1
|
Wu J, Baranowski MR, Aleshin AE, Isiorho EA, Lambert LJ, De Backer LJS, Han YN, Das R, Sheffler DJ, Bobkov AA, Lemberikman AM, Keedy DA, Cosford NDP, Tautz L. Fragment Screening Identifies Novel Allosteric Binders and Binding Sites in the VHR ( DUSP3) Phosphatase. ACS OMEGA 2025; 10:4912-4926. [PMID: 39959108 PMCID: PMC11822521 DOI: 10.1021/acsomega.4c10321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/18/2025]
Abstract
The human Vaccinia H1-related phosphatase (VHR; DUSP3) is a critical positive regulator of the innate immune response. Recent studies suggest that inhibiting VHR could be beneficial in treating sepsis and septic shock. VHR belongs to the superfamily of protein tyrosine phosphatases (PTPs), a large class of enzymes that are notoriously difficult to target with small molecules. Fragment-based drug discovery (FBDD) has emerged as an effective strategy for generating potent ligands, even for challenging drug targets. Here, we present a fluorine NMR-based discovery platform for identifying fragments that bind to VHR. This platform encompasses automated library assembly, mixture formation, quantitative material transfer, fluorine NMR screening, and biophysical hit confirmation. We demonstrate that this streamlined, integrated screening workflow produces validated hits with diverse chemical matter and tangible structure-activity relationships (SAR). Crystal structures yielded detailed information on the fragment-protein interactions and provide a basis for future structurally enabled ligand optimization. Notably, we discovered novel ligand binding sites on VHR, distant from the conserved active site, facilitating the generation of selective VHR modulators. This fragment discovery platform can be applied to other PTPs and holds significant potential for identifying potent and selective ligands.
Collapse
Affiliation(s)
- Jiaqian Wu
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Marek R. Baranowski
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Ludwika Pasteura 5, 02-093 Warsaw, Poland
| | - Alexander E. Aleshin
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Eta A. Isiorho
- Structural
Biology Initiative, CUNY Advanced Science
Research Center, New York, New York 10016, United States
| | - Lester J. Lambert
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Laurent J. S. De Backer
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Ye Na Han
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Ranajit Das
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Douglas J. Sheffler
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Andrey A. Bobkov
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Alexis M. Lemberikman
- Structural
Biology Initiative, CUNY Advanced Science
Research Center, New York, New York 10016, United States
| | - Daniel A. Keedy
- Structural
Biology Initiative, CUNY Advanced Science
Research Center, New York, New York 10016, United States
- Department
of Chemistry and Biochemistry, City College
of New York, New York, New York 10031, United States
- PhD
Programs in Biochemistry, Biology, and Chemistry, CUNY Graduate Center, New York, New York 10016, United States
| | - Nicholas D. P. Cosford
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Lutz Tautz
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| |
Collapse
|
2
|
Gu J, Lv YF, Xia JY, Bai FH, Gong J, Pan GQ, Liu B, Huang L, Guo QN, Hao XL. TC2N maintains stem cell-like characteristics to accelerate lung carcinogenesis by blockade of dual specificity protein phosphatase 3. Cell Biosci 2025; 15:8. [PMID: 39849581 PMCID: PMC11758731 DOI: 10.1186/s13578-025-01348-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/10/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Tandem C2 domains, nuclear (TC2N) is a protein that has been characterized to contain C2A domain, C2B domain, and a short C-terminus with a WHXL motif. In previous studies, we have uncovered the oncogenic role and mechanisms of TC2N in lung cancer: TC2N achieves this by inhibiting the p53 signaling pathway and activating the NF-kappaB signaling pathway. Beyond that, its precise function in tumorigenesis is not fully understood. METHODS TC2N-engineered mice model was used to assess the effect of TC2N knockout on normal lung and urethane-induced carcinogenesis. Tumor tissues of 395 lung cancer patients were subjected to tissue microarray and further assessed the associations of TC2N expression with tumor differentiation degree. The protein levels of TC2N and stem cell markers in cell lines and tissue specimens were monitored by WB and immunohistochemistry. In vitro cell assays were performed to assess the effect of TC2N ectopic expression on the stem cell-like characteristics of lung cancer cells. The downstream signaling pathway or target molecule of TC2N was mined using a combination of transcriptomics and proteomics, and the underlying mechanism was explored by WB and co-IP assays. RESULTS Herein, TC2N appeared to have a strong effect in promoting lung tumorigenesis caused by urethane, whereas it seemed to lose its function in the normal lung. Meanwhile, we found that the functional differences of TC2N between lung tumor and normal lung were linked to its potential role in cancer cell stemness. Function-wise, TC2N overexpression maintained stem-like properties of lung cancer cell. Mechanism-wise, TC2N upregulated the phosphorylation of EGFR, ERK, STAT3 and FAK1 to activate these signaling pathways by the inhibition of DUSP3 phosphatase via a dual mechanism. Firstly, TC2N competes with EGFR, ERK, STAT3 and FAK1 for binding to DUSP3. This competition prevents these signaling molecules from being dephosphorylated by DUSP3, resulting in their sustained activation. Secondly, TC2N bind to DUSP3 and restrict the enzyme's ability to dephosphorylate the signaling molecules. CONCLUSIONS Overall, this study revealed a previously unknown role and mechanism of TC2N in the regulation of tumorigenesis and stemness in lung cancer cells.
Collapse
Affiliation(s)
- Jing Gu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, PR China
| | - Yang-Fan Lv
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, PR China
| | - Ji-Ying Xia
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, PR China
| | - Fu-Hai Bai
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, PR China
| | - Ji Gong
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, PR China
| | - Guang-Qiang Pan
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, PR China
| | - Bo Liu
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, PR China
| | - Lu Huang
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, PR China
| | - Qiao-Nan Guo
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, PR China.
| | - Xiang-Lin Hao
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, PR China.
| |
Collapse
|
3
|
Stadnicki EJ, Ludewig H, Kumar RP, Wang X, Qiao Y, Kern D, Bradshaw N. Dual-action kinase inhibitors influence p38α MAP kinase dephosphorylation. Proc Natl Acad Sci U S A 2025; 122:e2415150122. [PMID: 39739785 PMCID: PMC11725910 DOI: 10.1073/pnas.2415150122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/03/2024] [Indexed: 01/02/2025] Open
Abstract
Reversible protein phosphorylation directs essential cellular processes including cell division, cell growth, cell death, inflammation, and differentiation. Because protein phosphorylation drives diverse diseases, kinases and phosphatases have been targets for drug discovery, with some achieving remarkable clinical success. Most protein kinases are activated by phosphorylation of their activation loops, which shifts the conformational equilibrium of the kinase toward the active state. To turn off the kinase, protein phosphatases dephosphorylate these sites, but how the conformation of the dynamic activation loop contributes to dephosphorylation was not known. To answer this, we modulated the activation loop conformational equilibrium of human p38α ΜΑP kinase with existing kinase inhibitors that bind and stabilize specific inactive activation loop conformations. From this, we identified three inhibitors that increase the rate of dephosphorylation of the activation loop phospho-threonine by the PPM serine/threonine phosphatase WIP1. Hence, these compounds are "dual-action" inhibitors that simultaneously block the active site and promote p38α dephosphorylation. Our X-ray crystal structures of phosphorylated p38α bound to the dual-action inhibitors reveal a shared flipped conformation of the activation loop with a fully accessible phospho-threonine. In contrast, our X-ray crystal structure of phosphorylated apo human p38α reveals a different activation loop conformation with an inaccessible phospho-threonine, thereby explaining the increased rate of dephosphorylation upon inhibitor binding. These findings reveal a conformational preference of phosphatases for their targets and suggest a unique approach to achieving improved potency and specificity for therapeutic kinase inhibitors.
Collapse
Affiliation(s)
| | - Hannes Ludewig
- Department of Biochemistry, Brandeis University, Waltham, MA02454
- HHMI, Brandeis University, Waltham, MA02454
| | | | - Xicong Wang
- Department of Biochemistry, Brandeis University, Waltham, MA02454
| | - Youwei Qiao
- Department of Biochemistry, Brandeis University, Waltham, MA02454
| | - Dorothee Kern
- Department of Biochemistry, Brandeis University, Waltham, MA02454
- HHMI, Brandeis University, Waltham, MA02454
| | - Niels Bradshaw
- Department of Biochemistry, Brandeis University, Waltham, MA02454
| |
Collapse
|
4
|
Khbouz B, Musumeci L, Grahammer F, Jouret F. The Dual-specificity Phosphatase 3 (DUSP3): A Potential Target Against Renal Ischemia/Reperfusion Injury. Transplantation 2024; 108:2166-2173. [PMID: 39466786 DOI: 10.1097/tp.0000000000005009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Renal ischemia/reperfusion (I/R) injury is a common clinical challenge faced by clinicians in kidney transplantation. I/R is the leading cause of acute kidney injury, and it occurs when blood flow to the kidney is interrupted and subsequently restored. I/R impairs renal function in both short and long terms. Renal ischemic preconditioning refers to all maneuvers intended to prevent or attenuate ischemic damage. In this context, the present review focuses on the dual-specificity phosphatase 3 (DUSP3), also known as vaccinia H1-related phosphatase, an uncommon regulator of mitogen-activated protein kinase (MAPK) phosphorylation. DUSP3 has different biological functions: (1) it acts as a tumor modulator and (2) it is involved in the regulation of immune response, thrombosis, hemostasis, angiogenesis, and genomic stability. These functions occur either through MAPK-dependent or MAPK-independent mechanisms. DUSP3 genetic deletion dampens kidney damage and inflammation caused by I/R in mice, suggesting DUSP3 as a potential target for preventing renal I/R injury. Here, we discuss the putative role of DUSP3 in ischemic preconditioning and the potential mechanisms of such an attenuated inflammatory response via improved kidney perfusion and adequate innate immune response.
Collapse
Affiliation(s)
- Badr Khbouz
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège (ULiège), Liège, Belgium
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine (Nephrology, Rheumatology, Endocrinology), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lucia Musumeci
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège (ULiège), Liège, Belgium
- Department of Cardiovascular Surgery, CHU of Liège, Liège, Belgium
| | - Florian Grahammer
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine (Nephrology, Rheumatology, Endocrinology), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - François Jouret
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège (ULiège), Liège, Belgium
- Division of Nephrology, CHU of Liège, University of Liège (CHU ULiège), Liège, Belgium
| |
Collapse
|
5
|
Stadnicki EJ, Ludewig H, Kumar RP, Wang X, Qiao Y, Kern D, Bradshaw N. Dual-Action Kinase Inhibitors Influence p38α MAP Kinase Dephosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594272. [PMID: 39149408 PMCID: PMC11326130 DOI: 10.1101/2024.05.15.594272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Reversible protein phosphorylation directs essential cellular processes including cell division, cell growth, cell death, inflammation, and differentiation. Because protein phosphorylation drives diverse diseases, kinases and phosphatases have been targets for drug discovery, with some achieving remarkable clinical success. Most protein kinases are activated by phosphorylation of their activation loops, which shifts the conformational equilibrium of the kinase towards the active state. To turn off the kinase, protein phosphatases dephosphorylate these sites, but how the conformation of the dynamic activation loop contributes to dephosphorylation was not known. To answer this, we modulated the activation loop conformational equilibrium of human p38α ΜΑP kinase with existing kinase inhibitors that bind and stabilize specific inactive activation loop conformations. From this, we discovered three inhibitors that increase the rate of dephosphorylation of the activation loop phospho-threonine by the PPM serine/threonine phosphatase WIP1. Hence, these compounds are "dual-action" inhibitors that simultaneously block the active site and stimulate p38α dephosphorylation. Our X-ray crystal structures of phosphorylated p38α bound to the dual-action inhibitors reveal a shared flipped conformation of the activation loop with a fully accessible phospho-threonine. In contrast, our X-ray crystal structure of phosphorylated apo human p38α reveals a different activation loop conformation with an inaccessible phospho-threonine, thereby explaining the increased rate of dephosphorylation upon inhibitor binding. These findings reveal a conformational preference of phosphatases for their targets and suggest a new approach to achieving improved potency and specificity for therapeutic kinase inhibitors.
Collapse
Affiliation(s)
- Emily J Stadnicki
- Department of Biochemistry, Brandeis University
- Molecular and Cell Biology Program, Brandeis University
| | - Hannes Ludewig
- Department of Biochemistry, Brandeis University
- Howard Hughes Medical Institute
| | - Ramasamy P Kumar
- Department of Biochemistry, Brandeis University
- Present address: Northeastern University
| | - Xicong Wang
- Department of Biochemistry, Brandeis University
| | - Youwei Qiao
- Department of Biochemistry, Brandeis University
- Present address: UMass Medical School
| | - Dorothee Kern
- Department of Biochemistry, Brandeis University
- Howard Hughes Medical Institute
| | | |
Collapse
|
6
|
Bottini A, Pacheco DRDCG, Forti FL, Bottini N. Revisiting VH1 phosphatase at the time of monkeypox: back to the spotlight. Biochem Soc Trans 2023; 51:1419-1427. [PMID: 37409507 DOI: 10.1042/bst20200408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
Vaccinia virus is a poxvirus that has been successfully leveraged to develop vaccines for smallpox, which is caused by the closely related Variola virus. Smallpox has been declared as 'eradicated' by the WHO in 1980; however, it still poses a potential bioterrorism threat. More recently, the spreading of monkeypox (MPox) in non-endemic countries has further highlighted the importance of continuing the exploration for druggable targets for poxvirus infections. The vaccinia H1 (VH1) phosphatase is the first reported dual specificity phosphatase (DUSP) able to hydrolyze both phosphotyrosine and phosphoserine/phosphotheonine residues. VH1 is a 20 kDa protein that forms a stable dimer and can dephosphorylate both viral and cellular substrates to regulate the viral replication cycle and host immune response. VH1 dimers adopt a domain swap mechanism with the first 20 amino acids of each monomer involved in dense electrostatic interaction and salt bridge formations while hydrophobic interactions between the N-terminal and C-terminal helices further stabilize the dimer. VH1 appears to be an ideal candidate for discovery of novel anti-poxvirus agents because it is highly conserved within the poxviridae family and is a virulence factor, yet it displays significant divergence in sequence and dimerization mechanism from its human closest ortholog vaccinia H1-related (VHR) phosphatase, encoded by the DUSP3 gene. As the dimeric quaternary structure of VH1 is essential for its phosphatase activity, strategies leading to disruption of the dimer structure might aid in VH1 inhibitor development.
Collapse
Affiliation(s)
- Angel Bottini
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, U.S.A
| | - Diana R D C G Pacheco
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Fabio L Forti
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Nunzio Bottini
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, U.S.A
| |
Collapse
|
7
|
Wen C, Dechsupa N, Yu Z, Zhang X, Liang S, Lei X, Xu T, Gao X, Hu Q, Innuan P, Kantapan J, Lü M. Pentagalloyl Glucose: A Review of Anticancer Properties, Molecular Targets, Mechanisms of Action, Pharmacokinetics, and Safety Profile. Molecules 2023; 28:4856. [PMID: 37375411 DOI: 10.3390/molecules28124856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Pentagalloyl glucose (PGG) is a natural hydrolyzable gallotannin abundant in various plants and herbs. It has a broad range of biological activities, specifically anticancer activities, and numerous molecular targets. Despite multiple studies available on the pharmacological action of PGG, the molecular mechanisms underlying the anticancer effects of PGG are unclear. Here, we have critically reviewed the natural sources of PGG, its anticancer properties, and underlying mechanisms of action. We found that multiple natural sources of PGG are available, and the existing production technology is sufficient to produce large quantities of the required product. Three plants (or their parts) with maximum PGG content were Rhus chinensis Mill, Bouea macrophylla seed, and Mangifera indica kernel. PGG acts on multiple molecular targets and signaling pathways associated with the hallmarks of cancer to inhibit growth, angiogenesis, and metastasis of several cancers. Moreover, PGG can enhance the efficacy of chemotherapy and radiotherapy by modulating various cancer-associated pathways. Therefore, PGG can be used for treating different human cancers; nevertheless, the data on the pharmacokinetics and safety profile of PGG are limited, and further studies are essential to define the clinical use of PGG in cancer therapies.
Collapse
Affiliation(s)
- Chengli Wen
- Department of Intensive Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Luzhou Key Laboratory of Human Microecology and Precision Diagnosis and Treatment, Luzhou 646000, China
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Zehui Yu
- Laboratory Animal Center, Southwest Medical University, Luzhou 646000, China
| | - Xu Zhang
- Luzhou Key Laboratory of Human Microecology and Precision Diagnosis and Treatment, Luzhou 646000, China
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Sicheng Liang
- Luzhou Key Laboratory of Human Microecology and Precision Diagnosis and Treatment, Luzhou 646000, China
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xianying Lei
- Department of Intensive Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Tao Xu
- Department of Intensive Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiaolan Gao
- Department of Intensive Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Qinxue Hu
- Department of Intensive Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Phattarawadee Innuan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Muhan Lü
- Luzhou Key Laboratory of Human Microecology and Precision Diagnosis and Treatment, Luzhou 646000, China
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
8
|
Sreelakshmi P, Krishna BS, Santhisudha S, Murali S, Reddy GR, Venkataramaiah C, Rao PV, Reddy AVK, Swetha V, Zyryanov GV, Reddy CD, Reddy CS. Synthesis and biological evaluation of novel dialkyl (4-amino-5H-chromeno[2,3-d]pyrimidin-5-yl)phosphonates. Bioorg Chem 2022; 129:106121. [PMID: 36075177 DOI: 10.1016/j.bioorg.2022.106121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
Abstract
This study reports the design and synthesis of novel dialkyl (4-amino-5H-chromeno[2,3-d]pyrimidin-5-yl)phosphonates as potential antitumor agents against A549 (lung cancer), DU-145 (prostate cancer), PC-3 (prostate cancer), HeLa (cervical cancer) and MCF-7 (breast cancer), cell lines evidenced from the in vitro antitumor studies performed by MTT assay (across 10-30 μM concentrations). The structural eminence of these synthesized molecules has emanated by designing the structural core by uniting the chromene, pyrimidine and phosphonate moieties into one, which has augmented their novelty and made them unreported. Further the deep structural activity relationship study investigations articulated that the title compounds are promising drug-like compounds and potential inhibitor of histidine amino acid residue present on the respective enzymatic proteins [3QJZ (A549), 3VHE (DU-145), 3V49 (PC-3), 3F81 (HeLa), & 3R7Q (MCF-7)] of the cell lines screened and are identified as responsible for the multi-faceted antitumor activities predicted in vitro. The obtained results were further supported by molecular docking studies, QSAR, ADMET, and bioactivity studies which have supported them as potential BBB penetrable molecules and proficient CNS active neuro-protective agents during drug delivery.
Collapse
Affiliation(s)
- Poola Sreelakshmi
- Department of Chemistry, Sri Venkateswara University, Tirupati 517 502, India
| | | | - Sarva Santhisudha
- Department of Chemistry, Sri Venkateswara University, Tirupati 517 502, India
| | - Sudileti Murali
- Department of Chemistry, Sri Venkateswara University, Tirupati 517 502, India
| | | | - Chintha Venkataramaiah
- Department of Zoology, Sri Venkateswara University, Tirupati 517 502, India; Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do 24341, Republic of Korea
| | - Pasupuleti Visweswara Rao
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Bangalore 560 064, India; Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Jl Riau Ujung No. 73, Pekanbaru 28292, Riau, Indonesia.
| | - Avula Vijaya Kumar Reddy
- Chemical Engineering Institute, Ural Federal University, Yekaterinburg 620002, Russian Federation
| | - Vallela Swetha
- Chemical Engineering Institute, Ural Federal University, Yekaterinburg 620002, Russian Federation
| | - Grigory Vasilievich Zyryanov
- Chemical Engineering Institute, Ural Federal University, Yekaterinburg 620002, Russian Federation; Ural Division of the Russian Academy of Sciences, I. Ya. Postovskiy Institute of Organic Synthesis, 22 S., Kovalevskoy Street, Yekaterinburg 620219, Russian Federation
| | | | | |
Collapse
|
9
|
Khbouz B, Rowart P, Poma L, Dahlke E, Bottner M, Stokes M, Bolen G, Rahmouni S, Theilig F, Jouret F. The genetic deletion of the Dual Specificity Phosphatase 3 (DUSP3) attenuates kidney damage and inflammation following ischaemia/reperfusion injury in mouse. Acta Physiol (Oxf) 2022; 234:e13735. [PMID: 34704357 DOI: 10.1111/apha.13735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/16/2022]
Abstract
AIM Dual Specificity Phosphatase 3 (DUSP3) regulates the innate immune response, with a putative role in angiogenesis. Modulating inflammation and perfusion contributes to renal conditioning against ischaemia/reperfusion (I/R). We postulate that the functional loss of DUSP3 is associated with kidney resistance to I/R. METHODS Ten C57BL/6 male WT and Dusp3-/- mice underwent right nephrectomy and left renal I/R (30 min/48 hours). Renal injury was assessed based on serum levels of urea (BUN) and Jablonski score. The expression of CD31 and VEGF vascular markers was quantified by RT-qPCR and immuno-staining. Renal resistivity index (RRI) was measured in vivo by Doppler ultrasound. Comparative phosphoproteomics was conducted using IMAC enrichment of phosphopeptides. Inflammatory markers were quantified at both mRNA and protein levels in ischaemic vs non-ischaemic kidneys in WT vs Dusp3-/- . RESULTS At baseline, we located DUSP3 in renal glomeruli and endothelial cells. CD31-positive vascular network was significantly larger in Dusp3-/- kidneys compared to WT, with a lower RRI in Dusp3-/- mice. Following I/R, BUN and Jablonski score were significantly lower in Dusp3-/- vs WT mice. Phosphoproteomics highlighted a down-regulation of inflammatory pathways and up-regulation of phospho-sites involved in cell metabolism and VEGF-related angiogenesis in Dusp3-/- vs WT ischaemic kidneys. Dusp3-/- ischaemic kidneys showed decreased mRNA levels of CD11b, TNF-α, KIM-1, IL-6, IL-1β and caspase-3 compared to controls. The numbers of PCNA-, F4-80- and CD11b-positive cells were reduced in Dusp3-/- vs WT kidneys post-I/R. CONCLUSION Genetic inactivation of Dusp3 is associated with kidney conditioning against I/R, possibly due to attenuated inflammation and improved perfusion.
Collapse
Affiliation(s)
- Badr Khbouz
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA) Cardiovascular Sciences University of Liège (ULiège) Liège Belgium
| | - Pascal Rowart
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA) Cardiovascular Sciences University of Liège (ULiège) Liège Belgium
- Department of Pharmacology and Chemical Biology School of Medicine University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Laurence Poma
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA) Cardiovascular Sciences University of Liège (ULiège) Liège Belgium
| | - Eileen Dahlke
- Institute of Anatomy Christian Albrechts‐University Kiel Germany
| | - Martina Bottner
- Institute of Anatomy Christian Albrechts‐University Kiel Germany
| | - Matthew Stokes
- Cell Signaling Technology, Inc. Danvers Massachusetts USA
| | - Géraldine Bolen
- Department of Clinical Sciences Fundamental and Applied Research for Animals & Health (FARAH) Veterinary Faculty University of Liège (ULiège) Liège Belgium
| | - Souad Rahmouni
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA) Medical Genomics University of Liège (ULiège) Liège Belgium
| | - Franziska Theilig
- Institute of Anatomy Christian Albrechts‐University Kiel Germany
- Institute of Anatomy Department of Medicine University of Fribourg Fribourg Switzerland
| | - François Jouret
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA) Cardiovascular Sciences University of Liège (ULiège) Liège Belgium
- Division of Nephrology CHU of Liège University of Liège (CHU ULiège) Liège Belgium
| |
Collapse
|
10
|
Belkadi A, Kenouche S, Melkemi N, Daoud I, Djebaili R. K-means clustering analysis, ADME/pharmacokinetic prediction, MEP, and molecular docking studies of potential cytotoxic agents. Struct Chem 2021. [DOI: 10.1007/s11224-021-01796-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Beaumont VA, Reiss K, Qu Z, Allen B, Batista VS, Loria JP. Allosteric Impact of the Variable Insert Loop in Vaccinia H1-Related (VHR) Phosphatase. Biochemistry 2020; 59:1896-1908. [PMID: 32348128 PMCID: PMC7364816 DOI: 10.1021/acs.biochem.0c00245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dynamics and conformational motions are important to the activity of enzymes, including protein tyrosine phosphatases. These motions often extend to regions outside the active site, called allosteric regions. In the tyrosine phosphatase Vaccinia H1-related (VHR) enzyme, we demonstrate the importance of the allosteric interaction between the variable insert region and the active-site loops in VHR. These studies include solution nuclear magnetic resonance, computation, steady-state, and rapid kinetic measurements. Overall, the data indicate concerted millisecond motions exist between the variable insert and the catalytic acid loop in wild-type (WT) VHR. The 150 ns computation studies show a flexible acid loop in WT VHR that opens during the simulation from its initial closed structure. Mutation of the variable insert residue, asparagine 74, to alanine results in a rigidification of the acid loop as observed by molecular dynamics simulations and a disruption of crucial active-site hydrogen bonds. Moreover, enzyme kinetic analysis shows a weakening of substrate affinity in the N74A mutant and a >2-fold decrease in substrate cleavage and hydrolysis rates. These data show that despite being nearly 20 Å from the active site, the variable insert region is linked to the acid loop by coupled millisecond motions, and that disruption of the communication between the variable insert and active site alters the normal catalytic function of VHR and perturbs the active-site environment.
Collapse
Affiliation(s)
- Victor A Beaumont
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Krystle Reiss
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Zexing Qu
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
- Institute for Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Brandon Allen
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - J Patrick Loria
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520, United States
| |
Collapse
|
12
|
Yoon SY, Kim DH, Min Roh K, Ahn D, Jin Kang H, Chung SJ. Identification of Vaccinia-H1 Related Phosphatase as an Anticancer Target for 1,2,3,4,6-O-Pentagalloylglucose. Chem Biodivers 2019; 17:e1900414. [PMID: 31797547 DOI: 10.1002/cbdv.201900414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/03/2019] [Indexed: 01/09/2023]
Abstract
Protein tyrosine phosphatases are involved in diverse human diseases, including cancer, diabetes and inflammatory disorders. Loss of Vaccinia-H1 related phosphatase (VHR) has been shown to arrest at the G1-S and G2-M transitions of the cell cycle, and to increases cell death of prostate cancer cells through JNK activation, suggesting that VHR can be considered as an anticancer target. In this study, 658 natural products were screened through in vitro enzyme assay to identify VHR inhibitor. Among the VHR-inhibitory compounds, 1,2,3,4,6-O-pentagalloylglucose (PGG) was selected for further study as it has been reported to show antitumor effects against tumor model mice, but its direct target has not been identified. PGG inhibited the catalytic activity of VHR (Ki =53 nm) in vitro. Furthermore, the incubation of HeLa cervical cancer cells with PGG dramatically decreased cell viability and markedly increased the protein levels of the cleaved PARP, a hallmark of apoptosis. In addition, treatment of HeLa cells with PGG significantly reduced the protein levels of cyclin D1, Bcl-2 and STAT3 phosphorylation. Taken together, these results suggest that PGG could be a potential therapeutic candidate for the treatment of cervical cancer through VHR inhibition.
Collapse
Affiliation(s)
- Sun-Young Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Do-Hwi Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyung Min Roh
- Department of Chemistry, Dongguk University, Seoul, 100-715, Republic of Korea
| | - Dohee Ahn
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyo Jin Kang
- Department of Chemistry, Dongguk University, Seoul, 100-715, Republic of Korea
| | - Sang J Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
13
|
Liu S, He X, Man VH, Ji B, Liu J, Wang J. New application of in silico methods in identifying mechanisms of action and key components of anti-cancer herbal formulation YIV-906 (PHY906). Phys Chem Chem Phys 2019; 21:23501-23513. [PMID: 31617551 DOI: 10.1039/c9cp03803e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
YIV-906 (formally PHY906, KD018) is a four-herb formulation that is currently being developed to improve the therapeutic index and ameliorate the side effects of many chemotherapeutic drugs including sorafenib, irinotecan, and capecitabine. However, as a promising anti-cancer adjuvant, the molecular mechanism of action of YIV-906 remains unrevealed due to its multi-component and multi-target features. Since YIV-906 has been shown to induce apoptosis and autophagy in cancer cells through modulating the negative regulators of ERK1/2, namely DUSPs, it is of great interest to elucidate the key components that cause the therapeutic effect of YIV-906. In this work, we investigated the mechanism of YIV-906 inhibiting DUSPs, using a broad spectrum of molecular modelling techniques, including molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations. In total, MD simulations and binding free energy calculations were performed for 99 DUSP-ligand complexes. We found that some herbal components or their metabolites could inhibit DUSPs. Based on the docking scores and binding free energies, the sulfation and glucuronidation metabolites of the S ingredient in YIV-906 play a leading role in inhibiting DUSPs, although several original herbal chemicals with carboxyl groups from the P and Z ingredients also make contributions to this inhibitory effect. It is not a surprise that the electrostatic interaction plays the dominant role in the ligand binding process, given the fact that several charged residues reside in the binding pockets of DUSPs. Our MD simulation results demonstrate that the sulfate moieties and carboxyl moieties of the advantageous ligands from YIV-906 can occupy the enzymes' catalytic sites, mimicking the endogenous phosphate substrates of DUSPs. As such, the ligand binding can inhibit the association of DUSPs and ERK1/2, which in turn reduces the dephosphorylation of ERK1/2 and causes cell cycle arrest in the tumor. Our modelling study provides useful insights into the rational design of highly potent anti-cancer drugs targeting DUSPs. Finally, we have demonstrated that multi-scale molecular modelling techniques are able to elucidate molecular mechanisms involving complex molecular systems.
Collapse
Affiliation(s)
- Shuhan Liu
- School of Pharmacy, Computational Chemical Genomics Screening Center, University of Pittsburgh, 3501 Terrace St, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Lee J, Lee J, Kim JH. Scattered DUSP28 is a novel biomarker responsible for aggravating malignancy via the autocrine and paracrine signaling in metastatic pancreatic cancer. Cancer Lett 2019; 456:1-12. [PMID: 30902562 DOI: 10.1016/j.canlet.2019.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 11/30/2022]
Abstract
Pancreatic cancer remains one of the most dangerous cancers with a grave prognosis. We have reported that dual specificity phosphatise 28 (DUSP28) could be secreted in pancreatic cancer cells. However, its biological function is poorly understood. Here, we distinguish the function of scattered DUSP28 in human pancreatic cancer. DUSP28 was specifically secreted to cultured medium in metastatic pancreatic cancer cells. Treatment with recombinant DUSP28 significantly increased the migration, invasion, and viability of metastatic pancreatic cancer cells through the activation of CREB, AKT, and ERK1/2 signaling pathways. In addition, administration of recombinant DUSP28 elicited pro-angiogenic effects in human umbilical vein endothelial cells. Injection of recombinant DUSP28 also produced tumor growth in vivo. Of interest, DUSP28 formed an autocrine loop with integrin α1 (ITGα1) by transcriptional regulation and recombinant DUSP28 acted as an oncogenic reagent through the interaction with ITGα1. Notably, scattered DUSP28 could be detected in whole blood samples of pancreatic cancer patients by accessible immunoassay. These results provide the basis for DUSP28 as a promising therapeutic target and a biomarker for metastatic pancreatic cancer.
Collapse
Affiliation(s)
- Jungwhoi Lee
- Department of Applied Life Science, SARI, Jeju National University, Jeju-do, 63243, Republic of Korea; Subtropical/tropical Organism Gene Bank, Jeju National University, Jeju-do, 63243, Republic of Korea.
| | - Jungsul Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Jae-Hoon Kim
- Department of Applied Life Science, SARI, Jeju National University, Jeju-do, 63243, Republic of Korea; Subtropical/tropical Organism Gene Bank, Jeju National University, Jeju-do, 63243, Republic of Korea.
| |
Collapse
|
15
|
Lang R, Raffi FAM. Dual-Specificity Phosphatases in Immunity and Infection: An Update. Int J Mol Sci 2019; 20:ijms20112710. [PMID: 31159473 PMCID: PMC6600418 DOI: 10.3390/ijms20112710] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/26/2022] Open
Abstract
Kinase activation and phosphorylation cascades are key to initiate immune cell activation in response to recognition of antigen and sensing of microbial danger. However, for balanced and controlled immune responses, the intensity and duration of phospho-signaling has to be regulated. The dual-specificity phosphatase (DUSP) gene family has many members that are differentially expressed in resting and activated immune cells. Here, we review the progress made in the field of DUSP gene function in regulation of the immune system during the last decade. Studies in knockout mice have confirmed the essential functions of several DUSP-MAPK phosphatases (DUSP-MKP) in controlling inflammatory and anti-microbial immune responses and support the concept that individual DUSP-MKP shape and determine the outcome of innate immune responses due to context-dependent expression and selective inhibition of different mitogen-activated protein kinases (MAPK). In addition to the canonical DUSP-MKP, several small-size atypical DUSP proteins regulate immune cells and are therefore also reviewed here. Unexpected and complex findings in DUSP knockout mice pose new questions regarding cell type-specific and redundant functions. Another emerging question concerns the interaction of DUSP-MKP with non-MAPK binding partners and substrate proteins. Finally, the pharmacological targeting of DUSPs is desirable to modulate immune and inflammatory responses.
Collapse
Affiliation(s)
- Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Faizal A M Raffi
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
16
|
Bailey DC, Buckley BP, Chernov MV, Gulick AM. Development of a High-Throughput Biochemical Assay to Screen for Inhibitors of Aerobactin Synthetase IucA. SLAS DISCOVERY 2018; 23:1070-1082. [PMID: 29991301 DOI: 10.1177/2472555218787140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Acquiring sufficient quantities of iron to support survival is often a critical limitation for pathogenic bacteria. To meet this demand, bacteria have evolved unique strategies to scavenge iron and circumvent the nutritional immunity exerted by their hosts. One common strategy, which is often a key virulence factor for bacterial pathogens, involves the synthesis, secretion, and reuptake of iron chelators known as siderophores. In vitro and in vivo studies have demonstrated that the siderophore aerobactin is critical for virulence in the hypervirulent pathotype of Klebsiella pneumoniae (hvKP). Given the high rate of multidrug resistance in K. pneumoniae, and in light of the ever-increasing demand for novel Gram-negative therapeutic targets, we identified aerobactin production as a promising antivirulence target in hvKP. Herein, we describe the development of a high-throughput biochemical assay for identifying inhibitors of the aerobactin synthetase IucA. The assay was employed to screen ~110,000 compounds across several commercially available small-molecule libraries. IucA inhibitors with activity at micromolar concentrations were identified in our screening campaigns and confirmed using secondary orthogonal assays. However, the most potent compounds also exhibited some properties commonly observed with promiscuous/nonspecific inhibitors, including incubation time and target enzyme concentration dependence, as well as the potential to antagonize unrelated enzymes.
Collapse
Affiliation(s)
- Daniel C Bailey
- 1 Department of Structural Biology, Jacobs School of Medicine & Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.,2 The Hauptman-Woodward Medical Research Institute, Buffalo, NY, USA
| | - Brian P Buckley
- 3 Small Molecule Screening Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mikhail V Chernov
- 3 Small Molecule Screening Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Andrew M Gulick
- 1 Department of Structural Biology, Jacobs School of Medicine & Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.,2 The Hauptman-Woodward Medical Research Institute, Buffalo, NY, USA
| |
Collapse
|
17
|
Monteiro LF, Ferruzo PYM, Russo LC, Farias JO, Forti FL. DUSP3/VHR: A Druggable Dual Phosphatase for Human Diseases. Rev Physiol Biochem Pharmacol 2018; 176:1-35. [PMID: 30069819 DOI: 10.1007/112_2018_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein tyrosine kinases (PTK), discovered in the 1970s, have been considered master regulators of biological processes with high clinical significance as targets for human diseases. Their actions are countered by protein tyrosine phosphatases (PTP), enzymes yet underrepresented as drug targets because of the high homology of their catalytic domains and high charge of their catalytic pocket. This scenario is still worse for some PTP subclasses, for example, for the atypical dual-specificity phosphatases (ADUSPs), whose biological functions are not even completely known. In this sense, the present work focuses on the dual-specificity phosphatase 3 (DUSP3), also known as VH1-related phosphatase (VHR), an uncommon regulator of mitogen-activated protein kinase (MAPK) phosphorylation. DUSP3 expression and activities are suggestive of a tumor suppressor or tumor-promoting enzyme in different types of human cancers. Furthermore, DUSP3 has other biological functions involving immune response mediation, thrombosis, hemostasis, angiogenesis, and genomic stability that occur through either MAPK-dependent or MAPK-independent mechanisms. This broad spectrum of actions is likely due to the large substrate diversity and molecular mechanisms that are still under scrutiny. The growing advances in characterizing new DUSP3 substrates will allow the development of pharmacological inhibitors relevant for possible future clinical trials. This review covers all aspects of DUSP3, since its gene cloning and crystallographic structure resolution, in addition to its classical and novel substrates and the biological processes involved, followed by an update of what is currently known about the DUSP3/VHR-inhibiting compounds that might be considered potential drugs to treat human diseases.
Collapse
Affiliation(s)
- Lucas Falcão Monteiro
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | | | - Lilian Cristina Russo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Jessica Oliveira Farias
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Fábio Luís Forti
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
18
|
Bhore N, Wang BJ, Chen YW, Liao YF. Critical Roles of Dual-Specificity Phosphatases in Neuronal Proteostasis and Neurological Diseases. Int J Mol Sci 2017; 18:ijms18091963. [PMID: 28902166 PMCID: PMC5618612 DOI: 10.3390/ijms18091963] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/01/2017] [Accepted: 09/07/2017] [Indexed: 12/31/2022] Open
Abstract
Protein homeostasis or proteostasis is a fundamental cellular property that encompasses the dynamic balancing of processes in the proteostasis network (PN). Such processes include protein synthesis, folding, and degradation in both non-stressed and stressful conditions. The role of the PN in neurodegenerative disease is well-documented, where it is known to respond to changes in protein folding states or toxic gain-of-function protein aggregation. Dual-specificity phosphatases have recently emerged as important participants in maintaining balance within the PN, acting through modulation of cellular signaling pathways that are involved in neurodegeneration. In this review, we will summarize recent findings describing the roles of dual-specificity phosphatases in neurodegeneration and offer perspectives on future therapeutic directions.
Collapse
Affiliation(s)
- Noopur Bhore
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei 11529, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| | - Bo-Jeng Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| | - Yun-Wen Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| | - Yung-Feng Liao
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei 11529, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
19
|
Torres TEP, Russo LC, Santos A, Marques GR, Magalhaes YT, Tabassum S, Forti FL. Loss of DUSP3 activity radiosensitizes human tumor cell lines via attenuation of DNA repair pathways. Biochim Biophys Acta Gen Subj 2017; 1861:1879-1894. [PMID: 28389334 DOI: 10.1016/j.bbagen.2017.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/22/2017] [Accepted: 04/02/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Radiotherapy causes the regression of many human tumors by increasing DNA damage, and the novel molecular mechanisms underlying the genomic instability leading to cancer progression and metastasis must be elucidated. Atypical dual-specificity phosphatase 3 (DUSP3) has been shown to down-regulate mitogen-activated protein kinases (MAPKs) to control the proliferation and apoptosis of human cancer cells. We have recently identified novel molecular targets of DUSP3 that function in DNA damage response and repair; however, whether DUSP3 affects these processes remains unknown. METHODS Tumor cell lines in which DUSP3 activity was suppressed by pharmacological inhibitors or a targeted siRNA were exposed to gamma radiation, and proliferation, survival, DNA strand breaks and recombination repair pathways were sequentially analyzed. RESULTS The combination of reduced DUSP3 activity and gamma irradiation resulted in decreased cellular proliferation and survival and increased cellular senescence compared with the effects of radiation exposure alone. Gamma radiation-induced DNA damage was increased by the loss of DUSP3 activity and correlated with increased levels of phospho-H2AX protein and numbers of ionizing radiation-induced γ-H2AX foci, which were reflected in diminished efficiencies of homologous recombination (HR) and non-homologous end-joining (NHEJ) repair. Similar results were obtained in ATM-deficient cells, in which reduced DUSP3 activity increased radiosensitivity, independent of increased MAPK phosphorylation. CONCLUSION The loss of DUSP3 activity markedly increases gamma radiation-induced DNA strand breaks, suggesting a potential novel role for DUSP3 in DNA repair. GENERAL SIGNIFICANCE The radioresistance of tumor cells is effectively reduced by a combination of approaches through the inhibition of DUSPs.
Collapse
Affiliation(s)
- Thompson E P Torres
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes, 748, CEP:05508-900, Sao Paulo, SP, Brazil
| | - Lilian C Russo
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes, 748, CEP:05508-900, Sao Paulo, SP, Brazil
| | - Alexsandro Santos
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes, 748, CEP:05508-900, Sao Paulo, SP, Brazil
| | - Gabriela R Marques
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes, 748, CEP:05508-900, Sao Paulo, SP, Brazil
| | - Yuli T Magalhaes
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes, 748, CEP:05508-900, Sao Paulo, SP, Brazil
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Fabio L Forti
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes, 748, CEP:05508-900, Sao Paulo, SP, Brazil.
| |
Collapse
|
20
|
Stanford SM, Aleshin AE, Zhang V, Ardecky RJ, Hedrick MP, Zou J, Ganji SR, Bliss MR, Yamamoto F, Bobkov AA, Kiselar J, Liu Y, Cadwell GW, Khare S, Yu J, Barquilla A, Chung TDY, Mustelin T, Schenk S, Bankston LA, Liddington RC, Pinkerton AB, Bottini N. Diabetes reversal by inhibition of the low-molecular-weight tyrosine phosphatase. Nat Chem Biol 2017; 13:624-632. [PMID: 28346406 PMCID: PMC5435566 DOI: 10.1038/nchembio.2344] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 01/06/2017] [Indexed: 11/09/2022]
Abstract
Obesity-associated insulin resistance plays a central role in type 2 diabetes. As such, tyrosine phosphatases that dephosphorylate the insulin receptor (IR) are potential therapeutic targets. The low-molecular-weight protein tyrosine phosphatase (LMPTP) is a proposed IR phosphatase, yet its role in insulin signaling in vivo has not been defined. Here we show that global and liver-specific LMPTP deletion protects mice from high-fat diet-induced diabetes without affecting body weight. To examine the role of the catalytic activity of LMPTP, we developed a small-molecule inhibitor with a novel uncompetitive mechanism, a unique binding site at the opening of the catalytic pocket, and an exquisite selectivity over other phosphatases. This inhibitor is orally bioavailable, and it increases liver IR phosphorylation in vivo and reverses high-fat diet-induced diabetes. Our findings suggest that LMPTP is a key promoter of insulin resistance and that LMPTP inhibitors would be beneficial for treating type 2 diabetes.
Collapse
Affiliation(s)
- Stephanie M Stanford
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Alexander E Aleshin
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Vida Zhang
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Robert J Ardecky
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Michael P Hedrick
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jiwen Zou
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Santhi R Ganji
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Matthew R Bliss
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Fusayo Yamamoto
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Andrey A Bobkov
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Janna Kiselar
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yingge Liu
- Institute for Genetic Medicine, University of Southern California, Los Angeles, California, USA
| | - Gregory W Cadwell
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Shilpi Khare
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jinghua Yu
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Antonio Barquilla
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Thomas D Y Chung
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Tomas Mustelin
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Simon Schenk
- Department of Orthopaedic Surgery and Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Laurie A Bankston
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Robert C Liddington
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Anthony B Pinkerton
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Nunzio Bottini
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
21
|
Módos D, Bulusu KC, Fazekas D, Kubisch J, Brooks J, Marczell I, Szabó PM, Vellai T, Csermely P, Lenti K, Bender A, Korcsmáros T. Neighbours of cancer-related proteins have key influence on pathogenesis and could increase the drug target space for anticancer therapies. NPJ Syst Biol Appl 2017; 3:2. [PMID: 28603644 PMCID: PMC5460138 DOI: 10.1038/s41540-017-0003-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Even targeted chemotherapies against solid cancers show a moderate success increasing the need to novel targeting strategies. To address this problem, we designed a systems-level approach investigating the neighbourhood of mutated or differentially expressed cancer-related proteins in four major solid cancers (colon, breast, liver and lung). Using signalling and protein–protein interaction network resources integrated with mutational and expression datasets, we analysed the properties of the direct and indirect interactors (first and second neighbours) of cancer-related proteins, not found previously related to the given cancer type. We found that first neighbours have at least as high degree, betweenness centrality and clustering coefficient as cancer-related proteins themselves, indicating a previously unknown central network position. We identified a complementary strategy for mutated and differentially expressed proteins, where the affect of differentially expressed proteins having smaller network centrality is compensated with high centrality first neighbours. These first neighbours can be considered as key, so far hidden, components in cancer rewiring, with similar importance as mutated proteins. These observations strikingly suggest targeting first neighbours as a novel strategy for disrupting cancer-specific networks. Remarkably, our survey revealed 223 marketed drugs already targeting first neighbour proteins but applied mostly outside oncology, providing a potential list for drug repurposing against solid cancers. For the very central first neighbours, whose direct targeting would cause several side effects, we suggest a cancer-mimicking strategy by targeting their interactors (second neighbours of cancer-related proteins, having a central protein affecting position, similarly to the cancer-related proteins). Hence, we propose to include first neighbours to network medicine based approaches for (but not limited to) anticancer therapies. Cancer is considered a systems disease in which the interactors of cancer-related proteins have a key role, also as targets to fight cancer. New therapeutic approaches are needed to improve success rates and to identify suitable proteins as novel, alternative drug targets. We designed a computational approach, combining mutation and differential expression data with network information, to analyse the interactions of cancer-related proteins in colon, breast, liver and lung cancer. We found that first (direct) neighbours, not linked previously to the given cancer type, are similarly important as mutated proteins known to be involved in cancer development. We found 223 drugs already in the clinic targeting these proteins but not yet used against cancer as their oncology relevance was hidden so far. Our observations open up new strategies for target selection and anti-cancer drug discovery.
Collapse
Affiliation(s)
- Dezső Módos
- Department of Morphology and Physiology, Department of Health Science, Semmelweis University, Budapest, Hungary.,Department of Genetics, Eötvös Loránd University, Budapest, Hungary.,Earlham Institute, Norwich Research Park, Norwich, UK.,Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, UK
| | - Krishna C Bulusu
- Centre for Molecular Informatics, University of Cambridge, Cambridge, UK
| | - Dávid Fazekas
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary.,Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, UK
| | - János Kubisch
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Johanne Brooks
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, UK.,Department of Medicine and Health, University of East Anglia, Norwich, UK.,Department of Gastroenterology, Norfolk and Norwich University Hospitals, Norwich, UK
| | - István Marczell
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Péter M Szabó
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary.,Biometric Research Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tibor Vellai
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Péter Csermely
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Katalin Lenti
- Department of Morphology and Physiology, Department of Health Science, Semmelweis University, Budapest, Hungary
| | - Andreas Bender
- Centre for Molecular Informatics, University of Cambridge, Cambridge, UK
| | - Tamás Korcsmáros
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary.,Earlham Institute, Norwich Research Park, Norwich, UK.,Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, UK
| |
Collapse
|
22
|
Praveen C, Ananth DB. Design, synthesis and cytotoxicity of pyrano[4,3-b]indol-1(5H)-ones: A hybrid pharmacophore approach via gold catalyzed cyclization. Bioorg Med Chem Lett 2016; 26:2507-2512. [DOI: 10.1016/j.bmcl.2016.03.087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/16/2016] [Accepted: 03/25/2016] [Indexed: 01/29/2023]
|
23
|
JEYAVEERAN JC, PRAVEEN CHANDRASEKAR, ARUN Y, PRINCE AAM, PERUMAL PT. Flexible synthesis of isomeric pyranoindolones and evaluation of cytotoxicity towards HeLa cells. J CHEM SCI 2016. [DOI: 10.1007/s12039-016-1070-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Rahmouni S, Hego A, Delierneux C, Wéra O, Musumeci L, Tautz L, Oury C. Functional Analysis of Protein Tyrosine Phosphatases in Thrombosis and Hemostasis. Methods Mol Biol 2016; 1447:301-30. [PMID: 27514813 DOI: 10.1007/978-1-4939-3746-2_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Platelets are small blood cells derived from cytoplasmic fragments of megakaryocytes and play an essential role in thrombosis and hemostasis. Platelet activation depends on the rapid phosphorylation and dephosphorylation of key signaling molecules, and a number of kinases and phosphatases have been identified as major regulators of platelet function. However, the investigation of novel signaling proteins has suffered from technical limitations due to the anucleate nature of platelets and their very limited levels of mRNA and de novo protein synthesis. In the past, experimental methods were restricted to the generation of genetically modified mice and the development of specific antibodies. More recently, novel (phospho)proteomic technologies and pharmacological approaches using specific small-molecule inhibitors have added additional capabilities to investigate specific platelet proteins.In this chapter, we report methods for using genetic and pharmacological approaches to investigate the function of platelet signaling proteins. While the described experiments focus on the role of the dual-specificity phosphatase 3 (DUSP3) in platelet signaling, the presented methods are applicable to any signaling enzyme. Specifically, we describe a testing strategy that includes (1) aggregation and secretion experiments with mouse and human platelets, (2) immunoprecipitation and immunoblot assays to study platelet signaling events, (3) detailed protocols to use selected animal models in order to investigate thrombosis and hemostasis in vivo, and (4) strategies for utilizing pharmacological inhibitors on human platelets.
Collapse
Affiliation(s)
- Souad Rahmouni
- Immunology and Infectious Diseases Laboratory, GIGA-Signal Transduction Unit, University of Liège, B34, 1 Avenue de l'Hôpital, 4000, Liège, Belgium.
| | - Alexandre Hego
- Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences Unit, University of Liège, Liège, Belgium
| | - Céline Delierneux
- Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences Unit, University of Liège, Liège, Belgium
| | - Odile Wéra
- Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences Unit, University of Liège, Liège, Belgium
| | - Lucia Musumeci
- Immunology and Infectious Diseases Laboratory, GIGA-Signal Transduction Unit, University of Liège, B34, 1 Avenue de l'Hôpital, 4000, Liège, Belgium.,Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences Unit, University of Liège, Liège, Belgium
| | - Lutz Tautz
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Cécile Oury
- Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences Unit, University of Liège, Liège, Belgium
| |
Collapse
|
25
|
Hirai G, Asanuma M, Tsuchiya A, Sodeoka M. Development of Dual-specificity Protein Phosphatases Inhibitors based on Focused Library Approach: Modification of a Core Structure and Unique Inhibition Mechanism. J SYN ORG CHEM JPN 2016. [DOI: 10.5059/yukigoseikyokaishi.74.532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Go Hirai
- Synthetic Organic Chemistry Laboratory, RIKEN; RIKEN CSRS
| | | | | | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN; RIKEN CSRS
| |
Collapse
|
26
|
Tautz L, Senis YA, Oury C, Rahmouni S. Perspective: Tyrosine phosphatases as novel targets for antiplatelet therapy. Bioorg Med Chem 2015; 23:2786-97. [PMID: 25921264 PMCID: PMC4451376 DOI: 10.1016/j.bmc.2015.03.075] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/27/2015] [Accepted: 03/29/2015] [Indexed: 11/26/2022]
Abstract
Arterial thrombosis is the primary cause of most cases of myocardial infarction and stroke, the leading causes of death in the developed world. Platelets, highly specialized cells of the circulatory system, are key contributors to thrombotic events. Antiplatelet drugs, which prevent platelets from aggregating, have been very effective in reducing the mortality and morbidity of these conditions. However, approved antiplatelet therapies have adverse side effects, most notably the increased risk of bleeding. Moreover, there remains a considerable incidence of arterial thrombosis in a subset of patients receiving currently available drugs. Thus, there is a pressing medical need for novel antiplatelet agents with a more favorable safety profile and less patient resistance. The discovery of novel antiplatelet targets is the matter of intense ongoing research. Recent findings demonstrate the potential of targeting key signaling molecules, including kinases and phosphatases, to prevent platelet activation and aggregation. Here, we offer perspectives to targeting members of the protein tyrosine phosphatase (PTP) superfamily, a major class of enzymes in signal transduction. We give an overview of previously identified PTPs in platelet signaling, and discuss their potential as antiplatelet drug targets. We also introduce VHR (DUSP3), a PTP that we recently identified as a major player in platelet biology and thrombosis. We review our data on genetic deletion as well as pharmacological inhibition of VHR, providing proof-of-principle for a novel and potentially safer VHR-based antiplatelet therapy.
Collapse
Affiliation(s)
- Lutz Tautz
- NCI-Designated Cancer Center, Sanford-Burnham Medical Research Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - Yotis A Senis
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Cécile Oury
- Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Souad Rahmouni
- Immunology and Infectious Diseases Unit, GIGA-Signal Transduction, University of Liège, Liège, Belgium
| |
Collapse
|
27
|
Lountos GT, Austin BP, Tropea JE, Waugh DS. Structure of human dual-specificity phosphatase 7, a potential cancer drug target. Acta Crystallogr F Struct Biol Commun 2015; 71:650-6. [PMID: 26057789 PMCID: PMC4461324 DOI: 10.1107/s2053230x1500504x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/12/2015] [Indexed: 11/10/2022] Open
Abstract
Human dual-specificity phosphatase 7 (DUSP7/Pyst2) is a 320-residue protein that belongs to the mitogen-activated protein kinase phosphatase (MKP) subfamily of dual-specificity phosphatases. Although its precise biological function is still not fully understood, previous reports have demonstrated that DUSP7 is overexpressed in myeloid leukemia and other malignancies. Therefore, there is interest in developing DUSP7 inhibitors as potential therapeutic agents, especially for cancer. Here, the purification, crystallization and structure determination of the catalytic domain of DUSP7 (Ser141-Ser289/C232S) at 1.67 Å resolution are reported. The structure described here provides a starting point for structure-assisted inhibitor-design efforts and adds to the growing knowledge base of three-dimensional structures of the dual-specificity phosphatase family.
Collapse
Affiliation(s)
- George T. Lountos
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, PO Box B, Frederick, MD 21702, USA
| | - Brian P. Austin
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, PO Box B, Frederick, MD 21702, USA
| | - Joseph E. Tropea
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, PO Box B, Frederick, MD 21702, USA
| | - David S. Waugh
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, PO Box B, Frederick, MD 21702, USA
| |
Collapse
|
28
|
Hirai G, Sodeoka M. Focused library with a core structure extracted from natural products and modified: application to phosphatase inhibitors and several biochemical findings. Acc Chem Res 2015; 48:1464-73. [PMID: 25894598 DOI: 10.1021/acs.accounts.5b00048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Synthesis of a focused library is an important strategy to create novel modulators of specific classes of proteins. Compounds in a focused library are composed of a common core structure and different diversity structures. In this Account, we describe our design and synthesis of libraries focused on selective inhibitors of protein phosphatases (PPases). We considered that core structures having structural and electronic features similar to those of PPase substrates, phosphate esters, would be a reasonable choice. Therefore, we extracted core structures from natural products already identified as PPase inhibitors. Since many PPases share similar active-site structures, such phosphate-mimicking core structures should interact with many enzymes in the same family, and therefore the choice of diversity structures is pivotal both to increase the binding affinity and to achieve specificity for individual enzymes. Here we present case studies of application of focused libraries to obtain PPase inhibitors, covering the overall process from selection of core structures to identification and evaluation of candidates in the focused libraries. To synthesize a library focused on protein serine-threonine phosphatases (PPs), we chose norcantharidin as a core structure, because norcantharidin dicarboxylate shows a broad inhibition profile toward several PPs. From the resulting focused library, we identified a highly selective PP2B inhibitor, NCA-01. On the other hand, to find inhibitors of dual-specificity protein phosphatases (DSPs), we chose 3-acyltetronic acid extracted from natural product RK-682 as a core structure, because its structure resembles the transition state in the dephosphorylation reaction of DSPs. However, a highly selective inhibitor was not found in the resulting focused library. Furthermore, an inherent drawback of compounds having the highly acidic 3-acyltetronic acid as a core structure is very weak potency in cellulo, probably due to poor cell membrane permeability. Therefore, we next modified the core structure from acidic to neutral by transformation to the enamine derivative and constructed a second-generation focused library (RE derivatives). The resulting compounds showed dramatically improved cell membrane permeability and inhibitory selectivity and included VHR (vaccinia VH1-related)-selective RE12 and CDC25A/B (cell division cycle 25A/B)-selective RE44. These inhibitors act on target enzymes in cellulo and do not generate reactive oxygen species, which is a potential problem with quinoid-type inhibitors of CDC25s. The cellular activity of RE12 was further improved by replacement of the side chain to afford RE176, which showed more potent antiproliferative activity than RE12 against HeLa cells. The dramatic change of inhibitory selectivity obtained by core structure modification from 3-acyltetronic acid to its enamine derivative was associated with a change in the mode of action. Namely, RE derivatives were found to be noncompetitive inhibitors with respect to a small-molecular substrate of CDC25A/B, whereas RK-682 was a competitive inhibitor of VHR. We identified the binding site of RE derivatives on the CDC25A as a pocket adjacent to the active site; this appears to be a promising target site for development of further novel inhibitors of CDC25s.
Collapse
Affiliation(s)
- Go Hirai
- Synthetic Organic Chemistry
Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- CREST-JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry
Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- CREST-JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
29
|
Pavic K, Duan G, Köhn M. VHR/DUSP3 phosphatase: structure, function and regulation. FEBS J 2015; 282:1871-90. [PMID: 25757426 DOI: 10.1111/febs.13263] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/16/2015] [Accepted: 03/09/2015] [Indexed: 01/13/2023]
Abstract
Vaccinia H1-related (VHR) phosphatase, also known as dual-specificity phosphatase (DUSP) 3, is a small member of the DUSP (also called DSP) family of phosphatases. VHR has a preference for phospho-tyrosine substrates, and has important roles in cellular signaling ranging from cell-cycle regulation and the DNA damage response to MAPK signaling, platelet activation and angiogenesis. VHR/DUSP3 has been implicated in several human cancers, where its tumor-suppressing and -promoting properties have been described. We give a detailed overview of VHR/DUSP3 phosphatase and compare it with its most closely related phosphatases DUSP13B, DUSP26 and DUSP27.
Collapse
Affiliation(s)
- Karolina Pavic
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Guangyou Duan
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Maja Köhn
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| |
Collapse
|
30
|
Lountos GT, Cherry S, Tropea JE, Waugh DS. Structural analysis of human dual-specificity phosphatase 22 complexed with a phosphotyrosine-like substrate. Acta Crystallogr F Struct Biol Commun 2015; 71:199-205. [PMID: 25664796 PMCID: PMC4321476 DOI: 10.1107/s2053230x15000217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/06/2015] [Indexed: 02/08/2023] Open
Abstract
4-Nitrophenyl phosphate (p-nitrophenyl phosphate, pNPP) is widely used as a small molecule phosphotyrosine-like substrate in activity assays for protein tyrosine phosphatases. It is a colorless substrate that upon hydrolysis is converted to a yellow 4-nitrophenolate ion that can be monitored by absorbance at 405 nm. Therefore, the pNPP assay has been widely adopted as a quick and simple method to assess phosphatase activity and is also commonly used in assays to screen for inhibitors. Here, the first crystal structure is presented of a dual-specificity phosphatase, human dual-specificity phosphatase 22 (DUSP22), in complex with pNPP. The structure illuminates the molecular basis for substrate binding and may also facilitate the structure-assisted development of DUSP22 inhibitors.
Collapse
Affiliation(s)
- George T. Lountos
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Scott Cherry
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Joseph E. Tropea
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - David S. Waugh
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
31
|
Lindh M, Svensson F, Schaal W, Zhang J, Sköld C, Brandt P, Karlén A. Toward a Benchmarking Data Set Able to Evaluate Ligand- and Structure-based Virtual Screening Using Public HTS Data. J Chem Inf Model 2015; 55:343-53. [DOI: 10.1021/ci5005465] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Martin Lindh
- Organic Pharmaceutical Chemistry,
Department of Medicinal Chemistry, Uppsala University, Biomedical
Centre, Box 574, SE- 751 23 Uppsala, Sweden
| | - Fredrik Svensson
- Organic Pharmaceutical Chemistry,
Department of Medicinal Chemistry, Uppsala University, Biomedical
Centre, Box 574, SE- 751 23 Uppsala, Sweden
| | - Wesley Schaal
- Organic Pharmaceutical Chemistry,
Department of Medicinal Chemistry, Uppsala University, Biomedical
Centre, Box 574, SE- 751 23 Uppsala, Sweden
| | - Jin Zhang
- Organic Pharmaceutical Chemistry,
Department of Medicinal Chemistry, Uppsala University, Biomedical
Centre, Box 574, SE- 751 23 Uppsala, Sweden
| | - Christian Sköld
- Organic Pharmaceutical Chemistry,
Department of Medicinal Chemistry, Uppsala University, Biomedical
Centre, Box 574, SE- 751 23 Uppsala, Sweden
| | - Peter Brandt
- Organic Pharmaceutical Chemistry,
Department of Medicinal Chemistry, Uppsala University, Biomedical
Centre, Box 574, SE- 751 23 Uppsala, Sweden
| | - Anders Karlén
- Organic Pharmaceutical Chemistry,
Department of Medicinal Chemistry, Uppsala University, Biomedical
Centre, Box 574, SE- 751 23 Uppsala, Sweden
| |
Collapse
|
32
|
Musumeci L, Kuijpers MJ, Gilio K, Hego A, Théâtre E, Maurissen L, Vandereyken M, Diogo CV, Lecut C, Guilmain W, Bobkova EV, Eble JA, Dahl R, Drion P, Rascon J, Mostofi Y, Yuan H, Sergienko E, Chung TDY, Thiry M, Senis Y, Moutschen M, Mustelin T, Lancellotti P, Heemskerk JWM, Tautz L, Oury C, Rahmouni S. Dual-specificity phosphatase 3 deficiency or inhibition limits platelet activation and arterial thrombosis. Circulation 2014; 131:656-68. [PMID: 25520375 DOI: 10.1161/circulationaha.114.010186] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND A limitation of current antiplatelet therapies is their inability to separate thrombotic events from bleeding occurrences. A better understanding of the molecular mechanisms leading to platelet activation is important for the development of improved therapies. Recently, protein tyrosine phosphatases have emerged as critical regulators of platelet function. METHODS AND RESULTS This is the first report implicating the dual-specificity phosphatase 3 (DUSP3) in platelet signaling and thrombosis. This phosphatase is highly expressed in human and mouse platelets. Platelets from DUSP3-deficient mice displayed a selective impairment of aggregation and granule secretion mediated by the collagen receptor glycoprotein VI and the C-type lectin-like receptor 2. DUSP3-deficient mice were more resistant to collagen- and epinephrine-induced thromboembolism compared with wild-type mice and showed severely impaired thrombus formation on ferric chloride-induced carotid artery injury. Intriguingly, bleeding times were not altered in DUSP3-deficient mice. At the molecular level, DUSP3 deficiency impaired Syk tyrosine phosphorylation, subsequently reducing phosphorylation of phospholipase Cγ2 and calcium fluxes. To investigate DUSP3 function in human platelets, a novel small-molecule inhibitor of DUSP3 was developed. This compound specifically inhibited collagen- and C-type lectin-like receptor 2-induced human platelet aggregation, thereby phenocopying the effect of DUSP3 deficiency in murine cells. CONCLUSIONS DUSP3 plays a selective and essential role in collagen- and C-type lectin-like receptor 2-mediated platelet activation and thrombus formation in vivo. Inhibition of DUSP3 may prove therapeutic for arterial thrombosis. This is the first time a protein tyrosine phosphatase, implicated in platelet signaling, has been targeted with a small-molecule drug.
Collapse
Affiliation(s)
- Lucia Musumeci
- From the Immunology and Infectious Diseases Unit, GIGA-Signal Transduction (L. Musumeci, L. Maurissen, M.V., C.V.D., M.M., S.R.), Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences (A.H., L. Maurissen, C.V.D., C.L., W.G., C.O.), Unit of Animal Genomics, GIGA-Genetics and Faculty of Veterinary Medicine (E.T.), Unit of Hepato-Gastroenterology, CHU de Liège and Faculty of Medicine (E.T.), GIGA-Animal Facility (B23) (P.D.), Laboratory of Cell and Tissue Biology, GIGA-Neurosciences (M.T.), and Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, GIGA Cardiovascular Sciences (P.L.), University of Liège, Liège, Belgium; Laboratory of Cellular Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, the Netherlands (M.J.K., K.G., L. Maurissen, J.W.M.H.); Conrad Prebys Center for Chemical Genomics (E.V.B., R.D., J.R., Y.M., H.Y., E.S., T.D.Y.C.) and NCI-Designated Cancer Center (L.T.), Sanford-Burnham Medical Research Institute, La Jolla, CA; Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany (J.A.E.); and Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK (Y.S.)
| | - Marijke J Kuijpers
- From the Immunology and Infectious Diseases Unit, GIGA-Signal Transduction (L. Musumeci, L. Maurissen, M.V., C.V.D., M.M., S.R.), Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences (A.H., L. Maurissen, C.V.D., C.L., W.G., C.O.), Unit of Animal Genomics, GIGA-Genetics and Faculty of Veterinary Medicine (E.T.), Unit of Hepato-Gastroenterology, CHU de Liège and Faculty of Medicine (E.T.), GIGA-Animal Facility (B23) (P.D.), Laboratory of Cell and Tissue Biology, GIGA-Neurosciences (M.T.), and Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, GIGA Cardiovascular Sciences (P.L.), University of Liège, Liège, Belgium; Laboratory of Cellular Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, the Netherlands (M.J.K., K.G., L. Maurissen, J.W.M.H.); Conrad Prebys Center for Chemical Genomics (E.V.B., R.D., J.R., Y.M., H.Y., E.S., T.D.Y.C.) and NCI-Designated Cancer Center (L.T.), Sanford-Burnham Medical Research Institute, La Jolla, CA; Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany (J.A.E.); and Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK (Y.S.)
| | - Karen Gilio
- From the Immunology and Infectious Diseases Unit, GIGA-Signal Transduction (L. Musumeci, L. Maurissen, M.V., C.V.D., M.M., S.R.), Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences (A.H., L. Maurissen, C.V.D., C.L., W.G., C.O.), Unit of Animal Genomics, GIGA-Genetics and Faculty of Veterinary Medicine (E.T.), Unit of Hepato-Gastroenterology, CHU de Liège and Faculty of Medicine (E.T.), GIGA-Animal Facility (B23) (P.D.), Laboratory of Cell and Tissue Biology, GIGA-Neurosciences (M.T.), and Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, GIGA Cardiovascular Sciences (P.L.), University of Liège, Liège, Belgium; Laboratory of Cellular Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, the Netherlands (M.J.K., K.G., L. Maurissen, J.W.M.H.); Conrad Prebys Center for Chemical Genomics (E.V.B., R.D., J.R., Y.M., H.Y., E.S., T.D.Y.C.) and NCI-Designated Cancer Center (L.T.), Sanford-Burnham Medical Research Institute, La Jolla, CA; Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany (J.A.E.); and Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK (Y.S.)
| | - Alexandre Hego
- From the Immunology and Infectious Diseases Unit, GIGA-Signal Transduction (L. Musumeci, L. Maurissen, M.V., C.V.D., M.M., S.R.), Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences (A.H., L. Maurissen, C.V.D., C.L., W.G., C.O.), Unit of Animal Genomics, GIGA-Genetics and Faculty of Veterinary Medicine (E.T.), Unit of Hepato-Gastroenterology, CHU de Liège and Faculty of Medicine (E.T.), GIGA-Animal Facility (B23) (P.D.), Laboratory of Cell and Tissue Biology, GIGA-Neurosciences (M.T.), and Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, GIGA Cardiovascular Sciences (P.L.), University of Liège, Liège, Belgium; Laboratory of Cellular Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, the Netherlands (M.J.K., K.G., L. Maurissen, J.W.M.H.); Conrad Prebys Center for Chemical Genomics (E.V.B., R.D., J.R., Y.M., H.Y., E.S., T.D.Y.C.) and NCI-Designated Cancer Center (L.T.), Sanford-Burnham Medical Research Institute, La Jolla, CA; Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany (J.A.E.); and Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK (Y.S.)
| | - Emilie Théâtre
- From the Immunology and Infectious Diseases Unit, GIGA-Signal Transduction (L. Musumeci, L. Maurissen, M.V., C.V.D., M.M., S.R.), Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences (A.H., L. Maurissen, C.V.D., C.L., W.G., C.O.), Unit of Animal Genomics, GIGA-Genetics and Faculty of Veterinary Medicine (E.T.), Unit of Hepato-Gastroenterology, CHU de Liège and Faculty of Medicine (E.T.), GIGA-Animal Facility (B23) (P.D.), Laboratory of Cell and Tissue Biology, GIGA-Neurosciences (M.T.), and Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, GIGA Cardiovascular Sciences (P.L.), University of Liège, Liège, Belgium; Laboratory of Cellular Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, the Netherlands (M.J.K., K.G., L. Maurissen, J.W.M.H.); Conrad Prebys Center for Chemical Genomics (E.V.B., R.D., J.R., Y.M., H.Y., E.S., T.D.Y.C.) and NCI-Designated Cancer Center (L.T.), Sanford-Burnham Medical Research Institute, La Jolla, CA; Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany (J.A.E.); and Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK (Y.S.)
| | - Lisbeth Maurissen
- From the Immunology and Infectious Diseases Unit, GIGA-Signal Transduction (L. Musumeci, L. Maurissen, M.V., C.V.D., M.M., S.R.), Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences (A.H., L. Maurissen, C.V.D., C.L., W.G., C.O.), Unit of Animal Genomics, GIGA-Genetics and Faculty of Veterinary Medicine (E.T.), Unit of Hepato-Gastroenterology, CHU de Liège and Faculty of Medicine (E.T.), GIGA-Animal Facility (B23) (P.D.), Laboratory of Cell and Tissue Biology, GIGA-Neurosciences (M.T.), and Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, GIGA Cardiovascular Sciences (P.L.), University of Liège, Liège, Belgium; Laboratory of Cellular Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, the Netherlands (M.J.K., K.G., L. Maurissen, J.W.M.H.); Conrad Prebys Center for Chemical Genomics (E.V.B., R.D., J.R., Y.M., H.Y., E.S., T.D.Y.C.) and NCI-Designated Cancer Center (L.T.), Sanford-Burnham Medical Research Institute, La Jolla, CA; Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany (J.A.E.); and Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK (Y.S.)
| | - Maud Vandereyken
- From the Immunology and Infectious Diseases Unit, GIGA-Signal Transduction (L. Musumeci, L. Maurissen, M.V., C.V.D., M.M., S.R.), Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences (A.H., L. Maurissen, C.V.D., C.L., W.G., C.O.), Unit of Animal Genomics, GIGA-Genetics and Faculty of Veterinary Medicine (E.T.), Unit of Hepato-Gastroenterology, CHU de Liège and Faculty of Medicine (E.T.), GIGA-Animal Facility (B23) (P.D.), Laboratory of Cell and Tissue Biology, GIGA-Neurosciences (M.T.), and Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, GIGA Cardiovascular Sciences (P.L.), University of Liège, Liège, Belgium; Laboratory of Cellular Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, the Netherlands (M.J.K., K.G., L. Maurissen, J.W.M.H.); Conrad Prebys Center for Chemical Genomics (E.V.B., R.D., J.R., Y.M., H.Y., E.S., T.D.Y.C.) and NCI-Designated Cancer Center (L.T.), Sanford-Burnham Medical Research Institute, La Jolla, CA; Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany (J.A.E.); and Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK (Y.S.)
| | - Catia V Diogo
- From the Immunology and Infectious Diseases Unit, GIGA-Signal Transduction (L. Musumeci, L. Maurissen, M.V., C.V.D., M.M., S.R.), Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences (A.H., L. Maurissen, C.V.D., C.L., W.G., C.O.), Unit of Animal Genomics, GIGA-Genetics and Faculty of Veterinary Medicine (E.T.), Unit of Hepato-Gastroenterology, CHU de Liège and Faculty of Medicine (E.T.), GIGA-Animal Facility (B23) (P.D.), Laboratory of Cell and Tissue Biology, GIGA-Neurosciences (M.T.), and Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, GIGA Cardiovascular Sciences (P.L.), University of Liège, Liège, Belgium; Laboratory of Cellular Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, the Netherlands (M.J.K., K.G., L. Maurissen, J.W.M.H.); Conrad Prebys Center for Chemical Genomics (E.V.B., R.D., J.R., Y.M., H.Y., E.S., T.D.Y.C.) and NCI-Designated Cancer Center (L.T.), Sanford-Burnham Medical Research Institute, La Jolla, CA; Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany (J.A.E.); and Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK (Y.S.)
| | - Christelle Lecut
- From the Immunology and Infectious Diseases Unit, GIGA-Signal Transduction (L. Musumeci, L. Maurissen, M.V., C.V.D., M.M., S.R.), Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences (A.H., L. Maurissen, C.V.D., C.L., W.G., C.O.), Unit of Animal Genomics, GIGA-Genetics and Faculty of Veterinary Medicine (E.T.), Unit of Hepato-Gastroenterology, CHU de Liège and Faculty of Medicine (E.T.), GIGA-Animal Facility (B23) (P.D.), Laboratory of Cell and Tissue Biology, GIGA-Neurosciences (M.T.), and Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, GIGA Cardiovascular Sciences (P.L.), University of Liège, Liège, Belgium; Laboratory of Cellular Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, the Netherlands (M.J.K., K.G., L. Maurissen, J.W.M.H.); Conrad Prebys Center for Chemical Genomics (E.V.B., R.D., J.R., Y.M., H.Y., E.S., T.D.Y.C.) and NCI-Designated Cancer Center (L.T.), Sanford-Burnham Medical Research Institute, La Jolla, CA; Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany (J.A.E.); and Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK (Y.S.)
| | - William Guilmain
- From the Immunology and Infectious Diseases Unit, GIGA-Signal Transduction (L. Musumeci, L. Maurissen, M.V., C.V.D., M.M., S.R.), Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences (A.H., L. Maurissen, C.V.D., C.L., W.G., C.O.), Unit of Animal Genomics, GIGA-Genetics and Faculty of Veterinary Medicine (E.T.), Unit of Hepato-Gastroenterology, CHU de Liège and Faculty of Medicine (E.T.), GIGA-Animal Facility (B23) (P.D.), Laboratory of Cell and Tissue Biology, GIGA-Neurosciences (M.T.), and Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, GIGA Cardiovascular Sciences (P.L.), University of Liège, Liège, Belgium; Laboratory of Cellular Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, the Netherlands (M.J.K., K.G., L. Maurissen, J.W.M.H.); Conrad Prebys Center for Chemical Genomics (E.V.B., R.D., J.R., Y.M., H.Y., E.S., T.D.Y.C.) and NCI-Designated Cancer Center (L.T.), Sanford-Burnham Medical Research Institute, La Jolla, CA; Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany (J.A.E.); and Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK (Y.S.)
| | - Ekaterina V Bobkova
- From the Immunology and Infectious Diseases Unit, GIGA-Signal Transduction (L. Musumeci, L. Maurissen, M.V., C.V.D., M.M., S.R.), Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences (A.H., L. Maurissen, C.V.D., C.L., W.G., C.O.), Unit of Animal Genomics, GIGA-Genetics and Faculty of Veterinary Medicine (E.T.), Unit of Hepato-Gastroenterology, CHU de Liège and Faculty of Medicine (E.T.), GIGA-Animal Facility (B23) (P.D.), Laboratory of Cell and Tissue Biology, GIGA-Neurosciences (M.T.), and Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, GIGA Cardiovascular Sciences (P.L.), University of Liège, Liège, Belgium; Laboratory of Cellular Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, the Netherlands (M.J.K., K.G., L. Maurissen, J.W.M.H.); Conrad Prebys Center for Chemical Genomics (E.V.B., R.D., J.R., Y.M., H.Y., E.S., T.D.Y.C.) and NCI-Designated Cancer Center (L.T.), Sanford-Burnham Medical Research Institute, La Jolla, CA; Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany (J.A.E.); and Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK (Y.S.)
| | - Johannes A Eble
- From the Immunology and Infectious Diseases Unit, GIGA-Signal Transduction (L. Musumeci, L. Maurissen, M.V., C.V.D., M.M., S.R.), Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences (A.H., L. Maurissen, C.V.D., C.L., W.G., C.O.), Unit of Animal Genomics, GIGA-Genetics and Faculty of Veterinary Medicine (E.T.), Unit of Hepato-Gastroenterology, CHU de Liège and Faculty of Medicine (E.T.), GIGA-Animal Facility (B23) (P.D.), Laboratory of Cell and Tissue Biology, GIGA-Neurosciences (M.T.), and Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, GIGA Cardiovascular Sciences (P.L.), University of Liège, Liège, Belgium; Laboratory of Cellular Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, the Netherlands (M.J.K., K.G., L. Maurissen, J.W.M.H.); Conrad Prebys Center for Chemical Genomics (E.V.B., R.D., J.R., Y.M., H.Y., E.S., T.D.Y.C.) and NCI-Designated Cancer Center (L.T.), Sanford-Burnham Medical Research Institute, La Jolla, CA; Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany (J.A.E.); and Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK (Y.S.)
| | - Russell Dahl
- From the Immunology and Infectious Diseases Unit, GIGA-Signal Transduction (L. Musumeci, L. Maurissen, M.V., C.V.D., M.M., S.R.), Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences (A.H., L. Maurissen, C.V.D., C.L., W.G., C.O.), Unit of Animal Genomics, GIGA-Genetics and Faculty of Veterinary Medicine (E.T.), Unit of Hepato-Gastroenterology, CHU de Liège and Faculty of Medicine (E.T.), GIGA-Animal Facility (B23) (P.D.), Laboratory of Cell and Tissue Biology, GIGA-Neurosciences (M.T.), and Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, GIGA Cardiovascular Sciences (P.L.), University of Liège, Liège, Belgium; Laboratory of Cellular Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, the Netherlands (M.J.K., K.G., L. Maurissen, J.W.M.H.); Conrad Prebys Center for Chemical Genomics (E.V.B., R.D., J.R., Y.M., H.Y., E.S., T.D.Y.C.) and NCI-Designated Cancer Center (L.T.), Sanford-Burnham Medical Research Institute, La Jolla, CA; Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany (J.A.E.); and Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK (Y.S.)
| | - Pierre Drion
- From the Immunology and Infectious Diseases Unit, GIGA-Signal Transduction (L. Musumeci, L. Maurissen, M.V., C.V.D., M.M., S.R.), Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences (A.H., L. Maurissen, C.V.D., C.L., W.G., C.O.), Unit of Animal Genomics, GIGA-Genetics and Faculty of Veterinary Medicine (E.T.), Unit of Hepato-Gastroenterology, CHU de Liège and Faculty of Medicine (E.T.), GIGA-Animal Facility (B23) (P.D.), Laboratory of Cell and Tissue Biology, GIGA-Neurosciences (M.T.), and Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, GIGA Cardiovascular Sciences (P.L.), University of Liège, Liège, Belgium; Laboratory of Cellular Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, the Netherlands (M.J.K., K.G., L. Maurissen, J.W.M.H.); Conrad Prebys Center for Chemical Genomics (E.V.B., R.D., J.R., Y.M., H.Y., E.S., T.D.Y.C.) and NCI-Designated Cancer Center (L.T.), Sanford-Burnham Medical Research Institute, La Jolla, CA; Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany (J.A.E.); and Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK (Y.S.)
| | - Justin Rascon
- From the Immunology and Infectious Diseases Unit, GIGA-Signal Transduction (L. Musumeci, L. Maurissen, M.V., C.V.D., M.M., S.R.), Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences (A.H., L. Maurissen, C.V.D., C.L., W.G., C.O.), Unit of Animal Genomics, GIGA-Genetics and Faculty of Veterinary Medicine (E.T.), Unit of Hepato-Gastroenterology, CHU de Liège and Faculty of Medicine (E.T.), GIGA-Animal Facility (B23) (P.D.), Laboratory of Cell and Tissue Biology, GIGA-Neurosciences (M.T.), and Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, GIGA Cardiovascular Sciences (P.L.), University of Liège, Liège, Belgium; Laboratory of Cellular Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, the Netherlands (M.J.K., K.G., L. Maurissen, J.W.M.H.); Conrad Prebys Center for Chemical Genomics (E.V.B., R.D., J.R., Y.M., H.Y., E.S., T.D.Y.C.) and NCI-Designated Cancer Center (L.T.), Sanford-Burnham Medical Research Institute, La Jolla, CA; Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany (J.A.E.); and Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK (Y.S.)
| | - Yalda Mostofi
- From the Immunology and Infectious Diseases Unit, GIGA-Signal Transduction (L. Musumeci, L. Maurissen, M.V., C.V.D., M.M., S.R.), Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences (A.H., L. Maurissen, C.V.D., C.L., W.G., C.O.), Unit of Animal Genomics, GIGA-Genetics and Faculty of Veterinary Medicine (E.T.), Unit of Hepato-Gastroenterology, CHU de Liège and Faculty of Medicine (E.T.), GIGA-Animal Facility (B23) (P.D.), Laboratory of Cell and Tissue Biology, GIGA-Neurosciences (M.T.), and Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, GIGA Cardiovascular Sciences (P.L.), University of Liège, Liège, Belgium; Laboratory of Cellular Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, the Netherlands (M.J.K., K.G., L. Maurissen, J.W.M.H.); Conrad Prebys Center for Chemical Genomics (E.V.B., R.D., J.R., Y.M., H.Y., E.S., T.D.Y.C.) and NCI-Designated Cancer Center (L.T.), Sanford-Burnham Medical Research Institute, La Jolla, CA; Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany (J.A.E.); and Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK (Y.S.)
| | - Hongbin Yuan
- From the Immunology and Infectious Diseases Unit, GIGA-Signal Transduction (L. Musumeci, L. Maurissen, M.V., C.V.D., M.M., S.R.), Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences (A.H., L. Maurissen, C.V.D., C.L., W.G., C.O.), Unit of Animal Genomics, GIGA-Genetics and Faculty of Veterinary Medicine (E.T.), Unit of Hepato-Gastroenterology, CHU de Liège and Faculty of Medicine (E.T.), GIGA-Animal Facility (B23) (P.D.), Laboratory of Cell and Tissue Biology, GIGA-Neurosciences (M.T.), and Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, GIGA Cardiovascular Sciences (P.L.), University of Liège, Liège, Belgium; Laboratory of Cellular Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, the Netherlands (M.J.K., K.G., L. Maurissen, J.W.M.H.); Conrad Prebys Center for Chemical Genomics (E.V.B., R.D., J.R., Y.M., H.Y., E.S., T.D.Y.C.) and NCI-Designated Cancer Center (L.T.), Sanford-Burnham Medical Research Institute, La Jolla, CA; Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany (J.A.E.); and Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK (Y.S.)
| | - Eduard Sergienko
- From the Immunology and Infectious Diseases Unit, GIGA-Signal Transduction (L. Musumeci, L. Maurissen, M.V., C.V.D., M.M., S.R.), Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences (A.H., L. Maurissen, C.V.D., C.L., W.G., C.O.), Unit of Animal Genomics, GIGA-Genetics and Faculty of Veterinary Medicine (E.T.), Unit of Hepato-Gastroenterology, CHU de Liège and Faculty of Medicine (E.T.), GIGA-Animal Facility (B23) (P.D.), Laboratory of Cell and Tissue Biology, GIGA-Neurosciences (M.T.), and Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, GIGA Cardiovascular Sciences (P.L.), University of Liège, Liège, Belgium; Laboratory of Cellular Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, the Netherlands (M.J.K., K.G., L. Maurissen, J.W.M.H.); Conrad Prebys Center for Chemical Genomics (E.V.B., R.D., J.R., Y.M., H.Y., E.S., T.D.Y.C.) and NCI-Designated Cancer Center (L.T.), Sanford-Burnham Medical Research Institute, La Jolla, CA; Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany (J.A.E.); and Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK (Y.S.)
| | - Thomas D Y Chung
- From the Immunology and Infectious Diseases Unit, GIGA-Signal Transduction (L. Musumeci, L. Maurissen, M.V., C.V.D., M.M., S.R.), Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences (A.H., L. Maurissen, C.V.D., C.L., W.G., C.O.), Unit of Animal Genomics, GIGA-Genetics and Faculty of Veterinary Medicine (E.T.), Unit of Hepato-Gastroenterology, CHU de Liège and Faculty of Medicine (E.T.), GIGA-Animal Facility (B23) (P.D.), Laboratory of Cell and Tissue Biology, GIGA-Neurosciences (M.T.), and Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, GIGA Cardiovascular Sciences (P.L.), University of Liège, Liège, Belgium; Laboratory of Cellular Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, the Netherlands (M.J.K., K.G., L. Maurissen, J.W.M.H.); Conrad Prebys Center for Chemical Genomics (E.V.B., R.D., J.R., Y.M., H.Y., E.S., T.D.Y.C.) and NCI-Designated Cancer Center (L.T.), Sanford-Burnham Medical Research Institute, La Jolla, CA; Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany (J.A.E.); and Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK (Y.S.)
| | - Marc Thiry
- From the Immunology and Infectious Diseases Unit, GIGA-Signal Transduction (L. Musumeci, L. Maurissen, M.V., C.V.D., M.M., S.R.), Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences (A.H., L. Maurissen, C.V.D., C.L., W.G., C.O.), Unit of Animal Genomics, GIGA-Genetics and Faculty of Veterinary Medicine (E.T.), Unit of Hepato-Gastroenterology, CHU de Liège and Faculty of Medicine (E.T.), GIGA-Animal Facility (B23) (P.D.), Laboratory of Cell and Tissue Biology, GIGA-Neurosciences (M.T.), and Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, GIGA Cardiovascular Sciences (P.L.), University of Liège, Liège, Belgium; Laboratory of Cellular Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, the Netherlands (M.J.K., K.G., L. Maurissen, J.W.M.H.); Conrad Prebys Center for Chemical Genomics (E.V.B., R.D., J.R., Y.M., H.Y., E.S., T.D.Y.C.) and NCI-Designated Cancer Center (L.T.), Sanford-Burnham Medical Research Institute, La Jolla, CA; Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany (J.A.E.); and Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK (Y.S.)
| | - Yotis Senis
- From the Immunology and Infectious Diseases Unit, GIGA-Signal Transduction (L. Musumeci, L. Maurissen, M.V., C.V.D., M.M., S.R.), Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences (A.H., L. Maurissen, C.V.D., C.L., W.G., C.O.), Unit of Animal Genomics, GIGA-Genetics and Faculty of Veterinary Medicine (E.T.), Unit of Hepato-Gastroenterology, CHU de Liège and Faculty of Medicine (E.T.), GIGA-Animal Facility (B23) (P.D.), Laboratory of Cell and Tissue Biology, GIGA-Neurosciences (M.T.), and Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, GIGA Cardiovascular Sciences (P.L.), University of Liège, Liège, Belgium; Laboratory of Cellular Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, the Netherlands (M.J.K., K.G., L. Maurissen, J.W.M.H.); Conrad Prebys Center for Chemical Genomics (E.V.B., R.D., J.R., Y.M., H.Y., E.S., T.D.Y.C.) and NCI-Designated Cancer Center (L.T.), Sanford-Burnham Medical Research Institute, La Jolla, CA; Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany (J.A.E.); and Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK (Y.S.)
| | - Michel Moutschen
- From the Immunology and Infectious Diseases Unit, GIGA-Signal Transduction (L. Musumeci, L. Maurissen, M.V., C.V.D., M.M., S.R.), Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences (A.H., L. Maurissen, C.V.D., C.L., W.G., C.O.), Unit of Animal Genomics, GIGA-Genetics and Faculty of Veterinary Medicine (E.T.), Unit of Hepato-Gastroenterology, CHU de Liège and Faculty of Medicine (E.T.), GIGA-Animal Facility (B23) (P.D.), Laboratory of Cell and Tissue Biology, GIGA-Neurosciences (M.T.), and Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, GIGA Cardiovascular Sciences (P.L.), University of Liège, Liège, Belgium; Laboratory of Cellular Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, the Netherlands (M.J.K., K.G., L. Maurissen, J.W.M.H.); Conrad Prebys Center for Chemical Genomics (E.V.B., R.D., J.R., Y.M., H.Y., E.S., T.D.Y.C.) and NCI-Designated Cancer Center (L.T.), Sanford-Burnham Medical Research Institute, La Jolla, CA; Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany (J.A.E.); and Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK (Y.S.)
| | - Tomas Mustelin
- From the Immunology and Infectious Diseases Unit, GIGA-Signal Transduction (L. Musumeci, L. Maurissen, M.V., C.V.D., M.M., S.R.), Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences (A.H., L. Maurissen, C.V.D., C.L., W.G., C.O.), Unit of Animal Genomics, GIGA-Genetics and Faculty of Veterinary Medicine (E.T.), Unit of Hepato-Gastroenterology, CHU de Liège and Faculty of Medicine (E.T.), GIGA-Animal Facility (B23) (P.D.), Laboratory of Cell and Tissue Biology, GIGA-Neurosciences (M.T.), and Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, GIGA Cardiovascular Sciences (P.L.), University of Liège, Liège, Belgium; Laboratory of Cellular Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, the Netherlands (M.J.K., K.G., L. Maurissen, J.W.M.H.); Conrad Prebys Center for Chemical Genomics (E.V.B., R.D., J.R., Y.M., H.Y., E.S., T.D.Y.C.) and NCI-Designated Cancer Center (L.T.), Sanford-Burnham Medical Research Institute, La Jolla, CA; Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany (J.A.E.); and Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK (Y.S.)
| | - Patrizio Lancellotti
- From the Immunology and Infectious Diseases Unit, GIGA-Signal Transduction (L. Musumeci, L. Maurissen, M.V., C.V.D., M.M., S.R.), Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences (A.H., L. Maurissen, C.V.D., C.L., W.G., C.O.), Unit of Animal Genomics, GIGA-Genetics and Faculty of Veterinary Medicine (E.T.), Unit of Hepato-Gastroenterology, CHU de Liège and Faculty of Medicine (E.T.), GIGA-Animal Facility (B23) (P.D.), Laboratory of Cell and Tissue Biology, GIGA-Neurosciences (M.T.), and Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, GIGA Cardiovascular Sciences (P.L.), University of Liège, Liège, Belgium; Laboratory of Cellular Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, the Netherlands (M.J.K., K.G., L. Maurissen, J.W.M.H.); Conrad Prebys Center for Chemical Genomics (E.V.B., R.D., J.R., Y.M., H.Y., E.S., T.D.Y.C.) and NCI-Designated Cancer Center (L.T.), Sanford-Burnham Medical Research Institute, La Jolla, CA; Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany (J.A.E.); and Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK (Y.S.)
| | - Johan W M Heemskerk
- From the Immunology and Infectious Diseases Unit, GIGA-Signal Transduction (L. Musumeci, L. Maurissen, M.V., C.V.D., M.M., S.R.), Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences (A.H., L. Maurissen, C.V.D., C.L., W.G., C.O.), Unit of Animal Genomics, GIGA-Genetics and Faculty of Veterinary Medicine (E.T.), Unit of Hepato-Gastroenterology, CHU de Liège and Faculty of Medicine (E.T.), GIGA-Animal Facility (B23) (P.D.), Laboratory of Cell and Tissue Biology, GIGA-Neurosciences (M.T.), and Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, GIGA Cardiovascular Sciences (P.L.), University of Liège, Liège, Belgium; Laboratory of Cellular Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, the Netherlands (M.J.K., K.G., L. Maurissen, J.W.M.H.); Conrad Prebys Center for Chemical Genomics (E.V.B., R.D., J.R., Y.M., H.Y., E.S., T.D.Y.C.) and NCI-Designated Cancer Center (L.T.), Sanford-Burnham Medical Research Institute, La Jolla, CA; Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany (J.A.E.); and Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK (Y.S.)
| | - Lutz Tautz
- From the Immunology and Infectious Diseases Unit, GIGA-Signal Transduction (L. Musumeci, L. Maurissen, M.V., C.V.D., M.M., S.R.), Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences (A.H., L. Maurissen, C.V.D., C.L., W.G., C.O.), Unit of Animal Genomics, GIGA-Genetics and Faculty of Veterinary Medicine (E.T.), Unit of Hepato-Gastroenterology, CHU de Liège and Faculty of Medicine (E.T.), GIGA-Animal Facility (B23) (P.D.), Laboratory of Cell and Tissue Biology, GIGA-Neurosciences (M.T.), and Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, GIGA Cardiovascular Sciences (P.L.), University of Liège, Liège, Belgium; Laboratory of Cellular Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, the Netherlands (M.J.K., K.G., L. Maurissen, J.W.M.H.); Conrad Prebys Center for Chemical Genomics (E.V.B., R.D., J.R., Y.M., H.Y., E.S., T.D.Y.C.) and NCI-Designated Cancer Center (L.T.), Sanford-Burnham Medical Research Institute, La Jolla, CA; Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany (J.A.E.); and Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK (Y.S.).
| | - Cécile Oury
- From the Immunology and Infectious Diseases Unit, GIGA-Signal Transduction (L. Musumeci, L. Maurissen, M.V., C.V.D., M.M., S.R.), Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences (A.H., L. Maurissen, C.V.D., C.L., W.G., C.O.), Unit of Animal Genomics, GIGA-Genetics and Faculty of Veterinary Medicine (E.T.), Unit of Hepato-Gastroenterology, CHU de Liège and Faculty of Medicine (E.T.), GIGA-Animal Facility (B23) (P.D.), Laboratory of Cell and Tissue Biology, GIGA-Neurosciences (M.T.), and Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, GIGA Cardiovascular Sciences (P.L.), University of Liège, Liège, Belgium; Laboratory of Cellular Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, the Netherlands (M.J.K., K.G., L. Maurissen, J.W.M.H.); Conrad Prebys Center for Chemical Genomics (E.V.B., R.D., J.R., Y.M., H.Y., E.S., T.D.Y.C.) and NCI-Designated Cancer Center (L.T.), Sanford-Burnham Medical Research Institute, La Jolla, CA; Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany (J.A.E.); and Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK (Y.S.).
| | - Souad Rahmouni
- From the Immunology and Infectious Diseases Unit, GIGA-Signal Transduction (L. Musumeci, L. Maurissen, M.V., C.V.D., M.M., S.R.), Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences (A.H., L. Maurissen, C.V.D., C.L., W.G., C.O.), Unit of Animal Genomics, GIGA-Genetics and Faculty of Veterinary Medicine (E.T.), Unit of Hepato-Gastroenterology, CHU de Liège and Faculty of Medicine (E.T.), GIGA-Animal Facility (B23) (P.D.), Laboratory of Cell and Tissue Biology, GIGA-Neurosciences (M.T.), and Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, GIGA Cardiovascular Sciences (P.L.), University of Liège, Liège, Belgium; Laboratory of Cellular Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, the Netherlands (M.J.K., K.G., L. Maurissen, J.W.M.H.); Conrad Prebys Center for Chemical Genomics (E.V.B., R.D., J.R., Y.M., H.Y., E.S., T.D.Y.C.) and NCI-Designated Cancer Center (L.T.), Sanford-Burnham Medical Research Institute, La Jolla, CA; Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany (J.A.E.); and Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK (Y.S.).
| |
Collapse
|
33
|
Hirai G. Mimicking/extracting structure and functions of natural products: synthetic approaches that address unexplored needs in chemical biology. CHEM REC 2014; 15:445-56. [PMID: 25504785 DOI: 10.1002/tcr.201402074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Indexed: 12/19/2022]
Abstract
Natural products are often attractive and challenging targets for synthetic chemists, and many have interesting biological activities. However, synthetic chemists need to be more than simply suppliers of compounds to biologists. Therefore, we have been seeking ways to actively apply organic synthetic methods to chemical biology studies of natural products and their activities. In this personal review, I would like to introduce our work on the development of new biologically active compounds inspired by, or extracted from, the structures of natural products, focusing on enhancement of functional activity and specificity and overcoming various drawbacks of the parent natural products.
Collapse
Affiliation(s)
- Go Hirai
- Synthetic Organic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan; RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| |
Collapse
|
34
|
Amand M, Erpicum C, Bajou K, Cerignoli F, Blacher S, Martin M, Dequiedt F, Drion P, Singh P, Zurashvili T, Vandereyken M, Musumeci L, Mustelin T, Moutschen M, Gilles C, Noel A, Rahmouni S. DUSP3/VHR is a pro-angiogenic atypical dual-specificity phosphatase. Mol Cancer 2014; 13:108. [PMID: 24886454 PMCID: PMC4038117 DOI: 10.1186/1476-4598-13-108] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/30/2014] [Indexed: 12/20/2022] Open
Abstract
Background DUSP3 phosphatase, also known as Vaccinia-H1 Related (VHR) phosphatase, encoded by DUSP3/Dusp3 gene, is a relatively small member of the dual-specificity protein phosphatases. In vitro studies showed that DUSP3 is a negative regulator of ERK and JNK pathways in several cell lines. On the other hand, DUSP3 is implicated in human cancer. It has been alternatively described as having tumor suppressive and oncogenic properties. Thus, the available data suggest that DUSP3 plays complex and contradictory roles in tumorigenesis that could be cell type-dependent. Since most of these studies were performed using recombinant proteins or in cell-transfection based assays, the physiological function of DUSP3 has remained elusive. Results Using immunohistochemistry on human cervical sections, we observed a strong expression of DUSP3 in endothelial cells (EC) suggesting a contribution for this phosphatase to EC functions. DUSP3 downregulation, using RNA interference, in human EC reduced significantly in vitro tube formation on Matrigel and spheroid angiogenic sprouting. However, this defect was not associated with an altered phosphorylation of the documented in vitro DUSP3 substrates, ERK1/2, JNK1/2 and EGFR but was associated with an increased PKC phosphorylation. To investigate the physiological function of DUSP3, we generated Dusp3-deficient mice by homologous recombination. The obtained DUSP3−/− mice were healthy, fertile, with no spontaneous phenotype and no vascular defect. However, DUSP3 deficiency prevented neo-vascularization of transplanted b-FGF containing Matrigel and LLC xenograft tumors as evidenced by hemoglobin (Hb) and FITC-dextran quantifications. Furthermore, we found that DUSP3 is required for b-FGF-induced microvessel outgrowth in the aortic ring assay. Conclusions All together, our data identify DUSP3 as a new important player in angiogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Souad Rahmouni
- Immunology and Infectious Diseases, GIGA-Signal Transduction, University of Liège, Liège 4000, Belgium.
| |
Collapse
|
35
|
Ríos P, Nunes-Xavier CE, Tabernero L, Köhn M, Pulido R. Dual-specificity phosphatases as molecular targets for inhibition in human disease. Antioxid Redox Signal 2014; 20:2251-73. [PMID: 24206177 DOI: 10.1089/ars.2013.5709] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
SIGNIFICANCE The dual-specificity phosphatases (DUSPs) constitute a heterogeneous group of cysteine-based protein tyrosine phosphatases, whose members exert a pivotal role in cell physiology by dephosphorylation of phosphoserine, phosphothreonine, and phosphotyrosine residues from proteins, as well as other non-proteinaceous substrates. RECENT ADVANCES A picture is emerging in which a selected group of DUSP enzymes display overexpression or hyperactivity that is associated with human disease, especially human cancer, making feasible targeted therapy approaches based on their inhibition. A panoply of molecular and functional studies on DUSPs have been performed in the previous years, and drug-discovery efforts are ongoing to develop specific and efficient DUSP enzyme inhibitors. This review summarizes the current status on inhibitory compounds targeting DUSPs that belong to the MAP kinase phosphatases-, small-sized atypical-, and phosphatases of regenerating liver subfamilies, whose inhibition could be beneficial for the prevention or mitigation of human disease. CRITICAL ISSUES Achieving specificity, potency, and bioavailability are the major challenges in the discovery of DUSP inhibitors for the clinics. Clinical validation of compounds or alternative inhibitory strategies of DUSP inhibition has yet to come. FUTURE DIRECTIONS Further work is required to understand the dual role of many DUSPs in human cancer, their function-structure properties, and to identify their physiologic substrates. This will help in the implementation of therapies based on DUSPs inhibition.
Collapse
Affiliation(s)
- Pablo Ríos
- 1 Genome Biology Unit, European Molecular Biology Laboratory , Heidelberg, Germany
| | | | | | | | | |
Collapse
|
36
|
Stadlbauer W, Dang VH, Guttenberger N. 5-Unsubstituted Pyrido[3,2,1-jk]carbazol-6-ones: Syntheses, Substitution, and Cyclization Reactions. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.1994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wolfgang Stadlbauer
- Department of Chemistry, Organic Synthesis Group; Karl-Franzens University of Graz; Heinrichstrasse 28 A-8010 Graz Austria
| | - Van Hoai Dang
- Department of Chemistry, Organic Synthesis Group; Karl-Franzens University of Graz; Heinrichstrasse 28 A-8010 Graz Austria
| | - Nikolaus Guttenberger
- Department of Chemistry, Organic Synthesis Group; Karl-Franzens University of Graz; Heinrichstrasse 28 A-8010 Graz Austria
| |
Collapse
|
37
|
Thuaud F, Kojima S, Hirai G, Oonuma K, Tsuchiya A, Uchida T, Tsuchimoto T, Sodeoka M. RE12 derivatives displaying Vaccinia H1-related phosphatase (VHR) inhibition in the presence of detergent and their anti-proliferative activity against HeLa cells. Bioorg Med Chem 2014; 22:2771-82. [DOI: 10.1016/j.bmc.2014.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/07/2014] [Accepted: 03/08/2014] [Indexed: 11/29/2022]
|
38
|
Stebbing J, Lit LC, Zhang H, Darrington RS, Melaiu O, Rudraraju B, Giamas G. The regulatory roles of phosphatases in cancer. Oncogene 2014; 33:939-53. [PMID: 23503460 DOI: 10.1038/onc.2013.80] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/01/2013] [Indexed: 02/06/2023]
Abstract
The relevance of potentially reversible post-translational modifications required for controlling cellular processes in cancer is one of the most thriving arenas of cellular and molecular biology. Any alteration in the balanced equilibrium between kinases and phosphatases may result in development and progression of various diseases, including different types of cancer, though phosphatases are relatively under-studied. Loss of phosphatases such as PTEN (phosphatase and tensin homologue deleted on chromosome 10), a known tumour suppressor, across tumour types lends credence to the development of phosphatidylinositol 3-kinase inhibitors alongside the use of phosphatase expression as a biomarker, though phase 3 trial data are lacking. In this review, we give an updated report on phosphatase dysregulation linked to organ-specific malignancies.
Collapse
Affiliation(s)
- J Stebbing
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - L C Lit
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - H Zhang
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - R S Darrington
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - O Melaiu
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - B Rudraraju
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - G Giamas
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
39
|
Natural products with protein tyrosine phosphatase inhibitory activity. Methods 2014; 65:229-38. [DOI: 10.1016/j.ymeth.2013.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/04/2013] [Accepted: 09/07/2013] [Indexed: 01/05/2023] Open
|
40
|
Stanford SM, Krishnamurthy D, Kulkarni RA, Karver CE, Bruenger E, Walker LM, Ma CT, Chung TDY, Sergienko E, Bottini N, Barrios AM. pCAP-based peptide substrates: the new tool in the box of tyrosine phosphatase assays. Methods 2013; 65:165-74. [PMID: 23886911 DOI: 10.1016/j.ymeth.2013.07.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/10/2013] [Accepted: 07/13/2013] [Indexed: 10/26/2022] Open
Abstract
Robust, facile high throughput assays based on non-peptidic probes are available to detect the enzyme activity of protein tyrosine phosphatases. However, these assays cannot replace the use of peptide-based probes in many applications; for example when a closer mimic of the physiological target is desired or in substrate profiling expeditions. Phosphotyrosine peptides are often used in these assays, but their use is complicated by either poor sensitivity or the need for indirect detection methods, among other pitfalls. Novel peptide-based probes for protein tyrosine phosphatases are needed to replace phosphotyrosine peptides and accelerate the field of tyrosine phosphatase substrate profiling. Here we review a type of peptidic probe for tyrosine phosphatases, which is based on the incorporation of the phosphotyrosine-mimic phosphocoumaryl amino propionic acid (pCAP) into peptides. The resulting fluorogenic pCAP peptides are dephosphorylated by tyrosine phosphatases with similar efficiency as the homologous phosphotyrosine peptides. pCAP peptides outperform phosphotyrosine peptides, providing an assay that is as robust, sensitive and facile as the non-peptidic fluorogenic probes on the market. Finally the use of pCAP can expand the range of phosphatase assays, facilitating the investigation of multiphosphorylated peptides and providing an in-gel assay for phosphatase activity.
Collapse
Affiliation(s)
- Stephanie M Stanford
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Divya Krishnamurthy
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Rhushikesh A Kulkarni
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Caitlin E Karver
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Eveline Bruenger
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Logan M Walker
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Chen-Ting Ma
- Conrad Prebys Center for Chemical Genomics, Sanford
- Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Thomas D Y Chung
- Conrad Prebys Center for Chemical Genomics, Sanford
- Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Eduard Sergienko
- Conrad Prebys Center for Chemical Genomics, Sanford
- Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Nunzio Bottini
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| | - Amy M Barrios
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
41
|
Collins JC, Armstrong A, Chapman KL, Cordingley HC, Jaxa-Chamiec AA, Judd KE, Mann DJ, Scott KA, Tralau-Stewart CJ, Low CMR. Prospective use of molecular field points in ligand-based virtual screening: efficient identification of new reversible Cdc25 inhibitors. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00047h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
He R, Zeng LF, He Y, Zhang S, Zhang ZY. Small molecule tools for functional interrogation of protein tyrosine phosphatases. FEBS J 2012; 280:731-50. [PMID: 22816879 DOI: 10.1111/j.1742-4658.2012.08718.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The importance of protein tyrosine phosphatases (PTPs) in the regulation of cellular signalling is well established. Malfunction of PTP activity is also known to be associated with cancer, metabolic syndromes and autoimmune disorders, as well as neurodegenerative and infectious diseases. However, a detailed understanding of the roles played by the PTPs in normal physiology and in pathogenic conditions has been hampered by the absence of PTP-specific small molecule agents. In addition, the therapeutic benefits of modulating this target class are underexplored as a result of a lack of suitable chemical probes. Potent and specific PTP inhibitors could significantly facilitate functional analysis of the PTPs in complex cellular signal transduction pathways and may constitute valuable therapeutics in the treatment of several human diseases. We highlight the current challenges to and opportunities for developing PTP-specific small molecule agents. We also review available selective small molecule inhibitors developed for a number of PTPs, including PTP1B, TC-PTP, SHP2, lymphoid-specific tyrosine phosphatase, haematopoietic protein tyrosine phosphatase, CD45, PTPβ, PTPγ, PTPRO, Vaccinia H1-related phosphatase, mitogen-activated protein kinase phosphatase-1, mitogen-activated protein kinase phosphatase-3, Cdc25, YopH, mPTPA and mPTPB.
Collapse
Affiliation(s)
- Rongjun He
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
43
|
Jeong MS, Kim E, Kang HJ, Choi EJ, Cho AR, Chung SJ, Park SB. A selective Seoul-Fluor-based bioprobe, SfBP, for vaccinia H1-related phosphatase--a dual-specific protein tyrosine phosphatase. Chem Commun (Camb) 2012; 48:6553-5. [PMID: 22622190 DOI: 10.1039/c2cc31377d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report a Seoul-Fluor-based bioprobe, SfBP, for selective monitoring of protein tyrosine phosphatases (PTPs). A rational design based on the structures at the active site of dual-specific PTPs can enable SfBP to selectively monitor the activity of these PTPs with a 93-fold change in brightness. Moreover, screening results of SfBP against 30 classical PTPs and 35 dual-specific PTPs show that it is selective toward vaccinia H1-related (VHR) phosphatase, a dual-specific PTP (DUSP-3).
Collapse
Affiliation(s)
- Myeong Seon Jeong
- BioNanotechnology Research Center, KRIBB and NanoBio Major, UST, 111 Kwahangno, Yuseong, Daejeon 305-806, Korea
| | | | | | | | | | | | | |
Collapse
|
44
|
Using small molecules to target protein phosphatases. Bioorg Med Chem 2011; 19:2145-55. [DOI: 10.1016/j.bmc.2011.02.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/21/2011] [Accepted: 02/23/2011] [Indexed: 11/21/2022]
|
45
|
Stanford SM, Krishnamurthy D, Falk MD, Messina R, Debnath B, Li S, Liu T, Kazemi R, Dahl R, He Y, Yu X, Chan AC, Zhang ZY, Barrios AM, Woods VL, Neamati N, Bottini N. Discovery of a novel series of inhibitors of lymphoid tyrosine phosphatase with activity in human T cells. J Med Chem 2011; 54:1640-54. [PMID: 21341673 PMCID: PMC3086468 DOI: 10.1021/jm101202j] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The lymphoid tyrosine phosphatase LYP, encoded by the PTPN22 gene, is a critical regulator of signaling in T cells and recently emerged as a candidate target for therapy of autoimmune diseases. Here, by library screening, we identified a series of noncompetitive inhibitors of LYP that showed activity in primary T cells. Kinetic analysis confirmed that binding of the compounds to the phosphatase is nonmutually exclusive with respect to a known bidentate competitive inhibitor. The mechanism of action of the lead inhibitor compound 4e was studied by a combination of hydrogen/deuterium-exchange mass spectrometry and molecular modeling. The results suggest that the inhibitor interacts critically with a hydrophobic patch located outside the active site of the phosphatase. Targeting of secondary allosteric sites is viewed as a promising yet unexplored approach to develop pharmacological inhibitors of protein tyrosine phosphatases. Our novel scaffold could be a starting point to attempt development of "nonactive site" anti-LYP pharmacological agents.
Collapse
Affiliation(s)
- Stephanie M. Stanford
- Institute for Genetic Medicine, University of Southern California, Los Angeles, California 90033, United States
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, United States
| | - Divya Krishnamurthy
- Institute for Genetic Medicine, University of Southern California, Los Angeles, California 90033, United States
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Matthew D. Falk
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, United States
| | - Rossella Messina
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, United States
| | - Bikash Debnath
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90033, United States
| | - Sheng Li
- Department of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Tong Liu
- Department of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Roza Kazemi
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90033, United States
| | - Russell Dahl
- CPCCG, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, United States
| | - Yantao He
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, Indiana 46202, United States
| | - Xiao Yu
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, Indiana 46202, United States
| | - Andrew C. Chan
- Department of Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, Indiana 46202, United States
| | - Amy M. Barrios
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Virgil L. Woods
- Department of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Nouri Neamati
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90033, United States
| | - Nunzio Bottini
- Institute for Genetic Medicine, University of Southern California, Los Angeles, California 90033, United States
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, United States
| |
Collapse
|
46
|
Hirai G, Tsuchiya A, Koyama Y, Otani Y, Oonuma K, Dodo K, Simizu S, Osada H, Sodeoka M. Development of a Vaccinia H1-related (VHR) phosphatase inhibitor with a nonacidic phosphate-mimicking core structure. ChemMedChem 2011; 6:617-22. [PMID: 21391303 DOI: 10.1002/cmdc.201100107] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Indexed: 01/25/2023]
Affiliation(s)
- Go Hirai
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bobkova EV, Liu WH, Colayco S, Rascon J, Vasile S, Gasior C, Critton DA, Chan X, Dahl R, Su Y, Sergienko E, Chung TDY, Mustelin T, Page R, Tautz L. Inhibition of the Hematopoietic Protein Tyrosine Phosphatase by Phenoxyacetic Acids. ACS Med Chem Lett 2011; 2:113-118. [PMID: 21503265 DOI: 10.1021/ml100103p] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Protein tyrosine phosphatases (PTPs) have only recently become the focus of attention in the search for novel drug targets despite the fact that they play vital roles in numerous cellular processes and are implicated in many human diseases. The hematopoietic protein tyrosine phosphatase (HePTP) is often found dysregulated in preleukemic myelodysplastic syndrome (MDS), as well as in acute myelogenous leukemia (AML). Physiological substrates of HePTP include the mitogen-activated protein kinases (MAPKs) ERK1/2 and p38. Specific modulators of HePTP catalytic activity will be useful for elucidating mechanisms of MAPK regulation in hematopietic cells, and may also provide treatments for hematopoietic malignancies such as AML. Here we report the discovery of phenoxyacetic acids as inhibitors of HePTP. Structure-activity relationship (SAR) analysis and in silico docking studies reveal the molecular basis of HePTP inhibition by these compounds. We also show that these compounds are able to penetrate cell membranes and inhibit HePTP in human T lymphocytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David A. Critton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, United States
| | | | | | - Ying Su
- Conrad Prebys Center for Chemical Genomics
| | | | | | | | - Rebecca Page
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Lutz Tautz
- Infectious and Inflammatory Disease Center
| |
Collapse
|
48
|
Leone M, Barile E, Dahl R, Pellecchia M. Design and NMR studies of cyclic peptides targeting the N-terminal domain of the protein tyrosine phosphatase YopH. Chem Biol Drug Des 2011; 77:12-9. [PMID: 21118379 PMCID: PMC3149900 DOI: 10.1111/j.1747-0285.2010.01058.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report on the design and evaluation of novel cyclic peptides targeting the N-terminal domain of the protein tyrosine phosphatase YopH from Yersinia. Cyclic peptides have been designed based on a short sequence from the protein SKAP-HOM [DE(pY)DDPF (pY=phosphotyrosine)], and they all contain the motif DEZXDPfK (where Z is a phosphotyrosine or a non-hydrolyzable phosphotyrosine mimetic, X is an aspartic acid or a leucine and f is a d-phenylalanine). These peptides present a 'head to tail' architecture, enabling cyclization through formation of an amide bond in between the side chains of the first aspartic acid and the lysine residues. Chemical shift perturbation studies have been carried out to monitor the binding of these peptides to the N-terminal domain of YopH. Peptides containing a phosphotyrosine moiety exhibit binding affinities in the low micromolar range; substitution of the phosphotyrosine with one of its non-hydrolyzable derivatives dramatically reduces the binding affinities. These preliminary studies may pave the way for the discovery of more potent and selective peptide-based ligands of the YopH N-terminal domain which could be further investigated for their ability to inhibit Yersiniae infections.
Collapse
Affiliation(s)
- Marilisa Leone
- Infectious and Inflammatory Disease Center and Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
- Institute of Biostructures and Bioimaging-CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Elisa Barile
- Infectious and Inflammatory Disease Center and Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
| | - Russell Dahl
- Infectious and Inflammatory Disease Center and Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
| | - Maurizio Pellecchia
- Infectious and Inflammatory Disease Center and Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
| |
Collapse
|
49
|
Leone M, Barile E, Vazquez J, Mei A, Guiney D, Dahl R, Pellecchia M. NMR-based design and evaluation of novel bidentate inhibitors of the protein tyrosine phosphatase YopH. Chem Biol Drug Des 2010; 76:10-6. [PMID: 20456369 PMCID: PMC2905849 DOI: 10.1111/j.1747-0285.2010.00982.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We describe the use of a furanyl salicyl nitroxide derivative ('spin-labeled' compound), as a paramagnetic phosphotyrosine mimetic, to carry out a second-site screening by NMR against the PTPase YopH from Yersinia pestis. Using such a fragment-based screening approach we identified several small molecules targeting YopH that bind at sites adjacent to the spin-labeled compound. These second-site fragments were subsequently used to design and synthesize bidentate YopH inhibitors with submicromolar in vitro inhibition, selectivity against the human PTPase PTP1B, and cellular activity against Y. pseudotuberculosis. These initial compounds could result useful in elucidating the structural determinants necessary for YopH inhibition and may help in the design of even more active, selective and cell permeable compounds for the development of novel therapies against Yersiniae.
Collapse
Affiliation(s)
- Marilisa Leone
- Infectious and inflammatory Disease Center and Cancer Center, Sanford | Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
- Institute of Biostructures and Bioimaging-CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Elisa Barile
- Infectious and inflammatory Disease Center and Cancer Center, Sanford | Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
| | - Jesus Vazquez
- Infectious and inflammatory Disease Center and Cancer Center, Sanford | Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
| | - Angel Mei
- Infectious and inflammatory Disease Center and Cancer Center, Sanford | Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
| | - Donald Guiney
- Department of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Russel Dahl
- Infectious and inflammatory Disease Center and Cancer Center, Sanford | Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
| | - Maurizio Pellecchia
- Infectious and inflammatory Disease Center and Cancer Center, Sanford | Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
| |
Collapse
|