1
|
Brückner L, Neuendorff F, Hadenfeldt K, Behrens M, Cramer B, Humpf HU. Thermal Stability and Matrix Binding of Citrinin in the Thermal Processing of Starch-Rich Foods. Toxins (Basel) 2025; 17:86. [PMID: 39998103 PMCID: PMC11860567 DOI: 10.3390/toxins17020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
Citrinin (CIT) is a nephrotoxic mycotoxin commonly found in a broad range of foods, including cereals, spices, nuts, or Monascus fermentation products. Analyses have shown that CIT is present in processed foods in significantly lower concentrations than in unprocessed materials. Modified forms of CIT arising during food processing may provide an explanation for the discrepancy. This study deals with the thermal stability of CIT and the formation of reaction products of CIT with carbohydrates, followed by toxicological evaluations using cell culture models. HPLC-HRMS degradation curves of CIT heated in different matrix model systems were recorded, and the formation of decarboxycitrinin (DCIT), the main degradation product, was quantified. Additionally, chemical structures of reaction products of CIT with carbohydrates were tentatively identified using MS/MS spectra and stable isotope labelling. Subsequently, the degradation of CIT during biscuit baking was studied, and carbohydrate-bound forms of CIT were detected after enzymatic starch digestion. The formation of DCIT could explain the majority of CIT degradation, but, depending on the process, covalent binding to carbohydrates can also be highly relevant. Cytotoxicity of DCIT in IHKE-cells was found to be lower compared to CIT, while the toxicity as well as the intestinal metabolism of carbohydrate-bound CIT was not evaluated.
Collapse
Affiliation(s)
| | | | | | | | - Benedikt Cramer
- Institute of Food Chemistry, University of Münster, 48149 Münster, Germany; (L.B.); (M.B.)
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, 48149 Münster, Germany; (L.B.); (M.B.)
| |
Collapse
|
2
|
Brückner L, Cramer B, Humpf HU. Reactions of citrinin with amino compounds modelling thermal food processing. Mycotoxin Res 2024; 40:709-720. [PMID: 39298071 PMCID: PMC11480111 DOI: 10.1007/s12550-024-00557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024]
Abstract
Citrinin (CIT) is a nephrotoxic mycotoxin, produced by several species of Penicillium, Aspergillus, and Monascus. The foodstuffs most frequently contaminated with CIT include cereals, cereal products, and red yeast rice. Studies on the occurrence of CIT in food have shown that the CIT concentrations in processed cereal-based products are generally lower than in unprocessed industry cereal samples. One possible explanation is the reaction of CIT with major food components such as carbohydrates or proteins to form modified CIT. Such modified forms of CIT are then hidden from conventional analyses, but it is possible that they are converted back into the parent mycotoxin during digestion. The aim of this study is therefore to investigate reactions of CIT with food matrix during thermal processes and to gain a deeper understanding of the degradation of CIT during food processing. In this study, we could demonstrate that CIT reacts with amino compounds such as proteins, under typical food processing conditions, leading to modified forms of CIT.
Collapse
Affiliation(s)
- Lea Brückner
- Institute of Food Chemistry, University of Münster, Münster, Germany
| | - Benedikt Cramer
- Institute of Food Chemistry, University of Münster, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Münster, Germany.
| |
Collapse
|
3
|
Kuhn M, Hassan R, González D, Myllys M, Hobloss Z, Degen GH, Humpf HU, Hengstler JG, Cramer B, Ghallab A. Role of albumin in the metabolism and excretion of ochratoxin A. Mycotoxin Res 2024; 40:433-445. [PMID: 38743341 DOI: 10.1007/s12550-024-00538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
Ochratoxin A (OTA) is known to be strongly bound to serum albumin, but it remains unknown how albumin affects its metabolism and kinetics. To close this gap, we used a mouse model, where heterozygous albumin deletion reduces serum albumin to concentrations similar to hypoalbuminemic patients and completely eliminates albumin by a homozygous knockout. OTA and its potential metabolites (OTα, 4-OH-OTA, 7'-OH-OTA, OTHQ, OP-OTA, OTB-GSH, OTB-NAC, OTB) were time-dependently analyzed in plasma, bile, and urine by LC-MS/MS and were compared to previously published hepatotoxicity and nephrotoxicity data. Homozygous albumin deletion strongly accelerated plasma clearance as well as biliary and urinary excretion of the parent compound and its hydroxylation products. Decreasing albumin in mice by the heterozygous and even more by the homozygous knockout leads to an increase in the parent compound in urine which corresponded to increased nephrotoxicity. The role of albumin in OTA-induced hepatotoxicity is more complex, since heterozygous but not homozygous nor wild-type mice showed a strong biliary increase in the toxic open lactone OP-OTA. Correspondingly, OTA-induced hepatotoxicity was higher in heterozygous than in wild-type and homozygous animals. We present evidence that albumin-mediated retention of OTA in hepatocytes is required for formation of the toxic OP-OTA, while complete albumin elimination leads to rapid biliary clearance of OTA from hepatocytes with less formation of OP-OTA. In conclusion, albumin has a strong influence on metabolism and toxicity of OTA. In hypoalbuminemia, the parent OTA is associated with increased nephrotoxicity and the open lactone with increased hepatotoxicity.
Collapse
Affiliation(s)
- Michael Kuhn
- Institute of Food Chemistry, University Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Daniela González
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Maiju Myllys
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Zaynab Hobloss
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Gisela H Degen
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany.
| | - Benedikt Cramer
- Institute of Food Chemistry, University Münster, Corrensstr. 45, 48149, Münster, Germany.
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany.
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt.
| |
Collapse
|
4
|
Fakhri Y, Mahdavi V, Ranaei V, Pilevar Z, Sarafraz M, Mahmudiono T, Khaneghah AM. Ochratoxin A in coffee and coffee-based products: a global systematic review, meta-analysis, and probabilistic risk assessment. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:211-220. [PMID: 36372738 DOI: 10.1515/reveh-2022-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Contamination of food with mycotoxins can pose harmful effects on the health of consumers in the long term. Coffee contamination with mycotoxins has become a global concern. This study attempted to meta-analyze the concentration and prevalence of ochratoxin A (OTA) in coffee products and estimate consumers' health risks. The search was conducted among international databases, including Scopus, PubMed, Embase, and Web of Science, for 1 January 2010 to 1 May 2022. The concentration and prevalence of OTA in coffee products were meta-analyzed according to country subgroups. Health risk assessment was conducted based on Margin of Exposures (MOEs) using the Monte Carlo simulation (MCS) technique. The three countries that had the highest Pooled concentration of OTA in coffee were observed in Chile (100.00%), Kuwait (100.00%), and France (100.00%). The overall prevalence of OTA in coffee products was 58.01%, 95% CI (48.37-67.39). The three countries that had the highest concentration of OTA were Philippines (39.55 μg/kg) > Turkey (39.32 μg/kg) > and Panama (21.33 μg/kg). The mean of MOEs in the adult consumers in Panama (9,526) and the Philippines (8,873) was lower than 10,000, while the mean of MOEs in other countries was higher than 10,000. Therefore, monitoring and control plans should be carried out in different countries.
Collapse
Affiliation(s)
- Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Vahid Ranaei
- School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Pilevar
- School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Mansour Sarafraz
- School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
5
|
España Amórtegui JC, Ekroth S, Pekar H, Guerrero Dallos JA. A green-footprint approach for parallel multiclass analysis of contaminants in roasted coffee via LC-HRMS. Anal Bioanal Chem 2024; 416:1541-1560. [PMID: 38349534 PMCID: PMC10899293 DOI: 10.1007/s00216-024-05157-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/15/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024]
Abstract
The development and validation of a simple, comprehensive, and environment-friendly procedure to determine pesticide residues, naturally occurring and processing contaminants in roasted coffee is presented. A solid-liquid extraction of pesticides and mycotoxins with ethyl acetate and the concurrent partition of acrylamide to an aqueous phase follows a parallel analytical strategy that requires a single analytical portion to determine contaminants that are typically analyzed by dedicated single residue methods. The partition rules the lipids out of the aqueous extract before an "in-tube" dispersive solid phase microextraction (dSPME) for acrylamide retention. This is followed by the elution with buffer prior to injection. This extract is independently introduced into the system front end followed by the injection of the compounds from the organic phase, yet all spotted in the same run. A novel liquid chromatography high-resolution mass spectrometry (LC-HRMS) method setup enables the quantification of 186 compounds at 10 µg/kg, 226 at 5 µg/kg, and the acrylamide at 200 µg/kg for a total of 414 molecules, with acceptable recoveries (70-120%) and precision (RSD < 20%) making this strategy significantly faster and cost-effective than the dedicated single residue methods. Even though the presence of chlorpyrifos, acrylamide, and ochratoxin A was confirmed on samples of different origins, the findings were below the limit of quantification. During the storage of raw coffee, no proof of masking of OTA was found; however, condensation with glucose was evidenced during thermal processing experiments with sucrose by using stable isotope labeling (SIL). No detected conjugates were found in roasted nor in commercial sugar-added torrefacto samples, an industrial processing usually carried out above the decomposition temperature of the disaccharide.
Collapse
Affiliation(s)
| | - Susanne Ekroth
- Science Department, Swedish Food Agency, Uppsala, Sweden
| | - Heidi Pekar
- Science Department, Swedish Food Agency, Uppsala, Sweden
| | | |
Collapse
|
6
|
Lee HJ, Kim HD, Ryu D. Practical Strategies to Reduce Ochratoxin A in Foods. Toxins (Basel) 2024; 16:58. [PMID: 38276534 PMCID: PMC10819544 DOI: 10.3390/toxins16010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Ochratoxin A (OTA), a potent nephrotoxin, is one of the most deleterious mycotoxins, with its prevalence in agricultural crops and their processed foods around the world. OTA is a major concern to food safety, as OTA exposure through dietary intake may lead to a significant level of accumulation in the body as a result of its long half-life (about 35 days). Its potent renal toxicity and high risk of exposure as well as the difficulty in controlling environmental factors OTA production has prompted the need for timely information on practical strategies for the food industry to effectively manage OTA contamination during food processing. The effects of various food processes, including both nonthermal and thermal methods, on the reduction in OTA were summarized in this review, with emphasis on the toxicity of residual OTA as well as its known and unknown degradation products. Since complete removal of OTA from foodstuffs is not feasible, additional strategies that may facilitate the reduction in OTA in food, such as adding baking soda and sugars, was also discussed, so that the industry may understand and apply practical measures to ensure the safety of its products destined for human consumption.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA;
| | - Hae Dun Kim
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA;
| | - Dojin Ryu
- Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, USA;
| |
Collapse
|
7
|
Ma P, Guo H, Li K, Zhang Y, Guo H, Wang Z. Simultaneous detection of patulin and ochratoxin A based on enhanced dual-color AuNCs modified aptamers in apple juice. Talanta 2024; 266:124949. [PMID: 37494770 DOI: 10.1016/j.talanta.2023.124949] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Patulin (PAT) and ochratoxin A (OTA) are the two main mycotoxins present in apples. Herein, a sensitive aptasensor for simultaneous detection of PAT and ochratoxin OTA was developed. Dual-color gold nanoclusters (AuNCs) with enhanced fluorescence properties were synthesized and employed as fluorescence amplifiers. Two separated fluorescence peaks at 650 nm and 530 nm were monitored simultaneously by employing single excitation (405 nm), corresponding to the aptamer probes of Cys@BSA-AuNCs-AptPAT and Arg@ATT-AuNCs-AptOTA, respectively. The fluorescent aptasensor demonstrated satisfying specificity, storage ability and accuracy. Under the optimal experimental conditions, the linear detection range for PAT and OTA was 0.10-50 ng/mL, with the limit of detection of 0.09 ng/mL and 0.06 ng/mL, respectively. Most importantly, practicability of the constructed aptasensor were confirmed by conducting the determination of PAT and OTA in apple juice sample, indicating the great potential of the aptasensor in practical detection applications.
Collapse
Affiliation(s)
- Pengfei Ma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Hualin Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Ke Li
- Technical Center, Zhengzhou Customs District P.R. China, Zhengzhou, 450003, PR China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, PR China
| | - Huiqing Guo
- Technical Center, Zhengzhou Customs District P.R. China, Zhengzhou, 450003, PR China.
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
8
|
Wang G, Li E, Gallo A, Perrone G, Varga E, Ma J, Yang B, Tai B, Xing F. Impact of environmental factors on ochratoxin A: From natural occurrence to control strategy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120767. [PMID: 36455768 DOI: 10.1016/j.envpol.2022.120767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Ochratoxin A (OTA) contamination and the associated issues of food security, food safety and economic loss are widespread throughout the world. The occurrence of OTA depends on ochratoxigenic fungi, foodstuffs and their environment. In this review, natural occurrence and control strategy of OTA, with a focus on the impact of environmental factors, are summarized. First, this manuscript introduces potentially contaminated foodstuffs, including the emerging ones which are not regulated in international legislation. Secondly, it gives an update of native producers based on foodstuffs and OTA biosynthesis. Thirdly, complicated environmental regulation is disassembled into individual factors in order to clarify their regulatory effect and mechanism. Finally, to emphasize control OTA at all stages of foodstuffs from farm to table, strategies used at crop planting, harvest, storage and processing stages are discussed.
Collapse
Affiliation(s)
- Gang Wang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Erfeng Li
- Horticulture and Landscape College, Tianjin Agricultural University, Tianjin, 300392, China
| | - Antonia Gallo
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Lecce, 73100, Italy
| | - Giancarlo Perrone
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Bari, 70126, Italy
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, University of Vienna, Vienna, 1090, Austria
| | - Junning Ma
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bolei Yang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bowen Tai
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fuguo Xing
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
9
|
Lu T, Guo Y, Shi J, Li X, Wu K, Li X, Zeng Z, Xiong Y. Identification and Safety Evaluation of Ochratoxin A Transformation Product in Rapeseed Oil Refining Process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14931-14939. [PMID: 36331822 DOI: 10.1021/acs.jafc.2c04532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ochratoxin A (OTA) is an important mycotoxin detected in edible oil, and it can be effectively removed by classical edible oil refining processes. However, the fate of OTA in the refining process has not been reported. In this study, we systematically tracked the OTA changes during the oil refining process by fortifying 100 μg/kg OTA in crude rapeseed oil. Results showed that about 10.57%, 88.85%, and 0.58% of OTA were removed during the degumming, deacidification, and decolorization processes. Among them, 16.25% OTA was transferred to the byproducts, including 9.85% in degumming wastewater, 5.68% in soap stock, 0.14% in deacidification wastewater, and 0.58% in the decolorizer; 83.75% OTA was found to transform into the lactone ring opened OTA (OP-OTA) during the deacidification stage, which is attributed to the hydrolysis of the lactone ring of OTA in the alkali refining. The OP-OTA was verified to distribute in the soap stock, and small amounts of OP-OTA could be transferred to deacidified wastewater when the OTA pollution level reached 500 μg/kg in crude rapeseed oil. The OP-OTA exhibited strong toxicity, especially nephrotoxicity, as reflected by the cell viability assay and in silico toxicity. Therefore, the safety of the soap stock processing products from OTA-contaminated rapeseed deserves attention.
Collapse
Affiliation(s)
- Tianying Lu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
| | - Yuqian Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
| | - Jiachen Shi
- Beijing Center for Disease Control and Prevention, Beijing 100013, China
| | - Xiaoyang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
| | - Kesheng Wu
- Jiangxi Agricultural Technology Extension Center, Nanchang, Jiangxi 330096, P.R. China
| | - Xiangmin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
| | - Zheling Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
| |
Collapse
|
10
|
Modified Mycotoxins, a Still Unresolved Issue. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mycotoxins are toxic secondary metabolites produced by filamentous microfungi on almost every agricultural commodity worldwide. After the infection of crop plants, mycotoxins are modified by plant enzymes or other fungi and often conjugated to more polar substances, like sugars. The formed—often less toxic—metabolites are stored in the vacuole in soluble form or bound to macromolecules. As these substances are usually not detected during routine analysis and no maximum limits are in force, they are called modified mycotoxins. While, in most cases, modified mycotoxins have lower intrinsic toxicity, they might be reactivated during mammalian metabolism. In particular, the polar group might be cleaved off (e.g., by intestinal bacteria), releasing the native mycotoxin. This review aims to provide an overview of the critical issues related to modified mycotoxins. The main conclusion is that analytical aspects, toxicological evaluation, and exposure assessment merit more investigation.
Collapse
|
11
|
Tan H, Zhou H, Guo T, Zhou Y, Wang S, Liu X, Zhang Y, Ma L. Matrix-associated mycotoxins in foods, cereals and feedstuffs: A review on occurrence, detection, transformation and future challenges. Crit Rev Food Sci Nutr 2022; 64:3206-3219. [PMID: 36205056 DOI: 10.1080/10408398.2022.2131724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Matrix-associated mycotoxins that bind with macromolecular components through covalent or non-covalent interactions easily occur in various cereals, cereal-based products, and cereal-based feedstuff. They are "masked" by macro-components, causing the underestimation of total exposure risk of mycotoxins. Most of the current reports focus on the free and modified mycotoxins, while the matrix-associated forms are ignored but still can exert toxic effects after ingestion. In this paper, current researches and future prospects of matrix-associated mycotoxins are reviewed. Especially, a focus is set on the transformation of matrix-associated mycotoxins with their free forms during metabolism and food processing. Enzymes, temperature and pH levels during food processing can induce the interconversion of matrix-associated mycotoxins with free mycotoxins. Furthermore, the analytical methods targeted on matrix-associated mycotoxins are discussed. Due to the lack of efficient methods releasing the mycotoxins from matrix, the standard analytical methods has not developed so far. Also, we further analyzed the challenges of matrix-associated mycotoxins about variety, occurrence, toxicity and transformation, exposure assessment, which contributes to establish preventive measures to control their hazards for consumers. Overall, this overview is significant for perfecting risk assessment, as well as developing effective prevention and control actions to matrix-associated mycotoxins.
Collapse
Affiliation(s)
- Hongxia Tan
- College of Food Science, Southwest University, Chongqing, P.R. China
| | - Hongyuan Zhou
- College of Food Science, Southwest University, Chongqing, P.R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, P.R. China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, P.R. China
| | - Ting Guo
- College of Food Science, Southwest University, Chongqing, P.R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, P.R. China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, P.R. China
| | - Ying Zhou
- College of Food Science, Southwest University, Chongqing, P.R. China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, P.R. China
| | - Shuo Wang
- College of Food Science, Southwest University, Chongqing, P.R. China
- School of Medicine, Tianjin Key Lab Food Science and Health, Nankai University, Tianjin, P.R. China
| | - Xiaozhu Liu
- Foshan Micro Wonders Biotechnology Co., Ltd, Guangdong, P.R. China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, P.R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, P.R. China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, P.R. China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing, P.R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, P.R. China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, P.R. China
| |
Collapse
|
12
|
Recent advances on formation, transformation, occurrence, and analytical strategy of modified mycotoxins in cereals and their products. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Khaneghah AM, Mostashari P, Oliveira CA, Vanin FM, Amiri S, Sant'Ana AS. Assessment of the concentrations of ochratoxin A, zearalenone, and deoxynivalenol during cracker production. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Development and Validation of an UHPLC-MS/MS Method for the Simultaneous Determination of 11 EU-Regulated Mycotoxins in Selected Cereals. J Fungi (Basel) 2022; 8:jof8070665. [PMID: 35887422 PMCID: PMC9315952 DOI: 10.3390/jof8070665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
The availability of reliable sensitive multi-analyte methods for unambiguous determination of mycotoxins is crucial for ensuring food and feed safety, considering their adverse health effects and (co-)occurrence in various foods. Accordingly, a multi-mycotoxin confirmatory method for simultaneous determination of 11 mycotoxins regulated in cereals within the European Union (EU) using ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) was developed and in-house validated to fit the EU legislation requirements for analytical methods. A simple sample preparation was based on a solid−liquid extraction using a solvent mixture acetonitrile/water/formic acid (79/20/1, v/v/v) and a dilution of raw extract using water/acetonitrile/formic acid (79/20/1, v/v/v) before instrumental analysis. Average recoveries in all three validated cereal crop types (maize, wheat, and barley), spiked at multiple levels, were found acceptable for all analytes when matrix-matched calibration was used, ranging from 63.2% to 111.2% and also showing very good repeatability, with relative standard deviations below 20%. Matrix effect (SSE) evaluation revealed maize as the most complex of the three analyzed cereal matrices, with strong SSE (<50% and >150%) recorded for all 11 analyzed mycotoxins. An additional method verification was performed through successful participation in proficiency testing schemes, with the achieved z-scores generally in the acceptable range of −2 ≤ z ≤ 2. The obtained validation results demonstrated the suitability of the developed confirmatory multi-mycotoxin UHPLC-MS/MS method based on a dilute-and-shoot principle for the simultaneous determination of low concentrations of 11 EU-regulated mycotoxins in cereals, including aflatoxins B1, B2, G1 and G2, deoxynivalenol, fumonisins B1 and B2, zearalenone, T-2 and HT-2 toxins, and ochratoxin A.
Collapse
|
15
|
Carbon H, Lee H. Varied reduction of ochratoxin A in brown and white rice during roasting. WORLD MYCOTOXIN J 2022. [DOI: 10.3920/wmj2021.2712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ochratoxin A (OTA) is a possible human carcinogen commonly found in various agricultural commodities worldwide. While this potent nephrotoxin tends to survive common food processes and contaminate food products, certain process with higher temperature treatments may reduce OTA contents. Roasting has been suggested as a possible method to reduce OTA in coffee beans with up to 90% reduction, which may be applied to other food commodities. In this study, the possible influence of fibres on the reduction of OTA was investigated with brown and white rice with 2.2 and 6.7% of total dietary fibre content, respectively, roasting at two different temperatures (160 and 200 °C) for up to 30 min. The results showed that the rate and extent of OTA reduction were dependent on time, temperature, and rice type; greater than 60% of OTA reduction were achieved at 200 °C for 30 min for white rice and 37% for brown rice at the same conditions. No significant differences in reduction were observed between the samples roasted at 160 °C for 30 min and 200 °C for 15 min for both the white and brown rice, while white rice roasted at 160 °C for 15 min during roasting may be affected by the presence of fibre and/or fat in the cereal grains.
Collapse
Affiliation(s)
- H.N. Carbon
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, 875 Perimeter Drive MS 2330, Moscow, ID 83844-2330, USA
| | - H.J. Lee
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, 875 Perimeter Drive MS 2330, Moscow, ID 83844-2330, USA
| |
Collapse
|
16
|
Lindemann V, Schmidt J, Cramer B, Humpf HU. Detection of Mycotoxins in Highly Matrix-Loaded House-Dust Samples by QTOF-HRMS, IM-QTOF-HRMS, and TQMS: Advantages and Disadvantages. Anal Chem 2022; 94:4209-4217. [PMID: 35231175 PMCID: PMC8928151 DOI: 10.1021/acs.analchem.1c04254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/17/2022] [Indexed: 12/28/2022]
Abstract
The analysis of (trace) contaminants in environmental samples represents an important tool for exposure assessment and for the evaluation of potential risks to human health. Currently, mass spectrometric detection using triple quadrupole (TQMS) systems is the established method of choice. However, screening methods using high resolution mass spectrometry (HRMS) find increasing application as they provide advantages such as enhanced selectivity. A complex composition of environmental samples is known to have enormous effects on mass analyzers. The present work therefore compares the impact of a highly matrix-loaded sample material like house-dust on the performance of mass spectrometric detection of the emerging indoor contaminant group of mycotoxins by quadrupole time-of-flight (QTOF) and TQMS after ultrahigh-performance liquid chromatographic separation. Furthermore, the role of ionization efficiencies of different ion sources in instrument sensitivity was compared using an electrospray ionization source and a newly developed heated electrospray ion source (Bruker VIP-HESI) during QTOF experiments. Finally, it was evaluated whether an additional dimension of separation enables increased sensitivity in QTOF-HRMS detection by applying mycotoxins in house-dust to an (trapped) ion mobility spectrometry instrument. The sensitivity of the QTOF detection was positively influenced by the application of the VIP-HESI ion source, and overall HRMS instruments provided enhanced selectivity resulting in simplified data evaluation compared to the TQMS. However, all performed experiments revealed strong signal suppression due to matrix components. QTOF results showed more severe effects, enabling a more sensitive detection of mycotoxins in house-dust by applying TQMS detection.
Collapse
Affiliation(s)
- Viktoria Lindemann
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Jessica Schmidt
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Benedikt Cramer
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
17
|
Vlachou M, Pexara A, Solomakos N, Govaris A. Ochratoxin A in Slaughtered Pigs and Pork Products. Toxins (Basel) 2022; 14:67. [PMID: 35202095 PMCID: PMC8876995 DOI: 10.3390/toxins14020067] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin that is produced after the growth of several Aspergillus and Penicillium spp. in feeds or foods. OTA has been proved to possess nephrotoxic, hepatotoxic, teratogenic, neurotoxic, genotoxic, carcinogenic and immunotoxic effects in animals and humans. OTA has been classified as possibly carcinogenic to humans (Group 2B) by the IARC in 2016. OTA can be mainly found in animals as a result of indirect transmission from naturally contaminated feed. OTA found in feed can also contaminate pigs and produced pork products. Additionally, the presence of OTA in pork meat products could be derived from the direct growth of OTA-producing fungi or the addition of contaminated materials such as contaminated spices. Studies accomplished in various countries have revealed that pork meat and pork meat products are important sources of chronic dietary exposure to OTA in humans. Various levels of OTA have been found in pork meat from slaughtered pigs in many countries, while OTA levels were particularly high in the blood serum and kidneys of pigs. Pork products made from pig blood or organs such as the kidney or liver have been often found to becontaminated with OTA. The European Union (EU) has established maximum levels (ML) for OTA in a variety of foods since 2006, but not for meat or pork products. However, the establishement of an ML for OTA in pork meat and meat by-products is necessary to protect human health.
Collapse
Affiliation(s)
| | - Andreana Pexara
- Laboratory of Hygiene of Foods of Animal Origin, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (M.V.); (N.S.); (A.G.)
| | | | | |
Collapse
|
18
|
Zhang S, Zhou S, Lyu B, Qiu N, Li J, Zhao Y, Wu Y. Dietary exposure to fumonisins and ochratoxins in the Chinese general population during 2007-2020: Results from three consecutive total diet studies. Food Chem Toxicol 2021; 159:112768. [PMID: 34906652 DOI: 10.1016/j.fct.2021.112768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/08/2021] [Accepted: 12/09/2021] [Indexed: 11/19/2022]
Abstract
As widespread contaminants, fumonisins (FBs) and ochratoxins (OTs) in food may cause public health threat. In this study, the dietary exposures to FBs and OTs in the Chinese general population were investigated by means of a total diet study (TDS) approach. A total of 672 composite dietary samples were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) in three consecutive China total diet studies from 2007 to 2020. Combining with the national consumption data, estimated dietary exposure to FBs and OTs were assessed and compared with health-based guidance values (HBGVs). The estimated daily intakes (EDIs) of FBs were 55-237 ng/kg bw/day at the upper bound accounting 2.77%-17.4% of provisional maximum tolerable daily intake (PMTDI). Cereals were the greatest contributor to fumonisin exposure. For ochratoxin A (OTA), the EDIs were 0.65-5.72 ng/kg bw/day at the upper bound accounting 4.67%-40.8% of provisional tolerable weekly intake (PTWI). Although the estimated exposures were well below their respective HBGVs in general, they were found to exceed HBGVs in sporadic regions. Moreover, there was a remarkable increase in the dietary exposure to fumonisin B3 (FB3) and ochratoxin B (OTB) over the last decade that is worth further attention.
Collapse
Affiliation(s)
- Shuo Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, 100021, PR China.
| | - Shuang Zhou
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, 100021, PR China.
| | - Bing Lyu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, 100021, PR China.
| | - Nannan Qiu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, 100021, PR China.
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, 100021, PR China.
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, 100021, PR China.
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, 100021, PR China.
| |
Collapse
|
19
|
Hou Y, Liu J, Shao Y, Peng X, Zhang D, Hu L, Chen F, Zhou Y. Evaluation of the underestimation of citrinin content in Hongqu using hydrolysis treatments and UPLC-FLD. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
20
|
Bryła M, Ksieniewicz-Woźniak E, Stępniewska S, Modrzewska M, Waśkiewicz A, Szymczyk K, Szafrańska A. Transformation of ochratoxin A during bread-making processes. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Ghallab A, Hassan R, Myllys M, Albrecht W, Friebel A, Hoehme S, Hofmann U, Seddek AL, Braeuning A, Kuepfer L, Cramer B, Humpf HU, Boor P, Degen GH, Hengstler JG. Subcellular spatio-temporal intravital kinetics of aflatoxin B 1 and ochratoxin A in liver and kidney. Arch Toxicol 2021; 95:2163-2177. [PMID: 34003344 PMCID: PMC8166722 DOI: 10.1007/s00204-021-03073-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022]
Abstract
Local accumulation of xenobiotics in human and animal tissues may cause adverse effects. Large differences in their concentrations may exist between individual cell types, often due to the expression of specific uptake and export carriers. Here we established a two-photon microscopy-based technique for spatio-temporal detection of the distribution of mycotoxins in intact kidneys and livers of anesthetized mice with subcellular resolution. The mycotoxins ochratoxin A (OTA, 10 mg/kg b.w.) and aflatoxin B1 (AFB1, 1.5 mg/kg b.w.), which both show blue auto-fluorescence, were analyzed after intravenous bolus injections. Within seconds after administration, OTA was filtered by glomeruli, and enriched in distal tubular epithelial cells (dTEC). A striking feature of AFB1 toxicokinetics was its very rapid uptake from sinusoidal blood into hepatocytes (t1/2 ~ 4 min) and excretion into bile canaliculi. Interestingly, AFB1 was enriched in the nuclei of hepatocytes with zonal differences in clearance. In the cytoplasm of pericentral hepatocytes, the half-life (t1/2~ 63 min) was much longer compared to periportal hepatocytes of the same lobules (t1/2 ~ 9 min). In addition, nuclear AFB1 from periportal hepatocytes cleared faster compared to the pericentral region. These local differences in AFB1 clearance may be due to the pericentral expression of cytochrome P450 enzymes that activate AFB1 to protein- and DNA-binding metabolites. In conclusion, the present study shows that large spatio-temporal concentration differences exist within the same tissues and its analysis may provide valuable additional information to conventional toxicokinetic studies.
Collapse
Affiliation(s)
- Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany.
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Maiju Myllys
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Wiebke Albrecht
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Adrian Friebel
- Institute of Computer Science, Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16-18, 04107, Leipzig, Germany
| | - Stefan Hoehme
- Institute of Computer Science, Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16-18, 04107, Leipzig, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstr. 112, 70376, Stuttgart, Germany
| | - Abdel-Latif Seddek
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Lars Kuepfer
- Institute of Systems Medicine with Focus on Organ Interactions, University Hospital RWTH Aachen, Pauwelsstr. 19, 52074, Aachen, Germany
| | - Benedikt Cramer
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Peter Boor
- Institute of Pathology and Department of Nephrology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Gisela H Degen
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany.
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany.
| |
Collapse
|
22
|
Shablykina OV, Shilin SV, Moskvina VS, Ishchenko VV, Khilya VP. Progress in the Chemistry of Amino-Acid Derivatives of Isocoumarins and 3,4-Dihydroisocoumarins. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03323-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Dried urine spots as sampling technique for multi-mycotoxin analysis in human urine. Mycotoxin Res 2021; 37:129-140. [PMID: 33638099 PMCID: PMC8163710 DOI: 10.1007/s12550-021-00423-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 01/31/2023]
Abstract
A simple and effective approach for HPLC-MS/MS based multi-mycotoxin analysis in human urine samples was developed by application of dried urine spots (DUS) as alternative on-site sampling strategy. The newly developed method enables the detection and quantitation of 14 relevant mycotoxins and mycotoxin metabolites, including citrinin (CIT), dihydrocitrinone (DH-CIT), deoxynivalenol (DON), fumonisin B1 (FB1), T-2 Toxin (T-2), HT-2 Toxin (HT-2), ochratoxin A (OTA), 2′R-ochratoxin A (2′R-OTA), ochratoxin α (OTα), tenuazonic acid and allo-tenuazonic acid (TeA + allo-TeA), zearalenone (ZEN), zearalanone (ZAN), α-zearalenol (α-ZEL), and β-zearalenol (β-ZEL). Besides the spotting procedure, sample preparation includes enzymatic cleavage of glucuronic acid conjugates and stable isotope dilution analysis. Method validation revealed low limits of detection in the range of pg/mL urine and excellent apparent recovery rates for most analytes. Stability investigation of DUS displayed no or only slight decrease of the analyte concentration over a period of 28 days at room temperature. The new method was applied to the analysis of a set of urine samples (n = 91) from a Swedish cohort. The four analytes, DH-CIT, DON, OTA, and TeA + allo-TeA, could be detected and quantified in amounts ranging from 0.06 to 0.97 ng/mL, 3.03 to 136 ng/mL, 0.013 to 0.434 ng/mL and from 0.36 to 47 ng/mL in 38.5%, 70.3%, 68.1%, and 94.5% of the samples, respectively. Additional analysis of these urine samples with an established dilute and shoot (DaS) approach displayed a high consistency of the results obtained with both methods. However, due to higher sensitivity, a larger number of positive samples were observed using the DUS method consequently providing a suitable approach for human biomonitoring of mycotoxin exposure.
Collapse
|
24
|
Kunz BM, Voß A, Dalichow J, Weigel S, Rohn S, Maul R. Impact of experimental thermal processing of artificially contaminated pea products on ochratoxin A and phomopsin A. Mycotoxin Res 2021; 37:63-78. [PMID: 33068264 PMCID: PMC7819913 DOI: 10.1007/s12550-020-00413-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 11/08/2022]
Abstract
Fungi of Aspergillus and Penicillium genus can infect peas (Pisum sativum), leading to a contamination with the nephrotoxic and carcinogenic ochratoxin A (OTA). Under unfavourable conditions, a fungus primarily found on lupines, Diapothe toxica, may also grow on peas and produce the hepatotoxic phomopsin A (PHOA). To study the effect of processing on OTA and PHOA content, two model products-wheat/rye-mixed bread with pea flour addition and pea pasta-were manufactured at small-business scale from artificially contaminated pea flour. The decrease of OTA and PHOA contents were monitored along the production process as indicators for toxin transformation. Pea bread dough was subjected to proofing for 30-40 min at 32 °C and baked at 250 °C to 230 °C for 40 min. OTA content (LODs < 0.1 μg/kg) showed a reduction in the bread crust (initially 17.0 μg/kg) to 88% and no reduction in the crumb (110%). For PHOA (LODs < 3.6 μg/kg), a decrease to approximately 21% occurred in the bread crust (initially 12.5 μg/kg), whilst for crumb, a less intense decrease to 91% was found. Pea pasta prepared with two toxin levels was extruded at room temperature, dried and cooked for 8 min in boiling water. In pea pasta, OTA was reduced from 29.8 to 13.9 μg/kg by 22% each after cooking, whilst 15% and 10% of the initial toxin amounts were found in the cooking water, respectively. For PHOA, 60% and 78% of initially 14.3 μg/kg and 7.21 μg/kg remained in the cooked pasta. As only the decrease of the initial content was measured and no specific degradation products could be detected, further research is needed to characterise potential transformation products. Heat treatment reduces the initial PHOA content stronger than the OTA content during pasta cooking and bread making. However, significant amounts of both toxins would remain in the final products.
Collapse
Affiliation(s)
- Birgitta Maria Kunz
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 , Hamburg, Germany
| | - Alexander Voß
- Institute for Food and Environmental Research (ILU) e. V., Arthur-Scheunert-Allee 40-41, 14558, Nuthetal, Germany
| | - Julia Dalichow
- Institute for Food and Environmental Research (ILU) e. V., Arthur-Scheunert-Allee 40-41, 14558, Nuthetal, Germany
| | - Stefan Weigel
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Sascha Rohn
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 , Hamburg, Germany.
- Institute for Food and Environmental Research (ILU) e. V., Arthur-Scheunert-Allee 40-41, 14558, Nuthetal, Germany.
- Technische Universität Berlin, Institute of Food Chemistry and Analysis, Gustav-Meyer-Allee 25, 13355, Berlin, Germany.
| | - Ronald Maul
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
- Max Rubner Institute, Hermann-Weigmann-Straße 1, 24103, Kiel, Germany
| |
Collapse
|
25
|
Gu K, Ryu D, Lee HJ. Ochratoxin A and its reaction products affected by sugars during heat processing. Food Chem 2021; 348:129038. [PMID: 33508597 DOI: 10.1016/j.foodchem.2021.129038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 11/25/2022]
Abstract
Ochratoxin A (OTA) is a nephrotoxin produced by many species in two fungal genera of Aspergillus and Penicillium under virtually all agricultural environments. Hence, OTA occurs frequently in agricultural commodities and their downstream products worldwide. In this study, thermal stability of OTA in the presence of sugars commonly added to food products including glucose, fructose, and sucrose was investigated by analyzing their reaction products with HPLC-FLD and LC-MS/MS. Samples were heated at three different temperatures (100, 125, and 150 °C) in 10-min intervals for up to 60 min in the absence of food matrix. Analysis showed increased OTα and OTα-amide and decreased OTA isomer (14-R-OTA) formation when OTA was heated with sugars. Among the sugars tested, adding fructose resulted in significantly lower OTA levels than glucose, sucrose, or no sugar added control. Addition of fructose also shifted OTA degradation product profile to less toxic OTα-amide, instead of OTA isomer which has similar toxicity to OTA. These results suggest that added sugars influenced the levels of OTA and its degradation products formed during thermal processing, and may provide a means to reduce the toxicity of OTA in food.
Collapse
Affiliation(s)
- Kejia Gu
- School of Food Science, Washington State University, PO Box 646376, Pullman, WA 99164-6376, USA
| | - Dojin Ryu
- Department of Animal, Veterinary and Food Sciences, University of Idaho, 875 Perimeter Drive MS 2330, Moscow, ID 83844-2330, USA
| | - Hyun Jung Lee
- Department of Animal, Veterinary and Food Sciences, University of Idaho, 875 Perimeter Drive MS 2330, Moscow, ID 83844-2330, USA.
| |
Collapse
|
26
|
|
27
|
Determination of Ochratoxin A and Ochratoxin B in Archived Tokaj Wines (Vintage 1959-2017) Using On-Line Solid Phase Extraction Coupled to Liquid Chromatography. Toxins (Basel) 2020; 12:toxins12120739. [PMID: 33255273 PMCID: PMC7761308 DOI: 10.3390/toxins12120739] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
According to the EU legislation, ochratoxin A contamination is controlled in wines. Tokaj wine is a special type of sweet wine produced from botrytized grapes infected by “noble rot” Botrytis cinerea. Although a high contamination was reported in sweet wines and noble rot grapes could be susceptible to coinfection with other fungi, including ochratoxigenic species, no screening of Tokaj wines for mycotoxin contamination has been carried out so far. Therefore, we developed an analytical method for the determination of ochratoxin A (OTA) and ochratoxin B (OTB) involving online SPE coupled to HPLC-FD using column switching to achieve the fast and sensitive control of mycotoxin contamination. The method was validated with recoveries ranging from 91.6% to 99.1% with an RSD less than 2%. The limits of quantification were 0.1 and 0.2 µg L−1 for OTA and OTB, respectively. The total analysis time of the online SPE-HPLC-FD method was a mere 6 min. This high throughput enables routine analysis. Finally, we carried out an extensive investigation of the ochratoxin contamination in 59 Slovak Tokaj wines of 1959–2017 vintage. Only a few positives were detected. The OTA content in most of the checked wines did not exceed the EU maximum tolerable limit of 2 µg L−1, indicating a good quality of winegrowing and storing.
Collapse
|
28
|
Schaarschmidt S, Fauhl-Hassek C. The fate of mycotoxins during secondary food processing of maize for human consumption. Compr Rev Food Sci Food Saf 2020; 20:91-148. [PMID: 33443798 DOI: 10.1111/1541-4337.12657] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 07/26/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Mycotoxins are naturally occurring fungal metabolites that are associated with health hazards and are widespread in cereals including maize. The most common mycotoxins in maize that occur at relatively high levels are fumonisins (FBs), zearalenone, and aflatoxins; furthermore, other mycotoxins such as deoxynivalenol and ochratoxin A are frequently present in maize. For these toxins, maximum levels are laid down in the European Union (EU) for maize raw materials and maize-based foods. The current review article gives a comprehensive overview on the different mycotoxins (including mycotoxins not regulated by EU law) and their fate during secondary processing of maize, based on the data published in the scientific literature. Furthermore, potential compliance with the EU maximum levels is discussed where appropriate. In general, secondary processing can impact mycotoxins in various ways. Besides changes in mycotoxin levels due to fractionation, dilution, and/or concentration, mycotoxins can be affected in their chemical structure (causing degradation or modification) or be released from or bound to matrix components. In the current review, a special focus is set on the effect on mycotoxins caused by different heat treatments, namely, baking, roasting, frying, (pressure) cooking, and extrusion cooking. Production processes involving multiple heat treatments are exemplified with the cornflakes production. For that, potential compliance with FB maximum levels was assessed. Moreover, effects of fermentation of maize matrices and production of maize germ oil are covered by this review.
Collapse
Affiliation(s)
- Sara Schaarschmidt
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Carsten Fauhl-Hassek
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
29
|
Kumar P, Mahato DK, Sharma B, Borah R, Haque S, Mahmud MC, Shah AK, Rawal D, Bora H, Bui S. Ochratoxins in food and feed: Occurrence and its impact on human health and management strategies. Toxicon 2020; 187:151-162. [DOI: 10.1016/j.toxicon.2020.08.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
|
30
|
From grape to wine: Fate of ochratoxin A during red, rose, and white winemaking process and the presence of ochratoxin derivatives in the final products. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107167] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Alexander J, Dall'Asta C, Mally A, Metzler M, Binaglia M, Horváth Z, Steinkellner H, Bignami M. Risk assessment of ochratoxin A in food. EFSA J 2020; 18:e06113. [PMID: 37649524 PMCID: PMC10464718 DOI: 10.2903/j.efsa.2020.6113] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The European Commission asked EFSA to update their 2006 opinion on ochratoxin A (OTA) in food. OTA is produced by fungi of the genus Aspergillus and Penicillium and found as a contaminant in various foods. OTA causes kidney toxicity in different animal species and kidney tumours in rodents. OTA is genotoxic both in vitro and in vivo; however, the mechanisms of genotoxicity are unclear. Direct and indirect genotoxic and non-genotoxic modes of action might each contribute to tumour formation. Since recent studies have raised uncertainty regarding the mode of action for kidney carcinogenicity, it is inappropriate to establish a health-based guidance value (HBGV) and a margin of exposure (MOE) approach was applied. For the characterisation of non-neoplastic effects, a BMDL 10 of 4.73 μg/kg body weight (bw) per day was calculated from kidney lesions observed in pigs. For characterisation of neoplastic effects, a BMDL 10 of 14.5 μg/kg bw per day was calculated from kidney tumours seen in rats. The estimation of chronic dietary exposure resulted in mean and 95th percentile levels ranging from 0.6 to 17.8 and from 2.4 to 51.7 ng/kg bw per day, respectively. Median OTA exposures in breastfed infants ranged from 1.7 to 2.6 ng/kg bw per day, 95th percentile exposures from 5.6 to 8.5 ng/kg bw per day in average/high breast milk consuming infants, respectively. Comparison of exposures with the BMDL 10 based on the non-neoplastic endpoint resulted in MOEs of more than 200 in most consumer groups, indicating a low health concern with the exception of MOEs for high consumers in the younger age groups, indicating a possible health concern. When compared with the BMDL 10 based on the neoplastic endpoint, MOEs were lower than 10,000 for almost all exposure scenarios, including breastfed infants. This would indicate a possible health concern if genotoxicity is direct. Uncertainty in this assessment is high and risk may be overestimated.
Collapse
|
32
|
Stadler D, Berthiller F, Suman M, Schuhmacher R, Krska R. Novel analytical methods to study the fate of mycotoxins during thermal food processing. Anal Bioanal Chem 2020; 412:9-16. [PMID: 31637463 PMCID: PMC6989622 DOI: 10.1007/s00216-019-02101-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/07/2019] [Accepted: 08/23/2019] [Indexed: 11/25/2022]
Abstract
Food processing can lead to a reduction of contaminants, such as mycotoxins. However, for food processing operations where thermal energy is employed, it is often not clear whether a reduction of mycotoxins also results in a mitigation of the toxicological impact. This is often due to the reason that the formed degradation products are not characterized and data on their toxicity is scarce. From the perspective of an analytical chemist, the elucidation of the fate of a contaminant in a complex food matrix is extremely challenging. An overview of the analytical approaches is given here, and the application and limitations are exemplified based on cases that can be found in recent literature. As most studies rely on targeted analysis, it is not clear whether the predetermined set of compounds differs from the degradation products that are actually formed during food processing. Although untargeted analysis allows for the elucidation of the complete spectrum of degradation products, only one such study is available so far. Further pitfalls include insufficient precision, natural contamination with masked forms of mycotoxins and interferences that are caused by the food matrix. One topic that is of paramount importance for both targeted and untargeted approaches is the availability of reference standards to identity and quantity the formed degradation products. Our vision is that more studies need to be published that characterize the formed degradation products, collect data on their toxicity and thereby complete the knowledge about the mycotoxin mitigating effect during food processing.
Collapse
Affiliation(s)
- David Stadler
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430, Tulln, Austria
| | - Franz Berthiller
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430, Tulln, Austria
| | - Michele Suman
- Barilla G. R. F.lli SpA, Advanced Laboratory Research, Via Mantova 166, 43122, Parma, Italy
| | - Rainer Schuhmacher
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430, Tulln, Austria
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430, Tulln, Austria.
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, University Road, Belfast, Northern Ireland, BT7 1NN, UK.
| |
Collapse
|
33
|
Freire L, Furtado MM, Guerreiro TM, da Graça JS, da Silva BS, Oliveira DN, Catharino RR, Sant'Ana AS. The presence of ochratoxin A does not influence Saccharomyces cerevisiae growth kinetics but leads to the formation of modified ochratoxins. Food Chem Toxicol 2019; 133:110756. [PMID: 31408721 DOI: 10.1016/j.fct.2019.110756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 01/28/2023]
Abstract
Yeasts are able to reduce the levels of ochratoxin A in fermentative processes; and, through their enzymatic complex, these micro-organisms are also capable of forming modified mycotoxins. These mycotoxins are often underreported, and may increase health risks after ingestion of contaminated food. In this sense, this study aims to evaluate whether the presence of ochratoxin A influences yeast growth kinetic parameters and to elucidate the formation of modified ochratoxin by Saccharomyces cerevisiae strains during fermentation. Three S. cerevisiae strains (12 M, 01 PP, 41 PP) were exposed to OTA at the concentrations of 10, 20 and 30 μg/L. The Baranyi model was fitted to the growth data (Log CFU/mL), and the identification of modified ochratoxins was performed through High Resolution Mass Spectrometry. The presence of ochratoxin A did not influence the growth of S. cerevisiae strains. Four pathways were proposed for the metabolization of OTA: dechlorination, hydrolysis, hydroxylation, and conjugation. Among the elected targets, the following were identified: ochratoxin α, ochratoxin β, ochratoxin α methyl ester, ochratoxin B methyl ester, ethylamide ochratoxin A, ochratoxin C, hydroxy-ochratoxin A, hydroxy-ochratoxin A methyl ester, and ochratoxin A cellobiose ester. These derivatives formed from yeast metabolism may contribute to the occurrence of underreporting levels of total mycotoxin in fermented products.
Collapse
Affiliation(s)
- Luísa Freire
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Marianna M Furtado
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Tatiane M Guerreiro
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Juliana S da Graça
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Beatriz S da Silva
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Diogo N Oliveira
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Rodrigo R Catharino
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
34
|
Sueck F, Hemp V, Specht J, Torres O, Cramer B, Humpf HU. Occurrence of the Ochratoxin A Degradation Product 2'R-Ochratoxin A in Coffee and Other Food: An Update. Toxins (Basel) 2019; 11:toxins11060329. [PMID: 31181754 PMCID: PMC6628416 DOI: 10.3390/toxins11060329] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/16/2019] [Accepted: 06/03/2019] [Indexed: 11/16/2022] Open
Abstract
Food raw materials can contain the mycotoxin ochratoxin A (OTA). Thermal processing of these materials may result in decreased OTA levels but also in the formation of the thermal isomerization product 2′R-ochratoxin A (2′R-OTA). So far, only 2′R-OTA levels reported from 15 coffee samples in 2008 are known, which is little when compared to the importance of coffee as a food and trading good. Herein, we present results from a set of model experiments studying the effect of temperatures between 120 °C and 270 °C on the isomerization of OTA to 2′R-OTA. It is shown that isomerization of OTA starts at temperatures as low as 120 °C. At 210 °C and above, the formation of 25% 2′R-OTA is observed in less than one minute. Furthermore, 51 coffee samples from France, Germany, and Guatemala were analyzed by HPLC-MS/MS for the presence of OTA and 2′R-OTA. OTA was quantified in 96% of the samples, while 2′R-OTA was quantifiable in 35% of the samples. The highest OTA and 2′R-OTA levels of 28.4 µg/kg and 3.9 µg/kg, respectively, were detected in coffee from Guatemala. The OTA:2′R-OTA ratio in the samples ranged between 2.5:1 and 10:1 and was on average 5.5:1. Besides coffee, 2′R-OTA was also for the first time detected in a bread sample and malt coffee powder.
Collapse
Affiliation(s)
- Franziska Sueck
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany.
| | - Vanessa Hemp
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany.
| | - Jonas Specht
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany.
| | - Olga Torres
- Laboratorio Diagnostico Molecular S.A, Guatemala City, Guatemala.
- Centro de Investigaciones en Nutrición y Salud, Guatemala City, Guatemala.
| | - Benedikt Cramer
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany.
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany.
| |
Collapse
|
35
|
Abstract
Ochratoxin A (OTA) is a widespread bioactive extrolite from secondary metabolism of fungi which presence in foods like coffee is of public health concern, particularly for heavy drinkers. Coffee is one of the most consumed and appreciated non-alcoholic beverage in the world. Its production from the plantation to the coffee cup involves several steps that would determine the final concentration of OTA in the beverage. This review gives an overview of OTA contamination in roasted coffee beans in different countries and mitigation strategies for OTA reduction.
Collapse
|
36
|
Kuchenbuch HS, Schulz M, Becker S, Cramer B, Humpf HU. Thermal Reactions and the Formation of Degradation Products of T-2 and HT-2 Toxin during Processing of Oats. ACTA ACUST UNITED AC 2019. [DOI: 10.1021/bk-2019-1306.ch007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- H. S. Kuchenbuch
- Westfälische Wilhelms-Universität Münster, Institute of Food Chemistry, Corrensstrasse 45, 48149 Münster, Germany
| | - M. Schulz
- Westfälische Wilhelms-Universität Münster, Institute of Food Chemistry, Corrensstrasse 45, 48149 Münster, Germany
| | - S. Becker
- Westfälische Wilhelms-Universität Münster, Institute of Food Chemistry, Corrensstrasse 45, 48149 Münster, Germany
| | - B. Cramer
- Westfälische Wilhelms-Universität Münster, Institute of Food Chemistry, Corrensstrasse 45, 48149 Münster, Germany
| | - H.-U. Humpf
- Westfälische Wilhelms-Universität Münster, Institute of Food Chemistry, Corrensstrasse 45, 48149 Münster, Germany
| |
Collapse
|
37
|
Kuchenbuch HS, Cramer B, Humpf HU. Matrix binding of T-2 toxin: structure elucidation of reaction products and indications on the fate of a relevant food-borne toxin during heating. Mycotoxin Res 2019; 35:261-270. [PMID: 30903560 DOI: 10.1007/s12550-019-00350-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 01/09/2023]
Abstract
This study deals with the influence of food matrix components on the degradation of the mycotoxins T-2 toxin (T-2) and HT-2 toxin (HT-2) and with the binding of T-2 to starch during thermal food processing. Both mycotoxins were heated in a simulated food environment and subsequently analyzed via HPLC-HRMS to generate degradation curves and to draw conclusions regarding the thermal degradation under food processing conditions. Thermal degradation increased generally with increasing time and temperature with a maximum degradation rate of 93% (T-2) and 99% (HT-2). Furthermore, HRMS data were exploited to screen the samples for degradation products. In model heating experiments, T-2 was bound to 1-O-methyl-α-D-glucopyranoside, a model compound that was used to simulate starch. The formed reaction products were isolated and identified by NMR, giving detailed insights into a potential binding of T-2 to starch. In the next step, further model heating experiments were performed, which proved the covalent binding of T-2 to starch. Finally, the amount of matrix-bound T-2 was estimated roughly in a semi-quantitative approach in the model heating experiments as well as during cookie-making via GC-MS analysis of the isovaleric acid ester moiety of T-2, released after alkaline hydrolysis.
Collapse
Affiliation(s)
- Henning S Kuchenbuch
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Benedikt Cramer
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany.
| |
Collapse
|
38
|
Lee HJ, Kim S, Suh HJ, Ryu D. Effects of explosive puffing process on the reduction of ochratoxin A in rice and oats. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Yesterday masked, today modified; what do mycotoxins bring next? Arh Hig Rada Toksikol 2018; 69:196-214. [DOI: 10.2478/aiht-2018-69-3108] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 11/20/2022] Open
Abstract
Abstract
Mycotoxins are secondary metabolites produced by toxigenic fungi in crops worldwide. In (micro)organisms such as plants, fungi, bacteria, or animals they may be further metabolised and modified, but this is also true for food processing, which may lead to a wide range of masked mycotoxin forms. These often remain undetected by analytical methods and are the culprits for underestimates in risk assessments. Furthermore, once ingested, modified mycotoxins can convert back to their parent forms. This concern has raised the need for analytical methods that can detect and quantify modified mycotoxins as essential for accurate risk assessment. The promising answer is liquid chromatography-mass spectrometry. New masked mycotoxin forms are now successfully detected by iontrap, time-of-flight, or high-resolution orbitrap mass spectrometers. However, the toxicological relevance of modified mycotoxins has not been fully clarified.
Collapse
|
40
|
Freire L, Guerreiro TM, Caramês ETS, Lopes LS, Orlando EA, Pereira GE, Lima Pallone JA, Catharino RR, Sant'Ana AS. Influence of Maturation Stages in Different Varieties of Wine Grapes ( Vitis vinifera) on the Production of Ochratoxin A and Its Modified Forms by Aspergillus carbonarius and Aspergillus niger. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8824-8831. [PMID: 30048130 DOI: 10.1021/acs.jafc.8b02251] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ochratoxin A is the main contaminant mycotoxin of grapes produced mainly by Aspergillus niger and Aspergillus carbonarius. Besides, it is possible that the formation of modified mycotoxin occurs through the plant defense mechanism or also by fungus actions itself. The objective of this study was to evaluate the influence of grape variety and maturation stage on the formation of OTA and modified mycotoxin. The determination of OTA was performed by high-performance liquid chromatography, and a high-resolution mass spectrometry was used for the detection of modified ochratoxin. A positive correlation was observed between the following grapes physicochemical parameters: pH, total soluble solids, total glycosides in glucose, total anthocyanin, and OTA levels produced by A. niger and A. carbonarius. Therefore, the higher the concentrations of these parameters, the greater the production of mycotoxin in grapes. Among the elected targets, we identified the 14-decarboxy-ochratoxin A in Muscat Italia variety at veraison and 15 days after the beginning of veraison stages; and ethylamide-ochratoxin A as a biomarker in the Syrah variety at the ripeness stage.
Collapse
Affiliation(s)
- Luísa Freire
- Department of Food Science, Faculty of Food Engineering , University of Campinas , Campinas , SP , Brazil
| | - Tatiane M Guerreiro
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences , University of Campinas , Campinas , SP , Brazil
| | - Elem T S Caramês
- Department of Food Science, Faculty of Food Engineering , University of Campinas , Campinas , SP , Brazil
| | - Letícia S Lopes
- Department of Food Science, Faculty of Food Engineering , University of Campinas , Campinas , SP , Brazil
| | - Eduardo A Orlando
- Department of Food Science, Faculty of Food Engineering , University of Campinas , Campinas , SP , Brazil
| | - Giuliano E Pereira
- § Brazilian Agricultural Research Corporation (Semiárido) , Petrolina , PE , Brazil
| | - Juliana A Lima Pallone
- Department of Food Science, Faculty of Food Engineering , University of Campinas , Campinas , SP , Brazil
| | - Rodrigo R Catharino
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences , University of Campinas , Campinas , SP , Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering , University of Campinas , Campinas , SP , Brazil
| |
Collapse
|
41
|
Porous silicon based photoluminescence immunosensor for rapid and highly-sensitive detection of Ochratoxin A. Biosens Bioelectron 2018; 102:661-667. [DOI: 10.1016/j.bios.2017.11.048] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 01/03/2023]
|
42
|
Modified mycotoxins: An updated review on their formation, detection, occurrence, and toxic effects. Food Chem Toxicol 2017; 111:189-205. [PMID: 29158197 DOI: 10.1016/j.fct.2017.11.021] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 01/10/2023]
Abstract
Modified mycotoxins are metabolites that normally remain undetected during the testing for parent mycotoxin. These modified forms of mycotoxins can be produced by fungi or generated as part of the defense mechanism of the infected plant. In some cases, they are formed during food processing. The various processing steps greatly affect mycotoxin levels present in the final product (free and modified), although the results are still controversial regarding the increase or reduction of these levels, being strongly related to the type of process and the composition of the food in question. Evidence exists that some modified mycotoxins can be converted into the parent mycotoxin during digestion in humans and animals, potentially leading to adverse health effects. Some of these formed compounds can be even more toxic, in case they have higher bioaccessibility and bioavailability than the parent mycotoxin. The modified mycotoxins can occur simultaneously with the free mycotoxin, and, in some cases, the concentration of modified mycotoxins may exceed the level of free mycotoxin in processed foods. Even though toxicological data are scarce, the possibility of modified mycotoxin conversion to its free form may result in a potential risk to human and animal health. This review aims to update information on the formation, detection, occurrence, and toxic effects caused by modified mycotoxin.
Collapse
|
43
|
Barcelo JM, Barcelo RC. Post-harvest practices linked with ochratoxin A contamination of coffee in three provinces of Cordillera Administrative Region, Philippines. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 35:328-340. [DOI: 10.1080/19440049.2017.1393109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jonathan M. Barcelo
- Department of Medical Laboratory Science, School of Natural Sciences, Saint Louis University, Baguio City, Philippines
| | - Racquel C. Barcelo
- Department of Biology, School of Natural Sciences, Saint Louis University, Baguio City, Philippines
| |
Collapse
|
44
|
Janevska S, Arndt B, Baumann L, Apken LH, Mauriz Marques LM, Humpf HU, Tudzynski B. Establishment of the Inducible Tet-On System for the Activation of the Silent Trichosetin Gene Cluster in Fusarium fujikuroi. Toxins (Basel) 2017; 9:toxins9040126. [PMID: 28379186 PMCID: PMC5408200 DOI: 10.3390/toxins9040126] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 12/05/2022] Open
Abstract
The PKS-NRPS-derived tetramic acid equisetin and its N-desmethyl derivative trichosetin exhibit remarkable biological activities against a variety of organisms, including plants and bacteria, e.g., Staphylococcus aureus. The equisetin biosynthetic gene cluster was first described in Fusarium heterosporum, a species distantly related to the notorious rice pathogen Fusarium fujikuroi. Here we present the activation and characterization of a homologous, but silent, gene cluster in F. fujikuroi. Bioinformatic analysis revealed that this cluster does not contain the equisetin N-methyltransferase gene eqxD and consequently, trichosetin was isolated as final product. The adaption of the inducible, tetracycline-dependent Tet-on promoter system from Aspergillus niger achieved a controlled overproduction of this toxic metabolite and a functional characterization of each cluster gene in F. fujikuroi. Overexpression of one of the two cluster-specific transcription factor (TF) genes, TF22, led to an activation of the three biosynthetic cluster genes, including the PKS-NRPS key gene. In contrast, overexpression of TF23, encoding a second Zn(II)2Cys6 TF, did not activate adjacent cluster genes. Instead, TF23 was induced by the final product trichosetin and was required for expression of the transporter-encoding gene MFS-T. TF23 and MFS-T likely act in consort and contribute to detoxification of trichosetin and therefore, self-protection of the producing fungus.
Collapse
Affiliation(s)
- Slavica Janevska
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Birgit Arndt
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, 48149 Münster, Germany.
| | - Leonie Baumann
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Lisa Helene Apken
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Lucas Maciel Mauriz Marques
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, 48149 Münster, Germany.
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, 48149 Münster, Germany.
| | - Bettina Tudzynski
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany.
| |
Collapse
|
45
|
Multi-mycotoxin analysis using dried blood spots and dried serum spots. Anal Bioanal Chem 2017; 409:3369-3382. [PMID: 28299415 PMCID: PMC5395583 DOI: 10.1007/s00216-017-0279-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/08/2017] [Accepted: 02/24/2017] [Indexed: 11/03/2022]
Abstract
In this study, a rapid multi-mycotoxin approach was developed for biomonitoring and quantification of 27 important mycotoxins and mycotoxin metabolites in human blood samples. HPLC-MS/MS detection was used for the analysis of dried serum spots (DSS) and dried blood spots (DBS). Detection of aflatoxins (AFB1, AFB2, AFG1, AFG2, AFM1), trichothecenes (deoxynivalenol, DON; DON-3-glucoronic acid, DON-3-GlcA; T-2; HT-2; and HT-2-4-GlcA), fumonisin B1 (FB1), ochratoxins (OTA and its thermal degradation product 2'R-OTA; OTα; 10-hydroxychratoxin A, 10-OH-OTA), citrinin (CIT and its urinary metabolite dihydrocitrinone, DH-CIT), zearalenone and zearalanone (ZEN, ZAN), altenuene (ALT), alternariols (AOH; alternariol monomethyl ether, AME), enniatins (EnA, EnA1, EnB, EnB1) and beauvericin (Bea) was validated for two matrices, serum (DSS), and whole blood (DBS). HPLC-MS/MS analysis showed signal suppression as well as signal enhancement due to matrix effects. However, for most analytes LOQs in the lower pg/mL range and excellent recovery rate were achieved using matrix-matched calibration. Besides validation of the method, the analyte stability in DBS and DSS was also investigated. Stability is a main issue for some analytes when the dried samples are stored under common conditions at room temperature. Nevertheless, the developed method was applied to DBS samples of a German cohort (n = 50). Besides positive findings of OTA and 2'R-OTA, all samples were positive for EnB. This methodical study establishes a validated multi-mycotoxin approach for the detection of 27 mycotoxins and metabolites in dried blood/serum spots based on a fast sample preparation followed by sensitive HPLC-MS/MS analysis. Graphical Abstract ᅟ.
Collapse
|
46
|
Mehrez A, Maatouk I, Romero-González R, Amara AB, Kraiem M, Frenich AG, Landoulsi A. Assessment of ochratoxin A stability following gamma irradiation: experimental approaches for feed detoxification perspectives. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2013.1652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present study evaluated the effect of gamma irradiation on the stability of ochratoxin A (OTA) under various conditions. The effects of the physical state of OTA (solid vs aqueous), initial OTA concentration, irradiation dose and dose rate as well as the presence of model substances simulating food matrix compounds on OTA radiostability were investigated. First, pure OTA with and without food model compounds including α-D-glucose (monosaccharide), Methyl α-D-glucopyranoside (starch) and the amino acid derivatives N-α-acetyl-L-lysine methyl ester and N-α-acetyl-L-cysteine methyl ester (protein models) were irradiated with doses of 2, 4 and 8 kGy applied at 15.117 and 108.24 Gy/min. Secondly, artificially OTA-contaminated wheat with different moisture content (11, 14 and 16%) was irradiated with doses of 2, 4 and 8 kGy applied at 63.39 Gy/min. Residual OTA levels were analysed using ultra-high performance liquid chromatography coupled with tandem mass spectrometry. Solid OTA (50 and 3,200 ng/ml)showed great irradiation stability, even with irradiation doses up to 8 kGy. Under dry conditions, the presence of food model components did not affect OTA radiostability. However, in an aqueous solution, complete reduction was achieved at the initial OTA concentration of 50 ng/ml and irradiation dose of 2 kGy. Applying gamma irradiation to cereal-based food model systems produced a significant OTA reduction (5,000 µg/kg) of 47.2% in moistened wheat kernels (16%) with an absorbed dose of 8 kGy but failed to reduce the OTA content of low moisture content wheat (11%). These model experiments offered a useful tool to assess the main key factors affecting gamma irradiation-induced OTA reduction. Gamma irradiation is promising since the irradiation doses applied could partially reduce OTA contamination. Nevertheless, its efficacy was largely affected by initial moisture content and could be dangerous if toxic by-products are produced or nutritive quality is lost and needs further study.
Collapse
Affiliation(s)
- A. Mehrez
- Unité de Biochimie des Lipides et Interaction des Macromolécules en Biologie (03/UR/0902), Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia
| | - I. Maatouk
- Unité de Biochimie des Lipides et Interaction des Macromolécules en Biologie (03/UR/0902), Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia
| | - R. Romero-González
- Department of Chemistry and Physics (Analytical Chemistry Area), University of Almería, Andalusian Center for the Assessment and Monitoring of Global Change (CAESCG), Agrifood Campus of International Excellence, ceiA3, 04120 Almería, Spain
| | - A. Ben Amara
- Unité de Biochimie des Lipides et Interaction des Macromolécules en Biologie (03/UR/0902), Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia
| | - M. Kraiem
- National Center for Nuclear Sciences and Technologies (CNSTN), 2020 Tunis, Tunisia
| | - A. Garrido Frenich
- Department of Chemistry and Physics (Analytical Chemistry Area), University of Almería, Andalusian Center for the Assessment and Monitoring of Global Change (CAESCG), Agrifood Campus of International Excellence, ceiA3, 04120 Almería, Spain
| | - A. Landoulsi
- Unité de Biochimie des Lipides et Interaction des Macromolécules en Biologie (03/UR/0902), Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia
| |
Collapse
|
47
|
Cramer B, Osteresch B, Muñoz KA, Hillmann H, Sibrowski W, Humpf H. Biomonitoring using dried blood spots: detection of ochratoxin A and its degradation product 2'R-ochratoxin A in blood from coffee drinkers. Mol Nutr Food Res 2015; 59:1837-43. [PMID: 26012425 PMCID: PMC4744763 DOI: 10.1002/mnfr.201500220] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 11/25/2022]
Abstract
SCOPE In this study, human exposure to the mycotoxin ochratoxin A (OTA) and its thermal degradation product 2'R-ochratoxin A (2'R-OTA, previously named as 14R-Ochratoxin A [22]) through coffee consumption was assessed. LC-MS/MS and the dried blood spot (DBS) technique were used for the analysis of blood samples from coffee and noncoffee drinkers (n = 50), and food frequency questionnaires were used to document coffee consumption. METHODS AND RESULTS For the detection of OTA and 2'R-OTA in blood, a new sensitive and efficient sample preparation method based on DBS was established and validated. Using this technique 2'R-OTA was for the first time detected in biological samples. Comparison between coffee drinkers and noncoffee drinkers showed for the first time that 2'R-OTA was only present in blood from the first group while OTA could be found in both groups in a mean concentration of 0.21 μg/L. 2'R-OTA mean concentration was 0.11 μg/L with a maximum concentration of 0.414 μg/L. Thus, in average 2'R-OTA was approx. half the concentration of OTA but in some cases even exceeded OTA levels. No correlation between the amounts of coffee consumption and OTA or 2'R-OTA levels was observed. CONCLUSION The results of this study revealed for the first time a high exposure of coffee consumers to 2'R-OTA, a compound formed from OTA during coffee roasting. Since little information is available regarding toxicity and possible carcinogenicity of this compound, further OTA monitoring in blood including 2'R-OTA is advisable.
Collapse
Affiliation(s)
- Benedikt Cramer
- Institute of Food ChemistryWestfälische Wilhelms‐Universität MünsterMünsterGermany
| | - Bernd Osteresch
- Institute of Food ChemistryWestfälische Wilhelms‐Universität MünsterMünsterGermany
| | - Katherine A. Muñoz
- Universität Koblenz‐LandauInstitute for Environmental Sciences, Research Group of Environmental and Soil ChemistryLandau in der PfalzGermany
| | - Hartmut Hillmann
- Institut für Transfusionsmedizin und TransplantationsimmunologieUniversitätsklinikum MünsterMünsterGermany
| | - Walter Sibrowski
- Institut für Transfusionsmedizin und TransplantationsimmunologieUniversitätsklinikum MünsterMünsterGermany
| | - Hans‐Ulrich Humpf
- Institute of Food ChemistryWestfälische Wilhelms‐Universität MünsterMünsterGermany
| |
Collapse
|
48
|
A comparative study of the human urinary mycotoxin excretion patterns in Bangladesh, Germany, and Haiti using a rapid and sensitive LC-MS/MS approach. Mycotoxin Res 2015; 31:127-36. [PMID: 25957672 DOI: 10.1007/s12550-015-0223-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 10/23/2022]
Abstract
An improved "dilute and shoot" LC-MS/MS multibiomarker approach was used to monitor urinary excretion of 23 mycotoxins and their metabolites in human populations from Asia (Bangladesh), Europe (Germany), and the Caribbean region (Haiti). Deoxynivalenol (DON), deoxynivalenol-3-glucuronide (DON-3-GlcA), T-2-toxin (T-2), HT-2-toxin (HT-2), HT-2-toxin-4-glucuronide (HT-2-4-GlcA), fumonisin B1 (FB1), aflatoxins (AFB1, AFB2, AFG1, AFG2, AFM1), zearalenone (ZEA), zearalanone (ZAN), their urinary metabolites α-zearalanol (α-ZEL) and β-zearalanol (β-ZEL), and corresponding 14-O-glucuronic acid conjugates (ZEA-14-GlcA, ZAN-14-GlcA, β-ZEL, α/β-ZEL-14-GlcA), ochratoxin A (OTA), and ochratoxin alpha (OTα) as well as enniatin B (EnB) and dihydrocitrinone (DH-CIT) were among these compounds. Eight urinary mycotoxin biomarkers were detected (AFM1, DH-CIT, DON, DON-GLcA, EnB, FB1, OTA, and α-ZEL). DON and DON-GlcA were exclusively detected in urines from Germany and Haiti whereas urinary OTA and DH-CIT concentrations were significantly higher in Bangladeshi samples. AFM1 was present in samples from Bangladesh and Haiti only. Exposure was estimated by the calculation of probable daily intakes (PDI), and estimates suggested occasional instances of toxin intakes that exceed established tolerable daily intakes (TDI). The detection of individual mycotoxin exposure by biomarker-based approaches is a meaningful addition to the classical monitoring of the mycotoxin content of the food supply.
Collapse
|
49
|
Bittner A, Cramer B, Harrer H, Humpf HU. Structure elucidation and in vitro cytotoxicity of ochratoxin α amide, a new degradation product of ochratoxin A. Mycotoxin Res 2015; 31:83-90. [PMID: 25566949 DOI: 10.1007/s12550-014-0218-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 11/26/2022]
Abstract
The mycotoxin ochratoxin A is a secondary metabolite occurring in a wide range of commodities. During the exposure of ochratoxin A to white and blue light, a cleavage between the carbon atom C-14 and the nitrogen atom was described. As a reaction product, the new compound ochratoxin α amide has been proposed based on mass spectrometry (MS) experiments. In the following study, we observed that this compound is also formed at high temperatures such as used for example during coffee roasting and therefore represents a further thermal ochratoxin A degradation product. To confirm the structure of ochratoxin α amide, the compound was prepared in large scale and complete structure elucidation via nuclear magnetic resonance (NMR) and MS was performed. Additionally, first studies on the toxicity of ochratoxin α amide were performed using immortalized human kidney epithelial (IHKE) cells, a cell line known to be sensitive against ochratoxin A with an IC50 value of 0.5 μM. Using this system, ochratoxin α amide revealed no cytotoxicity up to concentrations of 50 μM. Thus, these results propose that the thermal degradation of ochratoxin A to ochratoxin α amide might be a detoxification process. Finally, we present a sample preparation and a HPLC-tandem mass spectrometry (HPLC-MS/MS) method for the analysis of ochratoxin α amide in extrudates and checked its formation during the extrusion of artificially contaminated wheat grits at 150 and 180 °C, whereas no ochratoxin α amide was detectable under these conditions.
Collapse
Affiliation(s)
- Andrea Bittner
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, 48149, Münster, Germany
| | | | | | | |
Collapse
|
50
|
Gerding J, Cramer B, Humpf H. Determination of mycotoxin exposure in Germany using an LC‐MS/MS multibiomarker approach. Mol Nutr Food Res 2014; 58:2358-68. [DOI: 10.1002/mnfr.201400406] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Johannes Gerding
- Institute of Food Chemistry Westfälische Wilhelms‐Universität Münster Münster Germany
- NRW Graduate School of Chemistry Münster Germany
| | - Benedikt Cramer
- Institute of Food Chemistry Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Hans‐Ulrich Humpf
- Institute of Food Chemistry Westfälische Wilhelms‐Universität Münster Münster Germany
- NRW Graduate School of Chemistry Münster Germany
| |
Collapse
|