1
|
Song Z, Liang H, Xue C, Wang S, Ren Y, Zhang Z, Xu T, Niu B, Song M, Liu M, Qin X, Li J, Zhao X, Zhao F, Shen J, Cao Z, Wang K. Property-Based Design of Xanthine Derivatives as Potent and Orally Available TRPC4/5 Inhibitors for Depression and Anxiety. J Med Chem 2025; 68:4694-4720. [PMID: 39918442 DOI: 10.1021/acs.jmedchem.4c02870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Transient receptor potential canonical channels 4 and 5 (TRPC4/5) are nonselective cation channels involved in emotional regulation, positioning them to be promising targets for treating mental disorders such as anxiety and depression. HC-070, a potent TRPC4/5 inhibitor, exhibits significant anxiolytic and antidepressant effects in animal models, though its drug-like properties require optimization. In this study, we applied a property-based drug design (PBDD) approach to optimize HC-070, leading to the discovery of compound 32, which shows improved LipE and Fsp3 values, reduced hERG blocking activity, enhanced metabolic stability, increased aqueous solubility, and superior oral bioavailability. Oral administration of compound 32 in mouse models demonstrates anxiolytic and antidepressant efficacy comparable to fluoxetine. This study supports the therapeutic potential of TRPC4/5 inhibitors for mental disorders and identifies compound 32 as a promising candidate for further investigation. Furthermore, our work underscores the value of PBDD in optimizing lead compounds during drug discovery process.
Collapse
Affiliation(s)
- Zhaoxiang Song
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaduan Liang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Chu Xue
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Shuxian Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Younan Ren
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Zhuang Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Tifei Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bo Niu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Mengmeng Song
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Mengru Liu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xu Qin
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jie Li
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xianya Zhao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Fang Zhao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jianhua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Kai Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
2
|
Wu Y, Hao C, Gao C, Hageman M, Lee S, Kirkland TA, Gray NS, Su Y, Lin MZ. Pharmacodynamics of Akt drugs revealed by a kinase-modulated bioluminescent indicator. Nat Chem Biol 2025:10.1038/s41589-025-01846-y. [PMID: 39934397 DOI: 10.1038/s41589-025-01846-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025]
Abstract
Measuring pharmacodynamics (PD)-the biochemical effects of drug dosing-and correlating them with therapeutic efficacy in animal models is crucial for the development of effective drugs but traditional PD studies are labor and resource intensive. Here we developed a kinase-modulated bioluminescent indicator (KiMBI) for rapid, noninvasive PD assessment of Akt-targeted drugs, minimizing drug and animal use. Using KiMBI, we performed a structure-PD relationship analysis on the brain-active Akt inhibitor ipatasertib by generating and characterizing two novel analogs. One analog, ML-B01, successfully inhibited Akt in both the brain and the body. Interestingly, capivasertib, ipatasertib and ML-B01 all exhibited PD durations beyond their pharmacokinetic profiles. Furthermore, KiMBI revealed that the PD effects of an Akt-targeted proteolysis-targeting chimera degrader endured for over 3 days. Thus, bioluminescence imaging with Akt KiMBI provides a noninvasive and efficient method for in vivo visualization of the PD of Akt inhibitors and degraders.
Collapse
Affiliation(s)
- Yan Wu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Chenzhou Hao
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Chao Gao
- Promega Corporation, San Luis Obispo, CA, USA
| | | | - Sungmoo Lee
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | | | - Nathanael S Gray
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Yichi Su
- Department of Nuclear Medicine, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Michael Z Lin
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Neurobiology, Stanford University, Stanford, CA, USA.
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA.
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Kim EH, Wahl K, Guelfi E, Lee D. Engineering the physical characteristics of biomaterials for innate immune-mediated cancer immunotherapy. J Control Release 2025; 378:814-830. [PMID: 39719214 DOI: 10.1016/j.jconrel.2024.12.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024]
Abstract
It has recently been recognized that the physical characteristics of biomaterials - such as size, structure, shape, charge, mechanical strength, hydrophobicity, and multivalency - regulate immunological functions in innate immune cells. In immuno-oncology applications, biomaterials are engineered with distinct physical properties to achieve desired innate immune responses. In this review, we discuss how physical characteristics influence effector functions and innate immune signaling pathways in distinct innate immune cell subtypes. We highlight how physical properties of biomaterials impact phagocytosis regulation, biodistribution, and innate immune cell targeting. We outline the recent advances in physical engineering of biomaterials that directly or indirectly induce desired innate immune responses for cancer immunotherapy. Lastly, we discuss the challenges in current biomaterial approaches that need to be addressed to improve clinical applicability.
Collapse
Affiliation(s)
- Eun-Hye Kim
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Katelyn Wahl
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Erica Guelfi
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - DaeYong Lee
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
4
|
Yue TTC, Teh JH, Aboagye E, Ma MT, Pham TT, Long NJ. Site-specific π-clamp-mediated radiosynthesis of 68Ga and 18F PET radiopharmaceuticals. Chem Commun (Camb) 2025; 61:732-735. [PMID: 39661407 PMCID: PMC11633826 DOI: 10.1039/d4cc05223d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
The π-clamp-mediated conjugation method, which enables site-specific modification of cysteine residues, is a promising strategy for developing well-defined radiolabelled biomolecules for positron emission tomography (PET) imaging. We have applied this method to site-specifically attach the macrocyclic chelators "NODA" and "NODAGA" to the somatostatin receptor 2-targeted peptide, octreotate. The resulting novel NODA-octreotate and NODAGA-octreotate compounds can be radiolabelled with either [18F]AlF- or [68Ga]Ga3+ respectively. In vivo PET imaging shows that the [68Ga]Ga3+-labelled derivative exhibits high stability and favourable pharmacokinetic properties.
Collapse
Affiliation(s)
- Thomas T C Yue
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London W120BZ, UK.
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor Lambeth Wing, St. Thomas' Hospital, London SE17EH, UK.
| | - Jin Hui Teh
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London W120BZ, UK.
- Department of Surgery & Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Campus, UK
| | - Eric Aboagye
- Department of Surgery & Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Campus, UK
| | - Michelle T Ma
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor Lambeth Wing, St. Thomas' Hospital, London SE17EH, UK.
| | - Truc T Pham
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor Lambeth Wing, St. Thomas' Hospital, London SE17EH, UK.
| | - Nicholas J Long
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London W120BZ, UK.
| |
Collapse
|
5
|
Li Z, Ruan Q, Jiang Y, Wang Q, Yin G, Feng J, Zhang J. Current Status and Perspectives of Novel Radiopharmaceuticals with Heterologous Dual-targeted Functions: 2013-2023. J Med Chem 2024; 67:21644-21670. [PMID: 39648432 DOI: 10.1021/acs.jmedchem.4c01608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Radiotracers provide molecular- and cellular-level information in a noninvasive manner and have become important tools for precision medicine. In particular, the successful clinical application of radioligand therapeutic (RLT) has further strengthened the role of nuclear medicine in clinical treatment. The complicated microenvironment of the lesion has rendered traditional single-targeted radiopharmaceuticals incapable of fully meeting the requirements. The design and development of dual-targeted and multitargeted radiopharmaceuticals have rapidly emerged. In recent years, significant progress has been made in the development of heterologous dual-targeted radiopharmaceuticals. This perspective aims to provide a comprehensive overview of the recent progress in these heterologous dual-targeted radiopharmaceuticals, with a special focus on the design of ligand structures, pharmacological properties, and preclinical and clinical evaluation. Furthermore, future directions are discussed from this perspective.
Collapse
Affiliation(s)
- Zuojie Li
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Qing Ruan
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Key Laboratory of Beam Technology of the Ministry of Education, College of Physics and Astronomy, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yuhao Jiang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Key Laboratory of Beam Technology of the Ministry of Education, College of Physics and Astronomy, Beijing Normal University, Beijing, 100875, P. R. China
| | - Qianna Wang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Guangxing Yin
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Junhong Feng
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
6
|
Ghosh M, Roy D, Thakur S, Singh A. Exploring the Potential of Nasal Drug Delivery for Brain Targeted Therapy: A Detailed Analysis. Biopharm Drug Dispos 2024; 45:161-189. [PMID: 39665188 DOI: 10.1002/bdd.2400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024]
Abstract
The brain is a sensitive organ with numerous essential functions and complex mechanisms. It is secluded and safeguarded from the external environment as part of the central nervous system (CNS), serving as a sanctuary. By regulating their selective and specific absorption, efflux, and metabolism in the brain, the CNS controls brain homeostasis and the transit of endogenous and foreign substances. The mechanism which protects the brain from environmental chemicals, also prevent the entry of therapeutic chemicals to it. The delivery of molecules to the brain is hindered by several major barriers, such as the blood-brain barrier (BBB), blood-cerebrospinal fluid barrier (BCSFB), and blood-tumor barrier. BBB is formed by the combination of cerebral endothelial cells, astrocytes, neurons, pericytes and microglia. It is a tight junction of capillary endothelial cells, preventing the diffusion of solute into the brain. BCSFB is the second barrier, located at the choroid plexus, separating the blood from cerebrospinal fluid (CSF). It is comparatively more permeable than BBB. An uneven distribution of microvasculature across the tumor interstitial compromises drug delivery to neoplastic cells of a solid tumor, resulting in spatially inconsistent drug administration. Nasal drug delivery to the brain is a method of drug delivery that tries to deliver therapeutic substances directly from the nasal cavity to the central nervous system including the brain. In this review, besides the role of barriers we have discussed in detail about approaches adapted to deliver drugs to the brain along with mechanisms through nasal route. Further, different commercial formulations, clinical trials and patents have been thoroughly elaborated to date. The findings suggest that the nose-to-brain drug delivery method holds promise as an evolving approach, potentially contributing to the specific and targeted delivery of drugs into the brain.
Collapse
Affiliation(s)
| | - Debajyoti Roy
- Department of Pharmacy, CV Raman Global University, Bhubaneswar, India
| | - Shubham Thakur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Amrinder Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| |
Collapse
|
7
|
Ho R, Hong RS, Kalkowski J, Spence KC, Kruger AW, Jayanth J, Nere NK, Mukherjee S, Sheikh AY, Bordawekar SV. Unraveling the complexity of amorphous solid as direct ingredient for conventional oral solid dosage form: The story of Elagolix Sodium. Int J Pharm 2024; 665:124656. [PMID: 39245087 DOI: 10.1016/j.ijpharm.2024.124656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
Conventional solid oral dosage form development is not typically challenged by reliance on an amorphous drug substance as a direct ingredient in the drug product, as this may result in product development hurdles arising from process design and scale-up, control of physical quality attributes, drug product processability and stability. Here, we present the Chemistry, Manufacturing and Controls development journey behind the successful commercialization of an amorphous drug substance, Elagolix Sodium, a first-in-class, orally active gonadotropin-releasing hormone antagonist. The reason behind the lack of crystalline state was assessed via Molecular Dynamics (MD) at the molecular and inter-molecular level, revealing barriers for nucleation due to prevalence of intra-molecular hydrogen bond, repulsive interactions between active pharmaceutical ingredient (API) molecules and strong solvation effects. To provide a foundational basis for the design of the API manufacturing process, we modeled the solvent-induced plasticization behavior experimentally and computationally via MD for insights into molecular mobility. In addition, we applied material science tetrahedron concepts to link API porosity to drug product tablet compressibility. Finally, we designed the API isolation process, incorporating computational fluid dynamics modeling in the design of an impinging jet mixer for precipitation and solvent-dependent glass transition relationships in the cake wash, blow-down and drying process, to enable the consistent manufacture of a porous, non-sintered amorphous API powder that is suitable for robust drug product manufacturing.
Collapse
Affiliation(s)
- Raimundo Ho
- Small Molecule CMC Development, AbbVie Inc., 1 N Waukegan Road, North Chicago, IL 60064, USA.
| | - Richard S Hong
- Small Molecule CMC Development, AbbVie Inc., 1 N Waukegan Road, North Chicago, IL 60064, USA
| | - Joseph Kalkowski
- Small Molecule CMC Development, AbbVie Inc., 1 N Waukegan Road, North Chicago, IL 60064, USA
| | - Kevin C Spence
- Operations Product Development Science & Technology, AbbVie Inc., 1 N Waukegan Road, North Chicago, IL 60064, USA
| | - Albert W Kruger
- Operations Product Development Science & Technology, AbbVie Inc., 1 N Waukegan Road, North Chicago, IL 60064, USA
| | - Jayanthy Jayanth
- CMC Strategy & Portfolio Leadership, AbbVie Inc., 1 N Waukegan Road, North Chicago, IL 60064, USA
| | - Nandkishor K Nere
- Small Molecule CMC Development, AbbVie Inc., 1 N Waukegan Road, North Chicago, IL 60064, USA
| | - Samrat Mukherjee
- Operations Product Development Science & Technology, AbbVie Inc., 1 N Waukegan Road, North Chicago, IL 60064, USA
| | - Ahmad Y Sheikh
- Small Molecule CMC Development, AbbVie Inc., 1 N Waukegan Road, North Chicago, IL 60064, USA
| | - Shailendra V Bordawekar
- Small Molecule CMC Development, AbbVie Inc., 1 N Waukegan Road, North Chicago, IL 60064, USA
| |
Collapse
|
8
|
Bseiso EA, Sheta NM, Abdel-Haleem KM. Recent progress in nanoparticulate-based intranasal delivery for treating of different central nervous system diseases. Pharm Dev Technol 2024; 29:913-929. [PMID: 39340392 DOI: 10.1080/10837450.2024.2409807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
Drug administration to the central nervous system (CNS) has become a great obstacle because of several biological barriers, such as the blood-brain barrier, therefore, brain targeting insights are a light for scientists to move forward for treating neurogenerative diseases using advanced non-invasive methods. The current demand is to use a potential direct route as the nasal administration to transport drugs into the brain enhancing the BBB permeability and hence, increasing the bioavailability. Interestingly, recent techniques have been implanted in formulating nanocarriers-based therapeutics for targeting and treating ischemic stroke using lipid or polymeric-based materials. Nanoparticulate delivery systems are set as an effective platform for brain targeting as polymeric nanoparticles and polymeric micelles or nanocarriers based on lipids for preventing drug efflux to promote optimal therapeutic medication concentration in the brain-diseased site. In recent years, there has been a notable increase in research publications and ongoing investigations on the utilization of drug-loading nanocarriers for the treatment of diverse CNS diseases. This review comprehensively depicts these dangerous neurological disorders, drug targeting challenges to CNS, and potential contributions as novel intranasal nano-formulations are being used to treat and regulate a variety of neurological diseases.
Collapse
Affiliation(s)
- Eman A Bseiso
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza Governorate, Giza, Egypt
| | - Nermin M Sheta
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza Governorate, Giza, Egypt
| | - Khaled M Abdel-Haleem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza Governorate, Giza, Egypt
| |
Collapse
|
9
|
Tsopelas F, Vallianatou T, Tsantili-Kakoulidou A. Recent developments in the application of immobilized artificial membrane (IAM) chromatography to drug discovery. Expert Opin Drug Discov 2024; 19:1087-1098. [PMID: 38957047 DOI: 10.1080/17460441.2024.2374409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Immobilized artificial membrane (IAM) chromatography is widely used in many aspects of drug discovery. It employs stationary phases, which contain phospholipids combining simulation of biological membranes with rapid measurements. AREAS COVERED Advances in IAM stationary phases, chromatographic conditions and the underlying retention mechanism are discussed. The potential of IAM chromatography to model permeability and drug-membrane interactions as well as its use to estimate pharmacokinetic properties and toxicity endpoints including ecotoxicity, is outlined. Efforts to construct models for prediction IAM retention factors are presented. EXPERT OPINION IAM chromatography, as a border case between partitioning and binding, has broadened its application from permeability studies to encompass processes involving tissue binding. Most IAM-based permeability models are hybrid models incorporating additional molecular descriptors, while for the estimation of pharmacokinetic properties and binding to off targets, IAM retention is combined with other biomimetic properties. However, for its integration into routine drug discovery protocols, reliable IAM prediction models implemented in relevant software should be developed, to enable its use in virtual screening and the design of new molecules. Conversely, preparation of new IAM columns with different phospholipids or mixed monomers offers enhanced flexibility and the potential to tailor the conditions according to the target property.
Collapse
Affiliation(s)
- Fotios Tsopelas
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | | | - Anna Tsantili-Kakoulidou
- Department of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Rani A, Aslam M, Khan J, Pandey G, Singh P, Maharia RS, Nand B. Computational Insights into Chromene/pyran Derivatives: Molecular Docking, ADMET Studies, DFT Calculations, and MD Simulations as Promising Candidates for Parkinson's Disease. Chem Biodivers 2024; 21:e202400920. [PMID: 38818615 DOI: 10.1002/cbdv.202400920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative condition characterized by both motor and non-motor symptoms. Although PD is commonly associated with a decline of dopaminergic neurons in the substantia nigra, other diagnostic criteria and biomarkers also exist. In the search for novel therapeutic agents, chromene and pyran derivatives have shown potential due to their diverse pharmacological activities. This study utilizes a comprehensive computational approach to investigate the viability of chromene/pyran compounds as potential treatments for PD. The drug-likeness characteristics of these molecules were analyzed using ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) studies. Molecular docking was performed against PDB ID: 2V5Z. The best three molecules chosen were compound 7, compound 24, and compound 67 have a binding energy of -6.7, -8.6, and -10.9 kcal/mol. Molecules demonstrating positive blood-brain barrier permeability, good solubility, and favorable binding affinity were further evaluated using Density Functional Theory (DFT) calculations and Molecular Dynamics (MD) simulations to assess their electronic structure and stability. DFT calculations indicated that molecule 82 has a dipole moment of 15.70 D. RMSD and RMSF results confirmed the stability of the complexes over a 100 ns simulation, with a maximum of 3 hydrogen bonds formed.
Collapse
Affiliation(s)
- Anjali Rani
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, 110021, Delhi, India
- Department of Chemistry, SRM Institute of Science and Technology, Delhi-NCR Campus, 201204, Modinagar, Uttar Pradesh, India
| | - Mohd Aslam
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, 110021, Delhi, India
- Department of Chemistry, SRM Institute of Science and Technology, Delhi-NCR Campus, 201204, Modinagar, Uttar Pradesh, India
| | - Javed Khan
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, 110021, Delhi, India
- Department of Chemistry, SRM Institute of Science and Technology, Delhi-NCR Campus, 201204, Modinagar, Uttar Pradesh, India
| | - Garima Pandey
- Department of Chemistry, SRM Institute of Science and Technology, Delhi-NCR Campus, 201204, Modinagar, Uttar Pradesh, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, 110021, Delhi, India
| | - R S Maharia
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, 110021, Delhi, India
| | - Bhaskara Nand
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, 110021, Delhi, India
| |
Collapse
|
11
|
Pennington LD, Hesse MJ, Koester DC, McAtee RC, Qunies AM, Hu DX. Property-Based Drug Design Merits a Nobel Prize. J Med Chem 2024; 67:11452-11458. [PMID: 38940466 DOI: 10.1021/acs.jmedchem.4c01345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Affiliation(s)
| | | | | | - Rory C McAtee
- Drug Hunter, Happy Valley, Oregon 97086, United States
| | | | - Dennis X Hu
- Drug Hunter, Happy Valley, Oregon 97086, United States
| |
Collapse
|
12
|
Arav Y. Advances in Modeling Approaches for Oral Drug Delivery: Artificial Intelligence, Physiologically-Based Pharmacokinetics, and First-Principles Models. Pharmaceutics 2024; 16:978. [PMID: 39204323 PMCID: PMC11359797 DOI: 10.3390/pharmaceutics16080978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Oral drug absorption is the primary route for drug administration. However, this process hinges on multiple factors, including the drug's physicochemical properties, formulation characteristics, and gastrointestinal physiology. Given its intricacy and the exorbitant costs associated with experimentation, the trial-and-error method proves prohibitively expensive. Theoretical models have emerged as a cost-effective alternative by assimilating data from diverse experiments and theoretical considerations. These models fall into three categories: (i) data-driven models, encompassing classical pharmacokinetics, quantitative-structure models (QSAR), and machine/deep learning; (ii) mechanism-based models, which include quasi-equilibrium, steady-state, and physiologically-based pharmacokinetics models; and (iii) first principles models, including molecular dynamics and continuum models. This review provides an overview of recent modeling endeavors across these categories while evaluating their respective advantages and limitations. Additionally, a primer on partial differential equations and their numerical solutions is included in the appendix, recognizing their utility in modeling physiological systems despite their mathematical complexity limiting widespread application in this field.
Collapse
Affiliation(s)
- Yehuda Arav
- Department of Applied Mathematics, Israeli Institute for Biological Research, P.O. Box 19, Ness-Ziona 7410001, Israel
| |
Collapse
|
13
|
Sabat M, Carney DW, Hernandez-Torres G, Gibson TS, Balakrishna D, Zou H, Xu R, Chen CH, de Jong R, Dougan DR, Qin L, Bigi-Botterill SV, Chambers A, Miura J, Johnson LK, Ermolieff J, Johns D, Selimkhanov J, Kwok L, DeMent K, Proffitt C, Vu P, Lindsey EA, Ivetac T, Jennings A, Wang H, Manam P, Santos C, Fullenwider C, Manohar R, Flick AC. Design and Discovery of a Potent and Selective Inhibitor of Integrin αvβ1. J Med Chem 2024; 67:10306-10320. [PMID: 38872300 DOI: 10.1021/acs.jmedchem.4c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Selective inhibition of the RGD (Arg-Gly-Asp) integrin αvβ1 has been recently identified as an attractive therapeutic approach for the treatment of liver fibrosis given its function, target expression, and safety profile. Our identification of a non-RGD small molecule lead followed by focused, systematic changes to the core structure utilizing a crystal structure, in silico modeling, and a tractable synthetic approach resulted in the identification of a potent small molecule exhibiting a remarkable affinity for αvβ1 relative to several other integrin isoforms measured. Azabenzimidazolone 25 demonstrated antifibrotic efficacy in an in vivo rat liver fibrosis model and represents a tool compound capable of further exploring the biological consequences of selective αvβ1 inhibition.
Collapse
Affiliation(s)
- Mark Sabat
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Daniel W Carney
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Gloria Hernandez-Torres
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Tony S Gibson
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Deepika Balakrishna
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Hua Zou
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Rui Xu
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Chien-Hung Chen
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Ron de Jong
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Douglas R Dougan
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Ling Qin
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Simone V Bigi-Botterill
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Alison Chambers
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Joanne Miura
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Lucas K Johnson
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Jacques Ermolieff
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Deidre Johns
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Jangir Selimkhanov
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Lily Kwok
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Kevin DeMent
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Chris Proffitt
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Phong Vu
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Erick A Lindsey
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Tony Ivetac
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Andy Jennings
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Haixia Wang
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Padma Manam
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Cipriano Santos
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Cody Fullenwider
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Rohan Manohar
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| | - Andrew C Flick
- Gastroenterology Drug Discovery Unit, Takeda Development Center Americas, Inc., 9625 Towne Centre Dr., San Diego, California 92121 United States
| |
Collapse
|
14
|
Li H, Shee Y, Allen B, Maschietto F, Morgunov A, Batista V. Kernel-elastic autoencoder for molecular design. PNAS NEXUS 2024; 3:pgae168. [PMID: 38689710 PMCID: PMC11059255 DOI: 10.1093/pnasnexus/pgae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
We introduce the kernel-elastic autoencoder (KAE), a self-supervised generative model based on the transformer architecture with enhanced performance for molecular design. KAE employs two innovative loss functions: modified maximum mean discrepancy (m-MMD) and weighted reconstruction (L WCEL ). The m-MMD loss has significantly improved the generative performance of KAE when compared to using the traditional Kullback-Leibler loss of VAE, or standard maximum mean discrepancy. Including the weighted reconstruction loss L WCEL , KAE achieves valid generation and accurate reconstruction at the same time, allowing for generative behavior that is intermediate between VAE and autoencoder not available in existing generative approaches. Further advancements in KAE include its integration with conditional generation, setting a new state-of-the-art benchmark in constrained optimizations. Moreover, KAE has demonstrated its capability to generate molecules with favorable binding affinities in docking applications, as evidenced by AutoDock Vina and Glide scores, outperforming all existing candidates from the training dataset. Beyond molecular design, KAE holds promise to solve problems by generation across a broad spectrum of applications.
Collapse
Affiliation(s)
- Haote Li
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Yu Shee
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Brandon Allen
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | | | - Anton Morgunov
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Victor Batista
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
15
|
Dorel R, Sun D, Carruthers N, Castanedo GM, Ung PMU, Factor DC, Li T, Baumann H, Janota D, Pang J, Salphati L, Meklemburg R, Korman AJ, Harper HE, Stubblefield S, Payandeh J, McHugh D, Lang BT, Tesar PJ, Dere E, Masureel M, Adams DJ, Volgraf M, Braun MG. Discovery and Optimization of Selective Brain-Penetrant EBP Inhibitors that Enhance Oligodendrocyte Formation. J Med Chem 2024; 67:4819-4832. [PMID: 38470227 DOI: 10.1021/acs.jmedchem.3c02396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The inhibition of emopamil binding protein (EBP), a sterol isomerase within the cholesterol biosynthesis pathway, promotes oligodendrocyte formation, which has been proposed as a potential therapeutic approach for treating multiple sclerosis. Herein, we describe the discovery and optimization of brain-penetrant, orally bioavailable inhibitors of EBP. A structure-based drug design approach from literature compound 1 led to the discovery of a hydantoin-based scaffold, which provided balanced physicochemical properties and potency and an improved in vitro safety profile. The long half-lives of early hydantoin-based EBP inhibitors in rodents prompted an unconventional optimization strategy, focused on increasing metabolic turnover while maintaining potency and a brain-penetrant profile. The resulting EBP inhibitor 11 demonstrated strong in vivo target engagement in the brain, as illustrated by the accumulation of EBP substrate zymostenol after repeated dosing. Furthermore, compound 11 enhanced the formation of oligodendrocytes in human cortical organoids, providing additional support for our therapeutic hypothesis.
Collapse
Affiliation(s)
- Ruth Dorel
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Dawei Sun
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Nicholas Carruthers
- Convelo Therapeutics, 11000 Cedar Avenue, Cleveland, Ohio 44106, United States
| | | | - Peter M-U Ung
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel C Factor
- Convelo Therapeutics, 11000 Cedar Avenue, Cleveland, Ohio 44106, United States
| | - Tianbo Li
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Hannah Baumann
- Convelo Therapeutics, 11000 Cedar Avenue, Cleveland, Ohio 44106, United States
| | - Danielle Janota
- Convelo Therapeutics, 11000 Cedar Avenue, Cleveland, Ohio 44106, United States
| | - Jodie Pang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Laurent Salphati
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Robert Meklemburg
- Convelo Therapeutics, 11000 Cedar Avenue, Cleveland, Ohio 44106, United States
| | - Allison J Korman
- Convelo Therapeutics, 11000 Cedar Avenue, Cleveland, Ohio 44106, United States
| | - Halie E Harper
- Convelo Therapeutics, 11000 Cedar Avenue, Cleveland, Ohio 44106, United States
| | | | - Jian Payandeh
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel McHugh
- Convelo Therapeutics, 11000 Cedar Avenue, Cleveland, Ohio 44106, United States
| | - Bradley T Lang
- Convelo Therapeutics, 11000 Cedar Avenue, Cleveland, Ohio 44106, United States
| | - Paul J Tesar
- Convelo Therapeutics, 11000 Cedar Avenue, Cleveland, Ohio 44106, United States
| | - Edward Dere
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Matthieu Masureel
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Drew J Adams
- Convelo Therapeutics, 11000 Cedar Avenue, Cleveland, Ohio 44106, United States
| | - Matthew Volgraf
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | |
Collapse
|
16
|
Janicka M, Sztanke M, Sztanke K. Modeling the Blood-Brain Barrier Permeability of Potential Heterocyclic Drugs via Biomimetic IAM Chromatography Technique Combined with QSAR Methodology. Molecules 2024; 29:287. [PMID: 38257200 PMCID: PMC11154582 DOI: 10.3390/molecules29020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Penetration through the blood-brain barrier (BBB) is desirable in the case of potential pharmaceuticals acting on the central nervous system (CNS), but is undesirable in the case of drug candidates acting on the peripheral nervous system because it may cause CNS side effects. Therefore, modeling of the permeability across the blood-brain barrier (i.e., the logarithm of the brain to blood concentration ratio, log BB) of potential pharmaceuticals should be performed as early as possible in the preclinical phase of drug development. Biomimetic chromatography with immobilized artificial membrane (IAM) and the quantitative structure-activity relationship (QSAR) methodology were successful in modeling the blood-brain barrier permeability of 126 drug candidates, whose experimentally-derived lipophilicity indices and computationally-derived molecular descriptors (such as molecular weight (MW), number of rotatable bonds (NRB), number of hydrogen bond donors (HBD), number of hydrogen bond acceptors (HBA), topological polar surface area (TPSA), and polarizability (α)) varied by class. The QSARs model established by multiple linear regression showed a positive effect of the lipophilicity (log kw, IAM) and molecular weight of the compound, and a negative effect of the number of hydrogen bond donors and acceptors, on the log BB values. The model has been cross-validated, and all statistics indicate that it is very good and has high predictive ability. The simplicity of the developed model, and its usefulness in screening studies of novel drug candidates that are able to cross the BBB by passive diffusion, are emphasized.
Collapse
Affiliation(s)
- Małgorzata Janicka
- Department of Physical Chemistry, Faculty of Chemistry, Institute of Chemical Science, Maria Curie-Skłodowska University, 20-031 Lublin, Poland;
| | - Małgorzata Sztanke
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland;
| | - Krzysztof Sztanke
- Laboratory of Bioorganic Compounds Synthesis and Analysis, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| |
Collapse
|
17
|
Masand VH, Al-Hussain S, Alzahrani AY, El-Sayed NNE, Yeo CI, Tan YS, Zaki MEA. Leveraging nitrogen occurrence in approved drugs to identify structural patterns. Expert Opin Drug Discov 2024; 19:111-124. [PMID: 37811790 DOI: 10.1080/17460441.2023.2266990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND The process of drug development and discovery is costly and slow. Although an understanding of molecular design principles and biochemical processes has progressed, it is essential to minimize synthesis-testing cycles. An effective approach is to analyze key heteroatoms, including oxygen and nitrogen. Herein, we present an analysis focusing on the utilization of nitrogen atoms in approved drugs. RESEARCH DESIGN AND METHODS The present work examines the frequency, distribution, prevalence, and diversity of nitrogen atoms in a dataset comprising 2,049 small molecules approved by different regulatory agencies (FDA and others). Various types of nitrogen atoms, such as sp3-, sp2-, sp-hybridized, planar, ring, and non-ring are included in this investigation. RESULTS The results unveil both previously reported and newly discovered patterns of nitrogen atom distribution around the center of mass in the majority of drug molecules. CONCLUSIONS This study has highlighted intriguing trends in the role of nitrogen atoms in drug design and development. The majority of drugs contain 1-3 nitrogen atoms within 5Å from the center of mass (COM) of a molecule, with a higher preference for the ring and planar nitrogen atoms. The results offer invaluable guidance for the multiparameter optimization process, thus significantly contributing toward the conversion of lead compounds into potential drug candidates.
Collapse
Affiliation(s)
- Vijay H Masand
- Department of Chemistry, Vidya Bharati Mahavidyalaya, Amravati, India
| | - Sami Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Abdullah Y Alzahrani
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail Assir, Saudi Arabia
| | - Nahed N E El-Sayed
- National Organization for Drug Control and Research, Egyptian Drug Authority (EDA), Giza, Egypt
| | - Chien Ing Yeo
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Yee Seng Tan
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Komura H, Watanabe R, Mizuguchi K. The Trends and Future Prospective of In Silico Models from the Viewpoint of ADME Evaluation in Drug Discovery. Pharmaceutics 2023; 15:2619. [PMID: 38004597 PMCID: PMC10675155 DOI: 10.3390/pharmaceutics15112619] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Drug discovery and development are aimed at identifying new chemical molecular entities (NCEs) with desirable pharmacokinetic profiles for high therapeutic efficacy. The plasma concentrations of NCEs are a biomarker of their efficacy and are governed by pharmacokinetic processes such as absorption, distribution, metabolism, and excretion (ADME). Poor ADME properties of NCEs are a major cause of attrition in drug development. ADME screening is used to identify and optimize lead compounds in the drug discovery process. Computational models predicting ADME properties have been developed with evolving model-building technologies from a simplified relationship between ADME endpoints and physicochemical properties to machine learning, including support vector machines, random forests, and convolution neural networks. Recently, in the field of in silico ADME research, there has been a shift toward evaluating the in vivo parameters or plasma concentrations of NCEs instead of using predictive results to guide chemical structure design. Another research hotspot is the establishment of a computational prediction platform to strengthen academic drug discovery. Bioinformatics projects have produced a series of in silico ADME models using free software and open-access databases. In this review, we introduce prediction models for various ADME parameters and discuss the currently available academic drug discovery platforms.
Collapse
Affiliation(s)
- Hiroshi Komura
- University Research Administration Center, Osaka Metropolitan University, 1-2-7 Asahimachi, Abeno-ku, Osaka 545-0051, Osaka, Japan
| | - Reiko Watanabe
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Osaka, Japan; (R.W.); (K.M.)
- Artificial Intelligence Centre for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), 3-17 Senrioka-shinmachi, Settu 566-0002, Osaka, Japan
| | - Kenji Mizuguchi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Osaka, Japan; (R.W.); (K.M.)
- Artificial Intelligence Centre for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), 3-17 Senrioka-shinmachi, Settu 566-0002, Osaka, Japan
| |
Collapse
|
19
|
Caminero Gomes Soares A, Marques Sousa GH, Calil RL, Goulart Trossini GH. Absorption matters: A closer look at popular oral bioavailability rules for drug approvals. Mol Inform 2023; 42:e202300115. [PMID: 37550251 DOI: 10.1002/minf.202300115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/10/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
This study examines how two popular drug-likeness concepts used in early development, Lipinski Rule of Five (Ro5) and Veber's Rules, possibly affected drug profiles of FDA approved drugs since 1997. Our findings suggest that when all criteria are applied, relevant compounds may be excluded, addressing the harmfulness of blindly employing these rules. Of all oral drugs in the period used for this analysis, around 66 % conform to the RO5 and 85 % to Veber's Rules. Molecular Weight and calculated LogP showed low consistent values over time, apart from being the two least followed rules, challenging their relevance. On the other hand, hydrogen bond related rules and the number of rotatable bonds are amongst the most followed criteria and show exceptional consistency over time. Furthermore, our analysis indicates that topological polar surface area and total count of hydrogen bonds cannot be used as interchangeable parameters, contrary to the original proposal. This research enhances the comprehension of drug profiles that were FDA approved in the post-Lipinski period. Medicinal chemists could utilize these heuristics as a limited guide to direct their exploration of the oral bioavailability chemical space, but they must also steer the wheel to break these rules and explore different regions when necessary.
Collapse
Affiliation(s)
- Artur Caminero Gomes Soares
- School of Pharmaceutical Sciences, University of São Paulo, Department of Pharmacy, Laboratório de Integração entre Técnicas Experimentais e Computacionais (LITEC), Av. Prof. Lineu Prestes, 580, São Paulo, SP, Brazil
| | - Gustavo Henrique Marques Sousa
- School of Pharmaceutical Sciences, University of São Paulo, Department of Pharmacy, Laboratório de Integração entre Técnicas Experimentais e Computacionais (LITEC), Av. Prof. Lineu Prestes, 580, São Paulo, SP, Brazil
| | - Raisa Ludmila Calil
- School of Pharmaceutical Sciences, University of São Paulo, Department of Pharmacy, Laboratório de Integração entre Técnicas Experimentais e Computacionais (LITEC), Av. Prof. Lineu Prestes, 580, São Paulo, SP, Brazil
| | - Gustavo Henrique Goulart Trossini
- School of Pharmaceutical Sciences, University of São Paulo, Department of Pharmacy, Laboratório de Integração entre Técnicas Experimentais e Computacionais (LITEC), Av. Prof. Lineu Prestes, 580, São Paulo, SP, Brazil
| |
Collapse
|
20
|
Ikenuma H, Ogata A, Koyama H, Ji B, Ishii H, Yamada T, Abe J, Seki C, Nagai Y, Ichise M, Minamimoto T, Higuchi M, Zhang MR, Kato T, Ito K, Suzuki M, Kimura Y. Synthesis and evaluation of a novel PET ligand, a GSK'963 analog, aiming at autoradiography and imaging of the receptor interacting protein kinase 1 in the brain. EJNMMI Radiopharm Chem 2023; 8:31. [PMID: 37853253 PMCID: PMC10584749 DOI: 10.1186/s41181-023-00217-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Receptor interacting protein kinase 1 (RIPK1) is a serine/threonine kinase, which regulates programmed cell death and inflammation. Recently, the involvement of RIPK1 in the pathophysiology of Alzheimer's disease (AD) has been reported; RIPK1 is involved in microglia's phenotypic transition to their dysfunctional states, and it is highly expressed in the neurons and microglia in the postmortem brains in AD patients. They prompt neurodegeneration leading to accumulations of pathological proteins in AD. Therefore, regulation of RIPK1 could be a potential therapeutic target for the treatment of AD, and in vivo imaging of RIPK1 may become a useful modality in studies of drug discovery and pathophysiology of AD. The purpose of this study was to develop a suitable radioligand for positron emission tomography (PET) imaging of RIPK1. RESULTS (S)-2,2-dimethyl-1-(5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)propan-1-one (GSK'963) has a high affinity, selectivity for RIPK1, and favorable physiochemical properties based on its chemical structure. In this study, since 11C-labeling (half-life: 20.4 min) GSK'963 retaining its structure requiring the Grignard reaction of tert-butylmagnesium halides and [11C]carbon dioxide was anticipated to give a low yield, we decided instead to 11C-label a GSK'963 analog ((S)-2,2-dimethyl-1-(5-(m-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)propan-1-one, GG502), which has a high RIPK1 inhibitory activity equivalent to that of the original compound GSK'963. Thus, we successfully 11C-labeled GG502 using a Pd-mediated cross-coupling reaction in favorable yields (3.6 ± 1.9%) and radiochemical purities (> 96%), and molar activity (47-115 GBq/μmol). On autoradiography, radioactivity accumulation was observed for [11C]GG502 and decreased by non-radioactive GG502 in the mouse spleen and human brain, indicating the possibility of specific binding of this ligand to RIPK1. On brain PET imaging in a rhesus monkey, [11C]GG502 showed a good brain permeability (peak standardized uptake value (SUV) ~3.0), although there was no clear evidence of specific binding of [11C]GG502. On brain PET imaging in acute inflammation model rats, [11C]GG502 also showed a good brain permeability, and no significant increased uptake was observed in the lipopolysaccharide-treated side of striatum. On metabolite analysis in rats at 30 min after administration of [11C]GG502, ~55% and ~10% of radioactivity was from unmetabolized [11C]GG502 in the brain and the plasma, respectively. CONCLUSIONS We synthesized and evaluated a 11C-labeled PET ligand based on the methylated analog of GSK'963 for imaging of RIPK1 in the brain. Although in autoradiography of the resulting [11C]GG502 indicated the possibility of specific binding, the actual PET imaging failed to detect any evidence of specific binding to RIPK1 despite its good brain permeability. Further development of radioligands with a higher binding affinity for RIPK1 in vivo and more stable metabolite profiles compared with the current compound may be required.
Collapse
Affiliation(s)
- Hiroshi Ikenuma
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Aya Ogata
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
- Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science (GUMS), Kani, Japan
| | - Hiroko Koyama
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Bin Ji
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Hideki Ishii
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Takashi Yamada
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Junichiro Abe
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Chie Seki
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Yuji Nagai
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Masanori Ichise
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Takashi Kato
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Kengo Ito
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Masaaki Suzuki
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Yasuyuki Kimura
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan.
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology (QST), Chiba, Japan.
| |
Collapse
|
21
|
Zhai J, Man VH, Ji B, Cai L, Wang J. Comparison and summary of in silico prediction tools for CYP450-mediated drug metabolism. Drug Discov Today 2023; 28:103728. [PMID: 37517604 PMCID: PMC10543639 DOI: 10.1016/j.drudis.2023.103728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
The cytochrome P450 (CYP450) enzyme system is responsible for the metabolism of more than two-thirds of xenobiotics. This review summarizes reports of a series of in silico tools for CYP450 enzyme-drug interaction predictions, including the prediction of sites of metabolism (SOM) of a drug and the identification of inhibitor/substrates for CYP subtypes. We also evaluated four prediction tools to identify CYP inhibitors utilizing 52 of the most frequently prescribed drugs. ADMET Predictor and CYPlebrity demonstrated the best performance. We hope that this review provides guidance for choosing appropriate enzyme prediction tools from a variety of in silico platforms to meet individual needs. Such predictions are useful for medicinal chemists to prioritize their designed compounds for further drug discovery.
Collapse
Affiliation(s)
- Jingchen Zhai
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Viet Hoang Man
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Beihong Ji
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lianjin Cai
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
22
|
Gruber N, Fernández-Canigia L, Kilimciler NB, Stipa P, Bisceglia JA, García MB, Gonzalez Maglio DH, Paz ML, Orelli LR. Amidinoquinoxaline N-oxides: synthesis and activity against anaerobic bacteria. RSC Adv 2023; 13:27391-27402. [PMID: 37711381 PMCID: PMC10498151 DOI: 10.1039/d3ra01184d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/20/2023] [Indexed: 09/16/2023] Open
Abstract
We present herein an in-depth study on the activity of amidinoquinoxaline N-oxides 1 against Gram-positive and Gram-negative anaerobic bacteria. Based on 5-phenyl-2,3-dihydropyrimidoquinoxaline N-oxide 1a, the selected structural variations included in our study comprise the substituents α- to the N-oxide function, the benzofused ring, substitution and quaternization of the amidine moiety, and the amidine ring size. Compounds 1 showed good to excellent antianaerobic activity, evaluated as the corresponding CIM50 and CIM90 values, and an antimicrobial spectrum similar to metronidazole. Six out of 13 compounds 1 had CIM90 values significantly lower than the reference drug. Among them, imidazoline derivatives 1i-l were the most active structures. Such compounds were synthesized by base-promoted ring closure of the corresponding amidines. The N-oxides under study showed no significant cytotoxicity against RAW 264.7 cells, with high selectivity indexes. Their calculated ADME properties indicate that the compounds are potentially good oral drug candidates. The antianaerobic activity correlated satisfactorily with the electron affinity of the compounds, suggesting that they may undergo bioreductive activation before exerting their antibacterial activity.
Collapse
Affiliation(s)
- Nadia Gruber
- Universidad de Buenos Aires, CONICET, Química Orgánica II, Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica Junín 956 (1113) Buenos Aires Argentina
| | | | - Natalia B Kilimciler
- Universidad de Buenos Aires, CONICET, Química Orgánica II, Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica Junín 956 (1113) Buenos Aires Argentina
| | - Pierluigi Stipa
- SIMAU Departament - Chemistry Division, Università Politecnica delle Marche Via Brecce Bianche 12 Ancona (I-60131) Italy
| | - Juan A Bisceglia
- Universidad de Buenos Aires, CONICET, Química Orgánica II, Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica Junín 956 (1113) Buenos Aires Argentina
| | - María B García
- Universidad de Buenos Aires, CONICET, Química Orgánica II, Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica Junín 956 (1113) Buenos Aires Argentina
| | - Daniel H Gonzalez Maglio
- Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Cátedra de Inmunología, Facultad de Farmacia y Bioquímica Junín 956 (1113) Buenos Aires Argentina
| | - Mariela L Paz
- Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Cátedra de Inmunología, Facultad de Farmacia y Bioquímica Junín 956 (1113) Buenos Aires Argentina
| | - Liliana R Orelli
- Universidad de Buenos Aires, CONICET, Química Orgánica II, Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica Junín 956 (1113) Buenos Aires Argentina
| |
Collapse
|
23
|
Dichiara M, Simpson QJ, Quotadamo A, Jalani HB, Huang AX, Millard CC, Klug DM, Tse EG, Todd MH, Silva DG, da Silva Emery F, Carlson JE, Zheng SL, Vleminckx M, Matheeussen A, Caljon G, Pollastri MP, Sjö P, Perry B, Ferrins L. Structure-Property Optimization of a Series of Imidazopyridines for Visceral Leishmaniasis. ACS Infect Dis 2023; 9:1470-1487. [PMID: 37417544 PMCID: PMC10425983 DOI: 10.1021/acsinfecdis.3c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Indexed: 07/08/2023]
Abstract
Leishmaniasis is a collection of diseases caused by more than 20 Leishmania parasite species that manifest as either visceral, cutaneous, or mucocutaneous leishmaniasis. Despite the significant mortality and morbidity associated with leishmaniasis, it remains a neglected tropical disease. Existing treatments have variable efficacy, significant toxicity, rising resistance, and limited oral bioavailability, which necessitates the development of novel and affordable therapeutics. Here, we report on the continued optimization of a series of imidazopyridines for visceral leishmaniasis and a scaffold hop to a series of substituted 2-(pyridin-2-yl)-6,7-dihydro-5H-pyrrolo[1,2-a]imidazoles with improved absorption, distribution, metabolism, and elimination properties.
Collapse
Affiliation(s)
- Maria Dichiara
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Quillon J. Simpson
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Antonio Quotadamo
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Hitesh B. Jalani
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Anson X. Huang
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Caroline C. Millard
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Dana M. Klug
- School
of Pharmacy, University College London, London WC1N 1AX, U.K.
| | - Edwin G. Tse
- School
of Pharmacy, University College London, London WC1N 1AX, U.K.
| | - Matthew H. Todd
- School
of Pharmacy, University College London, London WC1N 1AX, U.K.
| | - Daniel Gedder Silva
- School
of Pharmacy, University College London, London WC1N 1AX, U.K.
- School of
Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Flavio da Silva Emery
- School of
Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - J. Eric Carlson
- Rilas
Technologies, Inc, 150-W
New Boston Street, Woburn, Massachusetts 01801, United States
| | - Shao-Liang Zheng
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Margot Vleminckx
- Laboratory
of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium
| | - An Matheeussen
- Laboratory
of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium
| | - Guy Caljon
- Laboratory
of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium
| | - Michael P. Pollastri
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Peter Sjö
- Drugs
for Neglected Diseases Initiative, 15 Chemin Camille Vidart, Geneva 1202, Switzerland
| | - Benjamin Perry
- Drugs
for Neglected Diseases Initiative, 15 Chemin Camille Vidart, Geneva 1202, Switzerland
| | - Lori Ferrins
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| |
Collapse
|
24
|
Di L. Recent advances in measurement of metabolic clearance, metabolite profile and reaction phenotyping of low clearance compounds. Expert Opin Drug Discov 2023; 18:1209-1219. [PMID: 37526497 DOI: 10.1080/17460441.2023.2238606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
INTRODUCTION Low metabolic clearance is usually a highly desirable property of drug candidates in order to reduce dose and dosing frequency. However, measurement of low clearance can be challenging in drug discovery. A number of new tools have recently been developed to address the gaps in the measurement of intrinsic clearance, identification of metabolites, and reaction phenotyping of low clearance compounds. AREAS COVERED The new methodologies of low clearance measurements are discussed, including the hepatocyte relay, HepatoPac®, HμREL®, and spheroid systems. In addition, metabolite formation rate determination and in vivo allometric scaling approaches are covered as alternative methods for low clearance measurements. With these new methods, measurement of ~ 20-fold lower limit of intrinsic clearance can be achieved. The advantages and limitations of each approach are highlighted. EXPERT OPINION Although several novel methods have been developed in recent years to address the challenges of low clearance, these assays tend to be time and labor intensive and costly. Future innovations focusing on developing systems with high enzymatic activities, ultra-sensitive universal quantifiable detectors, and artificial intelligence will further enhance our ability to explore the low clearance space.
Collapse
Affiliation(s)
- Li Di
- Research Fellow, Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT, USA
| |
Collapse
|
25
|
Yuan D, Liu S, Li S, Liu R, Zhu X. Design, Synthesis and Biological Evaluation of 7-Substituted-1,3-diaminopyrrol[3,2-f]quinazolines as Potential Antibacterial Agents. ChemMedChem 2023; 18:e202300078. [PMID: 37017005 DOI: 10.1002/cmdc.202300078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/06/2023]
Abstract
The evolution of drug-resistant bacteria poses a serious threat to public health; hence, it is imperative to develop new and efficient antibiotics. Irresistin-16 (IRS-16) is a dual-target antibacterial candidate that affects folate biosynthesis and membrane integrity and exhibits potent lethality against various bacteria. In this study, a series of 1,3-diamino-7H-pyrrol[3,2-f]quinazoline (DAPQ) derivatives based on IRS-16 was designed and synthesized to identify outstanding antibacterial candidates. The most promising compound, 7-(4-(4-methylpiperazin-1-yl) benzyl)-7H-pyrrol[3,2-f] quinazoline-1,3-diamine (18 e), displayed excellent antibacterial activity against both gram-positive and gram-negative bacteria (minimum inhibitory concentrations=1-4 μg/mL), improved water solubility, poor hemolytic activity and low cytotoxicity. Compound 18 e exhibited rapid bactericidal properties and prevented bacterial resistance in laboratory simulations. These results provide a basis for the development of new DAPQ-based compounds to combat emerging bacterial resistance.
Collapse
Affiliation(s)
- Duo Yuan
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Shangde Liu
- School of Pharmacy, Tsinghua University, Beijing, 100084, China
| | - Shanshan Li
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Rongrong Liu
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiong Zhu
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
26
|
Tess D, Chang GC, Keefer C, Carlo A, Jones R, Di L. In Vitro-In Vivo Extrapolation and Scaling Factors for Clearance of Human and Preclinical Species with Liver Microsomes and Hepatocytes. AAPS J 2023; 25:40. [PMID: 37052732 DOI: 10.1208/s12248-023-00800-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/03/2023] [Indexed: 04/14/2023] Open
Abstract
In vitro-in vivo extrapolation ((IVIVE) and empirical scaling factors (SF) of human intrinsic clearance (CLint) were developed using one of the largest dataset of 455 compounds with data from human liver microsomes (HLM) and human hepatocytes (HHEP). For extended clearance classification system (ECCS) class 2/4 compounds, linear SFs (SFlin) are approximately 1, suggesting enzyme activities in HLM and HHEP are similar to those in vivo under physiological conditions. For ECCS class 1A/1B compounds, a unified set of SFs was developed for CLint. These SFs contain both SFlin and an exponential SF (SFβ) of fraction unbound in plasma (fu,p). The unified SFs for class 1A/1B eliminate the need to identify the transporters involved prior to clearance prediction. The underlying mechanisms of these SFs are not entirely clear at this point, but they serve practical purposes to reduce biases and increase prediction accuracy. Similar SFs have also been developed for preclinical species. For HLM-HHEP disconnect (HLM > HHEP) ECCS class 2/4 compounds that are mainly metabolized by cytochrome P450s/FMO, HLM significantly overpredicted in vivo CLint, while HHEP slightly underpredicted and geometric mean of HLM and HHEP slightly overpredicted in vivo CLint. This observation is different than in rats, where rat liver microsomal CLint correlates well with in vivo CLint for compounds demonstrating permeability-limited metabolism. The good CLint IVIVE developed using HLM and HHEP helps build confidence for prospective predictions of human clearance and supports the continued utilization of these assays to guide structure-activity relationships to improve metabolic stability.
Collapse
Affiliation(s)
- David Tess
- Modeling and Simulation, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - George C Chang
- Modeling and Simulation, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Christopher Keefer
- Modeling and Simulation, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Anthony Carlo
- Discovery Sciences, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Rhys Jones
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, La Jolla, CA, USA
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT, 06340, USA.
| |
Collapse
|
27
|
Liu X, Zhao L, Wu B, Chen F. Improving solubility of poorly water-soluble drugs by protein-based strategy: A review. Int J Pharm 2023; 634:122704. [PMID: 36758883 DOI: 10.1016/j.ijpharm.2023.122704] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Poorly water-soluble drugs are frequently encountered and present a most challengeable difficulty in pharmaceutical development. Poor solubility of drugs can lead to suboptimal bioavailability and therapeutic efficiency. Increasing efforts have been contributed to improve the solubility of poorly water-soluble drugs for better pharmacokinetics and pharmacodynamics. Among various solubility enhancement technologies, protein-based strategy to address poorly water-soluble drugs issues has special interests for natural advantages including versatile interactions between proteins and hydrophobic drugs, biocompatibility, biodegradation, and metabolization of proteins. The protein-drug formulations could be formed by covalent conjugations or noncovalent interactions to facilitate solubility of poorly water-soluble drugs. This review is to summarize the advances using proteins including plant proteins, mammalian proteins, and recombinant proteins, to enhance water solubility of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Xiaowen Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China; Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai 200433, China.
| | - Limin Zhao
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China; Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai 200433, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China; Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai 200433, China.
| |
Collapse
|
28
|
Chauhan M, Dhar ZA, Gorki V, Sharma S, Koul A, Bala S, Kaur R, Kaur S, Sharma M, Dhingra N. Exploration of anticancer potential of Lantadenes from weed Lantana camara: Synthesis, in silico, in vitro and in vivo studies. PHYTOCHEMISTRY 2023; 206:113525. [PMID: 36442578 DOI: 10.1016/j.phytochem.2022.113525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
Naturally occurring pentacyclic triterpenoids and their semisynthetic analogues have engrossed increasing attention for their anticancer potential and exhibiting promising role in discovery of new anticancer agents. Present study include the semi synthetic modifications of Lantadenes from the weed Lantana carama and their structures delineation by FT-IR, 1H-NMR, 13C-NMR & mass spectroscopy. All the compounds were scrutinized for in vitro cytotoxicity, ligand receptor interaction and in vivo anticancer studies. Most of the novel analogues displayed potent antiproliferative activity against A375 & A431 cancer cell lines and found superior to parent Lantadenes. In particular, 3β-(4-Methoxybenzoyloxy)-22β-senecioyloxy-olean-12-en-28-oic acid was found to be most suitable compound, with IC50 value of 3.027 μM aganist A375 cell line having least docking score (-69.40 kcal/mol). Promising anticancer potential of the lead was further indicated by significant reduction in tumor volume and burden in two stage carcinoma model. These findings suggests that the Lantadene derivatives may hold promising potential for the intervention of skin cancers.
Collapse
Affiliation(s)
- Monika Chauhan
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India; School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, 248007, India.
| | - Zahid Ahmad Dhar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Varun Gorki
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Sonia Sharma
- Department Cum National Centre for Human Genome Studies and Research, Punjab University, Chandigarh, 160014, India
| | - Ashwani Koul
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Shashi Bala
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Ramandeep Kaur
- Department Cum National Centre for Human Genome Studies and Research, Punjab University, Chandigarh, 160014, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Manu Sharma
- National Forensic Science University, Delhi Campus, India
| | - Neelima Dhingra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
29
|
Tian D, Yang Y, Zhang H, Du H, Zhou H, Wang T. Comparison of Ussing Chamber and Caco-2 Model in Evaluation of Intestinal Absorption Mechanism of Compounds from Different BCS Classifications. DRUG METABOLISM AND BIOANALYSIS LETTERS 2023; 16:105-112. [PMID: 37711012 DOI: 10.2174/2949681016666230913105920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/06/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Oral bioavailability (F), which is evaluated by permeability and solubility, is one of the key parameters in drug discovery. Currently, Caco-2 and Ussing chamber are both used in the study of intestinal permeability of drugs at different stages of drug development. However, comparative research between the Ussing chamber and Caco-2 for predicting the intestinal availability data (Fa×Fg) in humans has not been reported. METHODS In the present study, we evaluated the permeability of 22 drugs in rat intestines by Ussing chamber and compared them with the reported permeability data from Caco-2. In addition, the active transport of gabapentin was evaluated by Ussing Chamber. RESULTS Intestine segments were selected by corresponding absorption site for Ussing chamber analysis. BCS Class I and II compounds were more absorbed in the duodenum and jejunum, and Class III and IV compounds were more absorbed in the ileum. Papp values in the Caco-2 model were moderately correlated with human Fa×Fg (R2=0.722), and the Papp of the rat in the Ussing chamber revealed a better correlation with human Fa×Fg (R2=0.952). In addition, we also used the Ussing chamber to identify the transporter of gabapentin, and the results showed that the active absorption of gabapentin was related to LAT1. CONCLUSION Ussing chamber combined with rat intestinal tissue would be a significant tool for predicting the intestinal absorption and metabolism of compounds with diverse physiochemical characteristics.
Collapse
Affiliation(s)
- Dong Tian
- Department of Drug Metabolism and Pharmacokinetics (DMPK), Pharmaron Beijing Co., Ltd., Beijing, 100176, China
| | - Yingxin Yang
- Department of Drug Metabolism and Pharmacokinetics (DMPK), Pharmaron Beijing Co., Ltd., Beijing, 100176, China
| | - Huiying Zhang
- Department of Drug Metabolism and Pharmacokinetics (DMPK), Pharmaron Beijing Co., Ltd., Beijing, 100176, China
| | - Hongwen Du
- Department of Drug Metabolism and Pharmacokinetics (DMPK), Pharmaron Beijing Co., Ltd., Beijing, 100176, China
| | - Hongyu Zhou
- Department of Drug Metabolism and Pharmacokinetics (DMPK), Pharmaron Beijing Co., Ltd., Beijing, 100176, China
| | - Tao Wang
- Department of Drug Metabolism and Pharmacokinetics (DMPK), Pharmaron Beijing Co., Ltd., Beijing, 100176, China
| |
Collapse
|
30
|
Okafor SN, Angsantikul P, Ahmed H. Discovery of Novel HIV Protease Inhibitors Using Modern Computational Techniques. Int J Mol Sci 2022; 23:12149. [PMID: 36293006 PMCID: PMC9603388 DOI: 10.3390/ijms232012149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/13/2022] [Accepted: 10/01/2022] [Indexed: 09/10/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) has continued to be a global concern. With the new HIV incidence, the emergence of multi-drug resistance and the untoward side effects of currently used anti-HIV drugs, there is an urgent need to discover more efficient anti-HIV drugs. Modern computational tools have played vital roles in facilitating the drug discovery process. This research focuses on a pharmacophore-based similarity search to screen 111,566,735 unique compounds in the PubChem database to discover novel HIV-1 protease inhibitors (PIs). We used an in silico approach involving a 3D-similarity search, physicochemical and ADMET evaluations, HIV protease-inhibitor prediction (IC50/percent inhibition), rigid receptor-molecular docking studies, binding free energy calculations and molecular dynamics (MD) simulations. The 10 FDA-approved HIV PIs (saquinavir, lopinavir, ritonavir, amprenavir, fosamprenavir, atazanavir, nelfinavir, darunavir, tipranavir and indinavir) were used as reference. The in silico analysis revealed that fourteen out of the twenty-eight selected optimized hit molecules were within the acceptable range of all the parameters investigated. The hit molecules demonstrated significant binding affinity to the HIV protease (PR) when compared to the reference drugs. The important amino acid residues involved in hydrogen bonding and п-п stacked interactions include ASP25, GLY27, ASP29, ASP30 and ILE50. These interactions help to stabilize the optimized hit molecules in the active binding site of the HIV-1 PR (PDB ID: 2Q5K). HPS/002 and HPS/004 have been found to be most promising in terms of IC50/percent inhibition (90.15%) of HIV-1 PR, in addition to their drug metabolism and safety profile. These hit candidates should be investigated further as possible HIV-1 PIs with improved efficacy and low toxicity through in vitro experiments and clinical trial investigations.
Collapse
Affiliation(s)
- Sunday N. Okafor
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 41001, Nigeria
| | | | - Hashim Ahmed
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| |
Collapse
|
31
|
The key new techniques in the medicinal chemist's toolkit to prioritize solubility during drug design. Future Med Chem 2022; 14:1421-1424. [PMID: 36165807 DOI: 10.4155/fmc-2022-0225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Ramalingam A, Mustafa N, Chng WJ, Medimagh M, Sambandam S, Issaoui N. 3-Chloro-3-methyl-2,6-diarylpiperidin-4-ones as Anti-Cancer Agents: Synthesis, Biological Evaluation, Molecular Docking, and In Silico ADMET Prediction. Biomolecules 2022; 12:1093. [PMID: 36008987 PMCID: PMC9406097 DOI: 10.3390/biom12081093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 01/18/2023] Open
Abstract
Piperidine pharmacophore-containing compounds have demonstrated therapeutic efficacy against a range of diseases and are now being investigated in cancer. A series of 3-chloro-3-methyl-2,6-diarylpiperidin-4-ones, compounds (I-V) were designed and synthesized for their evaluation as a potential anti-cancer agent. Compounds II and IV reduced the growth of numerous hematological cancer cell lines while simultaneously increasing the mRNA expression of apoptosis-promoting genes, p53 and Bax. Molecular docking analyses confirmed that compounds can bind to 6FS1, 6FSO (myeloma), 6TJU (leukemia), 5N21, and 1OLL (NKTL). Computational ADMET research confirmed the essential physicochemical, pharmacokinetic, and drug-like characteristics of compounds (I-V). The results revealed that these compounds interact efficiently with active site residues and that compounds (II) and (V) can be further evaluated as potential therapeutic candidates.
Collapse
Affiliation(s)
- Arulraj Ramalingam
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Nurulhuda Mustafa
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Wee Joo Chng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore 119228, Singapore
| | - Mouna Medimagh
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia
| | - Sivakumar Sambandam
- Research and Development Centre, Bharathiar University, Coimbatore 641046, India
- BPJ College of Arts and Science, Kozhai, Srimushnam 608703, India
| | - Noureddine Issaoui
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia
| |
Collapse
|
33
|
Ramalingam A, Mustafa N, Chng WJ, Medimagh M, Sambandam S, Issaoui N. 3-Chloro-3-methyl-2,6-diarylpiperidin-4-ones as Anti-Cancer Agents: Synthesis, Biological Evaluation, Molecular Docking, and In Silico ADMET Prediction. Biomolecules 2022. [DOI: doi.org/10.3390/biom12081093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Piperidine pharmacophore-containing compounds have demonstrated therapeutic efficacy against a range of diseases and are now being investigated in cancer. A series of 3-chloro-3-methyl-2,6-diarylpiperidin-4-ones, compounds (I–V) were designed and synthesized for their evaluation as a potential anti-cancer agent. Compounds II and IV reduced the growth of numerous hematological cancer cell lines while simultaneously increasing the mRNA expression of apoptosis-promoting genes, p53 and Bax. Molecular docking analyses confirmed that compounds can bind to 6FS1, 6FSO (myeloma), 6TJU (leukemia), 5N21, and 1OLL (NKTL). Computational ADMET research confirmed the essential physicochemical, pharmacokinetic, and drug-like characteristics of compounds (I–V). The results revealed that these compounds interact efficiently with active site residues and that compounds (II) and (V) can be further evaluated as potential therapeutic candidates.
Collapse
|
34
|
Li X, Tang J, Mao Y. Incidence and risk factors of drug-induced liver injury. Liver Int 2022; 42:1999-2014. [PMID: 35353431 DOI: 10.1111/liv.15262] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/08/2022] [Accepted: 03/26/2022] [Indexed: 12/17/2022]
Abstract
The epidemiology and aetiology of drug-induced liver injury (DILI) vary across different countries and populations. Overall, DILI is rare in the general population but has become more prevalent in hospitalized patients, especially among patients with unexplained liver conditions. In addition, drugs implicated in DILI differ between Western and Eastern countries. Antibiotics are the leading drugs implicated in DILI in the West, whereas traditional Chinese medicine is the primary cause implicated in DILI in the East. The incidence of herbal and dietary supplements-induced hepatotoxicity is increasing globally. Several genetic and nongenetic risk factors associated with DILI have been described in the literature; however, there are no confirmed risk factors for all-cause DILI. Some factors may contribute to the risk of DILI in a drug-specific manner.
Collapse
Affiliation(s)
- Xiaoyun Li
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jieting Tang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yimin Mao
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
35
|
Kwon D, Zhang Z, Zeisler J, Kuo HT, Lin KS, Benard F. Reducing the Kidney Uptake of High Contrast CXCR4 PET Imaging Agents via Linker Modifications. Pharmaceutics 2022; 14:pharmaceutics14071502. [PMID: 35890397 PMCID: PMC9316317 DOI: 10.3390/pharmaceutics14071502] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023] Open
Abstract
Purpose: The C-X-C chemokine receptor 4 (CXCR4) is highly expressed in many subtypes of cancers, notably in several kidney-based malignancies. We synthesized, labeled, and assessed a series of radiotracers based on a previous high contrast PET imaging radiopharmaceutical [68Ga]Ga-BL02, with modifications to its linker and metal chelator, in order to improve its tumor-to-kidney contrast ratio. Methods: Based on the design of BL02, a piperidine-based cationic linker (BL06) and several anionic linkers (tri-Aad (BL17); tri-D-Glu (BL20); tri-Asp (BL25); and tri-cysteic acid (BL31)) were substituted for the triglutamate linker. Additionally, the DOTA chelator was swapped for a DOTAGA chelator (BL30). Each radiotracer was labeled with 68Ga and evaluated in CXCR4-expressing Daudi xenograft mice with biodistribution and/or PET imaging studies. Results: Of all the evaluated radiotracers, [68Ga]Ga-BL31 showed the most promising biodistribution profile, with a lower kidney uptake compared to [68Ga]Ga-BL02, while retaining the high imaging contrast capabilities of [68Ga]Ga-BL02. [68Ga]Ga-BL31 also compared favorably to [68Ga]Ga-Pentixafor, with superior imaging contrast in all non-target organs. The other anionic linker-based radiotracers showed either equivocal or worse contrast ratios compared to [68Ga]Ga-BL02; however, [68Ga]Ga-BL25 also showed lower kidney uptake, as compared to that of [68Ga]Ga-BL02. Meanwhile, [68Ga]Ga-BL06 had high non-target organ uptake and relatively lower tumor uptake, while [68Ga]Ga-BL30 showed significantly increased kidney uptake and similar tumor uptake values. Conclusions: [68Ga]Ga-BL31 is an optimized CXCR4-targeting radiopharmaceutical with lower kidney retention that has clinical potential for PET imaging and radioligand therapy.
Collapse
Affiliation(s)
- Daniel Kwon
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (Z.Z.); (J.Z.); (H.-T.K.); (K.-S.L.)
| | - Zhengxing Zhang
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (Z.Z.); (J.Z.); (H.-T.K.); (K.-S.L.)
| | - Jutta Zeisler
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (Z.Z.); (J.Z.); (H.-T.K.); (K.-S.L.)
| | - Hsiou-Ting Kuo
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (Z.Z.); (J.Z.); (H.-T.K.); (K.-S.L.)
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (Z.Z.); (J.Z.); (H.-T.K.); (K.-S.L.)
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Francois Benard
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (Z.Z.); (J.Z.); (H.-T.K.); (K.-S.L.)
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Correspondence: ; Tel.: +1-604-675-8206
| |
Collapse
|
36
|
Guan C, Yang Y, Tian D, Jiang Z, Zhang H, Li Y, Yan J, Zhang C, Chen C, Zhang J, Wang J, Wang Y, Du H, Zhou H, Wang T. Evaluation of an Ussing Chamber System Equipped with Rat Intestinal Tissues to Predict Intestinal Absorption and Metabolism in Humans. Eur J Drug Metab Pharmacokinet 2022; 47:639-652. [PMID: 35733077 DOI: 10.1007/s13318-022-00780-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND OBJECTIVE Oral bioavailability (F) is one of the key factors that need to be determined in drug discovery. This factor is determined by the permeability and solubility of new molecule entities (NMEs) according to the biopharmaceutics classification system (BCS). METHODS In the present study, we evaluated the permeability of 22 drugs in rat intestinal tissues using an Ussing chamber system and correlated the permeability with data on human intestinal absorption (Fa) and intestinal availability (Fa × Fg) reported in the literature. RESULTS The rat intestinal permeability data were better correlated with the combined effect of the absorbed fraction (Fa) and the fraction escaping intestinal metabolism (Fg) than Fa itself. Clear regional dependent absorption was observed for most of the test drugs, and ileal Papp was generally higher than that in other segments. Finally, the function of the efflux transporter P-glycoprotein (P-gp) with regard to oral absorption of substrates was evaluated with an Ussing chamber. We also demonstrated that the rat intestinal stability of the three cytochrome P450 (CYP) substrates was consistent with the human data. CONCLUSION An Ussing chamber system incorporating rat intestinal tissue would be a valuable tool to predict human intestinal absorption and metabolism for molecules with various physicochemical properties.
Collapse
Affiliation(s)
- Chi Guan
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Yingxin Yang
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Dong Tian
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Zhiqiang Jiang
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Huiying Zhang
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Yali Li
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Jiaxiu Yan
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Congman Zhang
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Chun Chen
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Junhua Zhang
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Jing Wang
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Yu Wang
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Hongwen Du
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Hongyu Zhou
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Tao Wang
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China.
| |
Collapse
|
37
|
Gao W, Hu H, Dai L, He M, Yuan H, Zhang H, Liao J, Wen B, Li Y, Palmisano M, Traore MDM, Zhou S, Sun D. Structure‒tissue exposure/selectivity relationship (STR) correlates with clinical efficacy/safety. Acta Pharm Sin B 2022; 12:2462-2478. [PMID: 35646532 PMCID: PMC9136610 DOI: 10.1016/j.apsb.2022.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/23/2022] [Accepted: 02/12/2022] [Indexed: 11/17/2022] Open
Abstract
Drug optimization, which improves drug potency/specificity by structure‒activity relationship (SAR) and drug-like properties, is rigorously performed to select drug candidates for clinical trials. However, the current drug optimization may overlook the structure‒tissue exposure/selectivity-relationship (STR) in disease-targeted tissues vs. normal tissues, which may mislead the drug candidate selection and impact the balance of clinical efficacy/toxicity. In this study, we investigated the STR in correlation with observed clinical efficacy/toxicity using seven selective estrogen receptor modulators (SERMs) that have similar structures, same molecular target, and similar/different pharmacokinetics. The results showed that drug's plasma exposure was not correlated with drug's exposures in the target tissues (tumor, fat pad, bone, uterus), while tissue exposure/selectivity of SERMs was correlated with clinical efficacy/safety. Slight structure modifications of four SERMs did not change drug's plasma exposure but altered drug's tissue exposure/selectivity. Seven SERMs with high protein binding showed higher accumulation in tumors compared to surrounding normal tissues, which is likely due to tumor EPR effect of protein-bound drugs. These suggest that STR alters drug's tissue exposure/selectivity in disease-targeted tissues vs. normal tissues impacting clinical efficacy/toxicity. Drug optimization needs to balance the SAR and STR in selecting drug candidate for clinical trial to improve success of clinical drug development.
Collapse
Affiliation(s)
- Wei Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hongxiang Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lipeng Dai
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Miao He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hebao Yuan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huixia Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jinhui Liao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yan Li
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, Summit, NJ 07920, USA
| | - Maria Palmisano
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, Summit, NJ 07920, USA
| | - Mohamed Dit Mady Traore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Simon Zhou
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, Summit, NJ 07920, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
38
|
Yang J, Wang Y, Guan W, Su W, Li G, Zhang S, Yao H. Spiral molecules with antimalarial activities: A review. Eur J Med Chem 2022; 237:114361. [DOI: 10.1016/j.ejmech.2022.114361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/04/2022]
|
39
|
Inhibitors of Heptosyltransferase I to prevent heptose transfer against antibiotic resistance of E. coli: Energetics and stability analysis by DFT and molecular dynamics. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Nawar N, Bukhari S, Adile AA, Suk Y, Manaswiyoungkul P, Toutah K, Olaoye OO, Raouf YS, Sedighi A, Garcha HK, Hassan MM, Gwynne W, Israelian J, Radu TB, Geletu M, Abdeldayem A, Gawel JM, Cabral AD, Venugopal C, de Araujo ED, Singh SK, Gunning PT. Discovery of HDAC6-Selective Inhibitor NN-390 with in Vitro Efficacy in Group 3 Medulloblastoma. J Med Chem 2022; 65:3193-3217. [PMID: 35119267 DOI: 10.1021/acs.jmedchem.1c01585] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Histone deacetylase 6 (HDAC6) has been targeted in clinical studies for anticancer effects due to its role in oncogenic transformation and metastasis. Through a second-generation structure-activity relationship (SAR) study, the design, and biological evaluation of the selective HDAC6 inhibitor NN-390 is reported. With nanomolar HDAC6 potency, >200-550-fold selectivity for HDAC6 in analogous HDAC isoform functional assays, potent intracellular target engagement, and robust cellular efficacy in cancer cell lines, NN-390 is the first HDAC6-selective inhibitor to show therapeutic potential in metastatic Group 3 medulloblastoma (MB), an aggressive pediatric brain tumor often associated with leptomeningeal metastases and therapy resistance. MB stem cells contribute to these patients' poor clinical outcomes. NN-390 selectively targets this cell population with a 44.3-fold therapeutic margin between patient-derived Group 3 MB cells in comparison to healthy neural stem cells. NN-390 demonstrated a 45-fold increased potency over HDAC6-selective clinical candidate citarinostat. In summary, HDAC6-selective molecules demonstrated in vitro therapeutic potential against Group 3 MB.
Collapse
Affiliation(s)
- Nabanita Nawar
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Shazreh Bukhari
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Ashley A Adile
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Yujin Suk
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Pimyupa Manaswiyoungkul
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Krimo Toutah
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Olasunkanmi O Olaoye
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Yasir S Raouf
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Abootaleb Sedighi
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Harsimran Kaur Garcha
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Muhammad Murtaza Hassan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - William Gwynne
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Johan Israelian
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Tudor B Radu
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mulu Geletu
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Ayah Abdeldayem
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Justyna M Gawel
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Aaron D Cabral
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Chitra Venugopal
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Elvin D de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Sheila K Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
41
|
Lee MJ, Lee I, Wang K. Recent Advances in RNA Therapy and Its Carriers to Treat the Single-Gene Neurological Disorders. Biomedicines 2022; 10:biomedicines10010158. [PMID: 35052837 PMCID: PMC8773368 DOI: 10.3390/biomedicines10010158] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023] Open
Abstract
The development of new sequencing technologies in the post-genomic era has accelerated the identification of causative mutations of several single gene disorders. Advances in cell and animal models provide insights into the underlining pathogenesis, which facilitates the development and maturation of new treatment strategies. The progress in biochemistry and molecular biology has established a new class of therapeutics—the short RNAs and expressible long RNAs. The sequences of therapeutic RNAs can be optimized to enhance their stability and translatability with reduced immunogenicity. The chemically-modified RNAs can also increase their stability during intracellular trafficking. In addition, the development of safe and high efficiency carriers that preserves the integrity of therapeutic RNA molecules also accelerates the transition of RNA therapeutics into the clinic. For example, for diseases that are caused by genetic defects in a specific protein, an effective approach termed “protein replacement therapy” can provide treatment through the delivery of modified translatable mRNAs. Short interference RNAs can also be used to treat diseases caused by gain of function mutations or restore the splicing aberration defects. Here we review the applications of newly developed RNA-based therapeutics and its delivery and discuss the clinical evidence supporting the potential of RNA-based therapy in single-gene neurological disorders.
Collapse
Affiliation(s)
- Ming-Jen Lee
- Department of Neurology, National Taiwan University Hospital, Taipei 10012, Taiwan;
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10012, Taiwan
| | - Inyoul Lee
- Institute for Systems Biology, Seattle, WA 98109, USA;
| | - Kai Wang
- Institute for Systems Biology, Seattle, WA 98109, USA;
- Correspondence: ; Tel.: +1-206-732-1336
| |
Collapse
|
42
|
Bogucka-Kocka A, Kołodziej P, Makuch-Kocka A, Różycka D, Rykowski SK, Nekvinda J, Gruner B, Olejniczak AB. Nematicidal activity of naphthalimide-boron cluster conjugates. Chem Commun (Camb) 2022; 58:2528-2531. [DOI: 10.1039/d1cc07075d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Distinctive biological properties characterize 1,8-naphthalimides and their derivatives. This study presents and compares the activity of a series of compounds where 1,8-naphthalimide fragment was attached either to carborane or metallacarborane...
Collapse
|
43
|
Dickson CJ, Hornak V, Duca JS. Relative Binding Free-Energy Calculations at Lipid-Exposed Sites: Deciphering Hot Spots. J Chem Inf Model 2021; 61:5923-5930. [PMID: 34843243 DOI: 10.1021/acs.jcim.1c01147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Relative binding free-energy (RBFE) calculations are experiencing resurgence in the computer-aided drug design of novel small molecules due to performance gains allowed by cutting-edge molecular mechanic force fields and computer hardware. Application of RBFE to soluble proteins is becoming a routine, while recent studies outline necessary steps to successfully apply RBFE at the orthosteric site of membrane-embedded G-protein-coupled receptors (GPCRs). In this work, we apply RBFE to a congeneric series of antagonists that bind to a lipid-exposed, extra-helical site of the P2Y1 receptor. We find promising performance of RBFE, such that it may be applied in a predictive manner on drug discovery programs targeting lipid-exposed sites. Further, by the application of the microkinetic model, binding at a lipid-exposed site can be split into (1) membrane partitioning of the drug molecule followed by (2) binding at the extra-helical site. We find that RBFE can be applied to calculate the free energy of each step, allowing the uncoupling of observed binding free energy from the influence of membrane affinity. This protocol may be used to identify binding hot spots at extra-helical sites and guide drug discovery programs toward optimizing intrinsic activity at the target.
Collapse
Affiliation(s)
- Callum J Dickson
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Viktor Hornak
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jose S Duca
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
44
|
Kong NR, Liu H, Che J, Jones LH. Physicochemistry of Cereblon Modulating Drugs Determines Pharmacokinetics and Disposition. ACS Med Chem Lett 2021; 12:1861-1865. [PMID: 34795877 DOI: 10.1021/acsmedchemlett.1c00475] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Immunomodulatory drugs (IMiDs) thalidomide, lenalidomide, and pomalidomide engage cereblon and mediate a protein interface with neosubstrates such as zinc finger transcription factors promoting their polyubiquitination and degradation. The IMiDs have garnered considerable excitement in drug discovery, leading to exploration of targeted protein degradation strategies. Although the molecular modes-of-action of the IMiDs and related degraders have been the subject of intense research, their pharmacokinetics and disposition have been relatively understudied. Here, we assess the effects of physicochemistry of the IMiDs, the phthalimide EM-12, and the candidate drug CC-220 (iberdomide) on lipophilicity, solubility, metabolism, permeability, intracellular bioavailability, and cell-based potency. The insights yielded in this study will enable the rational property-based design and development of targeted protein degraders in the future.
Collapse
Affiliation(s)
- Nikki R. Kong
- Center for Protein Degradation, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Hu Liu
- Center for Protein Degradation, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Jianwei Che
- Center for Protein Degradation, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Lyn H. Jones
- Center for Protein Degradation, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
45
|
Borsari C, De Pascale M, Wymann MP. Chemical and Structural Strategies to Selectively Target mTOR Kinase. ChemMedChem 2021; 16:2744-2759. [PMID: 34114360 PMCID: PMC8518124 DOI: 10.1002/cmdc.202100332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 11/08/2022]
Abstract
Dysregulation of the mechanistic target of rapamycin (mTOR) pathway is implicated in cancer and neurological disorder, which identifies mTOR inhibition as promising strategy for the treatment of a variety of human disorders. First-generation mTOR inhibitors include rapamycin and its analogues (rapalogs) which act as allosteric inhibitors of TORC1. Structurally unrelated, ATP-competitive inhibitors that directly target the mTOR catalytic site inhibit both TORC1 and TORC2. Here, we review investigations of chemical scaffolds explored for the development of highly selective ATP-competitive mTOR kinase inhibitors (TORKi). Extensive medicinal chemistry campaigns allowed to overcome challenges related to structural similarity between mTOR and the phosphoinositide 3-kinase (PI3K) family. A broad region of chemical space is covered by TORKi. Here, the investigation of chemical substitutions and physicochemical properties has shed light on the compounds' ability to cross the blood brain barrier (BBB). This work provides insights supporting the optimization of TORKi for the treatment of cancer and central nervous system disorders.
Collapse
Affiliation(s)
- Chiara Borsari
- Department of BiomedicineUniversity of BaselMattenstrasse 284058BaselSwitzerland
| | - Martina De Pascale
- Department of BiomedicineUniversity of BaselMattenstrasse 284058BaselSwitzerland
| | - Matthias P. Wymann
- Department of BiomedicineUniversity of BaselMattenstrasse 284058BaselSwitzerland
| |
Collapse
|
46
|
Tandi M, Sundriyal S. Recent trends in the design of antimicrobial agents using Ugi-multicomponent reaction. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Satapathy MK, Yen TL, Jan JS, Tang RD, Wang JY, Taliyan R, Yang CH. Solid Lipid Nanoparticles (SLNs): An Advanced Drug Delivery System Targeting Brain through BBB. Pharmaceutics 2021; 13:1183. [PMID: 34452143 PMCID: PMC8402065 DOI: 10.3390/pharmaceutics13081183] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) plays a vital role in the protection and maintenance of homeostasis in the brain. In this way, it is an interesting target as an interface for various types of drug delivery, specifically in the context of the treatment of several neuropathological conditions where the therapeutic agents cannot cross the BBB. Drug toxicity and on-target specificity are among some of the limitations associated with current neurotherapeutics. In recent years, advances in nanodrug delivery have enabled the carrier system containing the active therapeutic drug to target the signaling pathways and pathophysiology that are closely linked to central nervous system (CNS) disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS), brain tumor, epilepsy, ischemic stroke, and neurodegeneration. At present, among the nano formulations, solid lipid nanoparticles (SLNs) have emerged as a putative drug carrier system that can deliver the active therapeutics (drug-loaded SLNs) across the BBB at the target site of the brain, offering a novel approach with controlled drug delivery, longer circulation time, target specificity, and higher efficacy, and more importantly, reducing toxicity in a biomimetic way. This paper highlights the synthesis and application of SLNs as a novel nontoxic formulation strategy to carry CNS drugs across the BBB to improve the use of therapeutics agents in treating major neurological disorders in future clinics.
Collapse
Affiliation(s)
- Mantosh Kumar Satapathy
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
| | - Ting-Lin Yen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
- Department of Medical Research, Cathay General Hospital, Taipei 22174, Taiwan
| | - Jing-Shiun Jan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
| | - Ruei-Dun Tang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan;
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan;
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
| | - Rajeev Taliyan
- Department of Pharmacy, Neuropsychopharmacology Division, Birla Institute of Technology and Science, Pilani 333031, India;
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
- Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
48
|
Hiremath CN. Abbreviated Profile of Drugs (APOD): modeling drug safety profiles to prioritize investigational COVID-19 treatments. Heliyon 2021; 7:e07666. [PMID: 34337170 PMCID: PMC8317482 DOI: 10.1016/j.heliyon.2021.e07666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/19/2021] [Accepted: 07/23/2021] [Indexed: 01/18/2023] Open
Abstract
Safe and effective oral formulation of a drug, that is easy to store, transport, and administer, is imperative to reach the masses including those without adequate facilities and resources, in order to combat globally transmitted coronavirus disease 2019 (COVID-19). In this decision analytic modeling study, the safety of investigational COVID-19 drugs in clinical trials was assessed using the Abbreviated Profile of Drugs (APOD) methodology. The method was extensively tested for various unbiased datasets based on different criteria such as drugs recalled worldwide for failing to meet safety standards, organ-specific toxicities, cytochrome P450 inhibitors, and Food and Drug Administration (FDA) approved drugs with remarkable successes. Experimental validation of the predictions made by APOD were demonstrated by comparison with a progression of multiparametric optimization of a series of cancer drugs that led to a potent drug (GDC-0941) which went into the clinical development. The drugs were classified into three categories of safety profiles: strong, moderate and weak. A total of 3556 drugs available in public databases were examined. According to the results, drugs with strong safety profiles included molnupiravir (EIDD-2801), moderate safety profiles included dexamethasone, and weak safety profiles included lopinavir. In this analysis, the physicochemical-pharmacokinetic APOD fingerprint was associated with the drug safety profile of withdrawn, approved, as well as drugs in clinical trials and the APOD method facilitated decision-making and prioritization of the investigational treatments. Drugs with only strong and moderate safety profiles can be repurposed for COVID-19 or any other disease targets. The existing effective drugs with weak safety profiles can be modified into effective drugs with moderate/strong profiles. Unification, uniformity, and integration of drug properties by the APOD method represents an advancement in drug discovery.
Collapse
|
49
|
Wu L, Zhang C, He C, Qian D, Lu L, Sun Y, Xu M, Zhuo J, Liu PCC, Klabe R, Wynn R, Covington M, Gallagher K, Leffet L, Bowman K, Diamond S, Koblish H, Zhang Y, Soloviev M, Hollis G, Burn TC, Scherle P, Yeleswaram S, Huber R, Yao W. Discovery of Pemigatinib: A Potent and Selective Fibroblast Growth Factor Receptor (FGFR) Inhibitor. J Med Chem 2021; 64:10666-10679. [PMID: 34269576 DOI: 10.1021/acs.jmedchem.1c00713] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aberrant activation of FGFR has been linked to the pathogenesis of many tumor types. Selective inhibition of FGFR has emerged as a promising approach for cancer treatment. Herein, we describe the discovery of compound 38 (INCB054828, pemigatinib), a highly potent and selective inhibitor of FGFR1, FGFR2, and FGFR3 with excellent physiochemical properties and pharmacokinetic profiles. Pemigatinib has received accelerated approval from the U.S. Food and Drug Administration for the treatment of adults with previously treated, unresectable locally advanced or metastatic cholangiocarcinoma with a FGFR2 fusion or other rearrangement. Additional clinical trials are ongoing to evaluate pemigatinib in patients with FGFR alterations.
Collapse
Affiliation(s)
- Liangxing Wu
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Colin Zhang
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Chunhong He
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Dingquan Qian
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Liang Lu
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Yaping Sun
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Meizhong Xu
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Jincong Zhuo
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Phillip C C Liu
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Ronald Klabe
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Richard Wynn
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Maryanne Covington
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Karen Gallagher
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Lynn Leffet
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Kevin Bowman
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Sharon Diamond
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Holly Koblish
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Yue Zhang
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Maxim Soloviev
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Gregory Hollis
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Timothy C Burn
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Peggy Scherle
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Swamy Yeleswaram
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Reid Huber
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Wenqing Yao
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| |
Collapse
|
50
|
Ermondi G, Garcia Jimenez D, Rossi Sebastiano M, Caron G. Rational Control of Molecular Properties Is Mandatory to Exploit the Potential of PROTACs as Oral Drugs. ACS Med Chem Lett 2021; 12:1056-1060. [PMID: 34262642 PMCID: PMC8274089 DOI: 10.1021/acsmedchemlett.1c00298] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
![]()
To obtain new oral
drugs in the beyond rule of five space, PROTACs
among others, molecular properties should be optimized in early drug
discovery. Degraders call for design strategies which focus on intramolecular
interaction and chameleonicity. In parallel, tailored revalidation
of permeability assessment and prediction methods becomes fundamental
in this innovative chemical space.
Collapse
Affiliation(s)
- Giuseppe Ermondi
- Molecular Biotechnology and Health Sciences Dept., CASSMedChem, University of Torino, via Quarello 15, 10135 Torino, Italy
| | - Diego Garcia Jimenez
- Molecular Biotechnology and Health Sciences Dept., CASSMedChem, University of Torino, via Quarello 15, 10135 Torino, Italy
| | - Matteo Rossi Sebastiano
- Molecular Biotechnology and Health Sciences Dept., CASSMedChem, University of Torino, via Quarello 15, 10135 Torino, Italy
| | - Giulia Caron
- Molecular Biotechnology and Health Sciences Dept., CASSMedChem, University of Torino, via Quarello 15, 10135 Torino, Italy
| |
Collapse
|