1
|
Sakari M, Bhadane R, Kumar S, Azevedo R, Malakoutikhah M, Masoumi A, Littler DR, Härmä H, Kopra K, Pulliainen AT. ADP-ribosyltransferase-based biocatalysis of nonhydrolyzable NAD+ analogs. J Biol Chem 2025; 301:108106. [PMID: 39706271 PMCID: PMC11786771 DOI: 10.1016/j.jbc.2024.108106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
Enzyme promiscuity is the ability of an enzyme to catalyze an unexpected side reaction in addition to its main reaction. Here, we describe a biocatalytic process to produce nonhydrolyzable NAD+ analogs based on the ADP-ribosyltransferase activity of pertussis toxin PtxS1 subunit. First, in identical manner to normal catalysis, PtxS1 activates NAD+ to form the reactive oxocarbenium cation. Subsequently, the electrophilic ribose 1' carbon of the oxocarbenium cation is subject of an attack by the nitrogen atom of an amino group coupled to nicotinamide mimicking compounds. The nitrogen atom acts as the nucleophile instead of the natural sulfur atom substrate of the human Gαi protein. The invention builds on structural data indicating the presence of an NAD+ analog, benzamide amino adenine dinucleotide, at the NAD+ binding site of PtxS1. This was witnessed upon cocrystallization of PtxS1 with NAD+ and 3-aminobenzamide (3-AB). A pharmacophore-based screening on 3-AB followed by quantum mechanical simulations identified analogs of 3-AB with capacity to react with the oxocarbenium cation. Based on HPLC and mass spectrometry, we confirmed the formation of benzamide amino adenine dinucleotide by PtxS1, and also identified two new chemical entities. We name the new entities as isoindolone amine adenine dinucleotide, and isoquinolinone amine adenine dinucleotide, the latter being a highly fluorescent compound. The new NAD+ analogs emerge as valuable tools to study the structural biology and enzymology of NAD+ binding and consuming enzymes, such as human poly(ADP-ribose) polymerases and bacterial ADP-ribosyltransferase exotoxins, and to advance the ongoing drug development efforts.
Collapse
Affiliation(s)
- Moona Sakari
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Sujit Kumar
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Rita Azevedo
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | | | - Dene R Littler
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Harri Härmä
- Department of Chemistry, University of Turku, Turku, Finland
| | - Kari Kopra
- Department of Chemistry, University of Turku, Turku, Finland
| | | |
Collapse
|
2
|
Bonomi RE, Riordan W, Gelovani JG. The Structures, Functions, and Roles of Class III HDACs (Sirtuins) in Neuropsychiatric Diseases. Cells 2024; 13:1644. [PMID: 39404407 PMCID: PMC11476333 DOI: 10.3390/cells13191644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Over the past two decades, epigenetic regulation has become a rapidly growing and influential field in biology and medicine. One key mechanism involves the acetylation and deacetylation of lysine residues on histone core proteins and other critical proteins that regulate gene expression and cellular signaling. Although histone deacetylases (HDACs) have received significant attention, the roles of individual HDAC isoforms in the pathogenesis of psychiatric diseases still require further research. This is particularly true with regard to the sirtuins, class III HDACs. Sirtuins have unique functional activity and significant roles in normal neurophysiology, as well as in the mechanisms of addiction, mood disorders, and other neuropsychiatric abnormalities. This review aims to elucidate the differences in catalytic structure and function of the seven sirtuins as they relate to psychiatry.
Collapse
Affiliation(s)
- Robin E. Bonomi
- Department of Psychiatry, Yale University, New Haven, CT 06511, USA;
| | - William Riordan
- Department of Psychiatry, Yale University, New Haven, CT 06511, USA;
| | - Juri G. Gelovani
- College of Medicine and Health Sciences, Office of the Provost, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Radiology, Division of Nuclear Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
3
|
Arnold J, Ghosh S, Kasprzyk R, Brakonier M, Hanna M, Marx A, Shuman S. Chemical synthesis of 2″OMeNAD+ and its deployment as an RNA 2'-phosphotransferase (Tpt1) 'poison' that traps the enzyme on its abortive RNA-2'-PO4-(ADP-2″OMe-ribose) reaction intermediate. Nucleic Acids Res 2024; 52:10533-10542. [PMID: 39162230 PMCID: PMC11417386 DOI: 10.1093/nar/gkae695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
RNA 2'-phosphotransferase Tpt1 catalyzes the removal of an internal RNA 2'-PO4 via a two-step mechanism in which: (i) the 2'-PO4 attacks NAD+ C1″ to form an RNA-2'-phospho-(ADP-ribose) intermediate and nicotinamide; and (ii) transesterification of the ADP-ribose O2″ to the RNA 2'-phosphodiester yields 2'-OH RNA and ADP-ribose-1″,2″-cyclic phosphate. Although Tpt1 enzymes are prevalent in bacteria, archaea, and eukarya, Tpt1 is uniquely essential in fungi and plants, where it erases the 2'-PO4 mark installed by tRNA ligases during tRNA splicing. To identify a Tpt1 'poison' that arrests the reaction after step 1, we developed a chemical synthesis of 2″OMeNAD+, an analog that cannot, in principle, support step 2 transesterification. We report that 2″OMeNAD+ is an effective step 1 substrate for Runella slithyformis Tpt1 (RslTpt1) in a reaction that generates the normally undetectable RNA-2'-phospho-(ADP-ribose) intermediate in amounts stoichiometric to Tpt1. EMSA assays demonstrate that RslTpt1 remains trapped in a stable complex with the abortive RNA-2'-phospho-(ADP-2″OMe-ribose) intermediate. Although 2″OMeNAD+ establishes the feasibility of poisoning and trapping a Tpt1 enzyme, its application is limited insofar as Tpt1 enzymes from fungal pathogens are unable to utilize this analog for step 1 catalysis. Analogs with smaller 2″-substitutions may prove advantageous in targeting the fungal enzymes.
Collapse
Affiliation(s)
- Jakob Arnold
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Shreya Ghosh
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Renata Kasprzyk
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Marcel Brakonier
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Markus Hanna
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
4
|
Wenzek F, Biallas A, Müller S. Nicotinamide Riboside: What It Takes to Incorporate It into RNA. Molecules 2024; 29:3788. [PMID: 39202867 PMCID: PMC11357040 DOI: 10.3390/molecules29163788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Nicotinamide is an important functional compound and, in the form of nicotinamide adenine dinucleotide (NAD), is used as a co-factor by protein-based enzymes to catalyze redox reactions. In the context of the RNA world hypothesis, it is therefore reasonable to assume that ancestral ribozymes could have used co-factors such as NAD or its simpler analog nicotinamide riboside (NAR) to catalyze redox reactions. The only described example of such an engineered ribozyme uses a nicotinamide moiety bound to the ribozyme through non-covalent interactions. Covalent attachment of NAR to RNA could be advantageous, but the demonstration of such scenarios to date has suffered from the chemical instability of both NAR and its reduced form, NARH, making their use in oligonucleotide synthesis less straightforward. Here, we review the literature describing the chemical properties of the oxidized and reduced species of NAR, their synthesis, and previous attempts to incorporate either species into RNA. We discuss how to overcome the stability problem and succeed in generating RNA structures incorporating NAR.
Collapse
Affiliation(s)
| | | | - Sabine Müller
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany; (F.W.); (A.B.)
| |
Collapse
|
5
|
Engelsma SB, Nardozza AP, de Saint Aulaire P, Overkleeft HS, van der Marel GA, Ladurner AG, Filippov DV. Synthesis and Macrodomain Binding of Gln-carba-ADPr-peptide. Chembiochem 2024; 25:e202300865. [PMID: 38442082 DOI: 10.1002/cbic.202300865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/07/2024]
Abstract
Mono-ADP-ribosylation is a dynamic post-translational modification (PTM) with important roles in cell signalling. This modification occurs on a wide variety of amino acids, and one of the canonical modification sites within proteins is the side chain of glutamic acid. Given the transient nature of this modification (acylal linkage) and the high sensitivity of ADP-ribosylated glutamic acid, stabilized isosteres are required for structural and biochemical studies. Here, we report the synthesis of a mimic of ADP-ribosylated peptide derived from histone H2B that contains carba-ADP-ribosylated glutamine as a potential mimic for Glu-ADPr. We synthesized a cyclopentitol-ribofuranosyl derivative of 5'-phosphoribosylated Fmoc-glutamine and used this in the solid-phase synthesis of the carba-ADPr-peptide mimicking the ADP-ribosylated N-terminal tail of histone H2B. Binding studies with isothermal calorimetry demonstrate that the macrodomains of human MacroD2 and TARG1 bind to carba-ADPr-peptide in the same way as ADPr-peptides containing the native ADP-riboside moiety connected to the side chain of glutamine in the same peptide sequence.
Collapse
Affiliation(s)
- Sander B Engelsma
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Faculty of Science, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Aurelio Pio Nardozza
- Department of Physiological Chemistry, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Street 9, 82152, Planegg-Martinsried, Germany
| | - Pieter de Saint Aulaire
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Faculty of Science, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Herman S Overkleeft
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Faculty of Science, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Gijsbert A van der Marel
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Faculty of Science, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Andreas G Ladurner
- Department of Physiological Chemistry, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Street 9, 82152, Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Butenandt Street 5-13, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-Universität München, Feodor Lynen Street 17, 81377, Munich, Germany
| | - Dmitri V Filippov
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Faculty of Science, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| |
Collapse
|
6
|
Scarano N, Abbotto E, Musumeci F, Salis A, Brullo C, Fossa P, Schenone S, Bruzzone S, Cichero E. Virtual Screening Combined with Enzymatic Assays to Guide the Discovery of Novel SIRT2 Inhibitors. Int J Mol Sci 2023; 24:ijms24119363. [PMID: 37298312 DOI: 10.3390/ijms24119363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Sirtuin isoform 2 (SIRT2) is one of the seven sirtuin isoforms present in humans, being classified as class III histone deacetylases (HDACs). Based on the high sequence similarity among SIRTs, the identification of isoform selective modulators represents a challenging task, especially for the high conservation observed in the catalytic site. Efforts in rationalizing selectivity based on key residues belonging to the SIRT2 enzyme were accompanied in 2015 by the publication of the first X-ray crystallographic structure of the potent and selective SIRT2 inhibitor SirReal2. The subsequent studies led to different experimental data regarding this protein in complex with further different chemo-types as SIRT2 inhibitors. Herein, we reported preliminary Structure-Based Virtual Screening (SBVS) studies using a commercially available library of compounds to identify novel scaffolds for the design of new SIRT2 inhibitors. Biochemical assays involving five selected compounds allowed us to highlight the most effective chemical features supporting the observed SIRT2 inhibitory ability. This information guided the following in silico evaluation and in vitro testing of further compounds from in-house libraries of pyrazolo-pyrimidine derivatives towards novel SIRT2 inhibitors (1-5). The final results indicated the effectiveness of this scaffold for the design of promising and selective SIRT2 inhibitors, featuring the highest inhibition among the tested compounds, and validating the applied strategy.
Collapse
Affiliation(s)
- Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Elena Abbotto
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Francesca Musumeci
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Annalisa Salis
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Paola Fossa
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Silvia Schenone
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| |
Collapse
|
7
|
Fabbrizi E, Fiorentino F, Carafa V, Altucci L, Mai A, Rotili D. Emerging Roles of SIRT5 in Metabolism, Cancer, and SARS-CoV-2 Infection. Cells 2023; 12:cells12060852. [PMID: 36980194 PMCID: PMC10047932 DOI: 10.3390/cells12060852] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Sirtuin 5 (SIRT5) is a predominantly mitochondrial enzyme catalyzing the removal of glutaryl, succinyl, malonyl, and acetyl groups from lysine residues through a NAD+-dependent deacylase mechanism. SIRT5 is an important regulator of cellular homeostasis and modulates the activity of proteins involved in different metabolic pathways such as glycolysis, tricarboxylic acid (TCA) cycle, fatty acid oxidation, electron transport chain, generation of ketone bodies, nitrogenous waste management, and reactive oxygen species (ROS) detoxification. SIRT5 controls a wide range of aspects of myocardial energy metabolism and plays critical roles in heart physiology and stress responses. Moreover, SIRT5 has a protective function in the context of neurodegenerative diseases, while it acts as a context-dependent tumor promoter or suppressor. In addition, current research has demonstrated that SIRT5 is implicated in the SARS-CoV-2 infection, although opposing conclusions have been drawn in different studies. Here, we review the current knowledge on SIRT5 molecular actions under both healthy and diseased settings, as well as its functional effects on metabolic targets. Finally, we revise the potential of SIRT5 as a therapeutic target and provide an overview of the currently reported SIRT5 modulators, which include both activators and inhibitors.
Collapse
Affiliation(s)
- Emanuele Fabbrizi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Vincenzo Carafa
- Department of Precision Medicine, Università degli Studi della Campania “L. Vanvitelli”, 80138 Naples, Italy
- BIOGEM, 83031 Ariano Irpino, Italy
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania “L. Vanvitelli”, 80138 Naples, Italy
- BIOGEM, 83031 Ariano Irpino, Italy
- IEOS—Istituto per l’Endocrinologia e Oncologia Sperimentale, CNR, 80131 Naples, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
- Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (A.M.); (D.R.); Tel.: +39-0649913392 (A.M.); +39-0649913237 (D.R.); Fax: +39-0649693268 (A.M.)
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (A.M.); (D.R.); Tel.: +39-0649913392 (A.M.); +39-0649913237 (D.R.); Fax: +39-0649693268 (A.M.)
| |
Collapse
|
8
|
Abstract
The silent information regulator (sirtuin) is a family of enzymes involved in epigenetic processes with lysine deacetylase activity, having as substrates histones and other proteins. They participate in a wide range of cellular and pathologic processes, such as gene expression, cell division and motility, oxidative-induced stress management, metabolic control and carcinogenesis, among others, thus presenting as interesting therapeutic targets. In this article, the authors describe the inhibitory mechanisms and binding modes of the human sirtuin 2 (hSIRT2) inhibitors, which had their complexes with the enzyme structurally characterized. The results help pave the way for the rational designing of new hSIRT2 inhibitors and the development of novel therapeutic agents targeting this epigenetic enzyme.
Collapse
|
9
|
Discovery of novel compounds as potent activators of Sirt3. Bioorg Med Chem 2022; 73:116999. [DOI: 10.1016/j.bmc.2022.116999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 08/14/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022]
|
10
|
Weiss S, Adolph RS, Schweimer K, DiFonzo A, Meleshin M, Schutkowski M, Steegborn C. Molecular Mechanism of Sirtuin 1 Modulation by the AROS Protein. Int J Mol Sci 2022; 23:12764. [PMID: 36361557 PMCID: PMC9654219 DOI: 10.3390/ijms232112764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 03/17/2025] Open
Abstract
The protein lysine deacylases of the NAD+-dependent Sirtuin family contribute to metabolic regulation, stress responses, and aging processes, and the human Sirtuin isoforms, Sirt1-7, are considered drug targets for aging-related diseases. The nuclear isoform Sirt1 deacetylates histones and transcription factors to regulate, e.g., metabolic adaptations and circadian mechanisms, and it is used as a therapeutic target for Huntington's disease and psoriasis. Sirt1 is regulated through a multitude of mechanisms, including the interaction with regulatory proteins such as the inhibitors Tat and Dbc1 or the activator AROS. Here, we describe a molecular characterization of AROS and how it regulates Sirt1. We find that AROS is a partly intrinsically disordered protein (IDP) that inhibits rather than activates Sirt1. A biochemical characterization of the interaction including binding and stability assays, NMR spectroscopy, mass spectrometry, and a crystal structure of Sirtuin/AROS peptide complex reveal that AROS acts as a competitive inhibitor, through binding to the Sirt1 substrate peptide site. Our results provide molecular insights in the physiological regulation of Sirt1 by a regulator protein and suggest the peptide site as an opportunity for Sirt1-targeted drug development.
Collapse
Affiliation(s)
- Sandra Weiss
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Ramona S. Adolph
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Kristian Schweimer
- Department of Biopolymers, University of Bayreuth, 95440 Bayreuth, Germany
| | - Andrea DiFonzo
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Marat Meleshin
- Department of Enzymology, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany
| | - Mike Schutkowski
- Department of Enzymology, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
11
|
Zhu K, Suskiewicz MJ, Hloušek-Kasun A, Meudal H, Mikoč A, Aucagne V, Ahel D, Ahel I. DELTEX E3 ligases ubiquitylate ADP-ribosyl modification on protein substrates. SCIENCE ADVANCES 2022; 8:eadd4253. [PMID: 36197986 PMCID: PMC7615817 DOI: 10.1126/sciadv.add4253] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ubiquitylation had been considered limited to protein lysine residues, but other substrates have recently emerged. Here, we show that DELTEX E3 ligases specifically target the 3' hydroxyl of the adenosine diphosphate (ADP)-ribosyl moiety that can be linked to a protein, thus generating a hybrid ADP-ribosyl-ubiquitin modification. Unlike other known hydroxyl-specific E3s, which proceed via a covalent E3~ubiqutin intermediate, DELTEX enzymes are RING E3s that stimulate a direct ubiquitin transfer from E2~ubiquitin onto a substrate. However, DELTEXes follow a previously unidentified paradigm for RING E3s, whereby the ligase not only forms a scaffold but also provides catalytic residues to activate the acceptor. Comparative analysis of known hydroxyl-ubiquitylating active sites points to the recurring use of a catalytic histidine residue, which, in DELTEX E3s, is potentiated by a glutamate in a catalytic triad-like manner. In addition, we determined the hydrolase specificity profile of this modification, identifying human and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enzymes that could reverse it in cells.
Collapse
Affiliation(s)
- Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Marcin J. Suskiewicz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | | | - Hervé Meudal
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | - Andreja Mikoč
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Abbotto E, Scarano N, Piacente F, Millo E, Cichero E, Bruzzone S. Virtual Screening in the Identification of Sirtuins’ Activity Modulators. Molecules 2022; 27:molecules27175641. [PMID: 36080416 PMCID: PMC9457788 DOI: 10.3390/molecules27175641] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Sirtuins are NAD+-dependent deac(et)ylases with different subcellular localization. The sirtuins’ family is composed of seven members, named SIRT-1 to SIRT-7. Their substrates include histones and also an increasing number of different proteins. Sirtuins regulate a wide range of different processes, ranging from transcription to metabolism to genome stability. Thus, their dysregulation has been related to the pathogenesis of different diseases. In this review, we discussed the pharmacological approaches based on sirtuins’ modulators (both inhibitors and activators) that have been attempted in in vitro and/or in in vivo experimental settings, to highlight the therapeutic potential of targeting one/more specific sirtuin isoform(s) in cancer, neurodegenerative disorders and type 2 diabetes. Extensive research has already been performed to identify SIRT-1 and -2 modulators, while compounds targeting the other sirtuins have been less studied so far. Beside sections dedicated to each sirtuin, in the present review we also included sections dedicated to pan-sirtuins’ and to parasitic sirtuins’ modulators. A special focus is dedicated to the sirtuins’ modulators identified by the use of virtual screening.
Collapse
Affiliation(s)
- Elena Abbotto
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Francesco Piacente
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
- Correspondence:
| |
Collapse
|
13
|
Kalbas D, Meleshin M, Liebscher S, Zessin M, Melesina J, Schiene-Fischer C, Bülbül EF, Bordusa F, Sippl W, Schutkowski M. Small Changes Make the Difference for SIRT2: Two Different Binding Modes for 3-Arylmercapto-Acylated Lysine Derivatives. Biochemistry 2022; 61:1705-1722. [PMID: 35972884 DOI: 10.1021/acs.biochem.2c00211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sirtuins are protein deacylases regulating metabolism and stress responses and implicated in aging-related diseases. Modulators of the human sirtuins 1-7 are sought as chemical tools and potential therapeutics, for example, for treatment of cancer. We were able to show that 3-aryl-mercapto-succinylated- and 3-benzyl-mercapto-succinylated peptide derivatives yield selective Sirt5 inhibitors with low nM Ki values. Here, we synthesized and characterized 3-aryl-mercapto-butyrylated peptide derivatives as effective and selective sirtuin 2 inhibitors with KD values in the low nanomolar range. According to kinetic measurements and microscale thermophoresis/surface plasmon resonance experiments, the respective inhibitors bind with the 3-aryl-mercapto moiety in the selectivity pocket of Sirtuin 2, inducing a rearrangement of the active site. In contrast, 3-aryl-mercapto-nonalyl or palmitoyl derivatives are characterized by a switch in the binding mode blocking both the hydrophobic channel by the fatty acyl chain and the nicotinamide pocket by the 3-aryl-mercapto moiety.
Collapse
Affiliation(s)
- Diana Kalbas
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Marat Meleshin
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Sandra Liebscher
- Department of Natural Product Biochemistry, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Matthes Zessin
- Department of Medical Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Jelena Melesina
- Department of Medical Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Cordelia Schiene-Fischer
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Emre Fatih Bülbül
- Department of Medical Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Frank Bordusa
- Department of Natural Product Biochemistry, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Wolfgang Sippl
- Department of Medical Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Mike Schutkowski
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| |
Collapse
|
14
|
Fiorentino F, Castiello C, Mai A, Rotili D. Therapeutic Potential and Activity Modulation of the Protein Lysine Deacylase Sirtuin 5. J Med Chem 2022; 65:9580-9606. [PMID: 35802779 PMCID: PMC9340778 DOI: 10.1021/acs.jmedchem.2c00687] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sirtiun 5 (SIRT5) is a NAD+-dependent protein lysine deacylase primarily located in mitochondria. SIRT5 displays an affinity for negatively charged acyl groups and mainly catalyzes lysine deglutarylation, desuccinylation, and demalonylation while possessing weak deacetylase activity. SIRT5 substrates play crucial roles in metabolism and reactive oxygen species (ROS) detoxification, and SIRT5 activity is protective in neuronal and cardiac physiology. Moreover, SIRT5 exhibits a dichotomous role in cancer, acting as context-dependent tumor promoter or suppressor. Given its multifaceted activity, SIRT5 is a promising target in the design of activators or inhibitors that might act as therapeutics in many pathologies, including cancer, cardiovascular disorders, and neurodegeneration. To date, few cellular-active peptide-based SIRT5 inhibitors (SIRT5i) have been described, and potent and selective small-molecule SIRT5i have yet to be discovered. In this perspective, we provide an outline of SIRT5's roles in different biological settings and describe SIRT5 modulators in terms of their mode of action, pharmacological activity, and structure-activity relationships.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
| | - Carola Castiello
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
- Pasteur
Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
| | - Dante Rotili
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
15
|
Overview of SIRT5 as a potential therapeutic target: Structure, function and inhibitors. Eur J Med Chem 2022; 236:114363. [DOI: 10.1016/j.ejmech.2022.114363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 01/21/2023]
|
16
|
Yang F, Su H, Deng J, Mou L, Wang H, Li R, Dai QQ, Yan YH, Qian S, Wang Z, Li GB, Yang L. Discovery of new human Sirtuin 5 inhibitors by mimicking glutaryl-lysine substrates. Eur J Med Chem 2021; 225:113803. [PMID: 34461505 DOI: 10.1016/j.ejmech.2021.113803] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 11/28/2022]
Abstract
Human sirtuin 5 (SIRT5) plays pivotal roles in metabolic pathways and other biological processes, and is involved in several human diseases including cancer. Development of new potent and selective SIRT5 inhibitors is currently desirable to provide potential therapeutics for related diseases. Herein, we report a series of new 3-thioureidopropanoic acid derivatives, which were designed to mimic the binding features of SIRT5 glutaryl-lysine substrates. Structure-activity relationship studies revealed several compounds with low micromolar inhibitory activities to SIRT5. Computational and biochemical studies indicated that these compounds exhibited competitive SIRT5 inhibition with respect to the glutaryl-lysine substrate rather than nicotinamide adenine dinucleotide cofactor. Moreover, they showed high selectivity for SIRT5 over SIRT1-3 and 6 and could stabilize SIRT5 proteins as revealed by thermal shift analyses. This work provides an effective substrate-mimicking strategy for future inhibitor design, and offers new inhibitors to investigate their therapeutic potentials in SIRT5-associated disease models.
Collapse
Affiliation(s)
- Fan Yang
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, China
| | - Huilin Su
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, China
| | - Ji Deng
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Luohe Mou
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, China
| | - Huali Wang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Rong Li
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, China
| | - Qing-Qing Dai
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu-Hang Yan
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Shan Qian
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, China
| | - Zhouyu Wang
- College of Science, Xihua University, Sichuan, 610039, China
| | - Guo-Bo Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Lingling Yang
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, China.
| |
Collapse
|
17
|
Zhang J, Zou L, Shi D, Liu J, Zhang J, Zhao R, Wang G, Zhang L, Ouyang L, Liu B. Structure-Guided Design of a Small-Molecule Activator of Sirtuin-3 that Modulates Autophagy in Triple Negative Breast Cancer. J Med Chem 2021; 64:14192-14216. [PMID: 34605238 DOI: 10.1021/acs.jmedchem.0c02268] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sirtuin-3 (SIRT3) is an NAD+-dependent protein deacetylase localized primarily in the mitochondria with many links to different types of human cancers. Autophagy, which is a highly conserved lysosomal degradation process in eukaryotic cells, has been recently reported to be positively regulated by SIRT3 in cancer; therefore, activating SIRT3-modulated autophagy may be a promising strategy for drug discovery. In this study, we discovered a small-molecule activator of SIRT3 compound 33c (ADTL-SA1215) with specific SIRT3 deacetylase activity by structure-guided design and high-throughput screening. Subsequently, compound 33c inhibited the proliferation and migration of human breast carcinoma MDA-MB-231 cells by SIRT3-driven autophagy/mitophagy signaling pathways in vitro and in vivo. Collectively, these results demonstrate that pharmacological activation of SIRT3 is a potential therapeutic approach of triple negative breast cancer (TNBC). More importantly, compound 33c may be a first-in-class specific small-molecule activator of SIRT3 that would be utilized for future cancer drug development.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.,School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Ling Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Danfeng Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.,Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Rongyan Zhao
- School of Life Science and Engineering, Southwest Jiaotong University Chengdu, Chengdu 610031, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Lan Zhang
- School of Life Science and Engineering, Southwest Jiaotong University Chengdu, Chengdu 610031, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| |
Collapse
|
18
|
Zachos I, Döring M, Tafertshofer G, Simon RC, Sieber V. carba‐Nicotinamid‐Adenin‐Dinukleotid‐Phosphat: Robuster Cofaktor für die Redox‐Biokatalyse. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ioannis Zachos
- Lehrstuhl für Chemie der biogenen Rohstoffe Campus Straubing für Biotechnologie und Nachhaltigkeit Technische Universität München Schulgasse 16 94315 Straubing Deutschland
| | - Manuel Döring
- Lehrstuhl für Chemie der biogenen Rohstoffe Campus Straubing für Biotechnologie und Nachhaltigkeit Technische Universität München Schulgasse 16 94315 Straubing Deutschland
- Synbiofoundry@TUM Technische Universität München Schulgasse 22 94315 Straubing Deutschland
| | - Georg Tafertshofer
- Roche Diagnostics GmbH DOZCBE.-6164 Nonnenwald 2 82377 Penzberg Deutschland
| | - Robert C. Simon
- Roche Diagnostics GmbH DOZCBE.-6164 Nonnenwald 2 82377 Penzberg Deutschland
| | - Volker Sieber
- Lehrstuhl für Chemie der biogenen Rohstoffe Campus Straubing für Biotechnologie und Nachhaltigkeit Technische Universität München Schulgasse 16 94315 Straubing Deutschland
- Synbiofoundry@TUM Technische Universität München Schulgasse 22 94315 Straubing Deutschland
- Katalytisches Forschungszentrum Technische Universität München Ernst-Otto-Fischer-Straße 1 85748 Garching Deutschland
- School of Chemistry and Molecular Biosciences The University of Queensland 68 Copper Road St. Lucia 4072 Australien
| |
Collapse
|
19
|
Zachos I, Döring M, Tafertshofer G, Simon RC, Sieber V. carba Nicotinamide Adenine Dinucleotide Phosphate: Robust Cofactor for Redox Biocatalysis. Angew Chem Int Ed Engl 2021; 60:14701-14706. [PMID: 33719153 PMCID: PMC8252718 DOI: 10.1002/anie.202017027] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/22/2021] [Indexed: 12/21/2022]
Abstract
Here we report a new robust nicotinamide dinucleotide phosphate cofactor analog (carba-NADP+ ) and its acceptance by many enzymes in the class of oxidoreductases. Replacing one ribose oxygen with a methylene group of the natural NADP+ was found to enhance stability dramatically. Decomposition experiments at moderate and high temperatures with the cofactors showed a drastic increase in half-life time at elevated temperatures since it significantly disfavors hydrolysis of the pyridinium-N-glycoside bond. Overall, more than 27 different oxidoreductases were successfully tested, and a thorough analytical characterization and comparison is given. The cofactor carba-NADP+ opens up the field of redox-biocatalysis under harsh conditions.
Collapse
Affiliation(s)
- Ioannis Zachos
- Chair of Chemistry of Biogenic ResourcesCampus Straubing for Biotechnology and SustainabilityTechnical University of MunichSchulgasse 1694315StraubingGermany
| | - Manuel Döring
- Chair of Chemistry of Biogenic ResourcesCampus Straubing for Biotechnology and SustainabilityTechnical University of MunichSchulgasse 1694315StraubingGermany
- Synbiofoundry@TUMTechnical University of MunichSchulgasse 2294315StraubingGermany
| | | | - Robert C. Simon
- Roche Diagnostics GmbHDOZCBE.-6164Nonnenwald 282377PenzbergGermany
| | - Volker Sieber
- Chair of Chemistry of Biogenic ResourcesCampus Straubing for Biotechnology and SustainabilityTechnical University of MunichSchulgasse 1694315StraubingGermany
- Synbiofoundry@TUMTechnical University of MunichSchulgasse 2294315StraubingGermany
- Catalytic Research CenterTechnical University of MunichErnst-Otto-Fischer-Strasse 185748GarchingGermany
- School of Chemistry and Molecular BiosciencesThe University of Queensland68 Copper RoadSt. Lucia4072Australia
| |
Collapse
|
20
|
Bharadwaj S, Dubey A, Kamboj NK, Sahoo AK, Kang SG, Yadava U. Drug repurposing for ligand-induced rearrangement of Sirt2 active site-based inhibitors via molecular modeling and quantum mechanics calculations. Sci Rep 2021; 11:10169. [PMID: 33986372 PMCID: PMC8119977 DOI: 10.1038/s41598-021-89627-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
Sirtuin 2 (Sirt2) nicotinamide adenine dinucleotide-dependent deacetylase enzyme has been reported to alter diverse biological functions in the cells and onset of diseases, including cancer, aging, and neurodegenerative diseases, which implicate the regulation of Sirt2 function as a potential drug target. Available Sirt2 inhibitors or modulators exhibit insufficient specificity and potency, and even partially contradictory Sirt2 effects were described for the available inhibitors. Herein, we applied computational screening and evaluation of FDA-approved drugs for highly selective modulation of Sirt2 activity via a unique inhibitory mechanism as reported earlier for SirReal2 inhibitor. Application of stringent molecular docking results in the identification of 48 FDA-approved drugs as selective putative inhibitors of Sirt2, but only top 10 drugs with docking scores > - 11 kcal/mol were considered in reference to SirReal2 inhibitor for computational analysis. The molecular dynamics simulations and post-simulation analysis of Sirt2-drug complexes revealed substantial stability for Fluphenazine and Nintedanib with Sirt2. Additionally, developed 3D-QSAR-models also support the inhibitory potential of drugs, which exclusively revealed highest activities for Nintedanib (pIC50 ≥ 5.90 µM). Conclusively, screened FDA-approved drugs were advocated as promising agents for Sirt2 inhibition and required in vitro investigation for Sirt2 targeted drug development.
Collapse
Affiliation(s)
- Shiv Bharadwaj
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus Pvt. Ltd., Kushinagar, 274203, India
| | - Nitin Kumar Kamboj
- School of Physical Sciences, DIT University, Dehradun, UK, 248001, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, Uttar Pradesh, 211015, India.
| | - Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Umesh Yadava
- Department of Physics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, India.
| |
Collapse
|
21
|
Madern JM, Kim RQ, Misra M, Dikic I, Zhang Y, Ovaa H, Codée JDC, Filippov DV, van der Heden van Noort GJ. Synthesis of Stable NAD + Mimics as Inhibitors for the Legionella pneumophila Phosphoribosyl Ubiquitylating Enzyme SdeC. Chembiochem 2020; 21:2903-2907. [PMID: 32421893 PMCID: PMC7687180 DOI: 10.1002/cbic.202000230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/15/2020] [Indexed: 12/14/2022]
Abstract
Stable NAD+ analogues carrying single atom substitutions in either the furanose ring or the nicotinamide part have proven their value as inhibitors for NAD+ -consuming enzymes. To investigate the potential of such compounds to inhibit the adenosine diphosphate ribosyl (ADPr) transferase activity of the Legionella SdeC enzyme, we prepared three NAD+ analogues, namely carbanicotinamide adenosine dinucleotide (c-NAD+ ), thionicotinamide adenosine dinucleotide (S-NAD+ ) and benzamide adenosine dinucleotide (BAD). We optimized the chemical synthesis of thionicotinamide riboside and for the first time used an enzymatic approach to convert all three ribosides into the corresponding NAD+ mimics. We thus expanded the known scope of substrates for the NRK1/NMNAT1 enzyme combination by turning all three modified ribosides into NAD+ analogues in a scalable manner. We then compared the three NAD+ mimics side-by-side in a single assay for enzyme inhibition on Legionella effector enzyme SdeC. The class of SidE enzymes to which SdeC belongs was recently identified to be important in bacterial virulence, and we found SdeC to be inhibited by S-NAD+ and BAD with IC50 values of 28 and 39 μM, respectively.
Collapse
Affiliation(s)
- Jerre M. Madern
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Robbert Q. Kim
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical CentreEinthovenweg 202333 ZCLeidenThe Netherlands
| | - Mohit Misra
- Institute of Biochemistry IIGoethe University Faculty of MedicineTheodor-Stern-Kai 760590Frankfurt am MainGermany
- Buchmann Institute for Molecular Life SciencesGoethe University Frankfurt, Riedberg CampusMax-von-Laue-Strasse 1560438Frankfurt amMainGermany
| | - Ivan Dikic
- Institute of Biochemistry IIGoethe University Faculty of MedicineTheodor-Stern-Kai 760590Frankfurt am MainGermany
- Buchmann Institute for Molecular Life SciencesGoethe University Frankfurt, Riedberg CampusMax-von-Laue-Strasse 1560438Frankfurt amMainGermany
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical SciencesSchool of PharmacyUniversity of Southern California1985 Zonal AvenueLos AngelesCA 90089USA
| | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical CentreEinthovenweg 202333 ZCLeidenThe Netherlands
| | - Jeroen D. C. Codée
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Dmitri V. Filippov
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | | |
Collapse
|
22
|
Yan F, Huang C, Wang X, Tan J, Cheng S, Wan M, Wang Z, Wang S, Luo S, Li A, Guo X, Feng M, Liu X, Zhu Y, Zhou Y. Threonine ADP-Ribosylation of Ubiquitin by a Bacterial Effector Family Blocks Host Ubiquitination. Mol Cell 2020; 78:641-652.e9. [PMID: 32330457 DOI: 10.1016/j.molcel.2020.03.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/10/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022]
Abstract
Ubiquitination is essential for numerous eukaryotic cellular processes. Here, we show that the type III effector CteC from Chromobacterium violaceum functions as an adenosine diphosphate (ADP)-ribosyltransferase that specifically modifies ubiquitin via threonine ADP-ribosylation on residue T66. The covalent modification prevents the transfer of ubiquitin from ubiquitin-activating enzyme E1 to ubiquitin-conjugating enzyme E2, which inhibits subsequent ubiquitin activation by E2 and E3 enzymes in the ubiquitination cascade and leads to the shutdown of polyubiquitin synthesis in host cells. This unique modification also causes dysfunction of polyubiquitin chains in cells, thereby blocking host ubiquitin signaling. The disruption of host ubiquitination by CteC plays a crucial role in C. violaceum colonization in mice during infection. CteC represents a family of effector proteins in pathogens of hosts from different kingdoms. All the members of this family specifically ADP-ribosylate ubiquitin. The action of CteC reveals a new mechanism for interfering with host ubiquitination by pathogens.
Collapse
Affiliation(s)
- Fujie Yan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chunfeng Huang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaofei Wang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiaxing Tan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Sen Cheng
- Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Muyang Wan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhao Wang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuangyu Wang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuhui Luo
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Arong Li
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xing Guo
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mingguang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaoyun Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yongqun Zhu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China.
| | - Yan Zhou
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
23
|
Yang LL, Wang HL, Yan YH, Liu S, Yu ZJ, Huang MY, Luo Y, Zheng X, Yu Y, Li GB. Sensitive fluorogenic substrates for sirtuin deacylase inhibitor discovery. Eur J Med Chem 2020; 192:112201. [DOI: 10.1016/j.ejmech.2020.112201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/29/2020] [Accepted: 02/29/2020] [Indexed: 01/09/2023]
|
24
|
Asskar G, Rivard M, Martens T. Glutaconaldehyde as an Alternative Reagent to the Zincke Salt for the Transformation of Primary Amines into Pyridinium Salts. J Org Chem 2020; 85:1232-1239. [PMID: 31834800 DOI: 10.1021/acs.joc.9b02538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the presence of amines, the degradation of glutaconaldehyde in acidic medium can be prevented. By exploitation of this behavior, primary amines are transformed into their corresponding pyridinium salts, including those substrates that remain unreactive toward the Zincke salt, which is the reagent typically used to perform this transformation. The use of glutaconaldehyde also allows control of the nature of the counterion of the pyridinium with no need for additional salt metathesis reaction.
Collapse
Affiliation(s)
- Ghada Asskar
- ICMPE (UMR 7182), CNRS, UPEC , Université Paris Est , 94320 Thiais , France
| | - Michael Rivard
- ICMPE (UMR 7182), CNRS, UPEC , Université Paris Est , 94320 Thiais , France
| | - Thierry Martens
- ICMPE (UMR 7182), CNRS, UPEC , Université Paris Est , 94320 Thiais , France
| |
Collapse
|
25
|
Depaix A, Kowalska J. NAD Analogs in Aid of Chemical Biology and Medicinal Chemistry. Molecules 2019; 24:molecules24224187. [PMID: 31752261 PMCID: PMC6891637 DOI: 10.3390/molecules24224187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) serves as an essential redox co-factor and mediator of multiple biological processes. Besides its well-established role in electron transfer reactions, NAD serves as a substrate for other biotransformations, which, at the molecular level, can be classified as protein post-translational modifications (protein deacylation, mono-, and polyADP-ribosylation) and formation of signaling molecules (e.g., cyclic ADP ribose). These biochemical reactions control many crucial biological processes, such as cellular signaling and recognition, DNA repair and epigenetic modifications, stress response, immune response, aging and senescence, and many others. However, the links between the biological effects and underlying molecular processes are often poorly understood. Moreover, NAD has recently been found to tag the 5′-ends of some cellular RNAs, but the function of these NAD-capped RNAs remains largely unrevealed. Synthetic NAD analogs are invaluable molecular tools to detect, monitor, structurally investigate, and modulate activity of NAD-related enzymes and biological processes in order to aid their deeper understanding. Here, we review the recent advances in the design and development of NAD analogs as probes for various cellular NAD-related enzymes, enzymatic inhibitors with anticancer or antimicrobial therapeutic potential, and other NAD-related chemical biology tools. We focus on research papers published within the last 10 years.
Collapse
|
26
|
Zhang XN, Dai Z, Cheng Q, Zhang Y. Chemoenzymatic Preparation of 4'-Thioribose NAD .. ACTA ACUST UNITED AC 2019; 77:e83. [PMID: 30951610 DOI: 10.1002/cpnc.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This chemoenzymatic procedure describes a strategy for the preparation of 4'-thioribose nicotinamide adenine dinucleotide (S-NAD+ ), including chemical synthesis of nicotinamide 4'-riboside (S-NR), recombinant expression and purification of two NAD+ biosynthesis enzymes nicotinamide riboside kinase (NRK) and nicotinamide mononucleotide adenylyltransferase (NMNAT), and enzymatic synthesis of S-NAD+ . The first basic protocol describes the procedures for introduction of nicotinamide onto 4'-thioribose and subsequent deprotection to generate S-NR as the key intermediate for enzymatically synthesizing S-NAD+ . In the second basic protocol, experimental methods are detailed for the production of recombinant human NRK1 and NMNAT1 to catalyze conversion of S-NR to S-NAD+ . The third basic protocol presents the enzymatic approach for the generation of S-NAD+ from S-NR precursor. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Xiao-Nan Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Zhefu Dai
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Qinqin Cheng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California.,Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California.,Research Center for Liver Diseases, University of Southern California, Los Angeles, California
| |
Collapse
|
27
|
Dai Z, Zhang XN, Nasertorabi F, Cheng Q, Pei H, Louie SG, Stevens RC, Zhang Y. Facile chemoenzymatic synthesis of a novel stable mimic of NAD . Chem Sci 2018; 9:8337-8342. [PMID: 30568770 PMCID: PMC6256357 DOI: 10.1039/c8sc03899f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/14/2018] [Indexed: 01/01/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor participating in a variety of important enzyme-catalyzed physiological and pathophysiological processes. Analogues of NAD+ provide key and valuable agents for investigating NAD+-dependent enzymes. In this study, we report the preparation of a novel stable NAD+ mimic, 4'-thioribose NAD+ (S-NAD+), using a facile and efficient chemoenzymatic approach. Substrate activity assays indicated the resulting S-NAD+ is chemically inert to human CD38 and sirtuin 2 enzymes, but capable of participating in redox reactions in a manner similar to NAD+. X-ray crystallographic analysis revealed binding of S-NAD+ to the active site of human CD38 and critical residues involved in leaving group activation and catalysis. By more closely mimicking NAD+ in geometry and electrostatics, the generated S-NAD+ offers a unique and important tool that can be extended to study enzymes utilizing NAD+.
Collapse
Affiliation(s)
- Zhefu Dai
- Department of Pharmacology and Pharmaceutical Sciences , School of Pharmacy , University of Southern California , 1985 Zonal Ave , Los Angeles , CA 90089 , USA .
| | - Xiao-Nan Zhang
- Department of Pharmacology and Pharmaceutical Sciences , School of Pharmacy , University of Southern California , 1985 Zonal Ave , Los Angeles , CA 90089 , USA .
| | - Fariborz Nasertorabi
- Departments of Biological Sciences and Chemistry , Bridge Institute , Michelson Center for Convergent Bioscience , University of Southern California , Los Angeles , CA 90089 , USA .
| | - Qinqin Cheng
- Department of Pharmacology and Pharmaceutical Sciences , School of Pharmacy , University of Southern California , 1985 Zonal Ave , Los Angeles , CA 90089 , USA .
| | - Hua Pei
- Titus Family Department of Clinical Pharmacy , School of Pharmacy , University of Southern California , 1985 Zonal Ave , Los Angeles , CA 90089 , USA
| | - Stan G Louie
- Titus Family Department of Clinical Pharmacy , School of Pharmacy , University of Southern California , 1985 Zonal Ave , Los Angeles , CA 90089 , USA
| | - Raymond C Stevens
- Departments of Biological Sciences and Chemistry , Bridge Institute , Michelson Center for Convergent Bioscience , University of Southern California , Los Angeles , CA 90089 , USA .
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences , School of Pharmacy , University of Southern California , 1985 Zonal Ave , Los Angeles , CA 90089 , USA .
- Department of Chemistry , Dornsife College of Letters, Arts and Sciences , University of Southern California , Los Angeles , CA 90089 , USA
- Norris Comprehensive Cancer Center , University of Southern California , Los Angeles , CA 90089 , USA
- Research Center for Liver Diseases , University of Southern California , Los Angeles , CA 90089 , USA
| |
Collapse
|
28
|
Karlberg T, Hornyak P, Pinto AF, Milanova S, Ebrahimi M, Lindberg M, Püllen N, Nordström A, Löverli E, Caraballo R, Wong EV, Näreoja K, Thorsell AG, Elofsson M, De La Cruz EM, Björkegren C, Schüler H. 14-3-3 proteins activate Pseudomonas exotoxins-S and -T by chaperoning a hydrophobic surface. Nat Commun 2018; 9:3785. [PMID: 30224724 PMCID: PMC6141617 DOI: 10.1038/s41467-018-06194-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/15/2018] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas are a common cause of hospital-acquired infections that may be lethal. ADP-ribosyltransferase activities of Pseudomonas exotoxin-S and -T depend on 14-3-3 proteins inside the host cell. By binding in the 14-3-3 phosphopeptide binding groove, an amphipathic C-terminal helix of ExoS and ExoT has been thought to be crucial for their activation. However, crystal structures of the 14-3-3β:ExoS and -ExoT complexes presented here reveal an extensive hydrophobic interface that is sufficient for complex formation and toxin activation. We show that C-terminally truncated ExoS ADP-ribosyltransferase domain lacking the amphipathic binding motif is active when co-expressed with 14-3-3. Moreover, swapping the amphipathic C-terminus with a fragment from Vibrio Vis toxin creates a 14-3-3 independent toxin that ADP-ribosylates known ExoS targets. Finally, we show that 14-3-3 stabilizes ExoS against thermal aggregation. Together, this indicates that 14-3-3 proteins activate exotoxin ADP-ribosyltransferase domains by chaperoning their hydrophobic surfaces independently of the amphipathic C-terminal segment. The cellular toxicity of Pseudomonas exotoxin-S and -T depends on their activation by 14-3-3 but the underlying molecular mechanism is not fully understood. Here, the authors show that a previously unrecognized 14-3-3:exotoxin binding interface is sufficient for complex formation and toxin activation.
Collapse
Affiliation(s)
- Tobias Karlberg
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 4c, 14157, Huddinge, Sweden
| | - Peter Hornyak
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 4c, 14157, Huddinge, Sweden
| | - Ana Filipa Pinto
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 4c, 14157, Huddinge, Sweden
| | - Stefina Milanova
- Department of Cellular and Molecular Biology, Karolinska Institutet, Berzelius väg 35, 17165, Solna, Sweden
| | - Mahsa Ebrahimi
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 4c, 14157, Huddinge, Sweden
| | - Mikael Lindberg
- Protein Expertise Platform, Umeå University, Kemihuset, 90187, Umeå, Sweden
| | - Nikolai Püllen
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 4c, 14157, Huddinge, Sweden
| | - Axel Nordström
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 4c, 14157, Huddinge, Sweden
| | - Elinor Löverli
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 4c, 14157, Huddinge, Sweden
| | - Rémi Caraballo
- Department of Chemistry, Umeå University, Kemihuset, 90187, Umeå, Sweden
| | - Emily V Wong
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,University of California, San Francisco Medical School, Department of Biochemistry and Biophysics, San Francisco, CA, 94158, USA
| | - Katja Näreoja
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 4c, 14157, Huddinge, Sweden
| | - Ann-Gerd Thorsell
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 4c, 14157, Huddinge, Sweden
| | - Mikael Elofsson
- Department of Chemistry, Umeå University, Kemihuset, 90187, Umeå, Sweden
| | - Enrique M De La Cruz
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Camilla Björkegren
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 4c, 14157, Huddinge, Sweden.,Department of Cellular and Molecular Biology, Karolinska Institutet, Berzelius väg 35, 17165, Solna, Sweden
| | - Herwig Schüler
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 4c, 14157, Huddinge, Sweden.
| |
Collapse
|
29
|
Abstract
Sirtuins (SIRT) are coenzyme NAD+-dependent histone deacetylases for the transfer of modified acetyl groups. Sirtuins are widely involved in various physiological processes and therefore associated with cardiovascular disease, diabetes, Parkinson's disease, cancer and beyond. Consequently, the development of modulators for sirtuins has considerable clinical value. To date, a variety of SIRT1/2 inhibitors have been reported and none has been approved for the market. This review summarizes the recent progress in the discovery and development of SIRT1/2 inhibitors including their inhibitory potency, structure–activity relationship and binding mode analysis as well as discusses the perspective for the future development of SIRT1/2 inhibitors.
Collapse
|
30
|
Guan X, Upadhyay A, Munshi S, Chakrabarti R. Biophysical characterization of hit compounds for mechanism-based enzyme activation. PLoS One 2018; 13:e0194175. [PMID: 29547630 PMCID: PMC5856274 DOI: 10.1371/journal.pone.0194175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/26/2018] [Indexed: 11/19/2022] Open
Abstract
Across all families of enzymes, only a dozen or so distinct classes of non-natural small molecule activators have been characterized, with only four known modes of activation among them. All of these modes of activation rely on naturally evolved binding sites that trigger global conformational changes. Among the enzymes that are of greatest interest for small molecule activation are the seven sirtuin enzymes, nicotinamide adenine dinucleotide (NAD+)-dependent protein deacylases that play a central role in the regulation of healthspan and lifespan in organisms ranging from yeast to mammals. However, there is currently no understanding of how to design sirtuin-activating compounds beyond allosteric activators of SIRT1-catalyzed reactions that are limited to particular substrates. Here, we introduce a general mode of sirtuin activation that is distinct from the known modes of enzyme activation. Based on the conserved mechanism of sirtuin-catalyzed deacylation reactions, we establish biophysical properties of small molecule modulators that can in principle result in enzyme activation for diverse sirtuins and substrates. Building upon this framework, we propose strategies for the identification, characterization and evolution of hits for mechanism-based enzyme activating compounds.
Collapse
Affiliation(s)
- Xiangying Guan
- Division of Fundamental Research, Chakrabarti Advanced Technology, Mount Laurel, New Jersey, United States of America
| | - Alok Upadhyay
- Division of Fundamental Research, Chakrabarti Advanced Technology, Mount Laurel, New Jersey, United States of America
| | - Sudipto Munshi
- Division of Fundamental Research, Chakrabarti Advanced Technology, Mount Laurel, New Jersey, United States of America
| | - Raj Chakrabarti
- Division of Fundamental Research, Chakrabarti Advanced Technology, Mount Laurel, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
31
|
Kato Y, Kihara H, Fukui K, Kojima M. A ternary complex model of Sirtuin4-NAD +-Glutamate dehydrogenase. Comput Biol Chem 2018; 74:94-104. [PMID: 29571013 DOI: 10.1016/j.compbiolchem.2018.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 11/09/2017] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
Abstract
Sirtuin4 (Sirt4) is one of the mammalian homologues of Silent information regulator 2 (Sir2), which promotes the longevity of yeast, C. elegans, fruit flies and mice. Sirt4 is localized in the mitochondria, where it contributes to preventing the development of cancers and ischemic heart disease through regulating energy metabolism. The ADP-ribosylation of glutamate dehydrogenase (GDH), which is catalyzed by Sirt4, downregulates the TCA cycle. However, this reaction mechanism is obscure, because the structure of Sirt4 is unknown. We here constructed structural models of Sirt4 by homology modeling and threading, and docked nicotinamide adenine dinucleotide+ (NAD+) to Sirt4. In addition, a partial GDH structure was docked to the Sirt4-NAD+ complex model. In the ternary complex model of Sirt4-NAD+-GDH, the acetylated lysine 171 of GDH is located close to NAD+. This suggests a possible mechanism underlying the ADP-ribosylation at cysteine 172, which may occur through a transient intermediate with ADP-ribosylation at the acetylated lysine 171. These results may be useful in designing drugs for the treatment of cancers and ischemic heart disease.
Collapse
Affiliation(s)
- Yusuke Kato
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Japan; Himeji Hinomoto College, 890 Koro, Himeji 679-2151, Japan; Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.
| | - Hiroshi Kihara
- Himeji Hinomoto College, 890 Koro, Himeji 679-2151, Japan
| | - Kiyoshi Fukui
- Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Masaki Kojima
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Japan
| |
Collapse
|
32
|
NAD + analog reveals PARP-1 substrate-blocking mechanism and allosteric communication from catalytic center to DNA-binding domains. Nat Commun 2018; 9:844. [PMID: 29487285 PMCID: PMC5829251 DOI: 10.1038/s41467-018-03234-8] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/30/2018] [Indexed: 11/16/2022] Open
Abstract
PARP-1 cleaves NAD+ and transfers the resulting ADP-ribose moiety onto target proteins and onto subsequent polymers of ADP-ribose. An allosteric network connects PARP-1 multi-domain detection of DNA damage to catalytic domain structural changes that relieve catalytic autoinhibition; however, the mechanism of autoinhibition is undefined. Here, we show using the non-hydrolyzable NAD+ analog benzamide adenine dinucleotide (BAD) that PARP-1 autoinhibition results from a selective block on NAD+ binding. Following DNA damage detection, BAD binding to the catalytic domain leads to changes in PARP-1 dynamics at distant DNA-binding surfaces, resulting in increased affinity for DNA damage, and providing direct evidence of reverse allostery. Our findings reveal a two-step mechanism to activate and to then stabilize PARP-1 on a DNA break, indicate that PARP-1 allostery influences persistence on DNA damage, and have important implications for PARP inhibitors that engage the NAD+ binding site. Poly(ADP-ribose) polymerases (PARPs) catalyse ADP-ribose posttranslational modifications using NAD+ as a substrate. Here, the authors present the crystal structure of PARP-1 bound to the non-hydrolyzable NAD+ analog BAD and provide insights into the mechanism of PARP-1 allosteric regulation.
Collapse
|
33
|
Ali I, Conrad RJ, Verdin E, Ott M. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Chem Rev 2018; 118:1216-1252. [PMID: 29405707 PMCID: PMC6609103 DOI: 10.1021/acs.chemrev.7b00181] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Post-translational acetylation of lysine residues has emerged as a key regulatory mechanism in all eukaryotic organisms. Originally discovered in 1963 as a unique modification of histones, acetylation marks are now found on thousands of nonhistone proteins located in virtually every cellular compartment. Here we summarize key findings in the field of protein acetylation over the past 20 years with a focus on recent discoveries in nuclear, cytoplasmic, and mitochondrial compartments. Collectively, these findings have elevated protein acetylation as a major post-translational modification, underscoring its physiological relevance in gene regulation, cell signaling, metabolism, and disease.
Collapse
Affiliation(s)
- Ibraheem Ali
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Ryan J. Conrad
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| |
Collapse
|
34
|
Wang Y, Fung YME, Zhang W, He B, Chung MWH, Jin J, Hu J, Lin H, Hao Q. Deacylation Mechanism by SIRT2 Revealed in the 1'-SH-2'-O-Myristoyl Intermediate Structure. Cell Chem Biol 2017; 24:339-345. [PMID: 28286128 DOI: 10.1016/j.chembiol.2017.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/04/2017] [Accepted: 02/01/2017] [Indexed: 01/13/2023]
Abstract
Sirtuins are NAD-dependent deacylases. Previous studies have established two important enzymatic intermediates in sirtuin-catalyzed deacylation, an alkylamidate intermediate I, which is then converted to a bicyclic intermediate II. However, how intermediate II is converted to products is unknown. Based on potent SIRT2-specific inhibitors we developed, here we report crystal structures of SIRT2 in complexes with a thiomyristoyl lysine peptide-based inhibitor and carba-NAD or NAD. Interestingly, by soaking crystals with NAD, we capture a distinct covalent catalytic intermediate (III) that is different from the previously established intermediates I and II. In this intermediate, the covalent bond between the S and the myristoyl carbonyl carbon is broken, and we believe this intermediate III to be the decomposition product of II en route to form the end products. MALDI-TOF data further support the intermediate III formation. This is the first time such an intermediate has been captured by X-ray crystallography and provides more mechanistic insights into sirtuin-catalyzed reactions.
Collapse
Affiliation(s)
- Yi Wang
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Yi Man Eva Fung
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, University of Hong Kong, Hong Kong, China
| | - Weizhe Zhang
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin He
- College of Pharmacy, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM Ministry of Education, Guizhou Medical University, Guizhou 550004, China
| | | | - Jing Jin
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Jing Hu
- Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA.
| | - Quan Hao
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
35
|
Schiedel M, Robaa D, Rumpf T, Sippl W, Jung M. The Current State of NAD + -Dependent Histone Deacetylases (Sirtuins) as Novel Therapeutic Targets. Med Res Rev 2017; 38:147-200. [PMID: 28094444 DOI: 10.1002/med.21436] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/24/2016] [Accepted: 11/14/2016] [Indexed: 12/19/2022]
Abstract
Sirtuins are NAD+ -dependent protein deacylases that cleave off acetyl, as well as other acyl groups, from the ε-amino group of lysines in histones and other substrate proteins. Seven sirtuin isotypes (Sirt1-7) have been identified in mammalian cells. As sirtuins are involved in the regulation of various physiological processes such as cell survival, cell cycle progression, apoptosis, DNA repair, cell metabolism, and caloric restriction, a dysregulation of their enzymatic activity has been associated with the pathogenesis of neoplastic, metabolic, infectious, and neurodegenerative diseases. Thus, sirtuins are promising targets for pharmaceutical intervention. Growing interest in a modulation of sirtuin activity has prompted the discovery of several small molecules, able to inhibit or activate certain sirtuin isotypes. Herein, we give an update to our previous review on the topic in this journal (Schemies, 2010), focusing on recent developments in sirtuin biology, sirtuin modulators, and their potential as novel therapeutic agents.
Collapse
Affiliation(s)
- Matthias Schiedel
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Dina Robaa
- Department of Pharmaceutical Chemistry, Martin-Luther Universität Halle-Wittenberg, Halle/Saale, Germany
| | - Tobias Rumpf
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Wolfgang Sippl
- Department of Pharmaceutical Chemistry, Martin-Luther Universität Halle-Wittenberg, Halle/Saale, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
36
|
Wang HL, Liu S, Yu ZJ, Wu C, Cheng L, Wang Y, Chen K, Zhou S, Chen Q, Yu Y, Li GB. Interactions between sirtuins and fluorogenic small-molecule substrates offer insights into inhibitor design. RSC Adv 2017. [DOI: 10.1039/c7ra05824a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Biophysical and crystallographic analyses of small-molecule substrates with sirtuins provide thermodynamic insights and key pharmacophore features for inhibitor design.
Collapse
Affiliation(s)
- Hua-Li Wang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Sha Liu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Zhu-Jun Yu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Chengyong Wu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Linna Cheng
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Yuxi Wang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Kai Chen
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Shu Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Qiang Chen
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Yamei Yu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Guo-Bo Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| |
Collapse
|
37
|
Sirtuin 5: a review of structure, known inhibitors and clues for developing new inhibitors. SCIENCE CHINA-LIFE SCIENCES 2016; 60:249-256. [DOI: 10.1007/s11427-016-0060-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/23/2016] [Indexed: 12/31/2022]
|
38
|
Sacconnay L, Carrupt PA, Nurisso A. Human sirtuins: Structures and flexibility. J Struct Biol 2016; 196:534-542. [PMID: 27773637 DOI: 10.1016/j.jsb.2016.10.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/17/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
In recent years, sirtuins (SIRTs), members of histone deacetylases (HDACs) class III, have been found to modulate cellular processes related to the development of human aging-related pathologies (i.e. cancer, neurodegeneration, metabolic disorders). Several crystallographic structures and computational studies have shed light into their catalytic mechanism of action, identifying also the structural elements for the design of selective drug candidates. In this review, we first aim at summarizing the structural features characterizing human SIRTs. We then describe the observed mass and one-off movements related to conformational changes upon SIRT-mediated recognition events. Such information will be useful not only for rationalizing the design of new SIRT modulators, but also for improving the comprehension of SIRT-related biological roles.
Collapse
Affiliation(s)
- Lionel Sacconnay
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Rue Michel Servet 1, CH-1211 Geneva 4, Switzerland
| | - Pierre-Alain Carrupt
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Rue Michel Servet 1, CH-1211 Geneva 4, Switzerland
| | - Alessandra Nurisso
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Rue Michel Servet 1, CH-1211 Geneva 4, Switzerland; Département de Biochimie, Université de Montréal, H3C 3J7 Montréal, Québec, Canada
| |
Collapse
|
39
|
Gertz M, Steegborn C. Using mitochondrial sirtuins as drug targets: disease implications and available compounds. Cell Mol Life Sci 2016; 73:2871-96. [PMID: 27007507 PMCID: PMC11108305 DOI: 10.1007/s00018-016-2180-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/15/2016] [Accepted: 03/11/2016] [Indexed: 02/06/2023]
Abstract
Sirtuins are an evolutionary conserved family of NAD(+)-dependent protein lysine deacylases. Mammals have seven Sirtuin isoforms, Sirt1-7. They contribute to regulation of metabolism, stress responses, and aging processes, and are considered therapeutic targets for metabolic and aging-related diseases. While initial studies were focused on Sirt1 and 2, recent progress on the mitochondrial Sirtuins Sirt3, 4, and 5 has stimulated research and drug development for these isoforms. Here we review the roles of Sirtuins in regulating mitochondrial functions, with a focus on the mitochondrially located isoforms, and on their contributions to disease pathologies. We further summarize the compounds available for modulating the activity of these Sirtuins, again with a focus on mitochondrial isoforms, and we describe recent results important for the further improvement of compounds. This overview illustrates the potential of mitochondrial Sirtuins as drug targets and summarizes the status, progress, and challenges in developing small molecule compounds modulating their activity.
Collapse
Affiliation(s)
- Melanie Gertz
- Department of Biochemistry, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
- Bayer Pharma AG, Apratherweg 18a, 42096, Wuppertal, Germany
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany.
| |
Collapse
|
40
|
Suenkel B, Steegborn C. Recombinant Preparation, Biochemical Analysis, and Structure Determination of Sirtuin Family Histone/Protein Deacylases. Methods Enzymol 2016; 573:183-208. [DOI: 10.1016/bs.mie.2015.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
41
|
Rumpf T, Gerhardt S, Einsle O, Jung M. Seeding for sirtuins: microseed matrix seeding to obtain crystals of human Sirt3 and Sirt2 suitable for soaking. Acta Crystallogr F Struct Biol Commun 2015; 71:1498-510. [PMID: 26625292 PMCID: PMC4666478 DOI: 10.1107/s2053230x15019986] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/22/2015] [Indexed: 12/30/2022] Open
Abstract
Sirtuins constitute a family of NAD(+)-dependent enzymes that catalyse the cleavage of various acyl groups from the ℇ-amino group of lysines. They regulate a series of cellular processes and their misregulation has been implicated in various diseases, making sirtuins attractive drug targets. To date, only a few sirtuin modulators have been reported that are suitable for cellular research and their development has been hampered by a lack of structural information. In this work, microseed matrix seeding (MMS) was used to obtain crystals of human Sirt3 in its apo form and of human Sirt2 in complex with ADP ribose (ADPR). Crystal formation using MMS was predictable, less error-prone and yielded a higher number of crystals per drop than using conventional crystallization screening methods. The crystals were used to solve the crystal structures of apo Sirt3 and of Sirt2 in complex with ADPR at an improved resolution, as well as the crystal structures of Sirt2 in complex with ADPR and the indoles EX527 and CHIC35. These Sirt2-ADPR-indole complexes unexpectedly contain two indole molecules and provide novel insights into selective Sirt2 inhibition. The MMS approach for Sirt2 and Sirt3 may be used as the basis for structure-based optimization of Sirt2/3 inhibitors in the future.
Collapse
Affiliation(s)
- Tobias Rumpf
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University Freiburg, Albertstrasse 25, 79104 Freiburg, Baden-Württemberg, Germany
| | - Stefan Gerhardt
- Institute of Biochemistry and BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Albertstrasse 21, 79104 Freiburg, Baden-Württemberg, Germany
| | - Oliver Einsle
- Institute of Biochemistry and BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Albertstrasse 21, 79104 Freiburg, Baden-Württemberg, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University Freiburg, Albertstrasse 25, 79104 Freiburg, Baden-Württemberg, Germany
| |
Collapse
|
42
|
Shinde MV, Ople RS, Sangtani E, Gonnade R, Reddy DS. Synthesis of novel N-cyclopentenyl-lactams using the Aubé reaction. Beilstein J Org Chem 2015. [PMID: 26199661 PMCID: PMC4505090 DOI: 10.3762/bjoc.11.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A novel and convenient method utilizing the Aubé reaction to access a new class of compounds that are similar to carbocyclic nucleosides is reported. The azido alcohol derived from Vince lactam undergoes the Aubé reaction with various cyclic ketones to give cyclopentenyl-substituted lactams. Upon dihydroxylation, this affords the N-cyclopentenyl-lactam compounds in racemic form. Given the numerous uses of nucleosides and related compounds, we were interested in the synthesis of carbocylic nucleoside mimics. The attempts and results are described herein.
Collapse
Affiliation(s)
- Madhuri V Shinde
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Rohini S Ople
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Ekta Sangtani
- Center for Material Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Rajesh Gonnade
- Center for Material Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - D Srinivasa Reddy
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
43
|
Dai H, Case AW, Riera TV, Considine T, Lee JE, Hamuro Y, Zhao H, Jiang Y, Sweitzer SM, Pietrak B, Schwartz B, Blum CA, Disch JS, Caldwell R, Szczepankiewicz B, Oalmann C, Yee Ng P, White BH, Casaubon R, Narayan R, Koppetsch K, Bourbonais F, Wu B, Wang J, Qian D, Jiang F, Mao C, Wang M, Hu E, Wu JC, Perni RB, Vlasuk GP, Ellis JL. Crystallographic structure of a small molecule SIRT1 activator-enzyme complex. Nat Commun 2015; 6:7645. [PMID: 26134520 PMCID: PMC4506539 DOI: 10.1038/ncomms8645] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/27/2015] [Indexed: 02/07/2023] Open
Abstract
SIRT1, the founding member of the mammalian family of seven NAD+-dependent sirtuins, is composed of 747 amino acids forming a catalytic domain and extended N- and C-terminal regions. We report the design and characterization of an engineered human SIRT1 construct (mini-hSIRT1) containing the minimal structural elements required for lysine deacetylation and catalytic activation by small molecule sirtuin-activating compounds (STACs). Using this construct, we solved the crystal structure of a mini-hSIRT1-STAC complex, which revealed the STAC-binding site within the N-terminal domain of hSIRT1. Together with hydrogen-deuterium exchange mass spectrometry (HDX-MS) and site-directed mutagenesis using full-length hSIRT1, these data establish a specific STAC-binding site and identify key intermolecular interactions with hSIRT1. The determination of the interface governing the binding of STACs with human SIRT1 facilitates greater understanding of STAC activation of this enzyme, which holds significant promise as a therapeutic target for multiple human diseases. Sirtuins are NAD+-dependent deacylases implicated in the regulation of stress responses, bioenergetics and epigenetic control. Here the authors describe the crystal structure of a sirtuin-activating compounds (STAC)-sirtuin complex and begin to elucidate the mechanism of sirtuins activation by STACs.
Collapse
Affiliation(s)
- Han Dai
- 1] Sirtris, a GlaxoSmithKline Company, 200 Technology Square, Suite 300, Cambridge, Massachusetts 02139, USA [2] GlaxoSmithKline, 1250S. Collegeville Road, Collegeville, Pennsylvania 19426, USA
| | - April W Case
- Sirtris, a GlaxoSmithKline Company, 200 Technology Square, Suite 300, Cambridge, Massachusetts 02139, USA
| | - Thomas V Riera
- Sirtris, a GlaxoSmithKline Company, 200 Technology Square, Suite 300, Cambridge, Massachusetts 02139, USA
| | - Thomas Considine
- Sirtris, a GlaxoSmithKline Company, 200 Technology Square, Suite 300, Cambridge, Massachusetts 02139, USA
| | - Jessica E Lee
- ExSAR Corporation, 11 Deer Park Drive, Suite 103, Monmouth Junction, New Jersey 08852, USA
| | - Yoshitomo Hamuro
- ExSAR Corporation, 11 Deer Park Drive, Suite 103, Monmouth Junction, New Jersey 08852, USA
| | - Huizhen Zhao
- GlaxoSmithKline, 1250S. Collegeville Road, Collegeville, Pennsylvania 19426, USA
| | - Yong Jiang
- GlaxoSmithKline, 1250S. Collegeville Road, Collegeville, Pennsylvania 19426, USA
| | - Sharon M Sweitzer
- GlaxoSmithKline, 1250S. Collegeville Road, Collegeville, Pennsylvania 19426, USA
| | - Beth Pietrak
- GlaxoSmithKline, 1250S. Collegeville Road, Collegeville, Pennsylvania 19426, USA
| | - Benjamin Schwartz
- GlaxoSmithKline, 1250S. Collegeville Road, Collegeville, Pennsylvania 19426, USA
| | - Charles A Blum
- Sirtris, a GlaxoSmithKline Company, 200 Technology Square, Suite 300, Cambridge, Massachusetts 02139, USA
| | - Jeremy S Disch
- Sirtris, a GlaxoSmithKline Company, 200 Technology Square, Suite 300, Cambridge, Massachusetts 02139, USA
| | - Richard Caldwell
- Sirtris, a GlaxoSmithKline Company, 200 Technology Square, Suite 300, Cambridge, Massachusetts 02139, USA
| | - Bruce Szczepankiewicz
- Sirtris, a GlaxoSmithKline Company, 200 Technology Square, Suite 300, Cambridge, Massachusetts 02139, USA
| | - Christopher Oalmann
- Sirtris, a GlaxoSmithKline Company, 200 Technology Square, Suite 300, Cambridge, Massachusetts 02139, USA
| | - Pui Yee Ng
- Sirtris, a GlaxoSmithKline Company, 200 Technology Square, Suite 300, Cambridge, Massachusetts 02139, USA
| | - Brian H White
- Sirtris, a GlaxoSmithKline Company, 200 Technology Square, Suite 300, Cambridge, Massachusetts 02139, USA
| | - Rebecca Casaubon
- Sirtris, a GlaxoSmithKline Company, 200 Technology Square, Suite 300, Cambridge, Massachusetts 02139, USA
| | - Radha Narayan
- Sirtris, a GlaxoSmithKline Company, 200 Technology Square, Suite 300, Cambridge, Massachusetts 02139, USA
| | - Karsten Koppetsch
- Sirtris, a GlaxoSmithKline Company, 200 Technology Square, Suite 300, Cambridge, Massachusetts 02139, USA
| | - Francis Bourbonais
- Sirtris, a GlaxoSmithKline Company, 200 Technology Square, Suite 300, Cambridge, Massachusetts 02139, USA
| | - Bo Wu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, Anhui Province 230031, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, Anhui Province 230031, China
| | - Dongming Qian
- Viva Biotech, 334 Aidisheng Road, Zhangjiang High-tech Park, Shanghai 201203, China
| | - Fan Jiang
- Viva Biotech, 334 Aidisheng Road, Zhangjiang High-tech Park, Shanghai 201203, China
| | - Cheney Mao
- Viva Biotech, 334 Aidisheng Road, Zhangjiang High-tech Park, Shanghai 201203, China
| | - Minghui Wang
- GlaxoSmithKline, 1250S. Collegeville Road, Collegeville, Pennsylvania 19426, USA
| | - Erding Hu
- GlaxoSmithKline, 1250S. Collegeville Road, Collegeville, Pennsylvania 19426, USA
| | - Joe C Wu
- Sirtris, a GlaxoSmithKline Company, 200 Technology Square, Suite 300, Cambridge, Massachusetts 02139, USA
| | - Robert B Perni
- Sirtris, a GlaxoSmithKline Company, 200 Technology Square, Suite 300, Cambridge, Massachusetts 02139, USA
| | - George P Vlasuk
- Sirtris, a GlaxoSmithKline Company, 200 Technology Square, Suite 300, Cambridge, Massachusetts 02139, USA
| | - James L Ellis
- 1] Sirtris, a GlaxoSmithKline Company, 200 Technology Square, Suite 300, Cambridge, Massachusetts 02139, USA [2] GlaxoSmithKline, 1250S. Collegeville Road, Collegeville, Pennsylvania 19426, USA
| |
Collapse
|
44
|
Karaman B, Sippl W. Docking and binding free energy calculations of sirtuin inhibitors. Eur J Med Chem 2015; 93:584-98. [PMID: 25748123 DOI: 10.1016/j.ejmech.2015.02.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/25/2015] [Accepted: 02/22/2015] [Indexed: 01/24/2023]
Abstract
Sirtuins form a unique and highly conserved class of NAD(+)-dependent lysine deacylases. Among these the human subtypes Sirt1-3 has been implicated in the pathogenesis of numerous diseases such as cancer, metabolic syndromes, viral diseases and neurological disorders. Most of the sirtuin inhibitors that have been identified so far show limited potency and/or isoform selectivity. Here, we introduce a promising method to generate protein-inhibitor complexes of human Sirt1, Sirt2 and Sirt3 by means of ligand docking and molecular dynamics simulations. This method highly reduces the complexity of such applications and can be applied to other protein targets beside sirtuins. To the best of our knowledge, we present the first binding free energy method developed by using a validated data set of sirtuin inhibitors, where both a fair number of compounds (33 thieno[3,2-d]pyrimidine-6-carboxamide derivatives) was developed and tested in the same laboratory and also crystal structures in complex with the enzyme have been reported. A significant correlation between binding free energies derived from MM-GBSA calculations and in vitro data was found for all three sirtuin subtypes. The developed MM-GBSA protocol is computationally inexpensive and can be applied as a post-docking filter in virtual screening to find novel Sirt1-3 inhibitors as well as to prioritize compounds with similar chemical structures for further biological characterization.
Collapse
Affiliation(s)
- Berin Karaman
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle, Saale, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle, Saale, Germany.
| |
Collapse
|
45
|
Selective Sirt2 inhibition by ligand-induced rearrangement of the active site. Nat Commun 2015; 6:6263. [PMID: 25672491 PMCID: PMC4339887 DOI: 10.1038/ncomms7263] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 01/09/2015] [Indexed: 12/12/2022] Open
Abstract
Sirtuins are a highly conserved class of NAD+-dependent lysine deacylases. The human isotype Sirt2 has been implicated in the pathogenesis of cancer, inflammation and neurodegeneration, which makes the modulation of Sirt2 activity a promising strategy for pharmaceutical intervention. A rational basis for the development of optimized Sirt2 inhibitors is lacking so far. Here we present high-resolution structures of human Sirt2 in complex with highly selective drug-like inhibitors that show a unique inhibitory mechanism. Potency and the unprecedented Sirt2 selectivity are based on a ligand-induced structural rearrangement of the active site unveiling a yet-unexploited binding pocket. Application of the most potent Sirtuin-rearranging ligand, termed SirReal2, leads to tubulin hyperacetylation in HeLa cells and induces destabilization of the checkpoint protein BubR1, consistent with Sirt2 inhibition in vivo. Our structural insights into this unique mechanism of selective sirtuin inhibition provide the basis for further inhibitor development and selective tools for sirtuin biology. The involvement of the sirtuin family of lysine deacylases in disease, metabolism and ageing makes them promising pharmaceutical targets. Rumpf et al. present structures of human Sirt2 in complex with two highly selective drug-like inhibitors, and show that they act by rearranging the enzyme’s active site.
Collapse
|
46
|
Gibellini L, Pinti M, Beretti F, Pierri CL, Onofrio A, Riccio M, Carnevale G, De Biasi S, Nasi M, Torelli F, Boraldi F, De Pol A, Cossarizza A. Sirtuin 3 interacts with Lon protease and regulates its acetylation status. Mitochondrion 2014; 18:76-81. [DOI: 10.1016/j.mito.2014.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 10/24/2022]
|
47
|
Walczak P, Pannek J, Boratyński F, Janik-Polanowicz A, Olejniczak T. Synthesis and fungistatic activity of bicyclic lactones and lactams against Botrytis cinerea, Penicillium citrinum, and Aspergillus glaucus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:8571-8578. [PMID: 25110806 DOI: 10.1021/jf502148h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Six analogues of natural trans-4-butyl-cis-3-oxabicyclo[4.3.0]nonan-2-one (3) and three derivatives, 11, 12, and 13, of Vince lactam (10) were synthesized and tested as fungistatic agents against Botrytis cinerea AM235, Penicillium citrinum AM354, and six strains of Aspergillus. Moreover, bioresolution carried out by means of whole cell microorganisms and commercially available enzymes afforded opposite enantiomerically enriched (-) and (+) isomers of Vince lactam (10), respectively. The effect of compound structures and stereogenic centers on biological activity has been discussed. The highest fungistatic activity was observed for four lactones: 3, 4, 7, and 8 (IC50 = 104.6-115.2 μg/mL) toward B. cinerea AM235. cis-5,6-Epoxy-2-aza[2.2.1]heptan-3-one (13) indicated significant fungistatic activity (IC50 = 107.1 μg/mL) against Aspergillus glaucus AM211. trans-4-Butyl-cis-3-oxabicyclo[4.3.0]nonan-2-one (3) and trans-4-butyl-cis-3-oxabicyclo[4.3.0]non-7-en-2-one (7) exhibited high fungistatic activity (IC50 = 143.2 and 110.2 μg/mL, respectively) against P. citrinum AM354 as well.
Collapse
Affiliation(s)
- Paulina Walczak
- Department of Chemistry, Wrocław University of Environmental and Life Sciences , Norwida 25, 50-375 Wrocław, Poland
| | | | | | | | | |
Collapse
|
48
|
Parenti MD, Grozio A, Bauer I, Galeno L, Damonte P, Millo E, Sociali G, Franceschi C, Ballestrero A, Bruzzone S, Rio AD, Nencioni A. Discovery of Novel and Selective SIRT6 Inhibitors. J Med Chem 2014; 57:4796-804. [DOI: 10.1021/jm500487d] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Marco Daniele Parenti
- Department
of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater
Studiorum, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
| | - Alessia Grozio
- Department
of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy
| | - Inga Bauer
- Department
of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Lauretta Galeno
- Department
of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Patrizia Damonte
- Department
of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Enrico Millo
- Department
of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy
| | - Giovanna Sociali
- Department
of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy
| | - Claudio Franceschi
- Department
of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater
Studiorum, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
- Institute
of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Alberto Ballestrero
- Department
of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
- IRCCS
AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Santina Bruzzone
- Department
of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy
| | - Alberto Del Rio
- Department
of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater
Studiorum, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
- Institute
of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Alessio Nencioni
- Department
of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
- IRCCS
AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| |
Collapse
|
49
|
Schutkowski M, Fischer F, Roessler C, Steegborn C. New assays and approaches for discovery and design of Sirtuin modulators. Expert Opin Drug Discov 2014; 9:183-99. [DOI: 10.1517/17460441.2014.875526] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
50
|
Abstract
Chromatin modifications have been well-established to play a critical role in the regulation of genome function. Many of these modifications are introduced and removed by enzymes that utilize cofactors derived from primary metabolism. Recently, it has been shown that endogenous cofactors and metabolites can regulate the activity of chromatin-modifying enzymes, providing a direct link between the metabolic state of the cell and epigenetics. Here we review metabolic mechanisms of epigenetic regulation with an emphasis on their role in cancer. Focusing on three core mechanisms, we detail and draw parallels between metabolic and chemical strategies to modulate epigenetic signaling, and highlight opportunities for chemical biologists to help shape our knowledge of this emerging phenomenon. Continuing to integrate our understanding of metabolic and genomic regulatory mechanisms may help elucidate the role of nutrition in diseases such as cancer, while also providing a basis for new approaches to modulate epigenetic signaling for therapeutic benefit.
Collapse
Affiliation(s)
- Jordan L. Meier
- Chemical
Genomics Section,
Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|