1
|
Wang L, Chen Y, Zhang M, Liu J, Li H, Liu M, Wu S, Zhang Y, Li W, Wang B. Chemical dissection of selective myeloid leukemia-1 inhibitors: How they were found and evolved. Eur J Med Chem 2025; 283:117168. [PMID: 39708769 DOI: 10.1016/j.ejmech.2024.117168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Myeloid cell leukemia-1 (MCL-1), a key anti-apoptotic protein within the BCL-2 family, is essential in regulating cell survival, particularly in cancer, where its overexpression is often linked to therapeutic resistance. This review begins with an overview of BCL-2-mediated apoptosis, highlighting the pivotal role of MCL-1 in cellular homeostasis. We then focus on the structure and function of MCL-1, elucidating how its unique structural features contribute to its function and interaction with pro-apoptotic proteins. The core of this review is a detailed structural analysis of selective MCL-1 inhibitors, tracing their development from initial discovery to stepwise optimization. We explore various classes of inhibitors, including those with distinct core structures, covalent inhibitors that reversibly/irreversibly bind to MCL-1, and innovative approaches such as metal-based inhibitors and proteolysis-targeting chimeras (PROTACs). The structural evolution of these inhibitors is discussed, with particular emphasis on the modifications that have enhanced their selectivity, potency, and pharmacokinetic profiles. Additionally, we summarize the synergistic potential of MCL-1 inhibitors when used in combination with other therapeutic agents, emphasizing their role in overcoming drug resistance. The review concludes with a discussion of current challenges in MCL-1 modulation and future perspectives, proposing alternative strategies for targeting this critical protein for cancer therapy.
Collapse
Affiliation(s)
- Luyao Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuxiang Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Maoqian Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jin Liu
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd., Nanjing 211162, China
| | - Haozhe Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Menghui Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shuyun Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yongmin Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China; Fuyang Institute & School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311422, Zhejiang, China.
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Bo Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Alboreggia G, Udompholkul P, Baggio C, Muzzarelli K, Assar Z, Pellecchia M. Histidine-Covalent Stapled Alpha-Helical Peptides Targeting hMcl-1. J Med Chem 2024; 67:8172-8185. [PMID: 38695666 PMCID: PMC11129181 DOI: 10.1021/acs.jmedchem.4c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/28/2024] [Accepted: 04/24/2024] [Indexed: 05/24/2024]
Abstract
Several novel and effective cysteine targeting (Cys) covalent drugs are in clinical use. However, the target area containing a druggable Cys residue is limited. Therefore, methods for creating covalent drugs that target different residues are being looked for; examples of such ligands include those that target the residues lysine (Lys) and tyrosine (Tyr). Though the histidine (His) side chain is more frequently found in protein binding locations and has higher desirable nucleophilicity, surprisingly limited research has been done to specifically target this residue, and there are not many examples of His-targeting ligands that have been rationally designed. In the current work, we created novel stapled peptides that are intended to target hMcl-1 His 252 covalently. We describe the in vitro (biochemical, NMR, and X-ray) and cellular design and characterization of such agents. Our findings further suggest that the use of electrophiles to specifically target His residues is warranted.
Collapse
Affiliation(s)
- Giulia Alboreggia
- Division
of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Parima Udompholkul
- Division
of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Carlo Baggio
- Division
of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Kendall Muzzarelli
- Cayman
Chemical Co., 1180 E. Ellsworth road, Ann Arbor, Michigan 48108, United States
| | - Zahra Assar
- Cayman
Chemical Co., 1180 E. Ellsworth road, Ann Arbor, Michigan 48108, United States
| | - Maurizio Pellecchia
- Division
of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
3
|
Niu P, Xu H, Fan M. Discovery and optimization of (2-naphthylthio)acetic acid derivative as selective Bfl-1 inhibitor. Bioorg Med Chem Lett 2024; 101:129658. [PMID: 38373466 DOI: 10.1016/j.bmcl.2024.129658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Bcl-2 anti-apoptotic protein family suppresses cell death by deploying a surface groove to capture the critical BH3 α-helix of pro-apoptotic members. Bfl-1 is a relatively understudied member of this family, though it has been implicated in the pathogenesis and chemoresistance of a variety of human cancers. Reported small molecular Bfl-1 inhibitors encountered the issue of either lack in potency or poor selectivity against its most homologous member Mcl-1. In order to tackle this issue, compound library was screened and a hit compound UMI-77 was identified. We modified its chemical structure to remove the characteristic of PAINS (pan-assay interference compounds), demonstrated the real binding affinity and achieved selectivity against Mcl-1 under the guidance of computational modeling. After optimization 15 was obtained as leading compound to block Bfl-1/BIM interaction in vitro with more than 10-fold selectivity over Mcl-1. We believe 15 is of great value for the exploration of Bfl-1 biological function and its potential as therapeutic target.
Collapse
Affiliation(s)
- Pengpeng Niu
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin 300072, China; Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Huiqi Xu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Mengyang Fan
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
4
|
Matsuoka J, Yano Y, Hirose Y, Mashiba K, Sawada N, Nakamura A, Maegawa T. Elemental Sulfur-Mediated Aromatic Halogenation. J Org Chem 2024; 89:770-777. [PMID: 38113515 DOI: 10.1021/acs.joc.3c02259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
A method for aromatic halogenation using a combination of elemental sulfur (S8) and N-halosuccinimide has been developed. A catalytic quantity of elemental sulfur (S8) with N-bromosuccinimide (NBS) and N-chlorosuccinimide (NCS) effectively halogenated less-reactive aromatic compounds, such as ester-, cyano-, and nitro-substituted anisole derivatives. No reaction occurred in the absence of S8, underscoring its crucial role in the catalytic activity. This catalytic system was also applicable to aromatic iodination with 1,3-diiodo-5,5-dimethylhydantoin.
Collapse
Affiliation(s)
- Junpei Matsuoka
- School of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yuna Yano
- School of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yuuka Hirose
- School of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Koushi Mashiba
- School of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Nanako Sawada
- School of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Akira Nakamura
- School of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Tomohiro Maegawa
- School of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
5
|
Hajra AK, Ghosh P, Paul P, Kundu M, Das S. Copper(II)-Mediated, Site-Selective C(sp 2)-H Sulfonamidation of 1-Naphthylamines. J Org Chem 2023. [PMID: 38048479 DOI: 10.1021/acs.joc.3c01852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
An operationally simple and efficient protocol for copper(II)-mediated, picolinamido-directed C8-H sulfonamidation of 1-naphthylamine derivatives with various sulfonamides has been developed. Remarkably, this cross-dehydrogenative C-H/H-N coupling reaction exhibits a broad substrate scope with excellent functional group tolerance, is scalable, and enables an expeditious route to a library of unsymmetrical N-arylated sulfonamides in good to excellent yields with exclusive site selectivity.
Collapse
Affiliation(s)
- Arun Kumar Hajra
- TCG Lifesciences Pvt. Ltd., BN-7, Sector-V, Salt Lake City,Kolkata700091,India
- Department of Chemistry, University of North Bengal, Darjeeling734013,India
| | - Prasanjit Ghosh
- Department of Chemistry, University of North Bengal, Darjeeling734013,India
| | - Priyanka Paul
- TCG Lifesciences Pvt. Ltd., BN-7, Sector-V, Salt Lake City,Kolkata700091,India
| | - Mrinalkanti Kundu
- TCG Lifesciences Pvt. Ltd., BN-7, Sector-V, Salt Lake City,Kolkata700091,India
| | - Sajal Das
- Department of Chemistry, University of North Bengal, Darjeeling734013,India
| |
Collapse
|
6
|
Chen L, Chauhan J, Yap JL, Goodis CC, Wilder PT, Fletcher S. Discovery of N-sulfonylated aminosalicylic acids as dual MCL-1/BCL-xL inhibitors. RSC Med Chem 2023; 14:103-112. [PMID: 36760746 PMCID: PMC9890589 DOI: 10.1039/d2md00277a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
The anti-apoptotic protein MCL-1, which is overexpressed in multiple cancers, is presently a focus for the development of targeted drugs in oncology. We previously discovered inhibitors of MCL-1 based on 1-sulfonylated 1,2,3,4-tetrahydroquinoline-6-carboxylic acids ("1,6-THQs"). However, with the nitrogen atom constrained in the bicyclic ring, we were unable to modify the alkyl portion of the tertiary sulfonamide functionality. Moreover, the introduction of additional functional groups onto the benzene ring portion of the THQ bicycle would not be trivial. Therefore, we elected to deconstruct the piperidine-type ring of the 6-carboxy-THQ lead to create a new 4-aminobenzoic acid scaffold. Given its simplicity, this permitted us to introduce diversity at the sulfonamide nitrogen, as well as vary the positions and substituents of the benzene ring. One of our most potent MCL-1 inhibitors, 6e-OH, exhibited a K i of 0.778 μM. Heteronuclear single quantum coherence experiments suggested 6e-OH bound in the canonical BH3-binding groove, with significant perturbations of R263, which forms a salt bridge with MCL-1's pro-apoptotic binding partners, as well as residues in the p2 pocket. Selectivity studies indicated that our compounds are dual inhibitors of MCL-1 and BCL-xL, with 17cd the most potent dual inhibitor: K i = 0.629 μM (MCL-1), 1.67 μM (BCL-xL). Whilst selective inhibitors may be more desirable in certain instances, polypharmacological agents whose additional target(s) address other pathways associated with the disease state, or serve to counter resistance mechanisms to the primary target, may prove particularly effective therapeutics. Since selective MCL-1 inhibition may be thwarted by overexpression of sister anti-apoptotic proteins, including BCL-xL and BCL-2, we believe our work lays a solid foundation towards the development of multi-targeting anti-cancer drugs.
Collapse
Affiliation(s)
- Lijia Chen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy 20 N. Pine St. Baltimore MD 21201 USA
| | - Jay Chauhan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy 20 N. Pine St. Baltimore MD 21201 USA
| | - Jeremy L Yap
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy 20 N. Pine St. Baltimore MD 21201 USA
| | - Christopher C Goodis
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy 20 N. Pine St. Baltimore MD 21201 USA
| | - Paul T Wilder
- University of Maryland School of Medicine 20 S. Greene St. Baltimore MD 21201 USA
- University of Maryland Greenebaum Cancer Center 20 S. Greene St. Baltimore MD 21201 USA
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy 20 N. Pine St. Baltimore MD 21201 USA
- University of Maryland Greenebaum Cancer Center 20 S. Greene St. Baltimore MD 21201 USA
| |
Collapse
|
7
|
Jagadeesan S, Karpagam S. Novel series of N-acyl substituted indole based piperazine, thiazole and tetrazoles as potential antibacterial, antifungal, antioxidant and cytotoxic agents, and their docking investigation as potential Mcl-1 inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Chen L, Chan AM, Wilder PT, Fletcher S. 1-Sulfonylated 1,2,3,4-tetrahydroquinoline-6-carboxylic acids as simple, readily-accessible MCL-1 inhibitors. Drug Dev Res 2022; 83:1879-1889. [PMID: 36281026 DOI: 10.1002/ddr.22004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/02/2022] [Accepted: 10/07/2022] [Indexed: 12/30/2022]
Abstract
MCL-1 is a member of the BCL-2 family of proteins that regulates the mitochondrial pathway of apoptosis. Overexpression of MCL-1 is associated with the development and progression of a range of human cancers, and is also responsible for the onset of resistance to conventional chemotherapies. Although several MCL-1 inhibitors have now advanced to clinical trials, recent suspensions and terminations reveal the urgency with which new inhibitor chemotypes must be discovered. Building on our previous studies of a chiral, isomeric lead, we report the discovery of a new chemotype to inhibit MCL-1: 1-sulfonylated 1,2,3,4-tetrahydroquinoline-6-carboxylic acid. The nature of the sulfonyl moiety contributed significantly to the resulting inhibitory ability. For example, transforming a phenylsulfonyl group into a 4-chloro-3,5-dimethylphenoxy)phenyl)sulfonyl moiety elicited more than a 73-fold enhancement in inhibiton of MCL-1, possibly through targeting the p2 pocket in the BH3-binding groove, and so it is anticipated that further structure-activity studies here will lead to continued improvements in binding. It should be underscored that this class of MCL-1 inhibitors is readily accessible in four simple steps, is achiral and offers many avenues for optimization, all factors that are welcomed in the search for safe and effective inhibitors of this driver of cancer cell survival.
Collapse
Affiliation(s)
- Lijia Chen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Alexandria M Chan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Paul T Wilder
- Department of Biochemistry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA.,University of Maryland Greenebaum Cancer Center, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Zhang Z, Chen X, Li XS, Wang CT, Niu ZJ, Zhang BS, Liu XY, Liang YM. Ortho C–H Hydroxyalkylation or Methylation of Aryl Iodides by Ethers and TMSI via a Catellani Strategy. Org Lett 2022; 24:6897-6902. [DOI: 10.1021/acs.orglett.2c02425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xi Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Cui-Tian Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Jie Niu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Bo-Sheng Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
10
|
Lamie PF, Philoppes JN. Design, synthesis, stereochemical determination, molecular docking study, in silico pre-ADMET prediction and anti-proliferative activities of indole-pyrimidine derivatives as Mcl-1 inhibitors. Bioorg Chem 2021; 116:105335. [PMID: 34509795 DOI: 10.1016/j.bioorg.2021.105335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/13/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
In this study, fourteen novel indole-pyrimidine hybrids were designed and synthesized. Their chemical structures were confirmed using different spectroscopic techniques (1H NMR, 13C NMR, IR and mass). Their (E) stereochemical configuration was determined theoretically (MM2 property) and experimentally using 2D NMR technique (NOESY experiment). The prepared compounds were subjected to preliminary biological studies as Mcl-1 inhibitors. Most of the compounds exhibited good abilities for targeting Mcl-1 protein, especially, 7d, 7e, 7i and 7k (Ki = 11.19-15.21 nM). These derivatives were further evaluated against Bcl-XL and Bcl-2 proteins. Some compounds were found to have dual Mcl-1/Bcl-XL such as 7i, or Bcl-XL/Bcl-2 inhibitory activity as 7d. The most potent derivatives as Mcl-1 inhibitors were chosen as representative examples for determination of in-vitro anti-proliferative activity against PC-3, K-562 and MDA-MB-231 cell lines. They possessed excellent to good anti-proliferative activities. All of the synthesized compounds were docked into Mcl-1 active site. Drug-likeness properties and in silico pre-ADMET characters were also predicted.
Collapse
Affiliation(s)
- Phoebe F Lamie
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - John N Philoppes
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
11
|
Gambini L, Udompholkul P, Baggio C, Muralidharan A, Kenjić N, Assar Z, Perry JJP, Pellecchia M. Design, Synthesis, and Structural Characterization of Lysine Covalent BH3 Peptides Targeting Mcl-1. J Med Chem 2021; 64:4903-4912. [PMID: 33797903 DOI: 10.1021/acs.jmedchem.1c00005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Modulating disease-relevant protein-protein interactions (PPIs) using pharmacological tools is a critical step toward the design of novel therapeutic strategies. Over the years, however, targeting PPIs has proven a very challenging task owing to the large interfacial areas. Our recent efforts identified possible novel routes for the design of potent and selective inhibitors of PPIs using a structure-based design of covalent inhibitors targeting Lys residues. In this present study, we report on the design, synthesis, and characterizations of the first Lys-covalent BH3 peptide that has a remarkable affinity and selectivity for hMcl-1 over the closely related hBfl-1 protein. Our structural studies, aided by X-ray crystallography, provide atomic-level details of the inhibitor interactions that can be used to further translate these discoveries into novel generation, Lys-covalent pro-apoptotic agents.
Collapse
Affiliation(s)
- Luca Gambini
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Parima Udompholkul
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Carlo Baggio
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Aruljothi Muralidharan
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Nikola Kenjić
- Department of Biochemistry, College of Natural and Agricultural Sciences, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Zahra Assar
- Cayman Chemical, 1180 East Ellsworth Road, Ann Arbor, Michigan 48108, United States
| | - J Jefferson P Perry
- Department of Biochemistry, College of Natural and Agricultural Sciences, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Maurizio Pellecchia
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
12
|
Fan Y, Hou X, Fang H. Recent Advances in the Development of Selective Mcl-1 Inhibitors for the Treatment of Cancer (2017-Present). Recent Pat Anticancer Drug Discov 2020; 15:306-320. [DOI: 10.2174/1574892815666200916124641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022]
Abstract
Background:
Myeloid cell leukemia-1 (Mcl-1) protein, as a critical pro-survival member
of the B-cell lymphoma 2 (Bcl-2) protein family, plays an important role in apoptosis, carcinogenesis
and resistance to chemotherapies. Hence, potently and selectively inhibiting Mcl-1 to induce
apoptosis has become a widely accepted anticancer strategy.
Objective:
This review intends to provide a comprehensive overview of patents and primary literature,
published from 2017 to present, on small molecule Mcl-1 inhibitors with various scaffolds.
By analyzing the modes of compound-protein interactions, the similarities and differences of those
structures are discussed, which could provide guidance for future drug design.
Methods:
The primary accesses for patent searching are SciFinder and Espacenet®. Besides the data
disclosed in patents, some results published in the follow-up research papers will be included in
this review.
Results:
The review covers dozens of patents on Mcl-1 inhibitors in the past three years, and the
scaffolds of compounds are mainly divided into indole scaffolds and non-indole scaffolds. The
compounds described here are compared with the relevant inhibitors disclosed in previous patents,
and representative compounds, especially those launched in clinical trials, are emphasized in this review.
Conclusion:
For most of the compounds in these patents, analyses of the binding affinity to Mcl-1
and studies in multiple cell lines were conducted, wherein some compounds were tested in preclinical
cancer models or were included in other biological studies. Some compounds showed promising
results and potential for further study.
Collapse
Affiliation(s)
- Ying Fan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong, China
| | - Xuben Hou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong, China
| | - Hao Fang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong, China
| |
Collapse
|
13
|
Chen T, Xiong H, Yang JF, Zhu XL, Qu RY, Yang GF. Diaryl Ether: A Privileged Scaffold for Drug and Agrochemical Discovery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9839-9877. [PMID: 32786826 DOI: 10.1021/acs.jafc.0c03369] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diaryl ether (DE) is a functional scaffold existing widely both in natural products (NPs) and synthetic organic compounds. Statistically, DE is the second most popular and enduring scaffold within the numerous medicinal chemistry and agrochemical reports. Given its unique physicochemical properties and potential biological activities, DE nucleus is recognized as a fundamental element of medicinal and agrochemical agents aimed at different biological targets. Its drug-like derivatives have been extensively synthesized with interesting biological features including anticancer, anti-inflammatory, antiviral, antibacterial, antimalarial, herbicidal, fungicidal, insecticidal, and so on. In this review, we highlight the medicinal and agrochemical versatility of the DE motif according to the published information in the past decade and comprehensively give a summary of the target recognition, structure-activity relationship (SAR), and mechanism of action of its analogues. It is expected that this profile may provide valuable guidance for the discovery of new active ingredients both in drug and pesticide research.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hao Xiong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
14
|
Andersson H, Jarvoll P, Yang SK, Yang KW, Erdélyi M. Binding of 2-(Triazolylthio)acetamides to Metallo-β-lactamase CcrA Determined with NMR. ACS OMEGA 2020; 5:21570-21578. [PMID: 32905426 PMCID: PMC7469393 DOI: 10.1021/acsomega.0c02187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/31/2020] [Indexed: 05/06/2023]
Abstract
Metallo-β-lactamase (MBL)-producing bacteria resistant to β-lactam antibiotics are a serious threat to human health. Despite great efforts and important progress in the discovery of MBL inhibitors (MBLIs), there is none in clinical use. Herein, inhibitor complexes of the MBL CcrA were investigated by NMR spectroscopy to provide perspectives on the further development of 2-(triazolylthio)acetamide-type MBLIs. By using the NMR-based chemical shift perturbation (CSP) and direction of CSP methodologies together with molecular docking, the spatial orientation of three compounds in the CcrA active site was investigated (4-6). Inhibitor 6 showed the best binding affinity (K d ≈ 2.3 ± 0.3 μM), followed by 4 (K d = 11 ± 11 μM) and 5 (K d = 34 ± 43 μM), as determined from the experimental NMR data. Based on the acquired knowledge, analogues of other MBLIs (1-3) were designed and evaluated in silico with the purpose of examining a strategy for promoting their interactions with the catalytic zinc ions.
Collapse
Affiliation(s)
- Hanna Andersson
- Department
of Chemistry—BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
| | - Patrik Jarvoll
- Centre
for Antibiotic Resistance Research (CARe) at the University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Shao-Kang Yang
- Key
Laboratory of Synthetic and Natural Functional Molecule Chemistry
of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127 Xi’an, P. R. China
| | - Ke-Wu Yang
- Key
Laboratory of Synthetic and Natural Functional Molecule Chemistry
of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127 Xi’an, P. R. China
| | - Máté Erdélyi
- Department
of Chemistry—BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
- Centre
for Antibiotic Resistance Research (CARe) at the University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
15
|
Lu X, Liu YC, Orvig C, Liang H, Chen ZF. Discovery of a Copper-Based Mcl-1 Inhibitor as an Effective Antitumor Agent. J Med Chem 2020; 63:9154-9167. [PMID: 32794745 DOI: 10.1021/acs.jmedchem.9b02047] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Myeloid cell leukemia 1 (Mcl-1), which belongs to the Bcl-2 family of prosurvival proteins, is a key regulator of cancer cell survival. To date, few drug-like Mcl-1 inhibitors have been reported. Herein, we report the preparation of 10 copper complexes with 9-substituted β-carboline ligands that act as metal-based Mcl-1 inhibitors. Complex 14 was identified as a potent and selective Mcl-1 inhibitor with strong in vitro antitumor activity. Mechanistic studies demonstrated that complex 14 disrupted Mcl-1-Bax/Bak heterodimerization and induced Bax/Bak-dependent apoptosis. In addition, complex 14 significantly (P < 0.001) inhibited tumor growth in vivo, induced tumor necrosis, and extended survival time in an NCI-H460 xenograft model. Furthermore, complex 14 showed no apparent toxicity in mice. Together, these findings indicate that complex 14 is a copper-based Mcl-1 inhibitor with high efficacy and low toxicity that could be developed for the treatment of Mcl-1-related cancers.
Collapse
Affiliation(s)
- Xing Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Yan-Cheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Chris Orvig
- Department of Chemistry, Faculty of Science, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T1Z1, Canada
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
16
|
Liu L, Liu R, Yang X, Hou X, Fang H. Design, synthesis and biological evaluation of tyrosine derivatives as Mcl-1 inhibitors. Eur J Med Chem 2020; 191:112142. [DOI: 10.1016/j.ejmech.2020.112142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 10/25/2022]
|
17
|
Kump KJ, Miao L, Mady ASA, Ansari NH, Shrestha UK, Yang Y, Pal M, Liao C, Perdih A, Abulwerdi FA, Chinnaswamy K, Meagher JL, Carlson JM, Khanna M, Stuckey JA, Nikolovska-Coleska Z. Discovery and Characterization of 2,5-Substituted Benzoic Acid Dual Inhibitors of the Anti-apoptotic Mcl-1 and Bfl-1 Proteins. J Med Chem 2020; 63:2489-2510. [PMID: 31971799 DOI: 10.1021/acs.jmedchem.9b01442] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Anti-apoptotic Bcl-2 family proteins are overexpressed in a wide spectrum of cancers and have become well validated therapeutic targets. Cancer cells display survival dependence on individual or subsets of anti-apoptotic proteins that could be effectively targeted by multimodal inhibitors. We designed a 2,5-substituted benzoic acid scaffold that displayed equipotent binding to Mcl-1 and Bfl-1. Structure-based design was guided by several solved cocrystal structures with Mcl-1, leading to the development of compound 24, which binds both Mcl-1 and Bfl-1 with Ki values of 100 nM and shows appreciable selectivity over Bcl-2/Bcl-xL. The selective binding profile of 24 was translated to on-target cellular activity in model lymphoma cell lines. These studies lay a foundation for developing more advanced dual Mcl-1/Bfl-1 inhibitors that have potential to provide greater single agent efficacy and broader coverage to combat resistance in several types of cancer than selective Mcl-1 inhibitors alone.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Andrej Perdih
- National Institute of Chemistry, Ljubljana 1000, Slovenia
| | | | | | | | - Jacob M Carlson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States.,Center for Innovation in Brain Science, Tucson, Arizona 85721, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States.,Center for Innovation in Brain Science, Tucson, Arizona 85721, United States
| | | | | |
Collapse
|
18
|
Rescourio G, Gonzalez AZ, Jabri S, Belmontes B, Moody G, Whittington D, Huang X, Caenepeel S, Cardozo M, Cheng AC, Chow D, Dou H, Jones A, Kelly RC, Li Y, Lizarzaburu M, Lo MC, Mallari R, Meleza C, Rew Y, Simonovich S, Sun D, Turcotte S, Yan X, Wong SG, Yanez E, Zancanella M, Houze J, Medina JC, Hughes PE, Brown SP. Discovery and in Vivo Evaluation of Macrocyclic Mcl-1 Inhibitors Featuring an α-Hydroxy Phenylacetic Acid Pharmacophore or Bioisostere. J Med Chem 2019; 62:10258-10271. [DOI: 10.1021/acs.jmedchem.9b01310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Lu X, Liu YC, Orvig C, Liang H, Chen ZF. Discovery of β-carboline copper(II) complexes as Mcl-1 inhibitor and in vitro and in vivo activity in cancer models. Eur J Med Chem 2019; 181:111567. [DOI: 10.1016/j.ejmech.2019.111567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 10/26/2022]
|
20
|
Bourafai-Aziez A, Sebban M, Benabderrahmane M, Marekha B, Denis C, Paysant H, Weiswald LB, Carlier L, Bureau R, Coadou G, Ravault D, Voisin-Chiret AS, Sopková-de Oliveira Santos J, Oulyadi H. Binding mode of Pyridoclax to myeloid cell leukemia-1 (Mcl-1) revealed by nuclear magnetic resonance spectroscopy, docking and molecular dynamics approaches. J Biomol Struct Dyn 2019; 38:4162-4178. [PMID: 31612791 DOI: 10.1080/07391102.2019.1680434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Myeloid cell leukemia-1 (Mcl-1) is an anti-apoptotic member of the Bcl-2 family proteins. Its amplification is one of the most frequent genetic aberrations found in human cancers. Pyridoclax, a promising BH3 mimetic inhibitor, interacts directly with Mcl-1 and induces massive apoptosis at a concentration of 15 µM in combination with anti-Bcl-xL strategies in chemo-resistant ovarian cancer cell lines. In this study, a combined experimental and theoretical approach was used to investigate the binding mode of Pyridoclax to Mcl-1. The representative poses generated from dynamics simulations compared with NMR data revealed: (i) Pyridoclax bound to P1 and P2 pockets of Mcl-1 BH3 binding groove through its styryl and methyl groups establishing mainly hydrophobic contacts, (ii) one of the ending pyridines interacts through electrostatic interaction with K234 side chain, a negatively charged residue present only in this position in Mcl-1. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- A Bourafai-Aziez
- CNRS Laboratoire COBRA (UMR 6014 & FR 3038), Normandie Université, UNIROUEN, INSA de Rouen, Rouen, France.,Normandie Université, UniCaen, CERMN, F-14000 Caen, France
| | - M Sebban
- CNRS Laboratoire COBRA (UMR 6014 & FR 3038), Normandie Université, UNIROUEN, INSA de Rouen, Rouen, France
| | | | - B Marekha
- Normandie Université, UniCaen, CERMN, F-14000 Caen, France
| | - C Denis
- Normandie Université, UniCaen, CERMN, F-14000 Caen, France
| | - H Paysant
- Normandie Université, UNICAEN, Inserm U1086 ANTICIPE « Interdisciplinary Research Unit for Cancer Prevention and Treatment », Biologie et Thérapies Innovantes des Cancers de l'ovaire (BioTICLA), Caen, France.,Centre de Lutte Contre le Cancer F. Baclesse, Unicancer, Caen, France
| | - L B Weiswald
- Normandie Université, UNICAEN, Inserm U1086 ANTICIPE « Interdisciplinary Research Unit for Cancer Prevention and Treatment », Biologie et Thérapies Innovantes des Cancers de l'ovaire (BioTICLA), Caen, France.,Centre de Lutte Contre le Cancer F. Baclesse, Unicancer, Caen, France
| | - L Carlier
- Laboratoire Des Biomolécules, LBM, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Paris, France
| | - R Bureau
- Normandie Université, UniCaen, CERMN, F-14000 Caen, France
| | - G Coadou
- CNRS Laboratoire COBRA (UMR 6014 & FR 3038), Normandie Université, UNIROUEN, INSA de Rouen, Rouen, France
| | - D Ravault
- Laboratoire Des Biomolécules, LBM, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Paris, France
| | | | | | - H Oulyadi
- CNRS Laboratoire COBRA (UMR 6014 & FR 3038), Normandie Université, UNIROUEN, INSA de Rouen, Rouen, France
| |
Collapse
|
21
|
Xi D, Niu Y, Li H, Noha SM, Temml V, Schuster D, Wang C, Xu F, Xu P. Discovery of carbazole derivatives as novel allosteric MEK inhibitors by pharmacophore modeling and virtual screening. Eur J Med Chem 2019; 178:802-817. [PMID: 31252285 DOI: 10.1016/j.ejmech.2019.06.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/27/2019] [Accepted: 06/10/2019] [Indexed: 01/21/2023]
Abstract
We report in this work the discovery of novel allosteric MEK inhibitors by pharmacophore modeling and virtual screening. Two out of 13 virtual hit compounds were identified as MEK kinase inhibitors using a MEK1 binding assay. Structural derivations on the hit compound M100 (IC50 = 27.2 ± 4.5 μM in RAF-MEK cascading assay) by substituent transformation and bioisosterism replacement have led to the synthesis of a small library of carbazoles. The enzymatic studies revealed the preliminary structure-activity relationships and the derivative 22k (IC50 = 12.8 ± 0.5 μM) showed the most potent inhibitory effect against Raf-MEK cascading. Compound 7 was discovered as toxic as M100 to tumor cells whereas safer to HEK293 cells (IC50 > 100 μM) than M100 (IC50 = 8.9 ± 2.0 μM). It suggests that carbazole is a good scaffold for the design of novel MEK inhibitors for therapeutic uses. More importantly, the developed pharmacophore model can serve as a reliable criterion in novel MEK inhibitor discovery.
Collapse
Affiliation(s)
- Dandan Xi
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, China
| | - Yan Niu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, China.
| | - Hongyue Li
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, China
| | - Stefan M Noha
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Veronika Temml
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Daniela Schuster
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria; Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, Strubergasse 21, 5020, Salzburg, Austria.
| | - Chao Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, China
| | - Fengrong Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, China
| | - Ping Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, China.
| |
Collapse
|
22
|
Son J, Han GU, Ko GH, Maeng C, Shin S, Lee PH. Copper(I)‐catalyzed Cyclization Reactions of Ethyl (
E
)‐α‐Ethynyl‐β‐Aryl‐α,β‐Unsaturated Esters with
N
‐Sulfonyl Azides: Synthesis of 1‐Aminonaphthalene, 3‐Aminobenzofuran, and 3‐Aminothiobenzofuran Derivatives. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jeong‐Yu Son
- Department of ChemistryKangwon National University Chuncheon 24341 Republic of Korea
| | - Gi Uk Han
- Department of ChemistryKangwon National University Chuncheon 24341 Republic of Korea
| | - Gi Hoon Ko
- Department of ChemistryKangwon National University Chuncheon 24341 Republic of Korea
| | - Chanyoung Maeng
- Department of ChemistryKangwon National University Chuncheon 24341 Republic of Korea
| | - Seohyun Shin
- Department of ChemistryKangwon National University Chuncheon 24341 Republic of Korea
| | - Phil Ho Lee
- Department of ChemistryKangwon National University Chuncheon 24341 Republic of Korea
| |
Collapse
|
23
|
Altman AM, Mahmud J, Nikolovska-Coleska Z, Chan G. HCMV modulation of cellular PI3K/AKT/mTOR signaling: New opportunities for therapeutic intervention? Antiviral Res 2019; 163:82-90. [PMID: 30668978 PMCID: PMC6391997 DOI: 10.1016/j.antiviral.2019.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 12/15/2022]
Abstract
Human cytomegalovirus (HCMV) remains a major public health burden domestically and abroad. Current approved therapies, including ganciclovir, are only moderately efficacious, with many transplant patients suffering from a variety of side effects. A major impediment to the efficacy of current anti-HCMV drugs is their antiviral effects are restricted to the lytic stage of viral replication. Consequently, the non-lytic stages of the viral lifecycle remain major sources of HCMV infection associated with transplant recipients and ultimately the cause of morbidity and mortality. While work continues on new antivirals that block lytic replication, the dormant stages of HCMV's unique lifecycle need to be concurrently assessed for new therapeutic interventions. In this review, we will examine the role that the PI3K/Akt/mTOR signaling axis plays during the different stages of HCMV's lifecycle, and describe the advantages of targeting this cellular pathway as an antiviral strategy. In particular, we focus on the potential of exploiting the unique modifications HCMV imparts on the PI3K/Akt/mTOR pathway during quiescent infection of monocytes, which serve an essential role in the dissemination strategy of the virus.
Collapse
Affiliation(s)
- Aaron M Altman
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jamil Mahmud
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | - Gary Chan
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
24
|
Zhao B, Arnold AL, Coronel MA, Lee JH, Lee T, Olejniczak ET, Fesik SW. Understanding the Species Selectivity of Myeloid Cell Leukemia-1 (Mcl-1) Inhibitors. Biochemistry 2018; 57:4952-4958. [PMID: 30011190 DOI: 10.1021/acs.biochem.8b00626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To test for on target toxicity of a new chemical entity, it is important to have comparable binding affinities of the compound in the target proteins from humans and the test species. To evaluate our myeloid cell leukemia-1 (Mcl-1) inhibitors, we tested them against rodent Mcl-1 and found a significant loss of binding affinity when compared to that seen with human Mcl-1. To understand the affinity loss, we used sequence alignments and structures of human Mcl-1/inhibitor complexes to identify the important differences in the amino acid sequences. One difference is human L246 (F226 in rat, F227 in mouse) in the ligand binding pocket. Mutating rat F226 to a Leu restores affinity, but the mouse F227L mutant still has a ligand affinity that is lower than that of human Mcl-1. Another mutation of mouse F267, located ∼12 Å from the ligand pocket, to the human/rat cysteine, F267C, improved the affinity and combined with F227L resulted in a mutant mouse protein with a binding affinity similar to that of human Mcl-1. To help understand the structural components of the affinity loss, we obtained an X-ray structure of a mouse Mcl-1/inhibitor complex and identified how the residue changes reduced compound complementarity. Finally, we tested Mcl-1 of other preclinical animal models (canine, monkey, rabbit, and ferret) that are identical to humans in terms of these two residues and found that their Mcl-1 bound our compounds with affinities comparable to that of human Mcl-1. These results have implications for understanding ligand selectivity for similar proteins and for the interpretation of preclinical toxicology studies with Mcl-1 inhibitors.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Biochemistry , Vanderbilt University School of Medicine , 2215 Garland Avenue, 607 Light Hall , Nashville , Tennessee 37232-0146 , United States
| | - Allison L Arnold
- Department of Biochemistry , Vanderbilt University School of Medicine , 2215 Garland Avenue, 607 Light Hall , Nashville , Tennessee 37232-0146 , United States
| | - Marcelle A Coronel
- Department of Biochemistry , Vanderbilt University School of Medicine , 2215 Garland Avenue, 607 Light Hall , Nashville , Tennessee 37232-0146 , United States
| | - Joyce H Lee
- Department of Biochemistry , Vanderbilt University School of Medicine , 2215 Garland Avenue, 607 Light Hall , Nashville , Tennessee 37232-0146 , United States
| | - Taekyu Lee
- Department of Biochemistry , Vanderbilt University School of Medicine , 2215 Garland Avenue, 607 Light Hall , Nashville , Tennessee 37232-0146 , United States
| | - Edward T Olejniczak
- Department of Biochemistry , Vanderbilt University School of Medicine , 2215 Garland Avenue, 607 Light Hall , Nashville , Tennessee 37232-0146 , United States
| | - Stephen W Fesik
- Department of Biochemistry , Vanderbilt University School of Medicine , 2215 Garland Avenue, 607 Light Hall , Nashville , Tennessee 37232-0146 , United States
| |
Collapse
|
25
|
Mady ASA, Liao C, Bajwa N, Kump KJ, Abulwerdi FA, Lev KL, Miao L, Grigsby SM, Perdih A, Stuckey JA, Du Y, Fu H, Nikolovska-Coleska Z. Discovery of Mcl-1 inhibitors from integrated high throughput and virtual screening. Sci Rep 2018; 8:10210. [PMID: 29976942 PMCID: PMC6033896 DOI: 10.1038/s41598-018-27899-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/05/2018] [Indexed: 02/06/2023] Open
Abstract
Protein-protein interactions (PPIs) represent important and promising therapeutic targets that are associated with the regulation of various molecular pathways, particularly in cancer. Although they were once considered “undruggable,” the recent advances in screening strategies, structure-based design, and elucidating the nature of hot spots on PPI interfaces, have led to the discovery and development of successful small-molecule inhibitors. In this report, we are describing an integrated high-throughput and computational screening approach to enable the discovery of small-molecule PPI inhibitors of the anti-apoptotic protein, Mcl-1. Applying this strategy, followed by biochemical, biophysical, and biological characterization, nineteen new chemical scaffolds were discovered and validated as Mcl-1 inhibitors. A novel series of Mcl-1 inhibitors was designed and synthesized based on the identified difuryl-triazine core scaffold and structure-activity studies were undertaken to improve the binding affinity to Mcl-1. Compounds with improved in vitro binding potency demonstrated on-target activity in cell-based studies. The obtained results demonstrate that structure-based analysis complements the experimental high-throughput screening in identifying novel PPI inhibitor scaffolds and guides follow-up medicinal chemistry efforts. Furthermore, our work provides an example that can be applied to the analysis of available screening data against numerous targets in the PubChem BioAssay Database, leading to the identification of promising lead compounds, fuelling drug discovery pipelines.
Collapse
Affiliation(s)
- Ahmed S A Mady
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.,Interdepartmental Graduate Program in Medicinal Chemistry, University of Michigan, College of Pharmacy, Ann Arbor, MI, USA
| | - Chenzhong Liao
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.,School of Medical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Naval Bajwa
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.,Pfizer Inc, Lake Forest, IL, 60045, USA
| | - Karson J Kump
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.,Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Fardokht A Abulwerdi
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.,Interdepartmental Graduate Program in Medicinal Chemistry, University of Michigan, College of Pharmacy, Ann Arbor, MI, USA.,Basic Research Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Katherine L Lev
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lei Miao
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sierrah M Grigsby
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.,Molecular and Cellular Pathology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrej Perdih
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Jeanne A Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Yuhong Du
- Department of Pharmacology, Emory University, Atlanta, GA, USA
| | - Haian Fu
- Department of Pharmacology, Emory University, Atlanta, GA, USA
| | - Zaneta Nikolovska-Coleska
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA. .,Molecular and Cellular Pathology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA. .,Interdepartmental Graduate Program in Medicinal Chemistry, University of Michigan, College of Pharmacy, Ann Arbor, MI, USA. .,Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
26
|
Tong J, Zheng X, Tan X, Fletcher R, Nikolovska-Coleska Z, Yu J, Zhang L. Mcl-1 Phosphorylation without Degradation Mediates Sensitivity to HDAC Inhibitors by Liberating BH3-Only Proteins. Cancer Res 2018; 78:4704-4715. [PMID: 29895675 DOI: 10.1158/0008-5472.can-18-0399] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/07/2018] [Accepted: 06/08/2018] [Indexed: 11/16/2022]
Abstract
Mcl-1, a prosurvival Bcl-2 family protein, is frequently overexpressed in cancer cells and plays a critical role in therapeutic resistance. It is well known that anticancer agents induce phosphorylation of Mcl-1, which promotes its binding to E3 ubiquitin ligases and subsequent proteasomal degradation and apoptosis. However, other functions of Mcl-1 phosphorylation in cancer cell death have not been well characterized. In this study, we show in colon cancer cells that histone deacetylase inhibitors (HDACi) induce GSK3β-dependent Mcl-1 phosphorylation, but not degradation or downregulation. The in vitro and in vivo anticancer effects of HDACi were dependent on Mcl-1 phosphorylation and were blocked by genetic knock-in of a Mcl-1 phosphorylation site mutant. Phosphorylation-dead Mcl-1 maintained cell survival by binding and sequestering BH3-only Bcl-2 family proteins PUMA, Bim, and Noxa, which were upregulated and necessary for apoptosis induction by HDACi. Resistance to HDACi mediated by phosphorylation-dead Mcl-1 was reversed by small-molecule Mcl-1 inhibitors that liberated BH3-only proteins. These results demonstrate a critical role of Mcl-1 phosphorylation in mediating HDACi sensitivity through a novel and degradation-independent mechanism. These results provide new mechanistic insights on how Mcl-1 maintains cancer cell survival and suggest that Mcl-1-targeting agents are broadly useful for overcoming therapeutic resistance in cancer cells.Significance: These findings present a novel degradation-independent function of Mcl-1 phosphorylation in anticancer therapy that could be useful for developing new Mcl-1-targeting agents to overcome therapeutic resistance. Cancer Res; 78(16); 4704-15. ©2018 AACR.
Collapse
Affiliation(s)
- Jingshan Tong
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xingnan Zheng
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xiao Tan
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Rochelle Fletcher
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Jian Yu
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lin Zhang
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania. .,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
27
|
da Silva RN, Cunha Â, Tomé AC. Phthalocyanine–sulfonamide conjugates: Synthesis and photodynamic inactivation of Gram-negative and Gram-positive bacteria. Eur J Med Chem 2018; 154:60-67. [DOI: 10.1016/j.ejmech.2018.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/11/2018] [Accepted: 05/07/2018] [Indexed: 12/17/2022]
|
28
|
Zhang Q, Zhang J, Gavathiotis E. ICBS 2017 in Shanghai-Illuminating Life with Chemical Innovation. ACS Chem Biol 2018; 13:1111-1122. [PMID: 29677443 PMCID: PMC6855916 DOI: 10.1021/acschembio.8b00220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qi Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Albert Einstein College of Medicine, New York 10461, United States
| |
Collapse
|
29
|
Discovery of N-(Naphtho[1,2-b]Furan-5-Yl) Benzenesulfonamides as Novel Selective Inhibitors of Triple-Negative Breast Cancer (TNBC). Molecules 2018; 23:molecules23030678. [PMID: 29547591 PMCID: PMC6017705 DOI: 10.3390/molecules23030678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/11/2018] [Accepted: 03/16/2018] [Indexed: 02/07/2023] Open
Abstract
Any type of breast cancer not expressing genes of the estrogen receptor (ER), progesterone receptor (PR), or human epidermal growth factor receptor 2 (HER2) is referred to as triple-negative breast cancer (TNBC). Accordingly, TNBCs do not respond to hormonal therapies or medicines targeting the ER, PR, or HER2. Systemic chemotherapy is therefore the only treatment option available today and prognoses remain poor. We report the discovery and characterization of N-(naphtho[1,2-b]furan-5-yl)benzenesulfonamides as selective inhibitors of TNBCs. These inhibitors were identified by virtual screening and inhibited different TNBC cell lines with IC50 values of 2-3 μM. The compounds did not inhibit normal (i.e. MCF-7 and MCF-10A) cells in vitro, indicating their selectivity against TNBC cells. Considering the selectivity of these inhibitors for TNBC, these compounds and analogs can serve as a promising starting point for further research on effective TNBC inhibitors.
Collapse
|
30
|
Li K, Tian H. Development of small-molecule immune checkpoint inhibitors of PD-1/PD-L1 as a new therapeutic strategy for tumour immunotherapy. J Drug Target 2018; 27:244-256. [PMID: 29448849 DOI: 10.1080/1061186x.2018.1440400] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer immunotherapy has been increasingly utilised to treat advanced malignancies. The signalling network of immune checkpoints has attracted considerable attention. Immune checkpoint inhibitors are revolutionising the treatment options and expectations for patients with cancer. The reported clinical success of targeting the T-cell immune checkpoint receptors PD-1/PD-L1 has demonstrated the importance of immune modulation. Indeed, antibodies binding to PD-1 or PD-L1 have shown remarkable efficacy. However, antibody drugs have many disadvantages, such as their production cost, stability, and immunogenicity and, therefore, small-molecule inhibitors of PD-1 and its ligand PD-L1 are being introduced. Small-molecule inhibitors could offer inherent advantages in terms of pharmacokinetics and druggability, thereby providing additional methods for cancer treatment and achieving better therapeutic effects. In this review, we first discuss how PD-1/PD-L1-targeting inhibitors modulate the relationship between immune cells and tumour cells in tumour immunotherapy. Second, we discuss how the immunomodulatory potential of these inhibitors can be exploited via rational combinations with immunotherapy and targeted therapy. Third, this review is the first to summarise the current clinical and preclinical evidence regarding small-molecule inhibitors of the PD-1/PD-L1 immune checkpoint, considering features and responses related to the tumours and to the host immune system.
Collapse
Affiliation(s)
- Kui Li
- a Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine , Chinese Academy of Medical Science & Peking Union Medical College , Tianjin , China
| | - Hongqi Tian
- a Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine , Chinese Academy of Medical Science & Peking Union Medical College , Tianjin , China
| |
Collapse
|
31
|
Whiting E, Raje MR, Chauhan J, Wilder PT, Van Eker D, Hughes SJ, Bowen NG, Vickers GEA, Fenimore IC, Fletcher S. Discovery of Mcl-1 inhibitors based on a thiazolidine-2,4-dione scaffold. Bioorg Med Chem Lett 2017; 28:523-528. [PMID: 29329659 DOI: 10.1016/j.bmcl.2017.11.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 02/06/2023]
Abstract
Inspired by a rhodanine-based dual inhibitor of Bcl-xL and Mcl-1, a focused library of analogues was prepared wherein the rhodanine core was replaced with a less promiscuous thiazolidine-2,4-dione scaffold. Compounds were initially evaluated for their abilities to inhibit Mcl-1. The most potent compound 12b inhibited Mcl-1 with a Ki of 155 nM. Further investigation revealed comparable inhibition of Bcl-xL (Ki = 90 nM), indicating that the dual inhibitory profile of the initial rhodanine lead had been retained upon switching the heterocycle core.
Collapse
Affiliation(s)
- Ellis Whiting
- School of Chemistry, University of Cardiff, Cardiff CF10 3AT, UK
| | - Mithun R Raje
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine St., Baltimore, MD 21201, United States
| | - Jay Chauhan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine St., Baltimore, MD 21201, United States
| | - Paul T Wilder
- Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201, United States; University of Maryland Marlene and Stewart Greenebaum Comprehesive Cancer Center, 22 S. Greene St., Baltimore, MD 21201, USA
| | - Daniel Van Eker
- School of Chemistry, University of Cardiff, Cardiff CF10 3AT, UK
| | - Samuel J Hughes
- School of Chemistry, University of Cardiff, Cardiff CF10 3AT, UK
| | - Nathan G Bowen
- School of Chemistry, University of Cardiff, Cardiff CF10 3AT, UK
| | | | - Ian C Fenimore
- Eberly College of Science, Penn State University, 517 Thomas St., State College, PA 16803, United States
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine St., Baltimore, MD 21201, United States; University of Maryland Marlene and Stewart Greenebaum Comprehesive Cancer Center, 22 S. Greene St., Baltimore, MD 21201, USA.
| |
Collapse
|
32
|
Defining specificity and on-target activity of BH3-mimetics using engineered B-ALL cell lines. Oncotarget 2017; 7:11500-11. [PMID: 26862853 PMCID: PMC4905489 DOI: 10.18632/oncotarget.7204] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/24/2016] [Indexed: 11/25/2022] Open
Abstract
One of the hallmarks of cancer is a resistance to the induction of programmed cell death that is mediated by selection of cells with elevated expression of anti-apoptotic members of the BCL-2 family. To counter this resistance, new therapeutic agents known as BH3-mimetic small molecules are in development with the goal of antagonizing the function of anti-apoptotic molecules and promoting the induction of apoptosis. To facilitate the testing and modeling of BH3-mimetic agents, we have developed a powerful system for evaluation and screening of agents both in culture and in immune competent animal models by engineering mouse leukemic cells and re-programming them to be dependent on exogenously expressed human anti-apoptotic BCL-2 family members. Here we demonstrate that this panel of cell lines can determine the specificity of BH3-mimetics to individual anti-apoptotic BCL-2 family members (BCL-2, BCL-XL, BCL-W, BFL-1, and MCL-1), demonstrate whether cell death is due to the induction of apoptosis (BAX and BAK-dependent), and faithfully assess the efficacy of BH3-mimetic small molecules in pre-clinical mouse models. These cells represent a robust and valuable pre-clinical screening tool for validating the efficacy, selectivity, and on-target action of BH3-mimetic agents.
Collapse
|
33
|
Abstract
The approval of venetoclax, a 'BH3-mimetic' antagonist of the BCL-2 anti-apoptotic protein, for chronic lymphocytic leukemia represents a major milestone in translational apoptosis research. Venetoclax has already received 'breakthrough' designation for acute myeloid leukemia, and is being studied in many other tumor types. However, resistance to BCL-2 inhibitor monotherapy may rapidly ensue. Several studies have shown that the other two major anti-apoptotic BCL-2 family proteins, BCL-XL and MCL-1, are the main determinants of resistance to venetoclax. This opens up possibilities for rationally combining venetoclax with other targeted agents to circumvent resistance. Here, we summarize the most promising combinations, and highlight those already in clinical trials. There is also increasing recognition that different tumors display different degrees of addiction to individual BCL-2 family proteins, and of the need to refine current 'BH3 profiling' techniques. Finally, the successful clinical development of potent and selective antagonists of BCL-XL and MCL-1 is eagerly awaited.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Apoptosis/drug effects
- Apoptosis/genetics
- Biomimetics
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Clinical Trials as Topic
- Drug Discovery
- Drug Resistance, Neoplasm/genetics
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/metabolism
- Peptide Fragments/pharmacology
- Peptide Fragments/therapeutic use
- Proto-Oncogene Proteins/pharmacology
- Proto-Oncogene Proteins/therapeutic use
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/chemistry
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- bcl-X Protein/antagonists & inhibitors
- bcl-X Protein/genetics
- bcl-X Protein/metabolism
Collapse
Affiliation(s)
- Prithviraj Bose
- a Department of Leukemia , University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Varsha Gandhi
- a Department of Leukemia , University of Texas MD Anderson Cancer Center , Houston , TX , USA
- b Department of Experimental Therapeutics , University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Marina Konopleva
- a Department of Leukemia , University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
34
|
Ilyas SI, Gores GJ. Emerging molecular therapeutic targets for cholangiocarcinoma. J Hepatol 2017; 67:632-644. [PMID: 28389139 PMCID: PMC5563275 DOI: 10.1016/j.jhep.2017.03.026] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/06/2017] [Accepted: 03/24/2017] [Indexed: 02/06/2023]
Abstract
Cholangiocarcinomas (CCAs) are diverse epithelial tumors arising from the liver or large bile ducts with features of cholangiocyte differentiation. CCAs are classified anatomically into intrahepatic (iCCA), perihilar (pCCA), and distal CCA (dCCA). Each subtype has distinct risk factors, molecular pathogenesis, therapeutic options, and prognosis. CCA is an aggressive malignancy with a poor overall prognosis and median survival of less than 2years in patients with advanced disease. Potentially curative surgical treatment options are limited to the subset of patients with early-stage disease. Presently, the available systemic medical therapies for advanced or metastatic CCA have limited therapeutic efficacy. Molecular alterations define the differences in biological behavior of each CCA subtype. Recent comprehensive genetic analysis has better characterized the genomic and transcriptomic landscape of each CCA subtype. Promising candidates for targeted, personalized therapy have emerged, including potential driver fibroblast growth factor receptor (FGFR) gene fusions and somatic mutations in isocitrate dehydrogenase (IDH)1/2 in iCCA, protein kinase cAMP-activated catalytic subunit alpha (PRKACA) or beta (PRKACB) gene fusions in pCCA, and ELF3 mutations in dCCA/ampullary carcinoma. A precision genomic medicine approach is dependent on an enhanced understanding of driver mutations in each subtype and stratification of patients according to their genetic drivers. We review the current genomic landscape of CCA, the potentially actionable molecular aberrations in each CCA subtype, and the role of immunotherapy in CCA.
Collapse
Affiliation(s)
- Sumera I Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
35
|
Ren JX, Li CP, Zhou XL, Cao XS, Xie Y. In silico approaches to identify novel myeloid cell leukemia-1 (Mcl-1) inhibitors for treatment of cancer. J Biomol Struct Dyn 2017; 36:2424-2435. [PMID: 28714799 DOI: 10.1080/07391102.2017.1356241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Myeloid cell leukemia-1 (Mcl-1) has been a validated and attractive target for cancer therapy. Over-expression of Mcl-1 in many cancers allows cancer cells to evade apoptosis and contributes to the resistance to current chemotherapeutics. Here, we identified new Mcl-1 inhibitors using a multi-step virtual screening approach. First, based on two different ligand-receptor complexes, 20 pharmacophore models were established by simultaneously using 'Receptor-Ligand Pharmacophore Generation' method and manual build feature method, and then carefully validated by a test database. Then, pharmacophore-based virtual screening (PB-VS) could be performed by using the 20 pharmacophore models. In addition, docking study was used to predict the possible binding poses of compounds, and the docking parameters were optimized before performing docking-based virtual screening (DB-VS). Moreover, a 3D QSAR model was established by applying the 55 aligned Mcl-1 inhibitors. The 55 inhibitors sharing the same scaffold were docked into the Mcl-1 active site before alignment, then the inhibitors with possible binding conformations were aligned. For the training set, the 3D QSAR model gave a correlation coefficient r2 of 0.996; for the test set, the correlation coefficient r2 was 0.812. Therefore, the developed 3D QSAR model was a good model, which could be applied for carrying out 3D QSAR-based virtual screening (QSARD-VS). After the above three virtual screening methods orderly filtering, 23 potential inhibitors with novel scaffolds were identified. Furthermore, we have discussed in detail the mapping results of two potent compounds onto pharmacophore models, 3D QSAR model, and the interactions between the compounds and active site residues.
Collapse
Affiliation(s)
- Ji-Xia Ren
- a College of Life Science , Liaocheng University , Liaocheng , People's Republic of China.,b Institute of Medicinal Plant Development , Chinese Academy of Medical Science & Peking Union Medical college , Beijing , People's Republic of China
| | - Cheng-Ping Li
- a College of Life Science , Liaocheng University , Liaocheng , People's Republic of China
| | - Xiu-Ling Zhou
- a College of Life Science , Liaocheng University , Liaocheng , People's Republic of China
| | - Xue-Song Cao
- a College of Life Science , Liaocheng University , Liaocheng , People's Republic of China
| | - Yong Xie
- b Institute of Medicinal Plant Development , Chinese Academy of Medical Science & Peking Union Medical college , Beijing , People's Republic of China
| |
Collapse
|
36
|
Tong J, Tan S, Nikolovska-Coleska Z, Yu J, Zou F, Zhang L. FBW7-Dependent Mcl-1 Degradation Mediates the Anticancer Effect of Hsp90 Inhibitors. Mol Cancer Ther 2017; 16:1979-1988. [PMID: 28619760 DOI: 10.1158/1535-7163.mct-17-0032] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/19/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022]
Abstract
Heat shock protein 90 (Hsp90) is widely overexpressed in cancer cells and necessary for maintenance of malignant phenotypes. Hsp90 inhibition induces tumor cell death through degradation of its client oncoproteins and has shown promises in preclinical studies. However, the mechanism by which Hsp90 inhibitors kill tumor cells is not well-understood. Biomarkers associated with differential sensitivity and resistance to Hsp90 inhibitors remain to be identified. In this study, we found that colorectal cancer cells containing inactivating mutations of FBW7, a tumor suppressor and E3 ubiquitin ligase, are intrinsically insensitive to Hsp90 inhibitors. The insensitive colorectal cancer cells lack degradation of Mcl-1, a prosurvival Bcl-2 family protein. Hsp90 inhibition promotes GSK3β-dependent phosphorylation of Mcl-1, which subsequently binds to FBW7 and undergoes ubiquitination and proteasomal degradation. Specifically blocking Mcl-1 phosphorylation by genetic knock-in abrogates its degradation and renders in vitro and in vivo resistance to Hsp90 inhibitors, which can be overcame by Mcl-1-selective small-molecule inhibitors. Collectively, our findings demonstrate a key role of GSK3β/FBW7-dependent Mcl-1 degradation in killing of colorectal cancer cells by Hsp90 inhibitors and suggest FBW7 mutational status as a biomarker for Hsp90-targeted therapy. Mol Cancer Ther; 16(9); 1979-88. ©2017 AACR.
Collapse
Affiliation(s)
- Jingshan Tong
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shuai Tan
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | | | - Jian Yu
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Fangdong Zou
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China.
| | - Lin Zhang
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. .,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
37
|
Luan S, Ge Q, Chen Y, Dai M, Yang J, Li K, Liu D, Zhao L. Discovery and structure-activity relationship studies of N-substituted indole derivatives as novel Mcl-1 inhibitors. Bioorg Med Chem Lett 2017; 27:1943-1948. [DOI: 10.1016/j.bmcl.2017.03.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/18/2017] [Accepted: 03/14/2017] [Indexed: 01/05/2023]
|
38
|
Li JM, Wang YH, Yu Y, Wu RB, Weng J, Lu G. Copper-Catalyzed Remote C–H Functionalizations of Naphthylamides through a Coordinating Activation Strategy and Single-Electron-Transfer (SET) Mechanism. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03671] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jun-Ming Li
- Institute of Medicinal Chemistry, School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Yong-Heng Wang
- Institute of Medicinal Chemistry, School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Yang Yu
- Institute of Medicinal Chemistry, School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Rui-Bo Wu
- Institute of Medicinal Chemistry, School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Jiang Weng
- Institute of Medicinal Chemistry, School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Gui Lu
- Institute of Medicinal Chemistry, School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
39
|
Barile E, Marconi GD, De SK, Baggio C, Gambini L, Salem AF, Kashyap MK, Castro JE, Kipps TJ, Pellecchia M. hBfl-1/hNOXA Interaction Studies Provide New Insights on the Role of Bfl-1 in Cancer Cell Resistance and for the Design of Novel Anticancer Agents. ACS Chem Biol 2017; 12:444-455. [PMID: 28026162 PMCID: PMC5320539 DOI: 10.1021/acschembio.6b00962] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/18/2016] [Indexed: 02/07/2023]
Abstract
Upregulation of antiapoptotic Bcl-2 proteins in certain tumors confers cancer cell resistance to chemotherapy or radiations. Members of the antiapoptotic Bcl-2 proteins, including Bcl-2, Mcl-1, Bcl-xL, Bcl-w, and Bfl-1, inhibit apoptosis by selectively binding to conserved α-helical regions, named BH3 domains, of pro-apoptotic proteins such as Bim, tBid, Bad, or NOXA. Five antiapoptotic proteins have been identified that interact with various selectivity with BH3 containing pro-apoptotic counterparts. Cancer cells present various and variable levels of these proteins, making the design of effective apoptosis based therapeutics challenging. Recently, BH3 profiling was introduced as a method to classify cancer cells based on their ability to resist apoptosis following exposure to selected BH3 peptides. However, these studies were based on binding affinities measured with model BH3 peptides and Bcl-2-proteins taken from mouse sequences. While the majority of these interactions are conserved between mice and humans, we found surprisingly that human NOXA binds to human Bfl-1 potently and covalently via conserved Cys residues, with over 2 orders of magnitude increased affinity over hMcl-1. Our data suggest that some assumptions of the original BH3 profiling need to be revisited and that perhaps further targeting efforts should be redirected toward Bfl-1, for which no suitable specific inhibitors or pharmacological tools have been reported. In this regard, we also describe the initial design and characterizations of novel covalent BH3-based agents that potently target Bfl-1. These molecules could provide a novel platform on which to design effective Bfl-1 targeting therapeutics.
Collapse
Affiliation(s)
- Elisa Barile
- Division of Biomedical
Sciences, School of Medicine, University
of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Guya D. Marconi
- Division of Biomedical
Sciences, School of Medicine, University
of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Surya K. De
- Division of Biomedical
Sciences, School of Medicine, University
of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Carlo Baggio
- Division of Biomedical
Sciences, School of Medicine, University
of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Luca Gambini
- Division of Biomedical
Sciences, School of Medicine, University
of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Ahmed F. Salem
- Division of Biomedical
Sciences, School of Medicine, University
of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Manoj K. Kashyap
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- CLL Research
Consortium, and Department of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Januario E. Castro
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- CLL Research
Consortium, and Department of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Thomas J. Kipps
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- CLL Research
Consortium, and Department of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Maurizio Pellecchia
- Division of Biomedical
Sciences, School of Medicine, University
of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
40
|
Tong J, Wang P, Tan S, Chen D, Nikolovska-Coleska Z, Zou F, Yu J, Zhang L. Mcl-1 Degradation Is Required for Targeted Therapeutics to Eradicate Colon Cancer Cells. Cancer Res 2017; 77:2512-2521. [PMID: 28202514 DOI: 10.1158/0008-5472.can-16-3242] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/10/2017] [Accepted: 01/31/2017] [Indexed: 01/07/2023]
Abstract
The Bcl-2 family protein Mcl-1 is often degraded in cancer cells subjected to effective therapeutic treatment, and defective Mcl-1 degradation has been associated with intrinsic and acquired drug resistance. However, a causal relationship between Mcl-1 degradation and anticancer drug responses has not been directly established, especially in solid tumor cells where Mcl-1 inhibition alone is insufficient to trigger cell death. In this study, we present evidence that Mcl-1 participates directly in determining effective therapeutic responses in colon cancer cells. In this setting, Mcl-1 degradation was induced by a variety of multikinase inhibitor drugs, where it relied upon GSK3β phosphorylation and FBW7-dependent ubiquitination. Specific blockade by genetic knock-in (KI) abolished apoptotic responses and conferred resistance to kinase inhibitors. Mcl-1-KI also suppressed the antiangiogenic and anti-hypoxic effects of kinase inhibitors in the tumor microenvironment. Interestingly, these same inhibitors also induced the BH3-only Bcl-2 family protein PUMA, which is required for apoptosis. Degradation-resistant Mcl-1 bound and sequestered PUMA from other prosurvival proteins to maintain cell survival, which was abolished by small-molecule Mcl-1 inhibitors. Our findings establish a pivotal role for Mcl-1 degradation in the response of colon cancer cells to targeted therapeutics, and they provide a useful rational platform to develop Mcl-1-targeting agents that can overcome drug resistance. Cancer Res; 77(9); 2512-21. ©2017 AACR.
Collapse
Affiliation(s)
- Jingshan Tong
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Peng Wang
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shuai Tan
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Dongshi Chen
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Fangdong Zou
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Jian Yu
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lin Zhang
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. .,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
41
|
Milani M, Byrne DP, Greaves G, Butterworth M, Cohen GM, Eyers PA, Varadarajan S. DRP-1 is required for BH3 mimetic-mediated mitochondrial fragmentation and apoptosis. Cell Death Dis 2017; 8:e2552. [PMID: 28079887 PMCID: PMC5386385 DOI: 10.1038/cddis.2016.485] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/16/2016] [Indexed: 01/01/2023]
Abstract
The concept of using BH3 mimetics as anticancer agents has been substantiated by the efficacy of selective drugs, such as Navitoclax and Venetoclax, in treating BCL-2-dependent haematological malignancies. However, most solid tumours depend on MCL-1 for survival, which is highly amplified in multiple cancers and a major factor determining chemoresistance. Most MCL-1 inhibitors that have been generated so far, while demonstrating early promise in vitro, fail to exhibit specificity and potency in a cellular context. To address the lack of standardised assays for benchmarking the in vitro binding of putative inhibitors before analysis of their cellular effects, we developed a rapid differential scanning fluorimetry (DSF)-based assay, and used it to screen a panel of BH3 mimetics. We next contrasted their binding signatures with their ability to induce apoptosis in a MCL-1 dependent cell line. Of all the MCL-1 inhibitors tested, only A-1210477 induced rapid, concentration-dependent apoptosis, which strongly correlated with a thermal protective effect on MCL-1 in the DSF assay. In cells that depend on both MCL-1 and BCL-XL, A-1210477 exhibited marked synergy with A-1331852, a BCL-XL specific inhibitor, to induce cell death. Despite this selectivity and potency, A-1210477 induced profound structural changes in the mitochondrial network in several cell lines that were not phenocopied following MCL-1 RNA interference or transcriptional repression, suggesting that A-1210477 induces mitochondrial fragmentation in an MCL-1-independent manner. However, A-1210477-induced mitochondrial fragmentation was dependent upon DRP-1, and silencing expression levels of DRP-1 diminished not just mitochondrial fragmentation but also BH3 mimetic-mediated apoptosis. These findings provide new insights into MCL-1 ligands, and the interplay between DRP-1 and the anti-apoptotic BCL-2 family members in the regulation of apoptosis.
Collapse
Affiliation(s)
- Mateus Milani
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - Dominic P Byrne
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Georgia Greaves
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - Michael Butterworth
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - Gerald M Cohen
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Shankar Varadarajan
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, Ashton Street, Liverpool L69 3GE, UK
| |
Collapse
|
42
|
Lee T, Bian Z, Zhao B, Hogdal LJ, Sensintaffar JL, Goodwin CM, Belmar J, Shaw S, Tarr JC, Veerasamy N, Matulis SM, Koss B, Fischer MA, Arnold AL, Camper DV, Browning CF, Rossanese OW, Budhraja A, Opferman J, Boise LH, Savona MR, Letai A, Olejniczak ET, Fesik SW. Discovery and biological characterization of potent myeloid cell leukemia-1 inhibitors. FEBS Lett 2017; 591:240-251. [PMID: 27878989 PMCID: PMC5381274 DOI: 10.1002/1873-3468.12497] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 01/07/2023]
Abstract
Myeloid cell leukemia 1 (Mcl-1) is an antiapoptotic member of the Bcl-2 family of proteins that when overexpressed is associated with high tumor grade, poor survival, and resistance to chemotherapy. Mcl-1 is amplified in many human cancers, and knockdown of Mcl-1 using RNAi can lead to apoptosis. Thus, Mcl-1 is a promising cancer target. Here, we describe the discovery of picomolar Mcl-1 inhibitors that cause caspase activation, mitochondrial depolarization, and selective growth inhibition. These compounds represent valuable tools to study the role of Mcl-1 in cancer and serve as useful starting points for the discovery of clinically useful Mcl-1 inhibitors. PDB ID CODES Comp. 2: 5IEZ; Comp. 5: 5IF4.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Brian Koss
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | | | | | | | | | | | - Amit Budhraja
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Joseph Opferman
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | | | | | | | | | | |
Collapse
|
43
|
Yap JL, Chen L, Lanning ME, Fletcher S. Expanding the Cancer Arsenal with Targeted Therapies: Disarmament of the Antiapoptotic Bcl-2 Proteins by Small Molecules. J Med Chem 2016; 60:821-838. [PMID: 27749061 DOI: 10.1021/acs.jmedchem.5b01888] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A hallmark of cancer is the evasion of apoptosis, which is often associated with the upregulation of the antiapoptotic members of the Bcl-2 family of proteins. The prosurvival function of the antiapoptotic Bcl-2 proteins is manifested by capturing and neutralizing the proapoptotic Bcl-2 proteins via their BH3 death domains. Accordingly, strategies to antagonize the antiapoptotic Bcl-2 proteins have largely focused on the development of low-molecular-weight, synthetic BH3 mimetics ("magic bullets") to disrupt the protein-protein interactions between anti- and proapoptotic Bcl-2 proteins. In this way, apoptosis has been reactivated in malignant cells. Moreover, several such Bcl-2 family inhibitors are presently being evaluated for a range of cancers in clinical trials and show great promise as new additions to the cancer armamentarium. Indeed, the selective Bcl-2 inhibitor venetoclax (Venclexta) recently received FDA approval for the treatment of a specific subset of patients with chronic lymphocytic leukemia. This review focuses on the major developments in the field of Bcl-2 inhibitors over the past decade, with particular emphasis on binding modes and, thus, the origins of selectivity for specific Bcl-2 family members.
Collapse
Affiliation(s)
- Jeremy L Yap
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy , 20 N. Pine Street, Baltimore, Maryland 21201, United States
| | - Lijia Chen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy , 20 N. Pine Street, Baltimore, Maryland 21201, United States
| | - Maryanna E Lanning
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy , 20 N. Pine Street, Baltimore, Maryland 21201, United States
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy , 20 N. Pine Street, Baltimore, Maryland 21201, United States.,University of Maryland Greenebaum Cancer Center , Baltimore, Maryland 21201, United States
| |
Collapse
|
44
|
Burrer CM, Auburn H, Wang X, Luo J, Abulwerdi FA, Nikolovska-Coleska Z, Chan GC. Mcl-1 small-molecule inhibitors encapsulated into nanoparticles exhibit increased killing efficacy towards HCMV-infected monocytes. Antiviral Res 2016; 138:40-46. [PMID: 27914937 DOI: 10.1016/j.antiviral.2016.11.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/25/2016] [Accepted: 11/26/2016] [Indexed: 11/26/2022]
Abstract
Human cytomegalovirus (HCMV) spreads and establishes a persistent infection within a host by stimulating the survival of carrier myeloid cells via the upregulation of Mcl-1, an antiapoptotic member of the Bcl-2 family of proteins. However, the lack of potent Mcl-1-specific inhibitors and a targetable delivery system has limited the ability to exploit Mcl-1 as a therapeutic strategy to eliminate HCMV-infected monocytes. In this study, we found a lead compound from a novel class of Mcl-1 small-molecule inhibitors rapidly induced death of HCMV-infected monocytes. Moreover, encapsulation of Mcl-1 antagonists into myeloid cell-targeting nanoparticles was able to selectively increase the delivery of inhibitors into HCMV-activated monocytes, thereby amplifying their potency. Our study demonstrates the potential use of nanotechnology to target Mcl-1 small-molecule inhibitors to HCMV-infected monocytes.
Collapse
Affiliation(s)
- Christine M Burrer
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Helen Auburn
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Xu Wang
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Juntao Luo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Fardokht A Abulwerdi
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, United States
| | | | - Gary C Chan
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, United States.
| |
Collapse
|
45
|
Squadroni M, Tondulli L, Gatta G, Mosconi S, Beretta G, Labianca R. Cholangiocarcinoma. Crit Rev Oncol Hematol 2016; 116:11-31. [PMID: 28693792 DOI: 10.1016/j.critrevonc.2016.11.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 11/07/2016] [Accepted: 11/22/2016] [Indexed: 12/15/2022] Open
Abstract
Biliary tract cancer accounts for <1% of all cancers and affects chiefly an elderly population, with predominance in men. We distinguish cholangiocarcinoma (intrahepatic, hilar and distal) and gallbladder cancer, with different pathogenesis and prognosis. The treatment is based on surgery (whenever possible), radiotherapy in selected cases, and chemotherapy. The standard cytotoxic treatment for advanced/metastatic disease is represented by the combination of gemcitabine and cisplatin, whereas fluoropyrimidines are generally administered in second line setting. At the present time, no biologic drug demonstrated a clear efficacy in this cancer, although the molecular characterisation could provide a promising basis for experimental treatments. A good supportive care and an early palliative care are warranted in most patients and should be delivered as a part of a global approach.
Collapse
Affiliation(s)
| | - Luca Tondulli
- Medical Oncology Unit, Borgo Roma Hospital, Verona, Italy
| | - Gemma Gatta
- Italian National Cancer Institute, Milan, Italy
| | | | | | | |
Collapse
|
46
|
Abstract
INTRODUCTION The myeloid cell leukemia-1 (MCL-1) protein is one of the key anti-apoptotic members of the B-cell lymphoma-2 (BCL-2) protein family. Over-expression of MCL-1 has been closely related to tumor progression as well as to resistance, not only to traditional chemotherapies but also to targeted therapeutics including BCL-2 inhibitors such as ABT-263. Therefore, there has been extensive research and development in the last decade in both academic and industrial settings to address this unmet medical need. Areas covered: This review covers the research and patent literature of the past 10 years in the field of discovery and development of small-molecule inhibitors of the MCL-1 anti-apoptotic protein. Expert opinion: Small-molecule strategies to disrupt the protein-protein interactions between MCL-1 and its pro-apoptotic counterparts, such as BAK and BIM, have recently emerged. Several small-molecules based on different scaffolds describe promising in vitro data as MCL-1 selective inhibitors. While many lead compounds remain at the in vitro preclinical development stage, the two most recent patent applications describe promising in vivo data, and one small molecule inhibitor has recently entered into clinical development. It is such an exciting moment that the long awaited clinical studies will generate some insight into the therapeutic potential of this anti-cancer approach, and possibly facilitate the further development of other early stage inhibitors.
Collapse
Affiliation(s)
- Lijia Chen
- a Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , MD , USA
| | - Steven Fletcher
- a Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , MD , USA
| |
Collapse
|
47
|
Song T, Wang Z, Ji F, Feng Y, Fan Y, Chai G, Li X, Li Z, Zhang Z. Deactivation of Mcl-1 by Dual-Function Small-Molecule Inhibitors Targeting the Bcl-2 Homology 3 Domain and Facilitating Mcl-1 Ubiquitination. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ting Song
- State Key Laboratory of Fine Chemicals; Zhang Dayu School of Chemistry; Dalian University of Technology; Dalian, Liaoning China
| | - Ziqian Wang
- School of Chemistry; Dalian University of Technology; Dalian, Liaoning China
| | - Fangling Ji
- School of Life Science and Technology; Dalian University of Technology; China
| | - Yingang Feng
- Shandong Key Laboratory of Synthetic Biology; CAS Key Laboratory of Biofuels; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao, Shandong China
| | - Yudan Fan
- School of Life Science and Technology; Dalian University of Technology; China
| | - Gaobo Chai
- School of Chemistry; Dalian University of Technology; Dalian, Liaoning China
| | - Xiangqian Li
- Institute of Oceanology; Chinese Academy of Sciences; Qingdao, Shandong China
| | - Zhiqiang Li
- School of Chemistry; Dalian University of Technology; Dalian, Liaoning China
| | - Zhichao Zhang
- School of Chemistry; Dalian University of Technology; Dalian, Liaoning China
| |
Collapse
|
48
|
Song T, Wang Z, Ji F, Feng Y, Fan Y, Chai G, Li X, Li Z, Zhang Z. Deactivation of Mcl-1 by Dual-Function Small-Molecule Inhibitors Targeting the Bcl-2 Homology 3 Domain and Facilitating Mcl-1 Ubiquitination. Angew Chem Int Ed Engl 2016; 55:14250-14256. [DOI: 10.1002/anie.201606543] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/26/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Ting Song
- State Key Laboratory of Fine Chemicals; Zhang Dayu School of Chemistry; Dalian University of Technology; Dalian, Liaoning China
| | - Ziqian Wang
- School of Chemistry; Dalian University of Technology; Dalian, Liaoning China
| | - Fangling Ji
- School of Life Science and Technology; Dalian University of Technology; China
| | - Yingang Feng
- Shandong Key Laboratory of Synthetic Biology; CAS Key Laboratory of Biofuels; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao, Shandong China
| | - Yudan Fan
- School of Life Science and Technology; Dalian University of Technology; China
| | - Gaobo Chai
- School of Chemistry; Dalian University of Technology; Dalian, Liaoning China
| | - Xiangqian Li
- Institute of Oceanology; Chinese Academy of Sciences; Qingdao, Shandong China
| | - Zhiqiang Li
- School of Chemistry; Dalian University of Technology; Dalian, Liaoning China
| | - Zhichao Zhang
- School of Chemistry; Dalian University of Technology; Dalian, Liaoning China
| |
Collapse
|
49
|
Song T, Wang Z, Zhang Z. Substituted indole Mcl-1 inhibitors: a patent evaluation (WO2015148854A1). Expert Opin Ther Pat 2016; 26:1227-1238. [DOI: 10.1080/13543776.2016.1240786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ting Song
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, China
| | - Ziqian Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, China
| | - Zhichao Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, China
| |
Collapse
|
50
|
Zhan MM, Hu XQ, Liu XX, Ruan BF, Xu J, Liao C. From monoclonal antibodies to small molecules: the development of inhibitors targeting the PD-1/PD-L1 pathway. Drug Discov Today 2016; 21:1027-36. [DOI: 10.1016/j.drudis.2016.04.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/29/2016] [Accepted: 04/11/2016] [Indexed: 12/25/2022]
|