1
|
Bibi I, Kang KJ, Kim JY, Mushtaq S, Park JA. Development of Structurally Identical Therapeutic and Diagnostic Agents for Image-Guided Boron Neutron Capture Therapy: c(RGD-BPA-K) Peptide with 125I/ natI Albumin-Binding Moiety. Mol Pharm 2025. [PMID: 40307189 DOI: 10.1021/acs.molpharmaceut.5c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The development of boron neutron capture therapy (BNCT) agents and structurally similar radiolabeled counterparts for diagnostic imaging is an area of significant interest. In this study, we designed structurally same compounds, c(RGD-BPA-K)(PEG2-(4-iodophenylbutyl)) (compound 1) and its radioiodinated counterpart, c(RGD-BPA-K)(PEG2-(4-[125I]iodophenylbutyl)) ([125I]1), for efficient BNCT and SPECT/CT imaging, respectively. An albumin-binding moiety was introduced into the compound to enhance the blood circulation time and tumor accumulation. We evaluated the efficacy of compound 1 and [125I]1 in U87MG tumor-bearing mice using SPECT/CT imaging, biodistribution analysis, and inductively coupled plasma mass spectrometry. Both compound 1 and [125I]1 displayed similar pharmacokinetics, high blood retention, and substantial accumulation in U87MG tumors. This study highlights the potential of compound 1 and [125I]1 for SPECT/CT-guided BNCT. The structural identity between the therapeutic and diagnostic agents in BNCT can enhance its therapeutic efficacy. Further structural modifications to increase boron concentration in tumors, as well as thermal neutron irradiation studies, may be necessary to fully explore the potential of our novel BNCT agent.
Collapse
Affiliation(s)
- Iqra Bibi
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
- University of Science and Technology (UST), 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Kyung Jun Kang
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Jung Young Kim
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
- University of Science and Technology (UST), 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Sajid Mushtaq
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
- Department of Chemistry, Pakistan Institute of Engineering and Applied Sciences (PIEAS), P. O. Nilore, Islamabad 45650, Pakistan
| | - Ji-Ae Park
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
- University of Science and Technology (UST), 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
2
|
Kim S, Mushtaq S, Lee KC, Park JA, Kim JY. 64Cu-Labeled Boron-Containing Cyclic RGD Peptides for BNCT and PET Imaging. ACS Med Chem Lett 2024; 15:344-348. [PMID: 38505860 PMCID: PMC10945535 DOI: 10.1021/acsmedchemlett.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 03/21/2024] Open
Abstract
The burgeoning interest in developing boron neutron capture therapy (BNCT) tracers and their accompanying diagnostics for the treatment of recalcitrant tumors has prompted this investigation. Our study aims to devise a tumor treatment strategy utilizing BNCT to target the αvβ3 integrin. To this end, we propose a pioneering boron-infused cyclic Arg-Gly-Asp (RGD) peptide, cRGD(d-BPA)K, designed as an efficacious BNCT tracer. Additionally, we introduce its diagnostic complement, DOTA-cRGD(d-BPA)K, tailored for positron emission tomography (PET) to visualize αvβ3 expressed tumors. Radiolabeling [64Cu]Cu-DOTA-cRGD(d-BPA)K (64Cu-1) resulted in a high radiochemical yield and purity. The radiotracer exhibited exceptional in vitro stability and demonstrated significant uptake in U87MG tumors via PET imaging. Biodistribution analysis using compound 2 showed a 7.0 ppm accumulation of boron in the U87MG tumor 1 h post-intravenous injection. Furthermore, compound 2 displayed superior tumor/blood (2.41) and tumor/muscle (2.46) ratios compared to the clinically approved l-BPA-fructose. Both compound 2 and its diagnostic counterpart 64Cu-1 hold potential for BNCT and cancer diagnosis, respectively, via molecular imaging.
Collapse
Affiliation(s)
- Soyeon Kim
- Division
of Applied RI, Korea Institute of Radiological
& Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic
of Korea
| | - Sajid Mushtaq
- Division
of Applied RI, Korea Institute of Radiological
& Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic
of Korea
- Department
of Nuclear Engineering, Pakistan Institute
of Engineering and Applied Sciences, P.O. Nilore, Islamabad 45650, Pakistan
| | - Kyo Chul Lee
- Division
of Applied RI, Korea Institute of Radiological
& Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic
of Korea
| | - Ji Ae Park
- Division
of Applied RI, Korea Institute of Radiological
& Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic
of Korea
| | - Jung Young Kim
- Division
of Applied RI, Korea Institute of Radiological
& Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic
of Korea
| |
Collapse
|
3
|
Xie W, Tan S, Ren X, Yu J, Yang C, Xie H, Ma Z, Liu Y, Yang S. Tumor-targeted astaxanthin nanoparticles for therapeutic application in vitro. COLLOID AND INTERFACE SCIENCE COMMUNICATIONS 2023; 55:100721. [DOI: 10.1016/j.colcom.2023.100721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Yin L, Li X, Wang R, Zeng Y, Zeng Z, Xie T. Recent Research Progress of RGD Peptide–Modified Nanodrug Delivery Systems in Tumor Therapy. Int J Pept Res Ther 2023; 29:53. [DOI: 10.1007/s10989-023-10523-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 01/06/2025]
Abstract
AbstractThere have been great advancements in targeted nanodrug delivery systems for tumor therapy. Liposomes, polymeric nanoparticles, and inorganic nanoparticles are commonly employed as nanocarriers for drug delivery, and it has been found that arginine glycine aspartic acid (RGD) peptides and their derivatives can be used as ligands of integrin receptors to enhance the direct targeting ability. In this paper, we review the recent applications of RGD-modified liposomes, polymeric nanoparticles, and inorganic nanocarriers in cancer diagnosis and treatment, discuss the current challenges and prospects, and examine the progress made by the latest research on RGD peptide–modified nano delivery systems in cancer therapy. In recent years, RGD peptide–modified nanodrug delivery systems have been proven to have great potential in tumor therapy. Finally, we provide an overview of the current limitations and future directions of RGD peptide–modified nano-drug delivery systems for cancer therapy. This review aims to elucidate the contribution of RGD peptide–modified nanodrug delivery systems in the field of tumor therapy.
Collapse
|
5
|
Wang X, Li C, Wang Y, Chen H, Zhang X, Luo C, Zhou W, Li L, Teng L, Yu H, Wang J. Smart drug delivery systems for precise cancer therapy. Acta Pharm Sin B 2022; 12:4098-4121. [DOI: 10.1016/j.apsb.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
|
6
|
Ghosh S, Das T, Suman SK, Sarma HD, Dash A. Preparation and Preliminary Evaluation of 68Ga-Acridine: An Attempt to Study the Potential of Radiolabeled DNA Intercalator as a PET Radiotracer for Tumor Imaging. Anticancer Agents Med Chem 2021; 20:1538-1547. [PMID: 32357824 DOI: 10.2174/1871520620666200502002609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/13/2019] [Accepted: 02/28/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Acridine is a well-known DNA intercalator and thereby gets easily inserted within DNA. As uncontrolled rapid cell division is one of the primary characteristics of the tumors, it is expected that acridine or its suitable derivatives will have preferential accumulation in the tumorous lesions. Therefore, an attempt was made to radiolabel an acridine derivative with 68Ga and study the potential of the 68Ga-acridine complex as a PET agent for tumor imaging. METHODS 9-aminoacridine was coupled with p-NCS-benzyl-DOTA to render it suitable for labeling with 68Ga. The purified acridine-DOTA conjugate was radiolabeled with 68Ga, eluted from a 68Ge/68Ga radionuclide generator. Various radiolabeling parameters were optimized and the stability of the radiolabeled preparation was studied. The biological behavior of the 68Ga-acridine complex was studied both in vitro and in vivo using Raji cell line and fibrosarcoma tumor bearing Swiss mice, respectively. RESULTS 68Ga-acridine complex was obtained with ~100% radiochemical purity under the optimized reaction conditions involving incubation of 2mg/mL of ligand at 100°C for 30 minutes. The complex maintained a radiochemical purity of >95% in normal saline and >65% in human blood serum at 3h post-incubation. In vitro cellular study showed (3.2±0.1)% uptake of the radiotracer in the Raji cells. Biodistribution study revealed significant tumor accumulation [(11.41±0.41)% injected activity in per gram] of the radiotracer within 1h postadministration along with uptake in other non-target organs such as, blood, liver, GIT kidney etc. Conclusion: The present study indicates the potential of 68Ga-acridine as a PET agent for imaging of tumorous lesions. However, further detailed evaluation of the agent is warranted to explore its actual potential.
Collapse
Affiliation(s)
- Subhajit Ghosh
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| | - Tapas Das
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| | - Shishu K Suman
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| | - Haladhar D Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| |
Collapse
|
7
|
Chen Z, Fu H, Wu H, Huang J, Yao L, Zhang X, Li Y. Syntheses and Preliminary Evaluation of Dual Target PET Probe [18F]-NOTA-Gly3- E (2PEG4-RGD-WH701) for PET Imaging of Breast Cancer. Anticancer Agents Med Chem 2021; 20:1548-1557. [PMID: 32329699 DOI: 10.2174/1871520620666200424101936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 02/05/2023]
Abstract
PURPOSE Tumor Necrosis Factor Receptor 1 (TNFR1) and integrin αvβ3 receptor are overexpressed in breast cancer. We hypothesized that a peptide ligand recognizing both receptors in a single receptor-binding probe would be advantageous. Here, we developed a novel 18F-labeled fusion peptide probe [18F]-NOTA-Gly3- E(2PEG4-RGD-WH701) targeting dual receptors (TNFR1 and αvβ3) and evaluated the diagnostic efficacy of this radioactive probe in both MDA-MB-231 and MCF-7 xenograft models in mice. METHODS The NOTA-conjugated RGD-WH701 analog was radiolabeled with 18F using NOTA-AlF chelation method. We used two PEG4 molecules and Glutamic acid (Glu) to covalently link c(RGDyK) with WH701. Gly3 was also added to further improve the water solubility and pharmacokinetic properties of the probe. The expression of TNFR1 and Integrin αvβ3 in MCF-7 and MDA-MB-231 cells was detected by western blot analysis and immunofluorescence staining. The tumor-targeting characteristics of [18F]-NOTA-Gly3-E(2PEG4-RGDWH701) were assessed in nude mice bearing MDA-MB-231 and MCF-7 xenografts. RESULTS HPLC analysis of the product NOTA-G3-E (2P4-RGD-WH701) revealed a purity >95%. The yield after attenuation correction was approximately 33.5%±2.8% (n=5), and the radiochemical purity was above 95%. The MDA-MB-231 tumor uptake of [18F]-NOTA-Gly3-E(2PEG4-RGD-WH701) was 1.14±0.14%ID/g, as measured by PET at 40min postinjection (p.i.). In comparison, the tumor uptake of [18F]-NOTA-RGD and [18F]- NOTA-WH701 in MDA-MB-231 xenografts was 0.96±0.13%ID/g and 0.93±0.28%ID/g, respectively. The MCF-7 tumor uptake of [18F]-NOTA-Gly3-E(2PEG4-RGD-WH701) was 1.22±0.11%ID/g, as measured by PET at 40min postinjection (p.i.). In comparison, the tumor uptake of [18F]-NOTA-RGD and [18F]-NOTA-WH701 in MCF-7 xenografts was 0.99±0.18%ID/g and 0.57±0.08%ID/g, respectively. CONCLUSION [18F]AlF-NOTA-Gly3-E(2PEG4-RGD-WH701) was successfully synthesized and labeled with 18F. The results from the microPET/CT and biodistribution studies of [18F]AlF-NOTA-Gly3-E(2PEG4-RGDWH701) showed that the tracer could specifically target TNFR1 and integrin αvβ3 receptors.
Collapse
Affiliation(s)
- Zijun Chen
- Medical College of Xiamen University, Xiamen University, Xiamen, China
| | - Hao Fu
- Medical College of Xiamen University, Xiamen University, Xiamen, China
| | - Hua Wu
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Jinxiong Huang
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Lanlin Yao
- Medical College of Xiamen University, Xiamen University, Xiamen, China
| | - Xianzhong Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yesen Li
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, China
| |
Collapse
|
8
|
Kim J, Lee JY, Park HY, Kim H, Kang JH, Kim HJ, Jeong W. Combination of peptides with biological, organic, and inorganic materials for synergistically enhanced diagnostics and therapeutics. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Joo‐Young Kim
- Department of Biological Engineering Inha University Incheon Republic of Korea
- Department of Biological Sciences and Bioengineering Inha University Incheon Republic of Korea
| | - Jae Yun Lee
- Department of Biological Engineering Inha University Incheon Republic of Korea
| | - Ha Yeon Park
- Department of Biological Engineering Inha University Incheon Republic of Korea
| | - Hyunji Kim
- Department of Biological Engineering Inha University Incheon Republic of Korea
| | - Jeon Hyeong Kang
- Department of Biological Engineering Inha University Incheon Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Engineering Inha University Incheon Republic of Korea
- Department of Biological Sciences and Bioengineering Inha University Incheon Republic of Korea
| | - Woo‐Jin Jeong
- Department of Biological Engineering Inha University Incheon Republic of Korea
- Department of Biological Sciences and Bioengineering Inha University Incheon Republic of Korea
| |
Collapse
|
9
|
Song Y, Guo X, Fu J, He B, Wang X, Dai W, Zhang H, Zhang Q. Dual-targeting nanovesicles enhance specificity to dynamic tumor cells in vitro and in vivo via manipulation of αv β3-ligand binding. Acta Pharm Sin B 2020; 10:2183-2197. [PMID: 33304785 PMCID: PMC7715539 DOI: 10.1016/j.apsb.2020.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
The dynamic or flowing tumor cells just as leukemia cells and circulating tumor cells face a microenvironment difference from the solid tumors, and the related targeting nanomedicines are rarely reported. The existence of fluidic shear stress in blood circulation seems not favorable for the binding of ligand modified nanodrugs with their target receptor. Namely, the binding feature is very essential in this case. Herein, we utilized HSPC, PEG-DSPE, cholesterol and two αvβ3 ligands (RGDm7 and DT4) with different binding rates to build dual-targeting nanovesicles, in an effort to achieve a “fast-binding/slow-unbinding” function. It was demonstrated that the dual-targeting nanovesicles actualized efficient cellular uptake and antitumor effect in vitro both for static and dynamic tumor cells. Besides, the potency of the dual-targeting vesicles for flowing tumor cells was better than that for static tumor cells. Then, a tumor metastasis mice model and a leukemia mice model were established to detect the killing ability of the drug-loaded dual-targeting vesicles to dynamic tumor cells in vivo. The therapy efficacy of the dual-targeting system was higher than other controls including single-targeting ones. Generally, it seems possible to strengthen drug-targeting to dynamic tumor cells via the control of ligand–receptor interaction.
Collapse
Key Words
- C6, coumarin-6
- CTCs, circulating tumor cells
- Circulating tumor cells
- DOX, doxorubicin
- DT4, d-thyroxine
- Dual-targeting
- EPR, enhanced permeability and retention
- FSS, fluidic shear stress
- Flowing condition
- Fluidic shear stress
- LIPO, lipid vesicles
- Leukemia
- Lipid vesicle
- PDI, polydispersity index
- PET, positron emission computed tomography
- RGD, Arginine-glycine-aspartic acid
- RGDm7, cRGD-ACP-K
- ROI, regions of interests
- SPR, surface plasmon resonance
- T3, 3,3′,5-triiodothyronine
- T4, thyroxine
Collapse
Affiliation(s)
- Yang Song
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiangfu Guo
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jijun Fu
- Guangzhou Medical University, School of Pharmaceutical Sciences, Guangzhou 511436, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Corresponding author.
| |
Collapse
|
10
|
Natural IgM dominates in vivo performance of liposomes. J Control Release 2020; 319:371-381. [DOI: 10.1016/j.jconrel.2020.01.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/30/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022]
|
11
|
Ahangarzadeh S, Kanafi MM, Hosseinzadeh S, Mokhtarzadeh A, Barati M, Ranjbari J, Tayebi L. Bicyclic peptides: types, synthesis and applications. Drug Discov Today 2019; 24:1311-1319. [PMID: 31102732 DOI: 10.1016/j.drudis.2019.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/19/2019] [Accepted: 05/08/2019] [Indexed: 01/14/2023]
Abstract
Bicyclic peptides form one of the most promising platforms for drug development owing to their biocompatibility, similarity and chemical diversity to proteins, and they are considered as a possible practical tool in various therapeutic and diagnostic applications. Bicyclic peptides are known to have the capability of being employed as an effective alternative to complex molecules, such as antibodies, or small molecules. This review provides a summary of the recent progress on the types, synthesis and applications of bicyclic peptides. More specifically, natural and synthetic bicyclic peptides are introduced with their different production methods and relevant applications, including drug targeting, imaging and diagnosis. Their uses as antimicrobial agents, as well as the therapeutic functions of different bicyclic peptides, are also discussed.
Collapse
Affiliation(s)
- Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad M Kanafi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmood Barati
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Ranjbari
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA.
| |
Collapse
|
12
|
Rhodes CA, Pei D. Bicyclic Peptides as Next-Generation Therapeutics. Chemistry 2017; 23:12690-12703. [PMID: 28590540 DOI: 10.1002/chem.201702117] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Indexed: 12/21/2022]
Abstract
Bicyclic peptides have greater conformational rigidity and metabolic stability than linear and monocyclic peptides and are capable of binding to challenging drug targets with antibody-like affinity and specificity. Powerful combinatorial library technologies have recently been developed to rapidly synthesize and screen large bicyclic peptide libraries for ligands against enzymes, receptors, and protein-protein interaction targets. Bicyclic peptides have been developed as potential therapeutics against a wide range of diseases, drug targeting agents, imaging/diagnostic probes, and research tools. In this Minireview, we provide a summary of the recent progresses on the synthesis and applications of bicyclic peptides.
Collapse
Affiliation(s)
- Curran A Rhodes
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio, 43210, USA
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio, 43210, USA
| |
Collapse
|
13
|
Ma Y, Ai G, Zhang C, Zhao M, Dong X, Han Z, Wang Z, Zhang M, Liu Y, Gao W, Li S, Gu Y. Novel Linear Peptides with High Affinity to αvβ3 Integrin for Precise Tumor Identification. Theranostics 2017; 7:1511-1523. [PMID: 28529634 PMCID: PMC5436510 DOI: 10.7150/thno.18401] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 01/12/2017] [Indexed: 02/06/2023] Open
Abstract
Development of alternative linear peptides for targeting αvβ3 integrin has attracted much attention, as the traditional peptide ligand, cyclic RGD, is limited by inferior water-solubility and complex synthesis. Using pharmacophore-based virtual screening and high-throughput molecular docking, we identified two novel linear small peptides RWr and RWrNM with high affinity and specificity to αvβ3 integrin. The competitive binding with cyclic RGD (c(RGDyK)) and cellular uptake related to the integrin expression levels verified their affinity to αvβ3 integrin. The intermolecular interaction measurement and dynamics simulation demonstrated the high binding affinity and stability, especially for RWrNM. In vivo peptide-guided tumor imaging and targeted therapy further confirmed their specificity. Results indicated that the newly identified small linear peptide RWrNM, with high affinity and specificity to αvβ3 integrin, better water-solubility, and simplified synthetic process, could overcome limitations of the current cyclic RGD peptides, paving the way for diverse use in diagnosis and therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yueqing Gu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 24 Tongjia Road, 210009 (China)
| |
Collapse
|
14
|
Song Z, Lin Y, Zhang X, Feng C, Lu Y, Gao Y, Dong C. Cyclic RGD peptide-modified liposomal drug delivery system for targeted oral apatinib administration: enhanced cellular uptake and improved therapeutic effects. Int J Nanomedicine 2017; 12:1941-1958. [PMID: 28331317 PMCID: PMC5354530 DOI: 10.2147/ijn.s125573] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apatinib is an oral tyrosine kinase inhibitor, which selectively targets vascular endothelial growth factor receptor 2 and has the potential to treat many tumors therapeutically. Cyclic arginylglycylaspartic acid (cRGD)- and polyethylene glycol (PEG)-modified liposomes (cRGD-Lipo-PEG) were constructed to act as a targeted delivery system for the delivery of apatinib to the human colonic cancer cell line, HCT116. These cRGD-modified liposomes specifically recognized integrin αvβ3 and exhibited greater uptake efficiency with respect to delivering liposomes into HCT116 cells when compared to nontargeted liposomes (Lipo-PEG), as well as greater death of tumor cells and apoptosis. The mechanism by which cRGD-Lipo-PEG targets cells was elucidated further with competition assays. To determine the anticancer efficacy in vivo, nude mice were implanted with HCT116 xenografts and treated with apatinib-loaded liposomes or free apatinib intravenously or via intragastric administration. The active and passive targeting of cRGD-Lipo-PEG led to significant tumor treatment targeting ability, better inhibition of tumor growth, and less toxicity when compared with treatments using uncombined apatinib. The results presented strongly support the case for cRGD-Lipo-PEG representing a targeted delivery system for apatinib in the treatment of colonic cancer.
Collapse
Affiliation(s)
- Zhiwang Song
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yun Lin
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xia Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chan Feng
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yonglin Lu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chunyan Dong
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Lee JW, Lee YJ, Shin UC, Kim SW, Kim BI, Lee KC, Kim JY, Park JA. Improved Pharmacokinetics Following PEGylation and Dimerization of a c(RGD-ACH-K) Conjugate Used for Tumor Positron Emission Tomography Imaging. Cancer Biother Radiopharm 2016; 31:295-301. [PMID: 27754748 DOI: 10.1089/cbr.2016.2036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Improving the in vivo pharmacokinetics (PK) of positron emission tomography (PET) radiotracers is of critical importance to tumor diagnosis and therapy. In the case of peptide-based radiotracers, the modification and addition of a linker or spacer functional group often offer faster in vivo pharmacokinetic behavior. In this study, the authors introduced two new PEGlyated dimeric c(RGD-ACH-K) conjugates, in which an aminocyclohexane carboxylic acid (ACH) is inserted into the ring chain of the cyclic RGD peptides, with a common bifunctional chelator (DOTA or NOTA) used for labeling with radiometals (including 68Ga and 64Cu). The addition of polyethylene glycol (PEG) and dimerization of c(RGD-ACH-K) affected the PK of the renal system and the tumor-targeting ability, relative to unmodified molecule. As a result, both 64Cu-DOTA-E[c(RGD-ACH-K)]2 (complex 1) and 64Cu-NOTA-E[c(RGD-ACH-K)]2 (complex 2) exhibited specific tumor-targeting properties relative to tumor-blocking control group, most likely resulting from improved in vivo tumor imaging. The in vivo tumor-to-blood ratio of the 64Cu(NOTA) complex shows better PET imaging than that of the 64Cu(DOTA) complex, which should lead to improved dosimetry and increased suitability for noninvasive monitoring of tumor growth or tumor-targeted radionuclide therapy.
Collapse
Affiliation(s)
- Ji Woong Lee
- 1 Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences , Seoul, Republic of Korea.,2 Department of Integrated Biomedical and Life Science, Korea University , Seoul, Republic of Korea
| | - Yong Jin Lee
- 1 Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences , Seoul, Republic of Korea
| | - Un Chol Shin
- 1 Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences , Seoul, Republic of Korea
| | - Suhng Wook Kim
- 2 Department of Integrated Biomedical and Life Science, Korea University , Seoul, Republic of Korea
| | - Byung Il Kim
- 3 Department of Nuclear Medicine, Korea Cancer Center Hospital , Seoul, Republic of Korea
| | - Kyo Chul Lee
- 1 Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences , Seoul, Republic of Korea
| | - Jung Young Kim
- 1 Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences , Seoul, Republic of Korea
| | - Ji-Ae Park
- 1 Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences , Seoul, Republic of Korea
| |
Collapse
|
16
|
Murugan C, Rayappan K, Thangam R, Bhanumathi R, Shanthi K, Vivek R, Thirumurugan R, Bhattacharyya A, Sivasubramanian S, Gunasekaran P, Kannan S. Combinatorial nanocarrier based drug delivery approach for amalgamation of anti-tumor agents in breast cancer cells: an improved nanomedicine strategy. Sci Rep 2016; 6:34053. [PMID: 27725731 PMCID: PMC5057072 DOI: 10.1038/srep34053] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/07/2016] [Indexed: 01/11/2023] Open
Abstract
Combination therapy of multiple drugs through a single system is exhibiting high therapeutic effects. We investigate nanocarrier mediated inhibitory effects of topotecan (TPT) and quercetin (QT) on triple negative breast cancer (TNBC) (MDA-MB-231) and multi drug resistant (MDR) type breast cancer cells (MCF-7) with respect to cellular uptake efficiency and therapeutic mechanisms as in vitro and in vivo. The synthesized mesoporous silica nanoparticle (MSN) pores used for loading TPT; the outer of the nanoparticles was decorated with poly (acrylic acid) (PAA)-Chitosan (CS) as anionic inner-cationic outer layer respectively and conjugated with QT. Subsequently, grafting of arginine-glycine-aspartic acid (cRGD) peptide on the surface of nanocarrier (CPMSN) thwarted the uptake by normal cells, but facilitated their uptake in cancer cells through integrin receptor mediated endocytosis and the dissociation of nanocarriers due to the ability to degrade of CS and PAA in acidic pH, which enhance the intracellular release of drugs. Subsequently, the released drugs induce remarkable molecular activation as well as structural changes in tumor cell endoplasmic reticulum, nucleus and mitochondria that can trigger cell death. The valuable CPMSNs may open up new avenues in developing targeted therapeutic strategies to treat cancer through serving as an effective drug delivery podium.
Collapse
Affiliation(s)
- Chandran Murugan
- Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Periyar University, Salem-636011, TamilNadu, INDIA
| | - Kathirvel Rayappan
- Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Periyar University, Salem-636011, TamilNadu, INDIA
| | - Ramar Thangam
- King Institute of Preventive Medicine &Research, Guindy, Chennai 600 032, Tamil Nadu, INDIA
| | - Ramasamy Bhanumathi
- Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Periyar University, Salem-636011, TamilNadu, INDIA
| | - Krishnamurthy Shanthi
- Department of Zoology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, INDIA
| | - Raju Vivek
- Department of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200 240, CHINA
| | - Ramasamy Thirumurugan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, INDIA
| | - Atanu Bhattacharyya
- Nanotechnology Section, Department of Biomedical Engineering, Rajiv Gandhi Institute of Technology and Research Centre, Hebbal, Bangalore, 560 032, Karnataka, INDIA
| | | | - Palani Gunasekaran
- King Institute of Preventive Medicine &Research, Guindy, Chennai 600 032, Tamil Nadu, INDIA
| | - Soundarapandian Kannan
- Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Periyar University, Salem-636011, TamilNadu, INDIA
| |
Collapse
|
17
|
Xu H, Wang Z, Li Y, Guo Y, Zhou H, Li Y, Wu F, Zhang L, Yang X, Lu B, Huang Z, Xu W, Xu P. Preparation and characterization of a dual-receptor mesoporous silica nanoparticle–hyaluronic acid–RGD peptide targeting drug delivery system. RSC Adv 2016. [DOI: 10.1039/c6ra03113g] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel mesoporous silica nanoparticles conjugated with hyaluronic acid and RGD peptide were developed for dual-receptor mediated targeting drug delivery.
Collapse
|
18
|
Sartori A, Bianchini F, Migliari S, Burreddu P, Curti C, Vacondio F, Arosio D, Ruffini L, Rassu G, Calorini L, Pupi A, Zanardi F, Battistini L. Synthesis and preclinical evaluation of a novel, selective 111In-labelled aminoproline-RGD-peptide for non-invasive melanoma tumor imaging. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00301f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An 111In-labelled Amp-based RGD-DOTA conjugate was synthesized and evaluated in preclinical models of human melanoma as a novel integrin-targeted SPECT imaging tracer.
Collapse
|
19
|
Park JA, Lee YJ, Ko IO, Kim TJ, Chang Y, Lim SM, Kim KM, Kim JY. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide. Biochem Biophys Res Commun 2014; 455:246-50. [PMID: 25449282 DOI: 10.1016/j.bbrc.2014.10.155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 10/31/2014] [Indexed: 11/16/2022]
Abstract
Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyK peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images.
Collapse
Affiliation(s)
- Ji-Ae Park
- Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea.
| | - Yong Jin Lee
- Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - In Ok Ko
- Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Tae-Jeong Kim
- Institute of Biomedical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Yongmin Chang
- Institute of Biomedical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Sang Moo Lim
- Department of Nuclear Medicine, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Kyeong Min Kim
- Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Jung Young Kim
- Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea.
| |
Collapse
|