diez-Echave
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Izaskun Martín-Cabrejas
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (I.M.-C.); (S.L.); (J.M.L.); (M.M.); (J.L.A.)
| | - José Garrido-Mesa
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Susana Langa
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (I.M.-C.); (S.L.); (J.M.L.); (M.M.); (J.L.A.)
| | - Teresa Vezza
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - José M. Landete
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (I.M.-C.); (S.L.); (J.M.L.); (M.M.); (J.L.A.)
| | - Laura Hidalgo-García
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Francesca Algieri
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Melinda J. Mayer
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich NR4-7UZ, UK; (A.N.); (M.J.M.)
| | - Arjan Narbad
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich NR4-7UZ, UK; (A.N.); (M.J.M.)
| | - Ana García-Lafuente
- Centro para la Calidad de los Alimentos, INIA-CISC, c/José Tudela s/n, 42004 Soria, Spain;
| | - Margarita Medina
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (I.M.-C.); (S.L.); (J.M.L.); (M.M.); (J.L.A.)
| | - Alba Rodríguez-Nogales
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - María Elena Rodríguez-Cabezas
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Julio Gálvez
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Juan L. Arqués
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (I.M.-C.); (S.L.); (J.M.L.); (M.M.); (J.L.A.)
| |
Collapse
|
16
|
Engevik MA, Danhof HA, Shrestha R, Chang-Graham AL, Hyser JM, Haag AM, Mohammad MA, Britton RA, Versalovic J, Sorg JA, Spinler JK. Reuterin disrupts Clostridioides difficile metabolism and pathogenicity through reactive oxygen species generation. Gut Microbes 2020; 12:1788898. [PMID: 32804011 PMCID: PMC7524292 DOI: 10.1080/19490976.2020.1795388] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/16/2020] [Accepted: 07/06/2020] [Indexed: 02/03/2023] Open
Abstract
Antibiotic resistance is one of the world's greatest public health challenges and adjunct probiotic therapies are strategies that could lessen this burden. Clostridioides difficile infection (CDI) is a prime example where adjunct probiotic therapies could decrease disease incidence through prevention. Human-derived Lactobacillus reuteri is a probiotic that produces the antimicrobial compound reuterin known to prevent C. difficile colonization of antibiotic-treated fecal microbial communities. However, the mechanism of inhibition is unclear. We show that reuterin inhibits C. difficile outgrowth from spores and vegetative cell growth, however, no effect on C. difficile germination or sporulation was observed. Consistent with published studies, we found that exposure to reuterin stimulated reactive oxygen species (ROS) in C. difficile, resulting in a concentration-dependent reduction in cell viability that was rescued by the antioxidant glutathione. Sublethal concentrations of reuterin enhanced the susceptibility of vegetative C. difficile to vancomycin and metronidazole treatment and reduced toxin synthesis by C. difficile. We also demonstrate that reuterin is protective against C. difficile toxin-mediated cellular damage in the human intestinal enteroid model. Overall, our results indicate that ROS are essential mediators of reuterin activity and show that reuterin production by L. reuteri is compatible as a therapeutic in a clinically relevant model.
Collapse
Affiliation(s)
- Melinda A. Engevik
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Heather A. Danhof
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Ritu Shrestha
- Department of Biology, Texas A&M University, College Station, TX, USA
| | | | - Joseph M. Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Anthony M. Haag
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Mahmoud A. Mohammad
- Department of Pediatrics, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Robert A. Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - James Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Jennifer K. Spinler
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
17
|
Potential probiotic of Lactobacillus strains isolated from the intestinal tracts of pigs and feces of dogs with antibacterial activity against multidrug-resistant pathogenic bacteria. Arch Microbiol 2020; 202:1849-1860. [PMID: 32447432 DOI: 10.1007/s00203-020-01908-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022]
Abstract
The occurrence of multidrug-resistant pathogenic bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), multidrug-resistant Acinetobacter baumannii (MDRAB), extended-spectrum β-lactamase (ESBL) Escherichia coli, and Pseudomonas aeruginosa, has become a serious problem in animals and public. The objective of this study was to identify and isolate lactic acid bacterial (LAB) strains from the intestinal tracts of pigs and feces of dogs and then characterize them as potential probiotics with antimicrobial activity against multidrug-resistant pathogenic bacteria. In a preliminary isolation screening, 45 of 1167 isolated LAB strains were found to have anti-S. aureus ATCC 27,735 activity. Using 16S rDNA and 16S-23S rDNA intergenic spacer region (ISR) sequences, five of these isolates were further identified as Lactobacillus animalis 30a-2, Lactobacillus reuteri 4-12E, Weissella cibaria C34, Lactococcus lactis 5-12H, and Lactococcus lactis 6-3H. Antimicrobial substance assays suggest that the L. lactis 5-12H, L. lactis 6-3H, L. animalis 30a-2, L. reuteri 4-12E, and W. cibaria C34 strains might produce bacteriocins and hydrogen peroxide (H2O2) as antimicrobial substances. The L. animalis 30a-2 and W. cibaria C34 strains were further characterized for probiotic properties and shown to have high acid and bile salt tolerance. Additionally, they have broad antimicrobial spectra, and can significantly repress the growth of all of the tested strains of MRSA isolates, some MDRAB, ESBL E. coli, and P. aeruginosa isolates, along with food-borne pathogenic bacteria such as Bacillus cereus ATCC 11778, Listeria monocytogens ATCC 19111, Salmonella spp., Shigella spp., and Yersinia enterocolitica BCRC 12986. This is the first report of H2O2-producing L. animalis 30a-2 and W. cibaria C34 isolated from the intestinal tracts of pigs and feces of dogs that have good antimicrobial activity against multidrug-resistant and food-borne pathogenic bacteria and have excellent probiotic properties.
Collapse
|
18
|
Asare PT, Zurfluh K, Greppi A, Lynch D, Schwab C, Stephan R, Lacroix C. Reuterin Demonstrates Potent Antimicrobial Activity Against a Broad Panel of Human and Poultry Meat Campylobacter spp. Isolates. Microorganisms 2020; 8:E78. [PMID: 31935889 PMCID: PMC7022665 DOI: 10.3390/microorganisms8010078] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 12/31/2019] [Accepted: 01/04/2020] [Indexed: 01/08/2023] Open
Abstract
Reuterin is a broad-spectrum antimicrobial system produced by specific strains of Lactobacillus reuteri during anaerobic metabolism of glycerol. Acrolein is the main component responsible for its antimicrobial activity. Here, the sensitivity of Campylobacter jejuni (n = 51) and Campylobacter coli (n = 20) isolates from chicken meat and human stool samples to reuterin was investigated. The minimum inhibitory concentration (MIC) of C. jejuni and C. coli strains was measured between 1.5 and 3.0 µM of acrolein, below the MIC of the sensitive indicator strain Escherichia coli K12 (16.5 µM acrolein). The interaction of C. jejuni N16-1419 and the reuterin-producing L. reuteri PTA5_F13 was studied during 24 h co-cultures with or without glycerol. A high C. jejuni growth was observed in cultures without glycerol. In contrast, C. jejuni growth decreased from 7.3 ± 0.1 log CFU/mL to below detection limit (1 log CFU/mL) during co-cultures added with 28 mM glycerol. This bactericidal effect could be attributed to in situ reuterin production. The low MIC observed and the high sensitivity towards in situ produced reuterin suggests L. reuteri combined with glycerol, as a possible intervention option to reduce Campylobacter in the food chain.
Collapse
Affiliation(s)
- Paul Tetteh Asare
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, 8092 Zürich, Switzerland; (P.T.A.); (A.G.); (C.S.)
| | - Katrin Zurfluh
- Institute for Food Hygiene and Safety, University of Zürich, 8057 Zürich, Switzerland; (K.Z.); (D.L.); (R.S.)
| | - Anna Greppi
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, 8092 Zürich, Switzerland; (P.T.A.); (A.G.); (C.S.)
| | - Denise Lynch
- Institute for Food Hygiene and Safety, University of Zürich, 8057 Zürich, Switzerland; (K.Z.); (D.L.); (R.S.)
| | - Clarissa Schwab
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, 8092 Zürich, Switzerland; (P.T.A.); (A.G.); (C.S.)
| | - Roger Stephan
- Institute for Food Hygiene and Safety, University of Zürich, 8057 Zürich, Switzerland; (K.Z.); (D.L.); (R.S.)
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, 8092 Zürich, Switzerland; (P.T.A.); (A.G.); (C.S.)
| |
Collapse
|
19
|
Khan S, Chousalkar KK. Short-term feeding of probiotics and synbiotics modulates caecal microbiota during Salmonella Typhimurium infection but does not reduce shedding and invasion in chickens. Appl Microbiol Biotechnol 2019; 104:319-334. [PMID: 31758235 DOI: 10.1007/s00253-019-10220-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/07/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022]
Abstract
Positive modulation of gut microbiota in laying chickens may offer a strategy for reduction of Salmonella Typhimurium shedding and production of safer poultry products. In the current study, the caecal luminal microbiota of laying chicks was studied using 16S rRNA amplicon sequencing on DNA obtained from the chicks that were offered supplementation with commercial probiotics, synbiotics and/or Salmonella Typhimurium challenge. The load of Salmonella Typhimurium in various organs was quantified. Irrespective of the probiotics and synbiotics supplementation and Salmonella Typhimurium challenge, caecal microbiota was dominated by 22 distinct bacterial genera and 14 families that clustered into Actinobacteria, Proteobacteria and Firmicutes at phylum level. Taken together, probiotics and synbiotics supplementation increased (false discovery rate; FDR < 0.05) the abundance of Ruminococcus, Trabulsiella, Bifidobacterium, Holdemania and Oscillospira, indicating their role in maintaining gut health through lowering luminal pH and digestion of complex polysaccharides. Salmonella Typhimurium challenge decreased the abundance of Trabulsiella, Oscillospira, Holdemania, Coprococcus, Bifidobacterium and Lactobacillus and increased Klebsiella and Escherichia, indicating its role in caecal dysbiosis. Although probiotics and synbiotics supplementation positively modulated the caecal microbiota, they were not effective in significantly (P > 0.05) reducing Salmonella Typhimurium load in caecal tissue and invasion into vital organs such as liver and spleen. The early colonisation of laying chick caeca by probiotics and synbiotics had the potential to positively influence luminal microbiota; however, the microbial abundance and diversity were not sufficient to significantly reduce the shedding of Salmonella Typhimurium in faeces or invasion into internal organs during this study.
Collapse
Affiliation(s)
- Samiullah Khan
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - Kapil K Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia.
| |
Collapse
|
20
|
Hu Z, Jia P, Bai Y, Fan TP, Zheng X, Cai Y. Characterisation of five alcohol dehydrogenases from Lactobacillus reuteri DSM20016. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Drakula S, Novotni D, Mustač NČ, Voučko B, Krpan M, Hruškar M, Ćurić D. A Simple HS-SPME/GC-MS Method for Determination of Acrolein from Sourdough to Bread. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01612-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
22
|
Suppuram P, Ramakrishnan GG, Subramanian R. An integrated process for the production of 1,3-propanediol, lactate and 3-hydroxypropionic acid by an engineered Lactobacillus reuteri. Biosci Biotechnol Biochem 2019; 83:755-762. [DOI: 10.1080/09168451.2018.1559720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
ABSTRACT
The process economy of food grade 1,3-propanediol (1,3-PD) production by GRAS organisms like Lactobacillus reuteri (L. reuteri), is negatively impacted by the low yield and use of expensive feedstocks. In order to improve the process economy, we have developed a multiproduct process involving the production of three commercially important chemicals, namely, 1,3-PD, lactate and 3-Hydroxypropionic acid (3-HP), by engineered L. reuteri. The maximum 1,3-PD and lactate titer of 41 g/L and 31 g/L, with a volumetric productivity of 1.69 g/L/h and 0.67 g/L/h were achieved, respectively. The maximum 3-HP titer of 5.2 g/L with a volumetric productivity of 1.3 g/L/h, was obtained by biotransformation using cells recovered from the repeated fed-batch process. The volumetric productivity of 1,3-PD obtained in this study is the highest ever reported for this organism. Further cost reduction can be achieved by using waste feedstocks like milk whey, biomass hydrolysate, and crude glycerol.
Collapse
|
23
|
Beer F, Urbat F, Franz CMAP, Huch M, Kulling SE, Bunzel M, Bunzel D. The Human Fecal Microbiota Metabolizes Foodborne Heterocyclic Aromatic Amines by Reuterin Conjugation and Further Transformations. Mol Nutr Food Res 2019; 63:e1801177. [PMID: 30815965 DOI: 10.1002/mnfr.201801177] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/01/2019] [Indexed: 01/16/2023]
Abstract
SCOPE Heterocyclic aromatic amines (HAAs) are process-induced food contaminants with high mutagenic and/or carcinogenic potential. Although the human gut microbiota is known to affect the metabolism of dietary constituents, its impact on HAA metabolism and toxicity has been little studied. Here, the glycerol-dependent metabolism of seven foodborne HAAs (AαC, Trp-P-1, harman, norharman, PhIP, MeIQx, and MeIQ) by the human fecal microbiota is investigated. METHODS AND RESULTS As analyzed by HPLC-DAD/FLD, the extent of conversion is strongly dependent on glycerol supplementation and HAA structure. AαC (60-100%) and the 2-aminoimidazoazarenes (up to 58%) are especially prone to microbial conversion. Based on high-resolution MS and/or NMR spectroscopy data, 70 fecal metabolites are identified in total, mainly formed by chemical reactions with one or two molecules of microbially derived reuterin. Moreover, it has been demonstrated that the human fecal microbiota can further transform reuterin adducts by reduction and/or hydroxylation reactions. Upon isolation, some reuterin-induced HAA metabolites appear to be partially unstable, complicating structural identification. CONCLUSION The formation of microbial metabolites needs to be incorporated into risk assessment considerations for HAAs in human health. In this study, several HAA metabolites, mainly reuterin-dependent, are identified in vitro, providing the basis for future human studies investigating microbial HAA metabolism.
Collapse
Affiliation(s)
- Falco Beer
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut (MRI), Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Felix Urbat
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut (MRI), Federal Research Institute of Nutrition and Food, Hermann-Weigmann-Straße 1, 24103, Kiel, Germany
| | - Melanie Huch
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut (MRI), Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut (MRI), Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Diana Bunzel
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut (MRI), Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| |
Collapse
|
24
|
Asare PT, Greppi A, Stettler M, Schwab C, Stevens MJA, Lacroix C. Decontamination of Minimally-Processed Fresh Lettuce Using Reuterin Produced by Lactobacillus reuteri. Front Microbiol 2018; 9:1421. [PMID: 30022970 PMCID: PMC6040215 DOI: 10.3389/fmicb.2018.01421] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/11/2018] [Indexed: 11/13/2022] Open
Abstract
Over the last years the demand for pre-washed, fresh-cut, and minimally-processed (MP) produce has increased. MP fresh vegetable are rapidly spoiled, whereas there is consumers' concern about chemical disinfection treatments such as with chlorine. A promising antimicrobial is reuterin, a broad-spectrum-antimicrobial compound produced by food-grade Lactobacillus reuteri from glycerol. In aqueous solution, reuterin is a dynamic system consisting of 3-hydroxypropionaldehyde (3-HPA), its hydrate, its dimer as well as acrolein, which was recently identified as the main antimicrobial component of the system. Here, we tested the use of reuterin containing similar 3-HPA levels but different acrolein concentrations for decontaminating and preserving fresh-cut lettuce. Crude reuterin (CR) was produced by biotransformation of 600 mM glycerol using L. reuteri DSM 20016T. CR preparations were further incubated for 16 h at 50°C to produce enhanced reuterin (ER) with raised concentration of acrolein. Fresh-cut iceberg lettuce (Lactuca sativa) was washed using CR (1.5-1.9 mM acrolein) and ER (7.2-21.9 mM acrolein) solutions at 4°C, or sodium hypochloride (250 mg/L) and tap water, and compared with unwashed lettuce. Washed lettuce samples were packed under modified atmosphere (2% O2, 5% CO2, and 93% N2) and stored for 13 days at 4°C. Application of ER containing 12.1, 20.9, or 21.9 mM acrolein reduced the initial viable plate counts of Enterobacteriaceae (by 2.1-2.8 log CFU/g), and yeasts and molds (by 1.3-2.0 log CFU/g) when compared with unwashed samples. In contrast, reuterin solutions containing 7.2 mM acrolein, sodium hypochlorite and tap water only showed very limited and transient, or no effects on the cell loads of lettuce after washing and during storage. Visual assessment of leaves washed with ER showed acrolein concentration-dependent discoloration noticeable already after 3 days of storage for the highest acrolein concentrations. Discoloration became severe for all ER treatments after 7 days, while the other treatments preserved the aspect of washed lettuce. Our data show the predominant role of acrolein as the main antimicrobial component of the reuterin system for food biopreservation. Reuterin preparations with enhanced acrolein concentration of 12.1 mM and higher were effective to reduce plate counts of Enterobacteriaceae and yeasts and molds washed lettuce until day 7 but induced pronounced discoloration of lettuce.
Collapse
Affiliation(s)
| | | | | | | | | | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
25
|
Schmidt M, Lynch KM, Zannini E, Arendt EK. Fundamental study on the improvement of the antifungal activity of Lactobacillus reuteri R29 through increased production of phenyllactic acid and reuterin. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.11.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Turner TL, Kim H, Kong II, Liu JJ, Zhang GC, Jin YS. Engineering and Evolution of Saccharomyces cerevisiae to Produce Biofuels and Chemicals. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 162:175-215. [PMID: 27913828 DOI: 10.1007/10_2016_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To mitigate global climate change caused partly by the use of fossil fuels, the production of fuels and chemicals from renewable biomass has been attempted. The conversion of various sugars from renewable biomass into biofuels by engineered baker's yeast (Saccharomyces cerevisiae) is one major direction which has grown dramatically in recent years. As well as shifting away from fossil fuels, the production of commodity chemicals by engineered S. cerevisiae has also increased significantly. The traditional approaches of biochemical and metabolic engineering to develop economic bioconversion processes in laboratory and industrial settings have been accelerated by rapid advancements in the areas of yeast genomics, synthetic biology, and systems biology. Together, these innovations have resulted in rapid and efficient manipulation of S. cerevisiae to expand fermentable substrates and diversify value-added products. Here, we discuss recent and major advances in rational (relying on prior experimentally-derived knowledge) and combinatorial (relying on high-throughput screening and genomics) approaches to engineer S. cerevisiae for producing ethanol, butanol, 2,3-butanediol, fatty acid ethyl esters, isoprenoids, organic acids, rare sugars, antioxidants, and sugar alcohols from glucose, xylose, cellobiose, galactose, acetate, alginate, mannitol, arabinose, and lactose.
Collapse
Affiliation(s)
- Timothy L Turner
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Heejin Kim
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - In Iok Kong
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jing-Jing Liu
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Guo-Chang Zhang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
27
|
Protective effect of reuterin-producing Lactobacillus reuteri against Listeria monocytogenes and Escherichia coli O157:H7 in semi-hard cheese. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Bertin Y, Habouzit C, Dunière L, Laurier M, Durand A, Duchez D, Segura A, Thévenot-Sergentet D, Baruzzi F, Chaucheyras-Durand F, Forano E. Lactobacillus reuteri suppresses E. coli O157:H7 in bovine ruminal fluid: Toward a pre-slaughter strategy to improve food safety? PLoS One 2017; 12:e0187229. [PMID: 29091926 PMCID: PMC5665532 DOI: 10.1371/journal.pone.0187229] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022] Open
Abstract
The bovine gastrointestinal tract (GIT) is the main reservoir for enterohaemorrhagic Escherichia coli (EHEC) responsible for food-borne infections. Therefore, it is crucial to develop strategies, such as EHEC suppression by antagonistic microorganisms, to reduce EHEC survival in the GIT of cattle and to limit shedding and food contamination. Most human-derived Lactobacillus reuteri strains produce hydroxypropionaldehyde (HPA), an antimicrobial compound, during anaerobic reduction of glycerol. The capacity of L. reuteri LB1-7, a strain isolated from raw bovine milk, to produce HPA and its antimicrobial activity against an O157:H7 EHEC strain (FCH6) were evaluated in bovine rumen fluid (RF) under strict anaerobiosis. EHEC was totally suppressed when incubated in RF inoculated with L. reuteri LB1-7 and supplemented with 80 mM glycerol (RF-Glyc80). The addition of LB1-7 or glycerol alone did not modify EHEC survival in RF. Glycerol was converted to HPA (up to 14 mM) by LB1-7 during incubation in RF-Glyc80, and HPA production appeared to be responsible for EHEC suppression. The bactericidal activity of L. reuteri LB1-7, the concentration of glycerol required and the level of HPA produced depended on physiological and ecological environments. In vitro experiments also showed that EHEC inoculated in rumen fluid and exposed to L. reuteri and glycerol had a very limited growth in rectal contents. However, L. reuteri exerted an antimicrobial activity against the rumen endogenous microbiota and perturbed feedstuff degradation in the presence of glycerol. The potential administration of L. reuteri and glycerol in view of application to finishing beef cattle at the time of slaughter is discussed. Further in vivo studies will be important to confirm the efficiency of L. reuteri and glycerol supplementation against EHEC shedding in ruminants.
Collapse
Affiliation(s)
- Yolande Bertin
- Université Clermont Auvergne, INRA, MEDIS, Clermont-Ferrand, France
- * E-mail:
| | - Chloé Habouzit
- Université Clermont Auvergne, INRA, MEDIS, Clermont-Ferrand, France
| | - Lysiane Dunière
- Université Clermont Auvergne, INRA, MEDIS, Clermont-Ferrand, France
- Lallemand SAS, Blagnac, France
| | - Marie Laurier
- Université Clermont Auvergne, INRA, MEDIS, Clermont-Ferrand, France
| | - Alexandra Durand
- Université Clermont Auvergne, INRA, MEDIS, Clermont-Ferrand, France
| | - David Duchez
- Institut Pascal—Axe GePEB, Polytech Clermont-Ferrand, Université Blaise Pascal, Aubière, France
| | - Audrey Segura
- Université Clermont Auvergne, INRA, MEDIS, Clermont-Ferrand, France
| | - Delphine Thévenot-Sergentet
- Research Group on Bacterial Opportunistic Pathogens and Environment, UMR, Ecologie Microbienne, CNRS, VetAgro Sup, INRA and Université Lyon 1, Villeurbanne, France
- Laboratoire d'Étude des Microorganismes pathogènes, French Laboratory for Shiga Toxin-Producing Escherichia coli, VetAgro Sup, Campus vétérinaire, Marcy L’Etoile, France
| | - Federico Baruzzi
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| | | | - Evelyne Forano
- Université Clermont Auvergne, INRA, MEDIS, Clermont-Ferrand, France
| |
Collapse
|
29
|
Improvement of 1,3-propanediol oxidoreductase (DhaT) stability against 3-hydroxypropionaldehyde by substitution of cysteine residues. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-016-0560-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Lim HG, Noh MH, Jeong JH, Park S, Jung GY. Optimum Rebalancing of the 3-Hydroxypropionic Acid Production Pathway from Glycerol in Escherichia coli. ACS Synth Biol 2016; 5:1247-1255. [PMID: 27056171 DOI: 10.1021/acssynbio.5b00303] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
3-Hydroxypropionic acid (3-HP) can be biologically produced from glycerol by two consecutive enzymatic reactions, dehydration of glycerol to 3-hydroxypropionaldehyde (3-HPA) and oxidation of 3-HPA. The pathway has been proved efficient, but imbalance between the rates of the two enzymatic reactions often results in the accumulation of the toxic 3-HPA, which severely reduces cell viability and 3-HP production. In this study, we used UTR engineering to maximally increase the activities of glycerol dehydratase (GDHt) and aldehyde dehydrogenase (ALDH) for the high conversion of glycerol to 3-HP. Thereafter, the activity of GDHt was precisely controlled to avoid the accumulation of 3-HPA by varying expression of dhaB1, a gene encoding a main subunit of GDHt. The optimally balanced E. coli HGL_DBK4 showed a substantially enhanced 3-HP titer and productivity compared with the parental strain. The yield on glycerol, 0.97 g 3-HP/g glycerol, in a fed-batch experiment, was the highest ever reported.
Collapse
Affiliation(s)
- Hyun Gyu Lim
- Department
of Chemical Engineering and School of Interdisciplinary Bioscience
and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Myung Hyun Noh
- Department
of Chemical Engineering and School of Interdisciplinary Bioscience
and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Jun Hong Jeong
- Department
of Chemical Engineering and School of Interdisciplinary Bioscience
and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Sunghoon Park
- School
of Chemical and Biomolecular Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Gyoo Yeol Jung
- Department
of Chemical Engineering and School of Interdisciplinary Bioscience
and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
31
|
Engels C, Schwab C, Zhang J, Stevens MJA, Bieri C, Ebert MO, McNeill K, Sturla SJ, Lacroix C. Acrolein contributes strongly to antimicrobial and heterocyclic amine transformation activities of reuterin. Sci Rep 2016; 6:36246. [PMID: 27819285 PMCID: PMC5098142 DOI: 10.1038/srep36246] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/21/2016] [Indexed: 02/08/2023] Open
Abstract
Glycerol/diol dehydratases catalyze the conversion of glycerol to 3-hydroxypropionaldehyde (3-HPA), the basis of a multi-component system called reuterin. Reuterin has antimicrobial properties and undergoes chemical conjugation with dietary heterocyclic amines (HCAs). In aqueous solution reuterin is in dynamic equilibrium with the toxicant acrolein. It was the aim of this study to investigate the extent of acrolein formation at various physiological conditions and to determine its role in biological and chemical activities. The application of a combined novel analytical approach including IC-PAD, LC-MS and NMR together with specific acrolein scavengers suggested for the first time that acrolein, and not 3-HPA, is the active compound responsible for HCA conjugation and antimicrobial activity attributed to reuterin. As formation of the HCA conjugate was observed in vivo, our results imply that acrolein is formed in the human gut with implications on detoxification of HCAs. We propose to re-define the term reuterin to include acrolein.
Collapse
Affiliation(s)
- Christina Engels
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Clarissa Schwab
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Jianbo Zhang
- Laboratory of Food Nutrition and Toxicology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Marc J. A. Stevens
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Corinne Bieri
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Marc-Olivier Ebert
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Sciences, ETH Zurich, Zurich, Switzerland
| | - Kristopher McNeill
- Laboratory of Environmental Chemistry, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Shana J. Sturla
- Laboratory of Food Nutrition and Toxicology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Garde S, Gómez-Torres N, Delgado D, Gaya P, Ávila M. Influence of reuterin-producing Lactobacillus reuteri coupled with glycerol on biochemical, physical and sensory properties of semi-hard ewe milk cheese. Food Res Int 2016; 90:177-185. [PMID: 29195870 DOI: 10.1016/j.foodres.2016.10.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/28/2016] [Accepted: 10/29/2016] [Indexed: 11/29/2022]
Abstract
The biochemical, physical and sensory characteristics of ewe milk cheeses made with reuterin-producing Lactobacillus reuteri and glycerol (substrate for reuterin production) were assessed. Cheese made with lactococci starter (CTRL), cheese made with starter and L. reuteri (SLR), and cheese made with starter, L. reuteri and 30mM glycerol (SLR-G) were manufactured. L. reuteri reached counts above 7logcfu/g on day 1. Lactococci survival was enhanced in SLR cheese without affecting cheese pH, dry matter, proteolysis, concentration of most free amino acids (FAA), textural and most color parameters, or sensory characteristics. In situ production of reuterin by L. reuteri was only detected in SLR-G cheese, decreasing LAB counts although acidification remained unaffected. SLR-G cheese showed higher values of cell free aminopeptidase activity, overall proteolysis and FAA, particularly glutamic acid, than CTRL and SLR cheeses. The addition of L. reuteri-glycerol resulted in lower hardness and elasticity values in SLR-G cheese and influenced its L*, a* and b* color parameters. However, these changes, which were detected by instrumental analysis, did not affect the sensory scores for texture and color quality of SLR-G cheese, and it received the highest scores for taste quality. Our results suggest that L. reuteri-glycerol may provide a suitable system to release the antimicrobial reuterin in cheese without affecting negatively its sensory characteristics.
Collapse
Affiliation(s)
- Sonia Garde
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Tecnología de Alimentos, Carretera de La Coruña km 7, 28040 Madrid, Spain
| | - Natalia Gómez-Torres
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Tecnología de Alimentos, Carretera de La Coruña km 7, 28040 Madrid, Spain
| | - David Delgado
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), Estación Tecnológica de la Leche, Carretera de Autilla s/n, 34071 Palencia, Spain
| | - Pilar Gaya
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Tecnología de Alimentos, Carretera de La Coruña km 7, 28040 Madrid, Spain
| | - Marta Ávila
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Tecnología de Alimentos, Carretera de La Coruña km 7, 28040 Madrid, Spain.
| |
Collapse
|
33
|
Gómez-Torres N, Ávila M, Delgado D, Garde S. Effect of reuterin-producing Lactobacillus reuteri coupled with glycerol on the volatile fraction, odour and aroma of semi-hard ewe milk cheese. Int J Food Microbiol 2016; 232:103-10. [PMID: 27289193 DOI: 10.1016/j.ijfoodmicro.2016.05.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 04/26/2016] [Accepted: 05/31/2016] [Indexed: 10/21/2022]
Abstract
The effect of the biopreservation system formed by Lactobacillus reuteri INIA P572, a reuterin-producing strain, and glycerol (required for reuterin production), on the volatile fraction, aroma and odour of industrial sized semi-hard ewe milk cheese (Castellano type) was investigated over a 3-month ripening period. The volatile compounds were extracted and analyzed by SPME-GC-MS and cheese odour and aroma profiles were studied by descriptive sensory analysis. Control cheese was made only with a mesophilic starter and experimental cheeses with L. reuteri were made with and without glycerol. The addition of L. reuteri INIA P572 to milk enhanced the formation of six volatile compounds. Despite the changes in the volatile compounds profile, the use of L. reuteri INIA P572 did not noticeably affect the sensory characteristics of cheese. On the other hand, the addition of L. reuteri INIA P572 coupled with 30mM glycerol enhanced the formation of twelve volatile compounds, but decreased the formation of five ones. The use of the biopreservation system did not affect overall odour and aroma quality of cheese although it resulted in a significant decrease of the odour intensity scores. In addition, this cheese received significant higher scores for "cheesy" aroma and significant lower scores for the aroma attributes "milky", "caramel" and "yogurt-like". The first two axes of a principal component analysis (PCA) performed for selected volatile compounds and sensory characteristics, accounting for 75% of the variability between cheeses, separated cheeses made with L. reuteri INIA P572 and glycerol from the rest of cheeses, and also differentiated control cheese from cheeses made with L. reuteri INIA P572 from day 60 onward. Our results showed that the reuterin-producing L. reuteri INIA P572 strain, when coupled with glycerol, may be a suitable biopreservation system to use in cheese without affecting odour and aroma quality.
Collapse
Affiliation(s)
- Natalia Gómez-Torres
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Tecnología de Alimentos, Carretera de La Coruña km 7, 28040 Madrid, Spain
| | - Marta Ávila
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Tecnología de Alimentos, Carretera de La Coruña km 7, 28040 Madrid, Spain
| | - David Delgado
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), Estación Tecnológica de la Leche, Carretera de Autilla s/n, 34071 Palencia, Spain
| | - Sonia Garde
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Tecnología de Alimentos, Carretera de La Coruña km 7, 28040 Madrid, Spain.
| |
Collapse
|
34
|
Engels C, Ruscheweyh HJ, Beerenwinkel N, Lacroix C, Schwab C. The Common Gut Microbe Eubacterium hallii also Contributes to Intestinal Propionate Formation. Front Microbiol 2016; 7:713. [PMID: 27242734 PMCID: PMC4871866 DOI: 10.3389/fmicb.2016.00713] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/29/2016] [Indexed: 01/09/2023] Open
Abstract
Eubacterium hallii is considered an important microbe in regard to intestinal metabolic balance due to its ability to utilize glucose and the fermentation intermediates acetate and lactate, to form butyrate and hydrogen. Recently, we observed that E. hallii is capable of metabolizing glycerol to 3-hydroxypropionaldehyde (3-HPA, reuterin) with reported antimicrobial properties. The key enzyme for glycerol to 3-HPA conversion is the cobalamin-dependent glycerol/diol dehydratase PduCDE which also utilizes 1,2-propanediol (1,2-PD) to form propionate. Therefore our primary goal was to investigate glycerol to 3-HPA metabolism and 1,2-PD utilization by E. hallii along with its ability to produce cobalamin. We also investigated the relative abundance of E. hallii in stool of adults using 16S rRNA and pduCDE based gene screening to determine the contribution of E. hallii to intestinal propionate formation. We found that E. hallii utilizes glycerol to produce up to 9 mM 3-HPA but did not further metabolize 3-HPA to 1,3-propanediol. Utilization of 1,2-PD in the presence and absence of glucose led to the formation of propanal, propanol and propionate. E. hallii formed cobalamin and was detected in stool of 74% of adults using 16S rRNA gene as marker gene (n = 325). Relative abundance of the E. hallii 16S rRNA gene ranged from 0 to 0.59% with a mean relative abundance of 0.044%. E. hallii PduCDE was detected in 63 to 81% of the metagenomes depending on which subunit was investigated beside other taxons such as Ruminococcus obeum, R. gnavus, Flavonifractor plautii, Intestinimonas butyriciproducens, and Veillonella spp. In conclusion, we identified E. hallii as a common gut microbe with the ability to convert glycerol to 3-HPA, a step that requires the production of cobalamin, and to utilize 1,2-PD to form propionate. Our results along with its ability to use a broad range of substrates point at E. hallii as a key species within the intestinal trophic chain with the potential to highly impact the metabolic balance as well as the gut microbiota/host homeostasis by the formation of different short chain fatty acids.
Collapse
Affiliation(s)
- Christina Engels
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich Zurich, Switzerland
| | - Hans-Joachim Ruscheweyh
- Department of Biosystems Science and Engineering, ETH ZurichBasel, Switzerland; Research Informatics, Scientific IT Services, ETH ZurichBasel, Switzerland; SIB Swiss Institute of BioinformaticsBasel, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH ZurichBasel, Switzerland; SIB Swiss Institute of BioinformaticsBasel, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich Zurich, Switzerland
| | - Clarissa Schwab
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich Zurich, Switzerland
| |
Collapse
|
35
|
Montiel R, Martín-Cabrejas I, Medina M. Natural antimicrobials and high-pressure treatments on the inactivation of Salmonella Enteritidis and Escherichia coli O157:H7 in cold-smoked salmon. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2573-2578. [PMID: 26268416 DOI: 10.1002/jsfa.7378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/06/2015] [Accepted: 08/10/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND High hydrostatic pressure (HHP) combined with reuterin and lactoperoxidase system (LPS) has exerted antimicrobial activity against Listeria monocytogenes in cold-smoked salmon at chilled temperatures. Therefore the purpose of this work was to evaluate the effect of HHP combined with reuterin, LPS and lactoferrin (LF) on the survival of Salmonella enterica subsp. enterica serovar Enteritidis and Escherichia coli O157:H7 in cold-smoked salmon stored at 4 and 10 °C. RESULTS Salmonella Enteritidis and E. coli O157:H7 were reduced more than 3 log colony-forming units (CFU) g(-1) by the pressure treatment (450 MPa/5 min). LPS slightly diminished pathogen levels throughout storage, whereas no effect was recorded when reuterin or LF was added. The Salmonella population was below the detection limit (<1 log CFU g(-1) ) during the storage of HHP-treated smoked salmon at 4 and 10 °C. The antimicrobial activity of HHP against E. coli O157:H7 was increased when 450 MPa was applied in combination with LPS in cold-smoked salmon at 4 and 10 °C. CONCLUSION HHP at 450 MPa/5 min inactivated S. Enteritidis in cold-smoked salmon and in combination with LPS would be useful as a hurdle technology approach against E. coli O157:H7, even under mild temperature abuse conditions. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Raquel Montiel
- Departamento Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, E-28040, Madrid, Spain
| | - Izaskun Martín-Cabrejas
- Departamento Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, E-28040, Madrid, Spain
| | - Margarita Medina
- Departamento Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, E-28040, Madrid, Spain
| |
Collapse
|
36
|
Characterization of 1,3-propanediol oxidoreductase (DhaT) from Klebsiella pneumoniae J2B. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-015-0635-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
37
|
Diversity of Lactobacillus reuteri Strains in Converting Glycerol into 3-Hydroxypropionic Acid. Appl Biochem Biotechnol 2015; 177:923-39. [PMID: 26319567 DOI: 10.1007/s12010-015-1787-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/27/2015] [Indexed: 10/23/2022]
Abstract
The present study aims at comparing the performances of three Lactobacillus reuteri strains (DSM 20016, DSM 17938, and ATCC 53608) in producing 3-hydroxypropionic acid (3-HP) from glycerol and at exploring inhibition phenomena during this bioconversion. Differences were highlighted between the three strains in terms of 3-HP production yield, kinetics of substrate consumption, and metabolite production. With a maximal productivity in non-optimal conditions (free pH) around 2 g.L(-1).h(-1) of 3-HP and 4 g.L(-1).h(-1) of 3-hydroxypropionaldehyde (3-HPA) depending on the strain, this study confirmed the potential of L. reuteri for the biotechnological production of 3-HP. Moreover, the molar ratios of 3-HP to 1,3-propanediol (1,3-PDO) obtained for the three strains (comprised between 1.25 and 1.65) showed systematically a higher 3-HP production. From these results, the DSM 17938 strain appeared to be the most promising strain. The impact of glycerol bioconversion on the bacteria's physiological state (a decrease of around 40 % in DSM 17938 cells showing an enzymatic activity after 3 h) and survival (total loss of cultivability after 2 or 3 h depending on the strains) was revealed and discussed. The effect of each metabolite on L. reuteri DSM 17938 was further investigated, displaying a drastic inhibition caused by 3-HPA, while 3-HP induced lower impact and only at acidic pH.
Collapse
|
38
|
Patzschke A, Steiger MG, Holz C, Lang C, Mattanovich D, Sauer M. Enhanced glutathione production by evolutionary engineering of
Saccharomyces cerevisiae
strains. Biotechnol J 2015; 10:1719-26. [DOI: 10.1002/biot.201400809] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/23/2015] [Accepted: 04/21/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Anett Patzschke
- Department of Biotechnology, BOKU‐VIBT University of Natural Resources and Life Sciences, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria
| | - Matthias G. Steiger
- Department of Biotechnology, BOKU‐VIBT University of Natural Resources and Life Sciences, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria
| | | | | | - Diethard Mattanovich
- Department of Biotechnology, BOKU‐VIBT University of Natural Resources and Life Sciences, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria
| | - Michael Sauer
- Department of Biotechnology, BOKU‐VIBT University of Natural Resources and Life Sciences, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria
| |
Collapse
|
39
|
Burgé G, Flourat AL, Pollet B, Spinnler HE, Allais F. 3-Hydroxypropionaldehyde (3-HPA) quantification by HPLC using a synthetic acrolein-free 3-hydroxypropionaldehyde system as analytical standard. RSC Adv 2015. [DOI: 10.1039/c5ra18274c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
HPLC-based quantification of 3-HPA using a synthetic acrolein-free 3-HPA standard obtained from commercially available 1,2,4-butanetriol through a straightforward and easy synthetic process.
Collapse
Affiliation(s)
- G. Burgé
- Chaire Agro-Biotechnologies Industrielles (ABI)
- AgroParisTech
- F-51100 Reims
- France
- AgroParisTech
| | - A. L. Flourat
- Chaire Agro-Biotechnologies Industrielles (ABI)
- AgroParisTech
- F-51100 Reims
- France
- AgroParisTech
| | - B. Pollet
- AgroParisTech
- UMR 782 Génie et Microbiologie des Procédés Alimentaires (GMPA)
- F-78850 Thiverval-Grignon
- France
- INRA
| | - H. E. Spinnler
- AgroParisTech
- UMR 782 Génie et Microbiologie des Procédés Alimentaires (GMPA)
- F-78850 Thiverval-Grignon
- France
- INRA
| | - F. Allais
- Chaire Agro-Biotechnologies Industrielles (ABI)
- AgroParisTech
- F-51100 Reims
- France
- AgroParisTech
| |
Collapse
|
40
|
Susceptibility of Clostridium perfringens to antimicrobials produced by lactic acid bacteria: Reuterin and nisin. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.03.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Langa S, Martín-Cabrejas I, Montiel R, Landete J, Medina M, Arqués J. Short communication: Combined antimicrobial activity of reuterin and diacetyl against foodborne pathogens. J Dairy Sci 2014; 97:6116-21. [DOI: 10.3168/jds.2014-8306] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/14/2014] [Indexed: 11/19/2022]
|
42
|
Kildegaard KR, Hallström BM, Blicher TH, Sonnenschein N, Jensen NB, Sherstyk S, Harrison SJ, Maury J, Herrgård MJ, Juncker AS, Forster J, Nielsen J, Borodina I. Evolution reveals a glutathione-dependent mechanism of 3-hydroxypropionic acid tolerance. Metab Eng 2014; 26:57-66. [PMID: 25263954 DOI: 10.1016/j.ymben.2014.09.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/15/2014] [Accepted: 09/15/2014] [Indexed: 12/19/2022]
Abstract
Biologically produced 3-hydroxypropionic acid (3 HP) is a potential source for sustainable acrylates and can also find direct use as monomer in the production of biodegradable polymers. For industrial-scale production there is a need for robust cell factories tolerant to high concentration of 3 HP, preferably at low pH. Through adaptive laboratory evolution we selected S. cerevisiae strains with improved tolerance to 3 HP at pH 3.5. Genome sequencing followed by functional analysis identified the causal mutation in SFA1 gene encoding S-(hydroxymethyl)glutathione dehydrogenase. Based on our findings, we propose that 3 HP toxicity is mediated by 3-hydroxypropionic aldehyde (reuterin) and that glutathione-dependent reactions are used for reuterin detoxification. The identified molecular response to 3 HP and reuterin may well be a general mechanism for handling resistance to organic acid and aldehydes by living cells.
Collapse
Affiliation(s)
- Kanchana R Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, DK-2970 Hørsholm, Denmark
| | - Björn M Hallström
- Science for Life Laboratory, KTH Royal Institution of Technology, Box 1031, SE-171 21 Solna, Sweden
| | - Thomas H Blicher
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen , Denmark
| | - Nikolaus Sonnenschein
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, DK-2970 Hørsholm, Denmark
| | - Niels B Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, DK-2970 Hørsholm, Denmark
| | - Svetlana Sherstyk
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, DK-2970 Hørsholm, Denmark
| | - Scott J Harrison
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, DK-2970 Hørsholm, Denmark
| | - Jérôme Maury
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, DK-2970 Hørsholm, Denmark
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, DK-2970 Hørsholm, Denmark
| | - Agnieszka S Juncker
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, DK-2970 Hørsholm, Denmark
| | - Jochen Forster
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, DK-2970 Hørsholm, Denmark
| | - Jens Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, DK-2970 Hørsholm, Denmark; Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96 Göteborg, Sweden
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, DK-2970 Hørsholm, Denmark.
| |
Collapse
|
43
|
Effect of lineage-specific metabolic traits of Lactobacillus reuteri on sourdough microbial ecology. Appl Environ Microbiol 2014; 80:5782-9. [PMID: 25015888 DOI: 10.1128/aem.01783-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
This study determined the effects of specific metabolic traits of Lactobacillus reuteri on its competitiveness in sourdoughs. The competitiveness of lactobacilli in sourdough generally depends on their growth rate; acid resistance additionally contributes to competitiveness in sourdoughs with long fermentation times. Glycerol metabolism via glycerol dehydratase (gupCDE) accelerates growth by the regeneration of reduced cofactors; glutamate metabolism via glutamate decarboxylase (gadB) increases acid resistance by generating a proton motive force. Glycerol and glutamate metabolisms are lineage-specific traits in L. reuteri; therefore, this study employed glycerol dehydratase-positive sourdough isolates of human-adapted L. reuteri lineage I, glutamate decarboxylase-positive strains of rodent-adapted L. reuteri lineage II, as well as mutants with deletions in gadB or gupCDE. The competitivenesses of the strains were quantified by inoculation of wheat and sorghum sourdoughs with defined strains, followed by propagation of doughs with a 10% inoculum and 12-h or 72-h fermentation cycles. Lineage I L. reuteri strains dominated sourdoughs propagated with 12-h fermentation cycles; lineage II L. reuteri strains dominated sourdoughs propagated with 72-h fermentation cycles. L. reuteri 100-23ΔgadB was outcompeted by its wild-type strain in sourdoughs fermented with 72-h fermentation cycles; L. reuteri FUA3400ΔgupCDE was outcompeted by its wild-type strain in sourdoughs fermented with both 12-h and 72-h fermentation cycles. Competition experiments with isogenic pairs of strains resulted in a constant rate of strain displacement of the less competitive mutant strain. In conclusion, lineage-specific traits of L. reuteri determine the competitiveness of this species in sourdough fermentations.
Collapse
|
44
|
Montiel R, Martín-Cabrejas I, Langa S, El Aouad N, Arqués JL, Reyes F, Medina M. Antimicrobial activity of reuterin produced by Lactobacillus reuteri on Listeria monocytogenes in cold-smoked salmon. Food Microbiol 2014; 44:1-5. [PMID: 25084638 DOI: 10.1016/j.fm.2014.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/09/2014] [Accepted: 05/14/2014] [Indexed: 11/16/2022]
Abstract
Lactobacillus reuteri INIA P579 was used for the production and purification of reuterin. The purity of reuterin was assessed by high resolution electrospray ionization mass spectrometry (HRESIMS) and nuclear magnetic resonance (NMR) spectroscopy. After purification, reuterin concentration obtained was 1.3 M. The inhibitory activity using Escherichia coli K12 as indicator strain was estimated to be 510 AU/ml. Survival curves in tryptic soy broth revealed that reuterin required to inhibit the growth of three Listeria monocytogenes strains was in the range of 2-4 AU/ml. Purified reuterin (10 AU/g) significantly reduced the growth of L. monocytogenes in cold-smoked salmon kept under moderate or strong temperature abuse conditions. After 15 d at 8 °C, cold-smoked salmon with added reuterin exhibited L. monocytogenes counts 2.0 log CFU/g lower than control smoked salmon with no reuterin added. At 30 °C, reuterin also controlled the growth of the pathogen, with counts 1.4 and 0.9 log CFU/g lower than those observed in control smoked salmon after 24 and 48 h, respectively. The addition of purified reuterin might be used as a hurdle technology to improve the safety and extend the shelf-life of lightly preserved seafood products such as cold-smoked salmon.
Collapse
Affiliation(s)
- R Montiel
- Departamento Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, Madrid 28040, Spain
| | - I Martín-Cabrejas
- Departamento Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, Madrid 28040, Spain
| | - S Langa
- Departamento Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, Madrid 28040, Spain
| | - N El Aouad
- Fundación MEDINA, Avenida del Conocimiento 3, Parque Tecnológico de Ciencias de la Salud, Granada 18016, Spain
| | - J L Arqués
- Departamento Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, Madrid 28040, Spain
| | - F Reyes
- Fundación MEDINA, Avenida del Conocimiento 3, Parque Tecnológico de Ciencias de la Salud, Granada 18016, Spain
| | - M Medina
- Departamento Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, Madrid 28040, Spain.
| |
Collapse
|
45
|
Montiel R, Martín-Cabrejas I, Gaya P, Medina M. Reuterin and High Hydrostatic Pressure Treatments on the Inactivation of Listeria monocytogenes and Effect on the Characteristics of Cold-Smoked Salmon. FOOD BIOPROCESS TECH 2014. [DOI: 10.1007/s11947-014-1287-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
46
|
Ávila M, Gómez-Torres N, Hernández M, Garde S. Inhibitory activity of reuterin, nisin, lysozyme and nitrite against vegetative cells and spores of dairy-related Clostridium species. Int J Food Microbiol 2014; 172:70-5. [DOI: 10.1016/j.ijfoodmicro.2013.12.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/26/2013] [Accepted: 12/01/2013] [Indexed: 11/17/2022]
|
47
|
Biotransformation of glycerol to 3-hydroxypropionaldehyde: Improved production by in situ complexation with bisulfite in a fed-batch mode and separation on anion exchanger. J Biotechnol 2013; 168:534-42. [DOI: 10.1016/j.jbiotec.2013.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 01/02/2023]
|
48
|
Stevens MJ, Vollenweider S, Mertes P, Lacroix C. Bisulfite as scavenger for enhanced biotechnological production of 3-hydroxypropionaldehyde by Lactobacillus reuteri. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Langa S, Landete JM, Martín-Cabrejas I, Rodríguez E, Arqués JL, Medina M. In situ reuterin production by Lactobacillus reuteri in dairy products. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.02.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
A novel cell modification method used in biotransformation of glycerol to 3-HPA by Lactobacillus reuteri. Appl Microbiol Biotechnol 2013; 97:4325-32. [PMID: 23359000 DOI: 10.1007/s00253-013-4723-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/12/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
The aim of the present study was to develop a new cell modification method to facilitate the cell separation from broth. In order to reduce the transfer limitation of substrate and product caused by general immobilization methods in the following biotransformation of glycerol, the carboxyl-functioned superparamagnetic nanoparticle (MNP) was directly attached to the surface of Lactobacillus reuteri for 3-hydroxypropionealdehyde producing. The modification process could be finished in several minutes by just adding MNP fluid into the bulk fermentation broth. The modified cells could be rapidly separated from the solution with the aid of magnetic field. The interaction between cell and MNP was shown by electron microscopy. The efficiency of the cells attached by MNPs for transformation of various concentrations of glycerol (100-400 mM) was studied at various temperatures (25-40 °C) and pH levels (5.8-7.5) with different cell concentrations (7.5-30 g/L). The 3- hydroxypropionealdehyde (HPA)/glycerol molar conversion under optimal condition (30 °C and pH 7) reached 70 %. The inactive modified cell could be reactivated easily by fresh medium and recovered the ability of glycerol conversion. MNPS distributing on cell surface had little adverse effect on cell activity. The modification method simplified the two-step production of 3-HPA by resting L. reuteri. The method of MNPs attached to cell surface is totally different from the traditional immobilization method in which the cell is attached to or entrapped in big carrier. The results obtained in this study showed that carboxyl-functioned MNP could be directly used as cell modification particle and realized cell recycle with the aid of magnetic field in bioprocess.
Collapse
|