1
|
Bhalodiya SS, Parmar MP, Patel CD, Patel SG, Vala DP, Suresh N, Jayachandran B, Kumar Arumugam M, Narayan M, Patel HM. Acetic Acid-Driven One-Pot Synthesis of 4,7-dihydro-[1,2,3]thiadiazolo[5,4-b]pyridine-6-carboxamides and Pharmacological Evaluations. ChemMedChem 2025; 20:e202400595. [PMID: 39395196 DOI: 10.1002/cmdc.202400595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
A diverse set of 4,7-dihydro-[1,2,3]thiadiazolo[5,4-b]pyridine-6-carboxamides 4(a-o) was synthesized via a one-pot reaction of 5-amino-[1,2,3]thiadiazole, various aromatic aldehydes, and different acetoacetanilides, using glacial acetic acid. The resulting compounds were obtained in moderate to good yields. All the newly synthesized compounds were evaluated for their antimicrobial activity. Among them, compound 4 e demonstrated superior efficacy against the Salinivibrio proteolyticus strain of Gram-negative bacteria compared to ciprofloxacin. Compound 4 d exhibited the highest potency against the fungal strain Candida albicans, surpassing amphotericin B. The physicochemical characteristics of 4 d and 4 e were assessed. According to docking analysis, DHTDAPy 4 e shows a higher binding affinity of -7.2 kcal/mol in the binding cavity of the receptor. These findings illustrate the safety, tolerability, and potency of the newly synthesized DHTDAPy compounds against fungal and bacterial infections.
Collapse
Affiliation(s)
- Savan S Bhalodiya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India
| | - Mehul P Parmar
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India
| | - Chirag D Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India
| | - Subham G Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India
| | - Disha P Vala
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India
| | - Nandhakumar Suresh
- Cancer biology lab, Center for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Bhuvaneshwari Jayachandran
- Cancer biology lab, Center for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Madan Kumar Arumugam
- Cancer biology lab, Center for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Mahesh Narayan
- Biochemistry Division, Department of Chemistry and Biochemistry, CCSB 2.0202, University of Texas at El Paso 500 W. University Ave., El Paso, TX 79968, USA
| | - Hitendra M Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India
| |
Collapse
|
2
|
Mishra R, da Cunha Xavier J, Kumar N, Krishna G, Dhakad PK, Dos Santos HS, Bandeira PN, Rodrigues THS, Gondim DR, Ribeiro WHF, da Silva DS, Teixeira AMR, Pereira WF, Marinho ES, Sucheta. Exploring Quinoline Derivatives: Their Antimalarial Efficacy and Structural Features. Med Chem 2025; 21:96-121. [PMID: 40007183 DOI: 10.2174/0115734064318361240827072124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 02/27/2025]
Abstract
OBJECTIVES Malaria continues to be the primary cause of mortality worldwide, and timely recognition and prompt intervention are crucial in mitigating adverse consequences. This review article aims to examine the effectiveness and structural characteristics of quinoline-based compounds as antimalarial agents. It specifically focuses on their therapeutic effects as well as potential prospects for exploring structure-activity relationship (SAR). In addition, this study aims to identify lead compounds that can efficiently battle multidrug-resistant forms of Plasmodium falciparum and Plasmodium vivax. METHODS A comprehensive review was conducted to evaluate the effectiveness of quinoline-based antimalarial medications in eradicating P. falciparum and P. vivax. The mechanism of action and SAR of these compounds were analyzed. RESULTS Quinoline-based antimalarials demonstrated significant effectiveness in eliminating P. falciparum parasites, particularly in regions severely impacted by malaria, including Africa and Asia. These compounds were found to exhibit tolerance and immune-modulating properties, indicating their potential for more widespread utilization. The investigation identified various new quinoline compounds with improved antimalarial activity, including metal-chloroquine complexes, diaminealkyne chloroquines, and cinnamoylated chloroquine hybrids. This study explored different mechanisms by which these compounds interact with parasites, including their ability to accumulate in the parasite's acidic food vacuoles and disrupt heme detoxification. The derivatives demonstrated strong efficacy against chloroquine-resistant strains and yielded positive results. CONCLUSION Quinoline-based compounds represent a promising avenue for combating malaria due to their demonstrated efficacy against P. falciparum and P. vivax parasites. Further research on their mechanisms of action and SAR could lead to the development of more effective antimalarial medications.
Collapse
Affiliation(s)
- Raghav Mishra
- Department of Pharmacy, Lloyd School of Pharmacy, Knowledge Park II, Greater Noida, Uttar Pradesh 201306, India
| | | | - Nitin Kumar
- Department of Pharmacy, Saraswathi College of Pharmacy, Anwarpur, Pilkhuwa, India
| | - Gaurav Krishna
- Department of Pharmacy, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Prashant Kumar Dhakad
- Department of Pharmacy, Suresh Gyan Vihar University, Gyan vihar Marg Jagatpura Jaipur, 302017, Rajasthan, India
| | - Helcio Silva Dos Santos
- Department of Biological Chemistry, Regional University of Cariri, Crato-CE, Brazil
- Center for Exact Sciences and Technology - Chemistry Course, Vale do Acaraú University, Sobral, CE, Brazil
| | - Paulo Nogueira Bandeira
- Center for Exact Sciences and Technology - Chemistry Course, Vale do Acaraú University, Sobral, CE, Brazil
| | | | - Diego Romao Gondim
- Center for Exact Sciences and Technology - Chemistry Course, Vale do Acaraú University, Sobral, CE, Brazil
| | | | - Draulio Sales da Silva
- Center for Exact Sciences and Technology - Chemistry Course, Vale do Acaraú University, Sobral, CE, Brazil
| | | | | | - Emmanuel Silva Marinho
- Postgraduate Program in Natural Sciences, State University of Ceara, Fortaleza, CE, Brazil
| | - Sucheta
- School of Medical & Allied Sciences, K.R. Mangalam University, Sohna Road, Gurugram, India
| |
Collapse
|
3
|
Sharma G, Sharma CS. Tetrahydropyridine appended 8-aminoquinoline derivatives: Design, synthesis, in silico, and in vitro antimalarial studies. Bioorg Chem 2024; 151:107674. [PMID: 39059071 DOI: 10.1016/j.bioorg.2024.107674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Antimalarial drug resistance is a major obstacle in the ongoing quest against malaria. The disease affects half of the world's population. The majority of them are toddlers and pregnant women. Needed a potent compound to act on drug-resistant Pf at appropriate concentrations without endangering the host. Envisaged solving this issue through rational drug design by creating a novel hybrid drug possessing two pharmacophores that can act on two marvellous and independent aims within the cell. Synthesized a new series of substituted 4-phenyl-1,2,3,6-tetrahydropyridine (THP) 8-Aminoquinoline-based hybrid analogs which have been integrated with quinoline, chloroquine, pamaquine, and primaquine, which exhibited antimalarial activity against Pf. Out of thirteen 4-phenyl-1,2,3,6-THP appended 8-Aminoquinoline derivatives, the compounds 1j, 1e, 1b, and 1l have exhibited good antimalarial activity against chloroquine-sensitive (3D7) and chloroquine-resistant (RKL-9) strain with the minimum inhibitory concentration. Compound 1b was the most effective and showed consistently good potency against the drug-resistant (RKL-9) strain, although all other arrays showed good antimalarial efficacy. Additional docking and molecular dynamics studies were carried out at several targeting sites to quantify the structural parameters necessary for the activity.
Collapse
Affiliation(s)
- Ganesh Sharma
- Department of Pharmaceutical Chemistry, Bhupal Nobles' College of Pharmacy, Bhupal Nobles' University, Udaipur, Rajasthan 313001, India.
| | - C S Sharma
- Department of Pharmaceutical Chemistry, Bhupal Nobles' College of Pharmacy, Bhupal Nobles' University, Udaipur, Rajasthan 313001, India
| |
Collapse
|
4
|
Ferreira LT, Cassiano GC, Alvarez LCS, Okombo J, Calit J, Fontinha D, Gil-Iturbe E, Coyle R, Andrade CH, Sunnerhagen P, Bargieri DY, Prudêncio M, Quick M, Cravo PV, Lee MCS, Fidock DA, Costa FTM. A novel 4-aminoquinoline chemotype with multistage antimalarial activity and lack of cross-resistance with PfCRT and PfMDR1 mutants. PLoS Pathog 2024; 20:e1012627. [PMID: 39471233 PMCID: PMC11521309 DOI: 10.1371/journal.ppat.1012627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/30/2024] [Indexed: 11/01/2024] Open
Abstract
Artemisinin-based combination therapy (ACT) is the mainstay of effective treatment of Plasmodium falciparum malaria. However, the long-term utility of ACTs is imperiled by widespread partial artemisinin resistance in Southeast Asia and its recent emergence in parts of East Africa. This underscores the need to identify chemotypes with new modes of action (MoAs) to circumvent resistance to ACTs. In this study, we characterized the asexual blood stage antiplasmodial activity and resistance mechanisms of LDT-623, a 4-aminoquinoline (4-AQ). We also detected LDT-623 activity against multiple stages (liver schizonts, stage IV-V gametocytes, and ookinetes) of Plasmodium's life cycle, a feature unlike other 4-AQs such as chloroquine (CQ) and piperaquine (PPQ). Using heme fractionation profiling and drug uptake studies in PfCRT-containing proteoliposomes, we observed inhibition of hemozoin formation and PfCRT-mediated transport, which constitute characteristic features of 4-AQs' MoA. We also found minimal cross-resistance to LDT-623 in a panel of mutant pfcrt or pfmdr1 lines, but not the PfCRT F145I mutant that is highly resistant to PPQ resistance yet is very unfit. No P. falciparum parasites were recovered in an in vitro resistance selection study, suggesting a high barrier for resistance to emerge. Finally, a competitive growth assay comprising >50 barcoded parasite lines with mutated resistance mediators or major drug targets found no evidence of cross-resistance. Our findings support further exploration of this promising 4-AQ.
Collapse
Affiliation(s)
- Letícia Tiburcio Ferreira
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Gustavo Capatti Cassiano
- Global Health and Tropical Medicine, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Luis Carlos Salazar Alvarez
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Juliana Calit
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Rachael Coyle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
| | - Carolina Horta Andrade
- Laboratory of Molecular Modeling and Drug Design, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- Center for the Research and Advancement in Fragments and molecular Targets, School of Pharmaceutical Sciences at Ribeirao Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Center for Excellence in Artificial Intelligence, Institute of Informatics, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Youssef Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Matthias Quick
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Physiology & Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, United States of America
- New York State Psychiatric Institute, Area Neuroscience – Molecular Therapeutics, New York, New York, United States of America
| | - Pedro V. Cravo
- Global Health and Tropical Medicine, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Marcus C. S. Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, United States of America
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
- Global Health and Tropical Medicine, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
5
|
de Souza TP, Orlando LMR, Lara LDS, Paes VB, Dutra LP, dos Santos MS, Pereira MCDS. Synthesis and Anti- Trypanosoma cruzi Activity of New Pyrazole-Thiadiazole Scaffolds. Molecules 2024; 29:3544. [PMID: 39124949 PMCID: PMC11314410 DOI: 10.3390/molecules29153544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Chagas disease, a silent but widespread disease that mainly affects a socioeconomically vulnerable population, lacks innovative safe drug therapy. The available drugs, benznidazole and nifurtimox, are more than fifty years old, have limited efficacy, and carry harmful side effects, highlighting the need for new therapeutics. This study presents two new series of pyrazole-thiadiazole compounds evaluated for trypanocidal activity using cellular models predictive of efficacy. Derivatives 1c (2,4-diCl) and 2k (4-NO2) were the most active against intracellular amastigotes. Derivative 1c also showed activity against trypomastigotes, with the detachment of the flagellum from the parasite body being a predominant effect at the ultrastructural level. Analogs have favorable physicochemical parameters and are predicted to be orally available. Drug efficacy was also evaluated in 3D cardiac microtissue, an important target tissue of Trypanosoma cruzi, with derivative 2k showing potent antiparasitic activity and a significant reduction in parasite load. Although 2k potentially reduced parasite load in the washout assay, it did not prevent parasite recrudescence. Drug combination analysis revealed an additive profile, which may lead to favorable clinical outcomes. Our data demonstrate the antiparasitic activity of pyrazole-thiadiazole derivatives and support the development of these compounds using new optimization strategies.
Collapse
Affiliation(s)
- Thamyris Perez de Souza
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fiocruz. Av. Brasil 4365, Rio de Janeiro 21040-900, RJ, Brazil; (T.P.d.S.); (L.M.R.O.); (L.d.S.L.); (V.B.P.)
| | - Lorraine Martins Rocha Orlando
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fiocruz. Av. Brasil 4365, Rio de Janeiro 21040-900, RJ, Brazil; (T.P.d.S.); (L.M.R.O.); (L.d.S.L.); (V.B.P.)
| | - Leonardo da Silva Lara
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fiocruz. Av. Brasil 4365, Rio de Janeiro 21040-900, RJ, Brazil; (T.P.d.S.); (L.M.R.O.); (L.d.S.L.); (V.B.P.)
| | - Vitoria Barbosa Paes
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fiocruz. Av. Brasil 4365, Rio de Janeiro 21040-900, RJ, Brazil; (T.P.d.S.); (L.M.R.O.); (L.d.S.L.); (V.B.P.)
| | - Lucas Penha Dutra
- Laboratório de Síntese de Sistemas Heterocíclicos (LaSSH), Instituto de Física e Química (IFQ), Universidade Federal de Itajubá, Av. BPS 1303, Pinheirinho, Itajubá 37500-903, MG, Brazil; (L.P.D.); (M.S.d.S.)
| | - Mauricio Silva dos Santos
- Laboratório de Síntese de Sistemas Heterocíclicos (LaSSH), Instituto de Física e Química (IFQ), Universidade Federal de Itajubá, Av. BPS 1303, Pinheirinho, Itajubá 37500-903, MG, Brazil; (L.P.D.); (M.S.d.S.)
| | - Mirian Claudia de Souza Pereira
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fiocruz. Av. Brasil 4365, Rio de Janeiro 21040-900, RJ, Brazil; (T.P.d.S.); (L.M.R.O.); (L.d.S.L.); (V.B.P.)
| |
Collapse
|
6
|
Fang JR, Zhang YJ, Meng X, Chen Y, Zhang X, Zhu LJ, Yao XS. Two new Nb-oxide indole alkaloids with β-hematin inhibitory activity from the stems and leaves of Rauvolfia dichotoma. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024:1-9. [PMID: 38247111 DOI: 10.1080/10286020.2024.2302825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Rauvolfia dichotoma, a shrub of Apocynaceae, was collected from the Islands of SAO Tome and Principe and cultivated locally for medicinal purpose. Phytochemical investigation of 95% ethanol extract from the stems and leaves of R. dichotoma led to the isolation of two new Nb-oxide indole alkaloids, namely Nb-oxide-mitoridine (1) and Nb-oxide-raucaffricine (2), together with two known alkaloids (3-4) and eleven known lignans (5-15). Their chemical structures were elucidated by extensive NMR and HR-ESI-MS data analysis. All compounds (except 13) were tested for their β-hematin inhibitory activity. Compounds 2, 4, 14, and 15 showed certain inhibitory activity, indicating that they may have an antimalarial effect.
Collapse
Affiliation(s)
- Jing-Ru Fang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu-Jie Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao Meng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xue Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ling-Juan Zhu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin-Sheng Yao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
7
|
Pal C. Redox modulating small molecules having antimalarial efficacy. Biochem Pharmacol 2023; 218:115927. [PMID: 37992998 DOI: 10.1016/j.bcp.2023.115927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
The search for effective antimalarial agents remains a critical priority because malaria is widely spread and drug-resistant strains are becoming more prevalent. In this review, a variety of small molecules capable of modulating redox processes were showcased for their potential as antimalarial agents. The compounds were designed to target the redox balance of Plasmodium parasites, which has a pivotal function in their ability to survive and multiply within the host organism. A thorough screening method was utilized to assess the effectiveness of these compounds against both drug-sensitive and drug-resistant strains of Plasmodium falciparum, the malaria-causing parasite. The results revealed that several of the tested compounds exhibited significant effectiveness against malaria, displaying IC50 values at a low micromolar range. Furthermore, these compounds displayed promising selectivity for the parasite, as they exhibited low cytotoxicity towards mammalian cells. Thorough mechanistic studies were undertaken to clarify how the active compounds exert their mode of action. The findings revealed that these compounds disrupted the parasites' redox balance, causing oxidative stress and interfering with essential cellular functions. Additionally, the compounds showed synergistic effects when combined with existing antimalarial drugs, suggesting their potential for combination therapies to combat drug resistance. Overall, this study highlights the potential of redox-modulating small molecules as effective antimalarial agents. The identified compounds demonstrate promising antimalarial activity, and their mechanism of action offers insights into targeting the redox balance of Plasmodium parasites. Further optimization and preclinical studies are warranted to determine their efficacy, safety, and potential for clinical development as novel antimalarial therapeutics.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal 743273, India.
| |
Collapse
|
8
|
Prasad Raiguru B, Panda J, Mohapatra S, Nayak S. Recent developments in the synthesis of hybrid antimalarial drug discovery. Bioorg Chem 2023; 139:106706. [PMID: 37406519 DOI: 10.1016/j.bioorg.2023.106706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
In this 21st century, Malaria remains a global burden and causes massive economic trouble to disease-endemic nations. The control and eradication of malaria is a major challenge that requires an urgent need to develop novel antimalarial drugs. To overcome the aforementioned situation, several researchers have given significant effort to develop hybrid antimalarial agents in the search for new antimalarial drugs. Hence, we have summarized those developments of hybrid antimalarial agents from 2017 to till date. This review illustrates the current progress in the recent synthesis of hybrid antimalarial agents along with focusing on their antimalarial evaluation to find the most potent hybrids. This present mini-review will also be useful for the scientific community for the development of new antimalarial drugs to eradicate malaria.
Collapse
Affiliation(s)
| | - Jasmine Panda
- Department of Chemistry, Ravenshaw University, Cuttack 753003, India
| | | | - Sabita Nayak
- Department of Chemistry, Ravenshaw University, Cuttack 753003, India
| |
Collapse
|
9
|
Sharma B, Agarwal A, Awasthi SK. Is structural hybridization invoking new dimensions for antimalarial drug discovery research? RSC Med Chem 2023; 14:1227-1253. [PMID: 37484560 PMCID: PMC10357931 DOI: 10.1039/d3md00083d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/01/2023] [Indexed: 07/25/2023] Open
Abstract
Despite effective prevention methods, malaria is a devastating, persistent infection caused by protozoal parasites that result in nearly half a million fatalities annually. Any progress made thus far in the eradication of the disease is jeopardized by the expansion of malaria parasites that have evolved to become resistant to a wide range of drugs, including first-line therapy. To surmount this significant obstacle, it is necessary to develop newly synthesized drugs with multiple modes of action that may have a novel target in various stages of Plasmodium parasite development and this is made possible by the hybridization concept. Hybridization is the combination of at least two diverse pharmacophore units with some linkers bringing about a single molecule with a diverse mode of action. It intensifies a drug's physiological and chemical characteristics, such as absorption, cellular target contact, metabolism, excretion, distribution, and toxicity. This review article outlines the currently published most potent hybrid drugs against the Plasmodium species.
Collapse
Affiliation(s)
- Bhawana Sharma
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Alka Agarwal
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University Varanasi-221005 Uttar Pradesh India
| | - Satish Kumar Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| |
Collapse
|
10
|
Chiodi D, Ishihara Y. "Magic Chloro": Profound Effects of the Chlorine Atom in Drug Discovery. J Med Chem 2023; 66:5305-5331. [PMID: 37014977 DOI: 10.1021/acs.jmedchem.2c02015] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Chlorine is one of the most common atoms present in small-molecule drugs beyond carbon, hydrogen, nitrogen, and oxygen. There are currently more than 250 FDA-approved chlorine-containing drugs, yet the beneficial effect of the chloro substituent has not yet been reviewed. The seemingly simple substitution of a hydrogen atom (R = H) with a chlorine atom (R = Cl) can result in remarkable improvements in potency of up to 100,000-fold and can lead to profound effects on pharmacokinetic parameters including clearance, half-life, and drug exposure in vivo. Following the literature terminology of the "magic methyl effect" in drugs, the term "magic chloro effect" has been coined herein. Although reports of 500-fold or 1000-fold potency improvements are often serendipitous discoveries that can be considered "magical" rather than planned, hypotheses made to explain the magic chloro effect can lead to lessons that accelerate the cycle of drug discovery.
Collapse
Affiliation(s)
- Debora Chiodi
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yoshihiro Ishihara
- Department of Chemistry, Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, California 92121, United States
| |
Collapse
|
11
|
Sharma B, Chowdhary S, Legac J, Rosenthal PJ, Kumar V. Quinoline-based heterocyclic hydrazones: Design, synthesis, anti-plasmodial assessment, and mechanistic insights. Chem Biol Drug Des 2023; 101:829-836. [PMID: 36418231 DOI: 10.1111/cbdd.14185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
A library of quinoline-based hydrazones bearing 1H-1,2,3-triazole core was designed, synthesized, and evaluated for their antiplasmodial activity against the drug-resistant Plasmodium falciparum W2 strain. The inclusion of pyrazine-2-carboxylic acid with a flexible propyl spacer afforded the most active scaffold with an IC50 value of 0.26 μM. Mechanistically, the compound inhibited heme to hemozoin formation, as demonstrated by UV-vis and mass spectral studies.
Collapse
Affiliation(s)
- Bharvi Sharma
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | | | - Jenny Legac
- Department of Medicine, University of California, San Francisco, California, USA
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, California, USA
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
12
|
Ong HW, Truong A, Kwarcinski F, de Silva C, Avalani K, Havener TM, Chirgwin M, Galal KA, Willis C, Krämer A, Liu S, Knapp S, Derbyshire ER, Zutshi R, Drewry DH. Discovery of potent Plasmodium falciparum protein kinase 6 (PfPK6) inhibitors with a type II inhibitor pharmacophore. Eur J Med Chem 2023; 249:115043. [PMID: 36736152 PMCID: PMC10052868 DOI: 10.1016/j.ejmech.2022.115043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023]
Abstract
Malaria is a devastating disease that causes significant global morbidity and mortality. The rise of drug resistance against artemisinin-based combination therapy demonstrates the necessity to develop alternative antimalarials with novel mechanisms of action. We report the discovery of Ki8751 as an inhibitor of essential kinase PfPK6. 79 derivatives were designed, synthesized and evaluated for PfPK6 inhibition and antiplasmodial activity. Using group efficiency analyses, we established the importance of key groups on the scaffold consistent with a type II inhibitor pharmacophore. We highlight modifications on the tail group that contribute to antiplasmodial activity, cumulating in the discovery of compound 67, a PfPK6 inhibitor (IC50 = 13 nM) active against the P. falciparum blood stage (EC50 = 160 nM), and compound 79, a PfPK6 inhibitor (IC50 < 5 nM) with dual-stage antiplasmodial activity against P. falciparum blood stage (EC50 = 39 nM) and against P. berghei liver stage (EC50 = 220 nM).
Collapse
Affiliation(s)
- Han Wee Ong
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Anna Truong
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA
| | - Frank Kwarcinski
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, AZ, 85719, USA
| | - Chandi de Silva
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, AZ, 85719, USA
| | - Krisha Avalani
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, AZ, 85719, USA
| | - Tammy M Havener
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Michael Chirgwin
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA
| | - Kareem A Galal
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Caleb Willis
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, AZ, 85719, USA
| | - Andreas Krämer
- Structural Genomics Consortium, Institute of Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, NC, 27599-3420, USA; Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599-3420, USA
| | - Stefan Knapp
- Structural Genomics Consortium, Institute of Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Emily R Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC, 27710, USA.
| | - Reena Zutshi
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, AZ, 85719, USA.
| | - David H Drewry
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
13
|
Aksić J, Genčić M, Stojanović N, Radulović N, Zlatković D, Dimitrijević M, Stojanović-Radić Z, Srbljanović J, Štajner T, Jovanović L. New Iron Twist to Chloroquine─Upgrading Antimalarials with Immunomodulatory and Antimicrobial Features. J Med Chem 2023; 66:2084-2101. [PMID: 36661364 DOI: 10.1021/acs.jmedchem.2c01851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Herein, upgraded chloroquine (CQ) derivatives capable of overcoming Plasmodium resistance and, at the same time, suppressing excessive immune response and risk of concurrent bacteremia were developed. Twelve new ferrocene-CQ hybrids tethered with a small azathia heterocycle (1,3-thiazolidin-4-one, 1,3-thiazinan-4-one, or 5-methyl-1,3-thiazolidin-4-one) were synthesized and fully characterized. All hybrids were evaluated for their in vitro antiplasmodial, antimicrobial, and immunomodulatory activities. Additional assays were performed on selected hybrids to gain insights into their mode of action. Although only hybrid 4a was more potent than the parent drug toward CQ-resistant Dd2 Plasmodium falciparum strain, several other hybrids (such as 6b, 6c, and 6d) manifested substantially improved antimicrobial and immunomodulatory properties. Interesting structure-activity relationship data were obtained, hinting at future research for the development of new multitarget chemotherapies for malaria and other infectious diseases complicated by drug resistance, bacterial co-infection, and immune-driven pathology issues.
Collapse
Affiliation(s)
- Jelena Aksić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000Niš, Serbia
| | - Marija Genčić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000Niš, Serbia
| | - Nikola Stojanović
- Department of Physiology, Faculty of Medicine, University of Niš, Bulevar Zorana D̵ind̵ića 81, 18000Niš, Serbia
| | - Niko Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000Niš, Serbia
| | - Dragan Zlatković
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000Niš, Serbia
| | - Marina Dimitrijević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000Niš, Serbia
| | - Zorica Stojanović-Radić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000Niš, Serbia
| | - Jelena Srbljanović
- National Reference Laboratory for Toxoplasmosis, Centre for Parasitic Zoonoses, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, 11129Belgrade, Serbia
| | - Tijana Štajner
- National Reference Laboratory for Toxoplasmosis, Centre for Parasitic Zoonoses, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, 11129Belgrade, Serbia
| | - Ljiljana Jovanović
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000Novi Sad, Serbia
| |
Collapse
|
14
|
Andhare NH, Anas M, Rastogi SK, Manhas A, Thopate Y, Srivastava K, Kumar N, Sinha AK. Synthesis and in vitro SAR evaluation of natural vanillin-based chalcones tethered quinolines as antiplasmodial agents. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Chowdhary S, Shalini, Mosnier J, Fonta I, Pradines B, Cele N, Seboletswe P, Singh P, Kumar V. Synthesis, Anti-Plasmodial Activities, and Mechanistic Insights of 4-Aminoquinoline-Triazolopyrimidine Hybrids. ACS Med Chem Lett 2022; 13:1068-1076. [DOI: 10.1021/acsmedchemlett.2c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Shefali Chowdhary
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Shalini
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Joel Mosnier
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherché Biomédicale des Armées, Marseille 13262, France
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille 13262, France
- IHU Méditerranée Infection, Marseille 13262, France
- Centre National de Reference du Paludisme, Marseille 13262, France
| | - Isabelle Fonta
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherché Biomédicale des Armées, Marseille 13262, France
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille 13262, France
- IHU Méditerranée Infection, Marseille 13262, France
- Centre National de Reference du Paludisme, Marseille 13262, France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherché Biomédicale des Armées, Marseille 13262, France
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille 13262, France
- IHU Méditerranée Infection, Marseille 13262, France
- Centre National de Reference du Paludisme, Marseille 13262, France
| | - Nosipho Cele
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban South Africa
| | - Pule Seboletswe
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban South Africa
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| |
Collapse
|
16
|
Van de Walle T, Cools L, Mangelinckx S, D'hooghe M. Recent contributions of quinolines to antimalarial and anticancer drug discovery research. Eur J Med Chem 2021; 226:113865. [PMID: 34655985 DOI: 10.1016/j.ejmech.2021.113865] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022]
Abstract
Quinoline, a privileged scaffold in medicinal chemistry, has always been associated with a multitude of biological activities. Especially in antimalarial and anticancer research, quinoline played (and still plays) a central role, giving rise to the development of an array of quinoline-containing pharmaceuticals in these therapeutic areas. However, both diseases still affect millions of people every year, pointing to the necessity of new therapies. Quinolines have a long-standing history as antimalarial agents, but established quinoline-containing antimalarial drugs are now facing widespread resistance of the Plasmodium parasite. Nevertheless, as evidenced by a massive number of recent literature contributions, they are still of great value for future developments in this field. On the other hand, the number of currently approved anticancer drugs containing a quinoline scaffold are limited, but a strong increase and interest in quinoline compounds as potential anticancer agents can be seen in the last few years. In this review, a literature overview of recent contributions made by quinoline-containing compounds as potent antimalarial or anticancer agents is provided, covering publications between 2018 and 2020.
Collapse
Affiliation(s)
- Tim Van de Walle
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Lore Cools
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Sven Mangelinckx
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
17
|
Santos GC, Martins LM, Bregadiolli BA, Moreno VF, Silva‐Filho LC, Silva BHST. Heterocyclic compounds as antiviral drugs: Synthesis, structure–activity relationship and traditional applications. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | - Vitor Fernandes Moreno
- School of Sciences, Department of Chemistry São Paulo State University (UNESP) Bauru Brazil
| | | | | |
Collapse
|
18
|
Kavanagh O, Elmes R, O’Sullivan F, Farragher J, Robinson S, Walker G. Investigating Structural Property Relationships to Enable Repurposing of Pharmaceuticals as Zinc Ionophores. Pharmaceutics 2021; 13:2032. [PMID: 34959313 PMCID: PMC8704213 DOI: 10.3390/pharmaceutics13122032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
The importance of zinc in biology has gained greater recognition in recent years due to its essential contributions to the function of many endogenous enzymes. Disruption of zinc homeostasis may be useful in treating pathological conditions, such as Alzheimer's, and for antiviral purposes. Despite the growth of knowledge and increased interest in zinc, little is known about the structure and function of zinc ionophores. In this study we analyse the Cambridge Structural Database and solution complexation studies found in the literature to identify key functional groups which may confer zinc ionophorism. Pharmaceuticals, nutraceuticals and amino acids with these functionalities were selected to enable us to explore the translatability of ionophoric activity from in vitro assays to cellular systems. We find that although certain species may complex to zinc in the solid and solution states, and may carry ions across simple membrane systems, this does not necessarily translate into ionophoric activity. We propose that the CSD can help refine key functionalities but that ionophoric activity must be confirmed in cellular systems.
Collapse
Affiliation(s)
- Oisín Kavanagh
- SSPC, The SFI Research Centre for Pharmaceuticals, V94 T9PX Limerick, Ireland; (R.E.); (F.O.); (J.F.); (S.R.)
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- School of Chemical Sciences, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Department of Chemistry, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Ireland
- National Institute for Cellular Biotechnology, Dublin City University, D09 NR58 Dublin, Ireland
| | - Robert Elmes
- SSPC, The SFI Research Centre for Pharmaceuticals, V94 T9PX Limerick, Ireland; (R.E.); (F.O.); (J.F.); (S.R.)
- Department of Chemistry, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Ireland
| | - Finbarr O’Sullivan
- SSPC, The SFI Research Centre for Pharmaceuticals, V94 T9PX Limerick, Ireland; (R.E.); (F.O.); (J.F.); (S.R.)
- National Institute for Cellular Biotechnology, Dublin City University, D09 NR58 Dublin, Ireland
| | - John Farragher
- SSPC, The SFI Research Centre for Pharmaceuticals, V94 T9PX Limerick, Ireland; (R.E.); (F.O.); (J.F.); (S.R.)
| | - Shane Robinson
- SSPC, The SFI Research Centre for Pharmaceuticals, V94 T9PX Limerick, Ireland; (R.E.); (F.O.); (J.F.); (S.R.)
- Janssen Pharmaceutical Sciences, T45 P663 Cork, Ireland
| | - Gavin Walker
- SSPC, The SFI Research Centre for Pharmaceuticals, V94 T9PX Limerick, Ireland; (R.E.); (F.O.); (J.F.); (S.R.)
| |
Collapse
|
19
|
Singh B, Chetia D, Kumawat MK. Synthesis and In Vitro Antimalarial Activity Evaluation of Some New 1,2-Diaminopropane Side-Chain-Modified 4-Aminoquinoline Mannich Bases. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
de Villiers KA, Egan TJ. Heme Detoxification in the Malaria Parasite: A Target for Antimalarial Drug Development. Acc Chem Res 2021; 54:2649-2659. [PMID: 33982570 DOI: 10.1021/acs.accounts.1c00154] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Over the last century, malaria deaths have decreased by more than 85%. Nonetheless, there were 405 000 deaths in 2018, mostly resulting from Plasmodium falciparum infection. In the 21st century, much of the advance has arisen from the deployment of insecticide-treated bed nets and artemisinin combination therapy. However, over the past few decades parasites with a delayed artemisinin clearance phenotype have appeared in Southeast Asia, threatening further gains. The effort to find new drugs is thus urgent. A prominent process in blood stage malaria parasites, which we contend remains a viable drug target, is hemozoin formation. This crystalline material consisting of heme can be readily seen when parasites are viewed microscopically. The process of its formation in the parasite, however, is still not fully understood.In early work, we recognized hemozoin formation as a biomineralization process. We have subsequently investigated the kinetics of synthetic hemozoin (β-hematin) crystallization catalyzed at lipid-aqueous interfaces under biomimetic conditions. This led us to the use of neutral detergent-based high-throughput screening (HTS) for inhibitors of β-hematin formation. A good hit rate against malaria parasites was obtained. Simultaneously, we developed a pyridine-based assay which proved successful in measuring the concentrations of hematin not converted to β-hematin.The pyridine assay was adapted to determine the effects of chloroquine and other clinical antimalarials on hemozoin formation in the cell. This permitted the determination of the dose-dependent amounts of exchangeable heme and hemozoin in P. falciparum for the first time. These studies have shown that hemozoin inhibitors cause a dose-dependent increase in exchangeable heme, correlated with decreased parasite survival. Electron spectroscopic imaging (ESI) showed a relocation of heme iron into the parasite cytoplasm, while electron microscopy provided evidence of the disruption of hemozoin crystals. This cellular assay was subsequently extended to top-ranked hits from a wide range of scaffolds found by HTS. Intriguingly, the amounts of exchangeable heme at the parasite growth IC50 values of these scaffolds showed substantial variation. The amount of exchangeable heme was found to be correlated with the amount of inhibitor accumulated in the parasitized red blood cell. This suggests that heme-inhibitor complexes, rather than free heme, lead to parasite death. This was supported by ESI using a Br-containing compound which showed the colocalization of Fe and Br as well as by confocal Raman microscopy which confirmed the presence of a complex in the parasite. Current evidence indicates that inhibitors block hemozoin formation by surface adsorption. Indeed, we have successfully introduced molecular docking with hemozoin to find new inhibitors. It follows that the resulting increase in free heme leads to the formation of the parasiticidal heme-inhibitor complex. We have reported crystal structures of heme-drug complexes for several aryl methanol antimalarials in nonaqueous media. These form coordination complexes but most other inhibitors interact noncovalently, and the determination of their structures remains a major challenge.It is our view that key future developments will include improved assays to measure cellular heme levels, better in silico approaches for predicting β-hematin inhibition, and a concerted effort to determine the structure and properties of heme-inhibitor complexes.
Collapse
Affiliation(s)
- Katherine A. de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag, Matieland 7600, South Africa
| | - Timothy J. Egan
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7945, South Africa
| |
Collapse
|
21
|
Tiwari V, Joshi P, Yadav K, Sharma A, Chowdhury S, Manhas A, Kumar N, Tripathi R, Haq W. Synthesis and Antimalarial Activity of 4-Methylaminoquinoline Compounds against Drug-Resistant Parasite. ACS OMEGA 2021; 6:12984-12994. [PMID: 34056449 PMCID: PMC8158791 DOI: 10.1021/acsomega.0c06053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/15/2021] [Indexed: 05/26/2023]
Abstract
A series of novel 4-aminoquinoline analogues bearing a methyl group at 4-aminoquinoline moiety were synthesized via a new and robust synthetic route comprising in situ tert-butoxycarbonyl (Boc) deprotection-methylation cascade resulting in the corresponding N-methylated secondary amine using Red-Al and an efficient microwave-assisted strategy for the fusion of N-methylated secondary amine with 4-chloroquinoline nucleus to access the series of novel 4-N-methylaminoquinoline analogues. The new series of compounds were evaluated for their antimalarial activity in in vitro and in vivo models. Among 21 tested compounds, 9a-i have shown a half-maximal inhibitory concentration (IC50) value less than 0.5 μM (i.e., <500 nM) against both chloroquine-sensitive strain 3D7 and chloroquine-resistant strain K1 of Plasmodium falciparum with acceptable cytotoxicity. Based on the in vitro antimalarial activity, selected compounds were screened for their in vivo antimalarial activity against Plasmodium yoelii nigeriensis (a multidrug-resistant) parasite in Swiss mice. Most of the compounds have shown significant inhibition on day 4 post infection at the oral dose of 100 mg/kg. Compound 9a has shown 100% parasite inhibition on day 4, and out of five treated mice, two were cured till the end of the experiment. The present study suggests that 4-methylamino substitution is well tolerated for the antiplasmodial activity with reduced toxicity and therefore will be highly useful for the discovery of a new antimalarial agent against drug-resistant malaria.
Collapse
Affiliation(s)
- Vinay
Shankar Tiwari
- Medicinal
and Process Chemistry Division, CSIR-Central
Drug Research Institute, Lucknow 226031, India
| | - Prince Joshi
- Division
of Molecular Parasitology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kanchan Yadav
- Division
of Molecular Parasitology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anamika Sharma
- Division
of Molecular Parasitology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sushobhan Chowdhury
- Medicinal
and Process Chemistry Division, CSIR-Central
Drug Research Institute, Lucknow 226031, India
| | - Ashan Manhas
- Division
of Molecular Parasitology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Niti Kumar
- Division
of Molecular Parasitology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Renu Tripathi
- Division
of Molecular Parasitology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Wahajul Haq
- Medicinal
and Process Chemistry Division, CSIR-Central
Drug Research Institute, Lucknow 226031, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
22
|
Hisamatsu Y, Otani K, Takase H, Umezawa N, Higuchi T. Fluorescence Response and Self-Assembly of a Tweezer-Type Synthetic Receptor Triggered by Complexation with Heme and Its Catabolites. Chemistry 2021; 27:6489-6499. [PMID: 33026121 DOI: 10.1002/chem.202003872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/28/2020] [Indexed: 11/11/2022]
Abstract
There is increasing interest in the development and applications of synthetic receptors that recognize target biomolecules in aqueous media. We have developed a new tweezer-type synthetic receptor that gives a significant fluorescence response upon complexation with heme in aqueous solution at pH 7.4. The synthetic receptor consists of a tweezer-type heme recognition site and sulfo-Cy5 as a hydrophilic fluorophore. The receptor-heme complex exhibits a supramolecular amphiphilic character that facilitates the formation of self-assembled aggregates, and both the tweezer moiety and the sulfo-Cy5 moiety are important for this property. The synthetic receptor also exhibits significant fluorescence responses to biliverdin and bilirubin, but shows very weak fluorescence responses to flavin mononucleotide, folic acid, and nicotinamide adenine dinucleotide, which contain smaller π-scaffolds.
Collapse
Affiliation(s)
- Yosuke Hisamatsu
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Koki Otani
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Hiroshi Takase
- Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Naoki Umezawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Tsunehiko Higuchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| |
Collapse
|
23
|
Bhanot A, Sundriyal S. Physicochemical Profiling and Comparison of Research Antiplasmodials and Advanced Stage Antimalarials with Oral Drugs. ACS OMEGA 2021; 6:6424-6437. [PMID: 33718733 PMCID: PMC7948433 DOI: 10.1021/acsomega.1c00104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
To understand the property space of antimalarials, we collated a large dataset of research antiplasmodial (RAP) molecules with known in vitro potencies and advanced stage antimalarials (ASAMs) with established oral bioavailability. While RAP molecules are "non-druglike", ASAM molecules display properties closer to Lipinski's and Veber's thresholds. Comparison within the different potency groups of RAP molecules indicates that the in vitro potency is positively correlated to the molecular weight, the calculated octanol-water partition coefficient (clog P), aromatic ring counts (#Ar), and hydrogen bond acceptors. Despite both categories being bioavailable, the ASAM molecules are relatively larger and more lipophilic, have a lower polar surface area, and possess a higher count of heteroaromatic rings than oral drugs. Also, antimalarials are found to have a higher proportion of aromatic (#ArN) and basic nitrogen (#BaN) counts, features implicitly used in the design of antimalarial molecules but not well studied hitherto. We also propose using descriptors scaled by the sum of #ArN and #BaN (SBAN) to define an antimalarial property space. Together, these results may have important applications in the identification and optimization of future antimalarials.
Collapse
Affiliation(s)
- Amritansh Bhanot
- Department of Pharmacy, Birla
Institute of Technology and Science Pilani, Pilani Campus,
Vidya Vihar, Pilani, Rajasthan 333 031, India
| | - Sandeep Sundriyal
- Department of Pharmacy, Birla
Institute of Technology and Science Pilani, Pilani Campus,
Vidya Vihar, Pilani, Rajasthan 333 031, India
| |
Collapse
|
24
|
Lawong A, Gahalawat S, Okombo J, Striepen J, Yeo T, Mok S, Deni I, Bridgford JL, Niederstrasser H, Zhou A, Posner B, Wittlin S, Gamo FJ, Crespo B, Churchyard A, Baum J, Mittal N, Winzeler E, Laleu B, Palmer MJ, Charman SA, Fidock DA, Ready JM, Phillips MA. Novel Antimalarial Tetrazoles and Amides Active against the Hemoglobin Degradation Pathway in Plasmodium falciparum. J Med Chem 2021; 64:2739-2761. [PMID: 33620219 DOI: 10.1021/acs.jmedchem.0c02022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Malaria control programs continue to be threatened by drug resistance. To identify new antimalarials, we conducted a phenotypic screen and identified a novel tetrazole-based series that shows fast-kill kinetics and a relatively low propensity to develop high-level resistance. Preliminary structure-activity relationships were established including identification of a subseries of related amides with antiplasmodial activity. Assaying parasites with resistance to antimalarials led us to test whether the series had a similar mechanism of action to chloroquine (CQ). Treatment of synchronized Plasmodium falciparum parasites with active analogues revealed a pattern of intracellular inhibition of hemozoin (Hz) formation reminiscent of CQ's action. Drug selections yielded only modest resistance that was associated with amplification of the multidrug resistance gene 1 (pfmdr1). Thus, we have identified a novel chemical series that targets the historically druggable heme polymerization pathway and that can form the basis of future optimization efforts to develop a new malaria treatment.
Collapse
Affiliation(s)
- Aloysus Lawong
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Suraksha Gahalawat
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Josefine Striepen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Ioanna Deni
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Jessica L Bridgford
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Hanspeter Niederstrasser
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Anwu Zhou
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Bruce Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland.,University of Basel, 4002 Basel, Switzerland
| | | | - Benigno Crespo
- Medicines Development Campus, GlaxoSmithKline, Tres Cantos, 28760 Madrid, Spain
| | - Alisje Churchyard
- Department of Life Sciences, Imperial College London, SW7 2AZ South Kensington, U.K
| | - Jake Baum
- Department of Life Sciences, Imperial College London, SW7 2AZ South Kensington, U.K
| | - Nimisha Mittal
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, United States
| | - Elizabeth Winzeler
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, United States
| | - Benoît Laleu
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | | | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States.,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Joseph M Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Margaret A Phillips
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
25
|
Saini A, Kumar S, Raj R, Chowdhary S, Gendrot M, Mosnier J, Fonta I, Pradines B, Kumar V. Synthesis and antiplasmodial evaluation of 1H-1,2,3-triazole grafted 4-aminoquinoline-benzoxaborole hybrids and benzoxaborole analogues. Bioorg Chem 2021; 109:104733. [PMID: 33618251 DOI: 10.1016/j.bioorg.2021.104733] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
A library of 1H-1,2,3-triazole-tethered 4-aminoquinoline-benzoxaborole hybrids as well as aryl substituted benzoxaborole analogues was synthesized and screened for their anti-plasmodial efficacy against both chloroquine-susceptibility 3D7 and chloroquine-resistant W2 strains of P. falciparum. The inclusion of quinoline core among the synthesized analogues resulted in substantial enhancement of anti-plasmodial activities. Further, the spacer of a flexible alkyl chain is marginally preferred over piperazyl-ethyl in inhibiting growth of P. falciparum. The most potent 4-aminoquinoline-benzoxaborole conjugate with ethyl as spacer exhibited IC50 values of 4.15 and 3.78 μM against 3D7 CQ-susceptible and W2 CQ-resistant strains of P. falciparum with lower cross resistance with Chloroquine. There was no difference in anti-plasmodial activities between the CQ-susceptible 3D7 and CQ-resistant W2 strains of P. falciparum for the benzoxaborole derivatives lacking a quinoline core.
Collapse
Affiliation(s)
- Anu Saini
- Department of Chemistry, DAV College, Amritsar, India
| | - Sumit Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Raghu Raj
- Department of Chemistry, DAV College, Amritsar, India.
| | | | - Mathieu Gendrot
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - Joel Mosnier
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France; Centre National de Référence du Paludisme, Marseille, France
| | - Isabelle Fonta
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France; Centre National de Référence du Paludisme, Marseille, France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France; Centre National de Référence du Paludisme, Marseille, France
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
26
|
Shalini, Kumar S, Gendrot M, Fonta I, Mosnier J, Cele N, Awolade P, Singh P, Pradines B, Kumar V. Amide Tethered 4-Aminoquinoline-naphthalimide Hybrids: A New Class of Possible Dual Function Antiplasmodials. ACS Med Chem Lett 2020; 11:2544-2552. [PMID: 33335678 DOI: 10.1021/acsmedchemlett.0c00536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
A series of amide tethered 4-aminoquinoline-naphthalimide hybrids has been synthesized to assess their in vitro antiplasmodial potential against chloroquine-susceptible (3D7) and chloroquine-resistant (W2) strains of Plasmodium falciparum. The most active and noncytotoxic compound had an IC50 value of 0.07 μM against W2 strain and was more active than standard antimalarial drugs, including chloroquine, desethylamodiaquine, and quinine, particularly for drug resistant malaria. The promising scaffold, when subjected to heme binding and molecular modeling studies, was identified as a possible potent inhibitor of hemozoin formation and P. falciparum chloroquine resistance transporter (PfCRT), respectively, and, therefore, could act as a dual function antiplasmodial.
Collapse
Affiliation(s)
- Shalini
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Pin 143005, India
| | - Sumit Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Pin 143005, India
| | - Mathieu Gendrot
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille 13234, France
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille 13234, France
- IHU Méditerranée Infection, Marseille 13234, France
| | - Isabelle Fonta
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille 13234, France
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille 13234, France
- IHU Méditerranée Infection, Marseille 13234, France
- Centre National de Référence du Paludisme, Marseille 13234, France
| | - Joel Mosnier
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille 13234, France
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille 13234, France
- IHU Méditerranée Infection, Marseille 13234, France
- Centre National de Référence du Paludisme, Marseille 13234, France
| | - Nosipho Cele
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban 4000, South Africa
| | - Paul Awolade
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban 4000, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban 4000, South Africa
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille 13234, France
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille 13234, France
- IHU Méditerranée Infection, Marseille 13234, France
- Centre National de Référence du Paludisme, Marseille 13234, France
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Pin 143005, India
| |
Collapse
|
27
|
Song X, Yang R, Xiao Q. Recent Advances in the Synthesis of Heterocyclics via Cascade Cyclization of Propargylic Alcohols. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001142] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xian‐Rong Song
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Nanchang 330013 People's Republic of China
| | - Ruchun Yang
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Nanchang 330013 People's Republic of China
| | - Qiang Xiao
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Nanchang 330013 People's Republic of China
| |
Collapse
|
28
|
Huang G, Solano CM, Melendez J, Yu-Alfonzo S, Boonhok R, Min H, Miao J, Chakrabarti D, Yuan Y. Discovery of fast-acting dual-stage antimalarial agents by profiling pyridylvinylquinoline chemical space via copper catalyzed azide-alkyne cycloadditions. Eur J Med Chem 2020; 209:112889. [PMID: 33045660 DOI: 10.1016/j.ejmech.2020.112889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/08/2020] [Accepted: 09/24/2020] [Indexed: 11/18/2022]
Abstract
To identity fast-acting, multistage antimalarial agents, a series of pyridylvinylquinoline-triazole analogues have been synthesized via CuAAC. Most of the compounds display significant inhibitory effect on the drug-resistant malarial Dd2 strain at low submicromolar concentrations. Among the tested analogues, compound 60 is the most potent molecule with an EC50 value of 0.04 ± 0.01 μM. Our current study indicates that compound 60 is a fast-acting antimalarial compound and it demonstrates stage specific action at the trophozoite phase in the P. falciparum asexual life cycle. In addition, compound 60 is active against both early and late stage P. falciparum gametocytes. From a mechanistic perspective, compound 60 shows good activity as an inhibitor of β-hematin formation. Collectively, our findings suggest that fast-acting agent 60 targets dual life stages of the malarial parasites and warrant further investigation of pyridylvinylquinoline hybrids as new antimalarials.
Collapse
Affiliation(s)
- Guang Huang
- Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA
| | - Claribel Murillo Solano
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32826, USA
| | - Joel Melendez
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32826, USA
| | - Sabrina Yu-Alfonzo
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32826, USA
| | - Rachasak Boonhok
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA; Department of Medical Technology, School of Allied Health Science, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Hui Min
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Debopam Chakrabarti
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32826, USA.
| | - Yu Yuan
- Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
29
|
Srbljanović J, Bobić B, Štajner T, Uzelac A, Opsenica I, Terzić-Jovanović N, Bauman N, Šolaja BA, Djurković-Djaković O. Aminoquinolines afford resistance to cerebral malaria in susceptible mice. J Glob Antimicrob Resist 2020; 23:20-25. [PMID: 32810640 DOI: 10.1016/j.jgar.2020.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/07/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVES Malaria treatment is impeded by increasing resistance to conventional antimalarial drugs. Here we explored the activity of ten novel benzothiophene, thiophene and benzene aminoquinolines. METHODS In vitro testing was performed by the lactate dehydrogenase assay in chloroquine (CQ)-sensitive Plasmodium falciparum strain 3D7 and CQ-resistant (CQR) P. falciparum strain Dd2. In vivo activity was evaluated by a modified Thompson test using C57BL/6 mice infected with Plasmodium berghei ANKA strain. RESULTS Nine of the ten compounds had a lower 50% inhibitory concentration (IC50) than CQ against the CQR strain Dd2. Five of these compounds that were available for in vivo evaluation were shown to be non-toxic. All five compounds administered at a dose of 160mg/kg/day for 3 days prolonged the survival of treated compared with untreated mice. Untreated control mice died by Day 7 with a mean parasitaemia of 15%. Among treated mice, a dichotomous outcome was observed, with a two-third majority of treated mice dying by Day 17 with a low mean parasitaemia of 5%, whilst one-third survived longer with a mean hyperparasitaemia of 70%; specifically, five of these mice survived a mean of 25 days, whilst two even survived past Day 31. CONCLUSIONS The significant antimalarial potential of this aminoquinoline series is illustrated by its excellent in vitro activity against the CQRP. falciparum strain and significant in vivo activity. Interestingly, compounds ClAQ7, ClAQ9 and ClAQ11 were able to confer resistance to cerebral malaria and afford a switch to hyperparasitaemia to mice prone to the neurological syndrome.
Collapse
Affiliation(s)
- Jelena Srbljanović
- Institute for Medical Research, University of Belgrade, Dr. Subotića 4, P.O. Box 39, 11129 Belgrade, Serbia
| | - Branko Bobić
- Institute for Medical Research, University of Belgrade, Dr. Subotića 4, P.O. Box 39, 11129 Belgrade, Serbia
| | - Tijana Štajner
- Institute for Medical Research, University of Belgrade, Dr. Subotića 4, P.O. Box 39, 11129 Belgrade, Serbia
| | - Aleksandra Uzelac
- Institute for Medical Research, University of Belgrade, Dr. Subotića 4, P.O. Box 39, 11129 Belgrade, Serbia
| | - Igor Opsenica
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158 Belgrade, Serbia
| | | | - Neda Bauman
- Institute for Medical Research, University of Belgrade, Dr. Subotića 4, P.O. Box 39, 11129 Belgrade, Serbia
| | - Bogdan A Šolaja
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158 Belgrade, Serbia; Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Olgica Djurković-Djaković
- Institute for Medical Research, University of Belgrade, Dr. Subotića 4, P.O. Box 39, 11129 Belgrade, Serbia.
| |
Collapse
|
30
|
Van de Walle T, Boone M, Van Puyvelde J, Combrinck J, Smith PJ, Chibale K, Mangelinckx S, D'hooghe M. Synthesis and biological evaluation of novel quinoline-piperidine scaffolds as antiplasmodium agents. Eur J Med Chem 2020; 198:112330. [PMID: 32408064 PMCID: PMC7294232 DOI: 10.1016/j.ejmech.2020.112330] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 01/09/2023]
Abstract
The parasitic disease malaria places almost half of the world's population at risk of infection and is responsible for more than 400,000 deaths each year. The first-line treatment, artemisinin combination therapies (ACT) regimen, is under threat due to emerging resistance of Plasmodium falciparum strains in e.g. the Mekong delta. Therefore, the development of new antimalarial agents is crucial in order to circumvent the growing resistance. Chloroquine, the long-established antimalarial drug, still serves as model compound for the design of new quinoline analogues, resulting in numerous new active derivatives against chloroquine-resistant P. falciparum strains over the past twenty years. In this work, a set of functionalized quinoline analogues, decorated with a modified piperidine-containing side chain, was synthesized. Both amino- and (aminomethyl)quinolines were prepared, resulting in a total of 18 novel quinoline-piperidine conjugates representing four different chemical series. Evaluation of their in vitro antiplasmodium activity against a CQ-sensitive (NF54) and a CQ-resistant (K1) strain of P. falciparum unveiled highly potent activities in the nanomolar range against both strains for five 4-aminoquinoline derivatives. Moreover, no cytotoxicity was observed for all active compounds at the maximum concentration tested. These five new aminoquinoline hit structures are therefore of considerable value for antimalarial research and have the potency to be transformed into novel antimalarial agents upon further hit-to-lead optimization studies.
Collapse
Affiliation(s)
- Tim Van de Walle
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Maya Boone
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Julie Van Puyvelde
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Jill Combrinck
- Division of Clinical Pharmacology, Department of Medicine, Medical School, University of Cape Town, K45, OMB, Groote Schuur Hospital, Observatory, 7925, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, South Africa
| | - Peter J Smith
- Division of Clinical Pharmacology, Department of Medicine, Medical School, University of Cape Town, K45, OMB, Groote Schuur Hospital, Observatory, 7925, South Africa
| | - Kelly Chibale
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch, 7701, South Africa
| | - Sven Mangelinckx
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
31
|
Liebman KM, Burgess SJ, Gunsaru B, Kelly JX, Li Y, Morrill W, Liebman MC, Peyton DH. Unsymmetrical Bisquinolines with High Potency against P. falciparum Malaria. Molecules 2020; 25:molecules25092251. [PMID: 32397659 PMCID: PMC7249153 DOI: 10.3390/molecules25092251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
Quinoline-based scaffolds have been the mainstay of antimalarial drugs, including many artemisinin combination therapies (ACTs), over the history of modern drug development. Although much progress has been made in the search for novel antimalarial scaffolds, it may be that quinolines will remain useful, especially if very potent compounds from this class are discovered. We report here the results of a structure-activity relationship (SAR) study assessing potential unsymmetrical bisquinoline antiplasmodial drug candidates using in vitro activity against intact parasites in cell culture. Many unsymmetrical bisquinolines were found to be highly potent against both chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum parasites. Further work to develop such compounds could focus on minimizing toxicities in order to find suitable candidates for clinical evaluation.
Collapse
Affiliation(s)
- Katherine M. Liebman
- DesignMedix, Inc., Portland, OR 97201, USA; (K.M.L.); (S.J.B.); (W.M.)
- Department of Chemistry, Portland State University, Portland, OR 97207, USA; (B.G.); (J.X.K.); (M.C.L.)
| | - Steven J. Burgess
- DesignMedix, Inc., Portland, OR 97201, USA; (K.M.L.); (S.J.B.); (W.M.)
| | - Bornface Gunsaru
- Department of Chemistry, Portland State University, Portland, OR 97207, USA; (B.G.); (J.X.K.); (M.C.L.)
| | - Jane X. Kelly
- Department of Chemistry, Portland State University, Portland, OR 97207, USA; (B.G.); (J.X.K.); (M.C.L.)
- Portland VA Research Foundation, Portland, OR 97239, USA;
| | - Yuexin Li
- Portland VA Research Foundation, Portland, OR 97239, USA;
| | - Westin Morrill
- DesignMedix, Inc., Portland, OR 97201, USA; (K.M.L.); (S.J.B.); (W.M.)
| | - Michael C. Liebman
- Department of Chemistry, Portland State University, Portland, OR 97207, USA; (B.G.); (J.X.K.); (M.C.L.)
| | - David H. Peyton
- DesignMedix, Inc., Portland, OR 97201, USA; (K.M.L.); (S.J.B.); (W.M.)
- Department of Chemistry, Portland State University, Portland, OR 97207, USA; (B.G.); (J.X.K.); (M.C.L.)
- Correspondence: ; Tel.: +1-503-805-1291
| |
Collapse
|
32
|
Joshi MC, Egan TJ. Quinoline Containing Side-chain Antimalarial Analogs: Recent Advances and Therapeutic Application. Curr Top Med Chem 2020; 20:617-697. [DOI: 10.2174/1568026620666200127141550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 01/16/2023]
Abstract
The side-chains of quinoline antimalarial agents are the major concern of focus to build
novel and efficaciaous bioactive and clinical antimalarials. Bioative antimalarial analogs may play a
critical role in pH trapping in the food vacuole of RBC’s with the help of fragmented amino acid, thus
lead to β-hematin inhibition. Here, the authors tried to summarize a useful, comprehensive compilation
of side-chain modified ACQs along with their synthesis, biophysical and therapeutic applications etc.
of potent antiplasmodial agents and therefore, opening the door towards the potential clinical status.
Collapse
Affiliation(s)
- Mukesh C. Joshi
- Department of Chemistry, Motilal Nehru College, Benito Juarez Marg, South Campus, University of Delhi, New Delhi- 110021, India
| | - Timothy J. Egan
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
33
|
Patel DB, Rajani DP, Rajani SD, Patel HD. A green synthesis of quinoline‐4‐carboxylic derivatives using
p
‐toluenesulfonic acid as an efficient organocatalyst under microwave irradiation and their docking, molecular dynamics, ADME‐Tox and biological evaluation. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Dhaval B. Patel
- Department of Chemistry, School of SciencesGujarat University Ahmedabad India
| | - Dhanji P. Rajani
- Microcare Laboratory and Tuberculosis Research Centre Surat India
| | - Smita D. Rajani
- Microcare Laboratory and Tuberculosis Research Centre Surat India
| | - Hitesh D. Patel
- Department of Chemistry, School of SciencesGujarat University Ahmedabad India
| |
Collapse
|
34
|
Shalini, Legac J, Adeniyi AA, Kisten P, Rosenthal PJ, Singh P, Kumar V. Functionalized Naphthalimide-4-aminoquinoline Conjugates as Promising Antiplasmodials, with Mechanistic Insights. ACS Med Chem Lett 2020; 11:154-161. [PMID: 32071682 DOI: 10.1021/acsmedchemlett.9b00521] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/08/2020] [Indexed: 01/05/2023] Open
Abstract
A series of 25 conjugates has been synthesized to evaluate their antiplasmodial potency and cytotoxicity against the chloroquine resistant (CQR) W2 strain of P. falciparum and Vero kidney cell lines, respectively. Most of the compounds showed IC50 values in the lower nM range and proved to be many fold more active than chloroquine (CQ). The studies were extended to decipher modes of action using techniques including UV-vis absorption, NMR titrations, and mass spectrometry, and conclusions were strengthened by docking and density functional theory (DFT) simulations. The most active compound, with IC50 15 nM and selectivity index >4000, proved to be an interesting template for antimalarial drug discovery. To the best of our knowledge this is the first report of a potent naphthalimide based antiplasmodial conjugate.
Collapse
Affiliation(s)
- Shalini
- Department of Chemistry, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Jenny Legac
- Department of Medicine, University of California, San Francisco, California 94115, United States
| | - Adebayo A. Adeniyi
- Department of Industrial Chemistry, Federal University of Oye-Ekiti, Oye 371104, Nigeria
| | - Prishani Kisten
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban-4000, South Africa
| | - Philip J. Rosenthal
- Department of Medicine, University of California, San Francisco, California 94115, United States
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban-4000, South Africa
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| |
Collapse
|
35
|
Chopra R, Singh L, Chibale K, Singh K. Synthesis, In Silico Molecular Docking, ADME Evaluation and In Vitro Antiplasmodial Activity of Pyrimidine‐Based Hybrid Molecules. ChemistrySelect 2019. [DOI: 10.1002/slct.201903031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rakesh Chopra
- Department of ChemistryUGC Centre for Advanced Study-IIGuru Nanak Dev University Amritsar – 143005 India
| | - Lovepreet Singh
- Department of ChemistryUGC Centre for Advanced Study-IIGuru Nanak Dev University Amritsar – 143005 India
| | - Kelly Chibale
- Department of ChemistrySouth African Medical Research Council Drug Discovery and Development Research UnitInstitute of Infectious Disease and Molecular MedicineUniversity of Cape Town Rondebosch 7701 South Africa
| | - Kamaljit Singh
- Department of ChemistryUGC Centre for Advanced Study-IIGuru Nanak Dev University Amritsar – 143005 India
| |
Collapse
|
36
|
de J Parra Y, Andueza L FD, Ferrer M RE, Bruno Colmenarez J, Acosta ME, Charris J, Rosenthal PJ, Gut J. [(7-chloroquinolin-4-yl)amino]acetophenones and their copper(II) derivatives: Synthesis, characterization, computational studies and antimalarial activity. EXCLI JOURNAL 2019; 18:962-987. [PMID: 31762723 PMCID: PMC6868921 DOI: 10.17179/excli2019-1805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/17/2019] [Indexed: 11/10/2022]
Abstract
The synthesis of the compounds [(7-chloroquinolin-4-yl)amino]acetophenones (4, 5) and their copper(II) complexes (4a, 5a) is reported. The compounds were characterized using a wide range of spectroscopic and spectrometric techniques, such as FTIR, UV-vis, NMR, EPR, ESI-CID-MS2. The spectral results suggested that the ligand acted as chelating species coordinating the metal through the endocyclic nitrogen of the quinoline ring in both complexes, with general formulae expressed in two ways, according to the phase in which they are: [Cu(L)2Cl2] for solid phase and [Cu(L)2][2Cl] for liquid phase. The EPR study of the Cu (II) complexes indicated a probable distorted tetrahedral coordination geometry. This result was confirmed by the calculated optimized structures at the DFT/B3LYP method with the 6-31G (d,p) basis set. The characterization of the fragmentation pattern of protonated free ligands was extended here to fragments as low as m/z 43, while for coordination complexes it extends to fragments at m/z 80 and m/z 111. The antimalarial activity of the compounds was determined through three different tests: inhibitory activity against in vitro growth of Plasmodium falciparum (W2), inhibition of hemozoin formation (β-hematin) and in vitro inhibitory activity against recombinant falcipain-2, where compound 5 showed considerable activity. However, the activity of free ligands against P. falciparum was increased by complexing with the Cu (II) metal ion. The values of the HOMO-LUMO energy gap of 3.847 eV (4a) and 3.932 eV (5a) were interpreted with high chemical activity and thus, could influence on biological activity. In both compounds, the total electron density surface mapped with electrostatic potential clearly revealed the presence of high negative charge on the Cu atom. Also, this study reported the molecular docking of free ligands (4, 5) using software package ArgusLab 4.0.1. The results revealed the importance of water molecules as interaction bridges through hydrogen bonds between free ligands and β-hematin; at the same time, the hypothesis that π-π interaction between quinoline derivatives and the electronic system of hematin governs the formation of adducts was confirmed.
Collapse
Affiliation(s)
- Yonathan de J Parra
- Escuela de Ingeniería Ambiental, Facultad de Ingeniería en Geología, Minas, Petróleos y Ambiental, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Felix D Andueza L
- Escuela de Ingeniería Ambiental, Facultad de Ingeniería en Geología, Minas, Petróleos y Ambiental, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Rosa E Ferrer M
- Departamento de Química, Facultad de Humanidades y Educación, Universidad del Zulia, Apartado 526, Maracaibo, Estado Zulia, Venezuela
| | - Julia Bruno Colmenarez
- Centro de Investigación y Tecnología de Materiales (CITeMa), Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Altos de Pipe 1020-A Estado Miranda, Venezuela
| | - María E Acosta
- Laboratorio de Bioquímica, Facultad de Farmacia, Universidad Central de Venezuela, Apartado 47206, Los Chaguaramos, 1041-A Caracas, Venezuela
| | - Jaime Charris
- Laboratorio de Síntesis Orgánica, Facultad de Farmacia, Universidad Central de Venezuela, Apartado 47206, Los Chaguaramos, 1041-A Caracas, Venezuela
| | - Philip J Rosenthal
- Department of Medicine, University of California, Box 0811, San Francisco, California 94143, USA
| | - Jiri Gut
- Department of Medicine, University of California, Box 0811, San Francisco, California 94143, USA
| |
Collapse
|
37
|
TMSBr-Promoted Cascade Cyclization of ortho-Propynol Phenyl Azides for the Synthesis of 4-Bromo Quinolines and Its Applications. Molecules 2019; 24:molecules24213999. [PMID: 31694215 PMCID: PMC6864654 DOI: 10.3390/molecules24213999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
Difficult-to-access 4-bromo quinolines are constructed directly from easily prepared ortho-propynol phenyl azides using TMSBr as acid-promoter. The cascade transformation performs smoothly to generate desired products in moderate to excellent yields with good functional groups compatibility. Notably, TMSBr not only acted as an acid-promoter to initiate the reaction, and also as a nucleophile. In addition, 4-bromo quinolines as key intermediates could further undergo the coupling reactions or nucleophilic reactions to provide a variety of functionalized compounds with molecular diversity at C4 position of quinolines.
Collapse
|
38
|
Rossier J, Nasiri Sovari S, Pavic A, Vojnovic S, Stringer T, Bättig S, Smith GS, Nikodinovic-Runic J, Zobi F. Antiplasmodial Activity and In Vivo Bio-Distribution of Chloroquine Molecules Released with a 4-(4-Ethynylphenyl)-Triazole Moiety from Organometallo-Cobalamins. Molecules 2019; 24:molecules24122310. [PMID: 31234469 PMCID: PMC6630517 DOI: 10.3390/molecules24122310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 01/01/2023] Open
Abstract
We have explored the possibility of using organometallic derivatives of cobalamin as a scaffold for the delivery of the same antimalarial drug to both erythro- and hepatocytes. This hybrid molecule approach, intended as a possible tool for the development of multi-stage antimalarial agents, pivots on the preparation of azide-functionalized drugs which, after coupling to the vitamin, are released with a 4-(4-ethynylphenyl)-triazole functionality. Three chloroquine and one imidazolopiperazine derivative (based on the KAF156 structure) were selected as model drugs. One hybrid chloroquine conjugate was extensively studied via fluorescent labelling for in vitro and in vivo bio-distribution studies and gave proof-of-concept for the design. It showed no toxicity in vivo (zebrafish model) as well as no hepatotoxicity, no cardiotoxicity or developmental toxicity of the embryos. All 4-(4-ethynylphenyl)-triazole derivatives of chloroquine were equally active against chloroquine-resistant (CQR) and chloroquine-sensitive (CQS) Plasmodium falciparum strains.
Collapse
Affiliation(s)
- Jeremie Rossier
- Department of Chemistry, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| | - Sara Nasiri Sovari
- Department of Chemistry, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| | - Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Republic of Serbia.
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Republic of Serbia.
| | - Tameryn Stringer
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.
| | - Sarah Bättig
- Department of Chemistry, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Republic of Serbia.
| | - Fabio Zobi
- Department of Chemistry, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| |
Collapse
|
39
|
Quinoline and quinolone dimers and their biological activities: An overview. Eur J Med Chem 2019; 161:101-117. [DOI: 10.1016/j.ejmech.2018.10.035] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 01/28/2023]
|
40
|
Mayoka G, Njoroge M, Okombo J, Gibhard L, Sanches-Vaz M, Fontinha D, Birkholtz LM, Reader J, van der Watt M, Coetzer TL, Lauterbach S, Churchyard A, Bezuidenhout B, Egan TJ, Yeates C, Wittlin S, Prudêncio M, Chibale K. Structure–Activity Relationship Studies and Plasmodium Life Cycle Profiling Identifies Pan-Active N-Aryl-3-trifluoromethyl Pyrido[1,2-a]benzimidazoles Which Are Efficacious in an in Vivo Mouse Model of Malaria. J Med Chem 2018; 62:1022-1035. [DOI: 10.1021/acs.jmedchem.8b01769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Godfrey Mayoka
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Mathew Njoroge
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - John Okombo
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Liezl Gibhard
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Margarida Sanches-Vaz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Mariëtte van der Watt
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Theresa L. Coetzer
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Sonja Lauterbach
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Alisje Churchyard
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Belinda Bezuidenhout
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Timothy J. Egan
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Clive Yeates
- Inpharma
Consultancy, 6 Dudley Hill Close, Welwyn, Hertfordshire AL60QQ, U.K
| | - Sergio Wittlin
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council, Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
41
|
Kumari A, Karnatak M, Singh D, Shankar R, Jat JL, Sharma S, Yadav D, Shrivastava R, Verma VP. Current scenario of artemisinin and its analogues for antimalarial activity. Eur J Med Chem 2018; 163:804-829. [PMID: 30579122 DOI: 10.1016/j.ejmech.2018.12.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/29/2018] [Accepted: 12/02/2018] [Indexed: 11/17/2022]
Abstract
Human malaria, one of the most striking, reemerging infectious diseases, is caused by several types of Plasmodium parasites. Whilst advances have been made in lowering the numbers of cases and deaths, it is clear that a strategy based solely on disease control year on year, without reducing transmission and ultimately eradicating the parasite, is unsustainable. Natural products have served as a template for the design and development of antimalarial drugs currently in the clinic or in the development phase. Artemisinin combine potent, rapid antimalarial activity with a wide therapeutic index and an absence of clinically important resistance. The alkylating ability of artemisinin and its semi-synthetic analogues toward heme related to their antimalarial efficacy are underlined. Although impressive results have already been achieved in malaria research, more systematization and concentration of efforts are required if real breakthroughs are to be made. This review will concisely cover the clinical, preclinical antimalarial and current updates in artemisinin based antimalarial drugs. Diverse classes of semi-synthetic analogs of artemisinin reported in the last decade have also been extensively studied. The experience gained in this respect is discussed.
Collapse
Affiliation(s)
- Akriti Kumari
- Department of Chemistry, Banasthali University, Banasthali Newai, 304022, Rajasthan, India
| | - Manvika Karnatak
- Department of Chemistry, Banasthali University, Banasthali Newai, 304022, Rajasthan, India
| | - Davinder Singh
- Bio-Organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, Jammu and Kashmir, India
| | - Ravi Shankar
- Bio-Organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, Jammu and Kashmir, India
| | - Jawahar L Jat
- Department of Applied Chemistry, BabaSaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar Raebareli Road, Lucknow, 226025, India
| | - Siddharth Sharma
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Dinesh Yadav
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Rahul Shrivastava
- Department of Chemistry, Manipal University Jaipur, Jaipur, 303007, India
| | - Ved Prakash Verma
- Department of Chemistry, Banasthali University, Banasthali Newai, 304022, Rajasthan, India.
| |
Collapse
|
42
|
Aguiar ACC, Murce E, Cortopassi WA, Pimentel AS, Almeida MMFS, Barros DCS, Guedes JS, Meneghetti MR, Krettli AU. Chloroquine analogs as antimalarial candidates with potent in vitro and in vivo activity. Int J Parasitol Drugs Drug Resist 2018; 8:459-464. [PMID: 30396013 PMCID: PMC6215995 DOI: 10.1016/j.ijpddr.2018.10.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 11/18/2022]
Abstract
In spite of recent efforts to eradicate malaria in the world, this parasitic disease is still considered a major public health problem, with a total of 216 million cases of malaria and 445,000 deaths in 2016. Artemisinin-based combination therapies remain effective in most parts of the world, but recent cases of resistance in Southeast Asia have urged for novel approaches to treat malaria caused by Plasmodium falciparum. In this work, we present chloroquine analogs that exhibited high activity against sensitive and chloroquine-resistant P. falciparum blood parasites and were also active against P. berghei infected mice. Among the compounds tested, DAQ, a chloroquine analog with a more linear side chain, was shown to be the most active in vitro and in vivo, with low cytotoxicity, and therefore may serve as the basis for the development of more effective chloroquine analogs to aid malaria eradication.
Collapse
Affiliation(s)
- Anna C C Aguiar
- Centro de Pesquisas Rene Rachou, Laboratório de Malária, Belo Horizonte, Brazil
| | - Erika Murce
- Pontifical Catholic University of Rio de Janeiro, Department of Chemistry, Rio de Janeiro, Brazil
| | - Wilian A Cortopassi
- University of California, San Francisco, Department of Pharmaceutical Chemistry, USA.
| | - Andre S Pimentel
- Pontifical Catholic University of Rio de Janeiro, Department of Chemistry, Rio de Janeiro, Brazil
| | - Maria M F S Almeida
- Universidade Federal de Alagoas, Instituto de Química e Biotecnologia, Maceió, Brazil
| | - Daniele C S Barros
- Universidade Federal de Alagoas, Instituto de Química e Biotecnologia, Maceió, Brazil
| | - Jéssica S Guedes
- Universidade Federal de Alagoas, Instituto de Química e Biotecnologia, Maceió, Brazil
| | - Mario R Meneghetti
- Universidade Federal de Alagoas, Instituto de Química e Biotecnologia, Maceió, Brazil
| | - Antoniana U Krettli
- Centro de Pesquisas Rene Rachou, Laboratório de Malária, Belo Horizonte, Brazil
| |
Collapse
|
43
|
Woodland JG, Hunter R, Smith PJ, Egan TJ. Chemical Proteomics and Super-resolution Imaging Reveal That Chloroquine Interacts with Plasmodium falciparum Multidrug Resistance-Associated Protein and Lipids. ACS Chem Biol 2018; 13:2939-2948. [PMID: 30208272 DOI: 10.1021/acschembio.8b00583] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is well established that chloroquine, a quinoline antimalarial, inhibits hemozoin formation in the malaria parasite. Counterintuitively, this archetypal antimalarial is also used in the treatment of diseases in which hemozoin biocrystallization does not play a role. Hence, we decided to investigate whether chloroquine possesses binding targets other than Fe(III) protoporphyrin IX in blood stage Plasmodium falciparum parasites and whether these are related to sites of accumulation within the parasite other than the digestive vacuole. A 7-nitrobenz-2-oxa-1,3-diazole (NBD)-labeled fluorescent derivative of chloroquine, especially sensitive to regions outside the digestive vacuole and retaining the antiplasmodial pharmacophore, was synthesized to investigate subcellular localization in the parasite. Super-resolution microscopy revealed association with membranes including the parasite plasma membrane, the endoplasmic reticulum, and possibly also the mitochondrion. A drug-labeled affinity matrix was then prepared to capture protein binding targets of chloroquine. SDS-PAGE revealed a single prominent band between 200 and 250 kDa from the membrane-associated fraction. Subsequent proteomic analysis revealed that this band corresponded to P. falciparum multidrug resistance-associated protein (PfMRP1). Intrigued by this finding, we demonstrated pull-down of PfMRP1 by matrices labeled with Cinchona alkaloids quinine and quinidine. While PfMRP1 has been implicated in resistance to quinolines and other antimalarials, this is the first time that these drugs have been found to bind directly to this protein. Based on previous reports, PfMRP1, the only prominent protein found to bind to quinolines in this work, is likely to modulate the activity of these antimalarials in P. falciparum rather than act as a drug target.
Collapse
Affiliation(s)
- John G. Woodland
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch, Cape Town 7701, South Africa
| | - Roger Hunter
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch, Cape Town 7701, South Africa
| | | | - Timothy J. Egan
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch, Cape Town 7701, South Africa
| |
Collapse
|
44
|
Bonilla-Ramirez L, Rios A, Quiliano M, Ramirez-Calderon G, Beltrán-Hortelano I, Franetich JF, Corcuera L, Bordessoulles M, Vettorazzi A, López de Cerain A, Aldana I, Mazier D, Pabón A, Galiano S. Novel antimalarial chloroquine- and primaquine-quinoxaline 1,4-di-N-oxide hybrids: Design, synthesis, Plasmodium life cycle stage profile, and preliminary toxicity studies. Eur J Med Chem 2018; 158:68-81. [PMID: 30199706 DOI: 10.1016/j.ejmech.2018.08.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 01/11/2023]
Abstract
Emergence of drug resistance and targeting all stages of the parasite life cycle are currently the major challenges in antimalarial chemotherapy. Molecular hybridization combining two scaffolds in a single molecule is an innovative strategy for achieving these goals. In this work, a series of novel quinoxaline 1,4-di-N-oxide hybrids containing either chloroquine or primaquine pharmacophores was designed, synthesized and tested against both chloroquine sensitive and multidrug resistant strains of Plasmodium falciparum. Only chloroquine-based compounds exhibited potent blood stage activity with compounds 4b and 4e being the most active and selective hybrids at this parasite stage. Based on their intraerythrocytic activity and selectivity or their chemical nature, seven hybrids were then evaluated against the liver stage of Plasmodium yoelii, Plasmodium berghei and Plasmodium falciparum infections. Compound 4b was the only chloroquine-quinoxaline 1,4-di-N-oxide hybrid with a moderate liver activity, whereas compound 6a and 6b were identified as the most active primaquine-based hybrids against exoerythrocytic stages, displaying enhanced liver activity against P. yoelii and P. berghei, respectively, and better SI values than primaquine. Although both primaquine-quinoxaline 1,4-di-N-oxide hybrids slightly reduced the infection of mosquitoes, they inhibited sporogony of P. berghei and compound 6a showed 92% blocking of transmission. In vivo liver efficacy assays revealed that compound 6a showed causal prophylactic activity affording parasitaemia reduction of up to 95% on day 4. Absence of genotoxicity and in vivo acute toxicity were also determined. These results suggest the approach of primaquine-quinoxaline 1,4-di-N-oxide hybrids as new potential dual-acting antimalarials for further investigation.
Collapse
Affiliation(s)
- Leonardo Bonilla-Ramirez
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquía (UdeA), Sede de Investigación Universitaria (SIU), Medellín, Colombia
| | - Alexandra Rios
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquía (UdeA), Sede de Investigación Universitaria (SIU), Medellín, Colombia
| | - Miguel Quiliano
- Universidad de Navarra, Institute of Tropical Health (ISTUN), Campus Universitario, 31008, Pamplona, Spain; Universidad de Navarra, Facultad de Farmacia y Nutrición, Department of Organic and Pharmaceutical Chemistry, Campus Universitario, 31008, Pamplona, Spain
| | - Gustavo Ramirez-Calderon
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquía (UdeA), Sede de Investigación Universitaria (SIU), Medellín, Colombia
| | - Iván Beltrán-Hortelano
- Universidad de Navarra, Institute of Tropical Health (ISTUN), Campus Universitario, 31008, Pamplona, Spain; Universidad de Navarra, Facultad de Farmacia y Nutrición, Department of Organic and Pharmaceutical Chemistry, Campus Universitario, 31008, Pamplona, Spain
| | - Jean François Franetich
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL, 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Luis Corcuera
- Universidad de Navarra, Facultad de Farmacia y Nutrición, Department of Organic and Pharmaceutical Chemistry, Campus Universitario, 31008, Pamplona, Spain
| | - Mallaury Bordessoulles
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL, 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Ariane Vettorazzi
- Universidad de Navarra, Facultad de Farmacia y Nutrición, Department of Pharmacology and Toxicology, 31008, Pamplona, Spain
| | - Adela López de Cerain
- Universidad de Navarra, Facultad de Farmacia y Nutrición, Department of Pharmacology and Toxicology, 31008, Pamplona, Spain
| | - Ignacio Aldana
- Universidad de Navarra, Institute of Tropical Health (ISTUN), Campus Universitario, 31008, Pamplona, Spain; Universidad de Navarra, Facultad de Farmacia y Nutrición, Department of Organic and Pharmaceutical Chemistry, Campus Universitario, 31008, Pamplona, Spain
| | - Dominique Mazier
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL, 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Adriana Pabón
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquía (UdeA), Sede de Investigación Universitaria (SIU), Medellín, Colombia
| | - Silvia Galiano
- Universidad de Navarra, Institute of Tropical Health (ISTUN), Campus Universitario, 31008, Pamplona, Spain; Universidad de Navarra, Facultad de Farmacia y Nutrición, Department of Organic and Pharmaceutical Chemistry, Campus Universitario, 31008, Pamplona, Spain.
| |
Collapse
|
45
|
Haouchine AL, Kabri Y, Bakhta S, Curti C, Nedjar-Kolli B, Vanelle P. Simple synthesis of imidazo[1,2-A]pyridine derivatives bearing 2-aminonicotinonitrile or 2-aminochromene moiety. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2018.1479759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Arslane-Larbi Haouchine
- Laboratory of Applied Organic Chemistry, Houari Boumediene University of Sciences and Technology, Algiers, Algeria
| | - Youssef Kabri
- Aix Marseille University Institut de Chimie Radicalaire ICR UMR CNRS 7273 Laboratoire de Pharmaco-Chimie Radicalaire Faculté de Pharmacie, Marseille CEDEX 05, France
| | - Saléha Bakhta
- Laboratory of Applied Organic Chemistry, Houari Boumediene University of Sciences and Technology, Algiers, Algeria
| | - Christophe Curti
- Aix Marseille University Institut de Chimie Radicalaire ICR UMR CNRS 7273 Laboratoire de Pharmaco-Chimie Radicalaire Faculté de Pharmacie, Marseille CEDEX 05, France
| | - Bellara Nedjar-Kolli
- Laboratory of Applied Organic Chemistry, Houari Boumediene University of Sciences and Technology, Algiers, Algeria
| | - Patrice Vanelle
- Aix Marseille University Institut de Chimie Radicalaire ICR UMR CNRS 7273 Laboratoire de Pharmaco-Chimie Radicalaire Faculté de Pharmacie, Marseille CEDEX 05, France
| |
Collapse
|
46
|
Kondaparla S, Manhas A, Dola VR, Srivastava K, Puri SK, Katti SB. Design, synthesis and antiplasmodial activity of novel imidazole derivatives based on 7-chloro-4-aminoquinoline. Bioorg Chem 2018; 80:204-211. [PMID: 29940342 DOI: 10.1016/j.bioorg.2018.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
Abstract
A series of short chain 4-aminoquinoline-imidazole derivatives have been synthesized in one pot two step multicomponent reaction using van leusen standard protocol. The diethylamine function of chloroquine is replaced by substituted imidazole derivatives containing tertiary terminal nitrogen. All the synthesized compounds were screened against the chloroquine sensitive (3D7) and chloroquine resistant (K1) strains of Plasmodium falciparum. Some of the compounds (6, 8, 9 and 17) in the series exhibited comparable activity to CQ against K1 strain of P. falciparum. All the compounds displayed resistance factor between 0.09 and 4.57 as against 51 for CQ. Further, these analogues were found to form a strong complex with hematin and inhibit the β-hematin formation, therefore these compounds act via heme polymerization target.
Collapse
Affiliation(s)
- Srinivasarao Kondaparla
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| | - Ashan Manhas
- Parasitology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Vasantha Rao Dola
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Kumkum Srivastava
- Parasitology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Sunil K Puri
- Parasitology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - S B Katti
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| |
Collapse
|
47
|
Sidorov P, Davioud-Charvet E, Marcou G, Horvath D, Varnek A. AntiMalarial Mode of Action (AMMA) Database: Data Selection, Verification and Chemical Space Analysis. Mol Inform 2018; 37:e1800021. [DOI: 10.1002/minf.201800021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/14/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Pavel Sidorov
- Laboratoire de Chemoinformatique; UMR 7140 CNRS-Univ. Strasbourg; 1 rue Blaise Pascal Strasbourg 67000 France
| | - Elisabeth Davioud-Charvet
- Laboratoire d'Innovation Moléculaire et Applications (LIMA); UMR7042 CNRS-Unistra-UHA; Bioorganic and Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM); 25, rue Becquerel Strasbourg F-67087 France
| | - Gilles Marcou
- Laboratoire de Chemoinformatique; UMR 7140 CNRS-Univ. Strasbourg; 1 rue Blaise Pascal Strasbourg 67000 France
| | - Dragos Horvath
- Laboratoire de Chemoinformatique; UMR 7140 CNRS-Univ. Strasbourg; 1 rue Blaise Pascal Strasbourg 67000 France
| | - Alexandre Varnek
- Laboratoire de Chemoinformatique; UMR 7140 CNRS-Univ. Strasbourg; 1 rue Blaise Pascal Strasbourg 67000 France
- Laboratory of Chemoinformatics, Butlerov Institute of Chemistry; Kazan Federal University; Kazan Russia
| |
Collapse
|
48
|
Adamantane amine-linked chloroquinoline derivatives as chloroquine resistance modulating agents in Plasmodium falciparum. Bioorg Med Chem Lett 2018; 28:1287-1291. [DOI: 10.1016/j.bmcl.2018.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 12/27/2022]
|
49
|
Prediction Model for Antimalarial Activities of Hemozoin Inhibitors by Using Physicochemical Properties. Antimicrob Agents Chemother 2018; 62:AAC.02424-17. [PMID: 29439979 DOI: 10.1128/aac.02424-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/07/2018] [Indexed: 12/22/2022] Open
Abstract
The rapid spread of strains of malaria parasites that are resistant to several drugs has threatened global malaria control. Hence, the aim of this study was to predict the antimalarial activity of chemical compounds that possess anti-hemozoin-formation activity as a new means of antimalarial drug discovery. After the initial in vitro anti-hemozoin-formation high-throughput screening (HTS) of 9,600 compounds, a total of 224 hit compounds were identified as hemozoin inhibitors. These 224 compounds were tested for in vitro erythrocytic antimalarial activity at 10 μM by using chloroquine-mefloquine-sensitive Plasmodium falciparum strain 3D7A. Two independent experiments were conducted. The physicochemical properties of the active compounds were extracted from the ChemSpider and SciFinder databases. We analyzed the extracted data by using Bayesian model averaging (BMA). Our findings revealed that lower numbers of S atoms; lower distribution coefficient (log D) values at pH 3, 4, and 5; and higher predicted distribution coefficient (ACD log D) values at pH 7.4 had significant associations with antimalarial activity among compounds that possess anti-hemozoin-formation activity. The BMA model revealed an accuracy of 91.23%. We report new prediction models containing physicochemical properties that shed light on effective chemical groups for synthetic antimalarial compounds and help with in silico screening for novel antimalarial drugs.
Collapse
|
50
|
Chopra R, Chibale K, Singh K. Pyrimidine-chloroquinoline hybrids: Synthesis and antiplasmodial activity. Eur J Med Chem 2018; 148:39-53. [DOI: 10.1016/j.ejmech.2018.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/27/2018] [Accepted: 02/06/2018] [Indexed: 10/18/2022]
|