1
|
Xie W, Kong Y, Ren C, Wen Y, Ying M, Xing H. Chemistries on the inner leaflet of the cell membrane. Chem Commun (Camb) 2025; 61:2387-2402. [PMID: 39810742 DOI: 10.1039/d4cc05186f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The cell membrane, characterized by its inherent asymmetry, functions as a dynamic barrier that regulates numerous cellular activities. This Highlight aims to provide the chemistry community with a comprehensive overview of the intriguing and underexplored inner leaflet, encompassing both fundamental biology and emerging synthetic modification strategies. We begin by describing the asymmetric nature of the plasma membrane, with a focus on the distinct roles of lipids, proteins, and glycan chains, highlighting the composition and biofunctions of the inner leaflet and the biological mechanisms that sustain membrane asymmetry. Next, we explore chemical biological strategies for engineering the inner leaflet, including genetic engineering, transmembrane peptides, and liposome fusion-based transport. In the perspective section, we discuss the challenges in developing chemistries for the inner leaflet of the cell membrane, aiming to inspire researchers and collaborators to explore this field and address its unanswered biological questions.
Collapse
Affiliation(s)
- Wenxue Xie
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Yuhan Kong
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Cong Ren
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Yujian Wen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | | | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
- Research Institute of Hunan University in Chongqing, Chongqing, 401100, China
| |
Collapse
|
2
|
Zhang YT, Fu X, Ting Lim JJ, Zhang SX. Engraftment of a surrogate antigen onto tumor cell surface via pHLIP peptide to universally target CAR-T cell therapy to solid tumors. Cancer Lett 2025; 608:217319. [PMID: 39489212 PMCID: PMC11972592 DOI: 10.1016/j.canlet.2024.217319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
CAR-T cells and monoclonal antibodies (mAbs) are immunotherapeutics that have shown efficacies against certain malignancies. However, their broad application is hindered by the scarcity of tumor-associated antigens on tumor cell surfaces. Previous investigations unveiled the unique capacity of pH-low insertion peptide (pHLIP) to anchor to plasma membranes under acidic conditions. Considering that an acidic tumor microenvironment is a hallmark of solid tumors, we engineered a novel peptide, Myc-pHLIP, by tethering a surrogate epitope tag, the c-Myc-tag, to pHLIP. We evaluated the efficiency of Myc-pHLIP in inserting the artificial c-Myc-tag onto the plasma membrane of malignant cells and determined if this engraftment could convert it into a therapeutic target for CAR-T cells or mAbs. Our in vitro experiments demonstrated that incubating Myc-pHLIP with tumor cells in acidic media triggered significant killing by either Myc-targeted CAR-T cells (Myc-CAR-T), or by an anti-Myc mAb in the presence of NK cells. In vivo studies demonstrated substantial antitumor effects with sequential administration of Myc-pHLIP followed by either Myc-CAR-T or Myc-mAb. These findings establish that Myc-pHLIP has the potential to act as a universal surrogate tumor antigen capable of directing CAR-T cells or mAbs to treat any solid tumors by concurrently targeting both malignant and stromal cells.
Collapse
Affiliation(s)
- Yan-Ting Zhang
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA; Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ, 08103, USA; Department Biomedical Sciences, Cooper Medical School of Rowan University, 401 Broadway, Camden, NJ, 08103, USA
| | - Xinping Fu
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Jane Jing Ting Lim
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Shaun Xiaoliu Zhang
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
3
|
Ankrom E, Dalesandro B, Pires MM, Thévenin D. Selective Recruitment of Antibodies to Cancer Cells and Immune Cell-mediated Killing via In Situ Click Chemistry. ChemMedChem 2024; 19:e202400356. [PMID: 39087480 PMCID: PMC11617666 DOI: 10.1002/cmdc.202400356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 07/14/2024] [Accepted: 01/17/2024] [Indexed: 08/02/2024]
Abstract
Many current cancer immunotherapies function by redirecting immune system components to recognize cancer biomarkers and initiate a cytotoxic attack. The lack of a universal tumor biomarker limits the therapeutic potential of these approaches. However, one feature characteristic of nearly all solid tumors is extracellular acidity. This inherent acidity provides the basis for targeted drug delivery via the pH-low insertion peptide (pHLIP), which selectively accumulates in tumors in vivo due to a pH-dependent membrane insertion propensity. Previously, we established that we could selectively decorate cancer cells with antigen-pHLIP conjugates to facilitate antibody recruitment and subsequent killing by engineered effector cells via antibody-dependent cellular cytotoxicity (ADCC). Here, we present a novel strategy for opsonizing antibodies on target cell surfaces using click chemistry. We utilize pHLIP to facilitate selective tetrazine - trans-cyclooctene ligation of human IgGs to the cancer cell surface and induce ADCC. We demonstrate that our approach activates the primary ADCC signaling pathway via CD16a (FcγRIIIa) receptors on effector cells and induces the killing of cancer cell targets by engineered NK cells.
Collapse
Affiliation(s)
- Emily Ankrom
- Department of ChemistryLehigh UniversityBethlehem, Pennsylvania18015USA
| | - Brianna Dalesandro
- Department of ChemistryUniversity of VirginiaCharlottesville, Virginia22904USA
| | - Marcos M. Pires
- Department of ChemistryUniversity of VirginiaCharlottesville, Virginia22904USA
| | - Damien Thévenin
- Department of ChemistryLehigh UniversityBethlehem, Pennsylvania18015USA
| |
Collapse
|
4
|
Knepper LE, Ankrom ET, Thévenin D. Enhancing Anti-Cancer Immune Response by Acidosis-Sensitive Nanobody Display. J Membr Biol 2024; 257:391-401. [PMID: 39254684 PMCID: PMC11584308 DOI: 10.1007/s00232-024-00322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024]
Abstract
One of the main challenges with many cancer immunotherapies is that biomarkers are needed for targeting. These biomarkers are often associated with tumors but are not specific to a particular tumor and can lead to damage in healthy tissues, resistance to treatment, or the need for customization for different types of cancer due to variations in targets. A promising alternative approach is to target the acidic microenvironment found in most solid tumor types. This can be achieved using the pH (Low) Insertion Peptide (pHLIP), which inserts selectively into cell membranes under acidic conditions, sparing healthy tissues. pHLIP has shown potential for imaging, drug delivery, and surface display. For instance, we previously used pHLIP to display epitopes on the surfaces of cancer cells, enabling antibody-mediated immune cell recruitment and selective killing of cancer cells. In this study, we further explored this concept by directly fusing an anti-CD16 nanobody, which activates natural killer (NK) cells, to pHLIP, eliminating the need for antibody recruitment. Our results demonstrated the insertion of pH-sensitive agents into cancer cells, activation of the CD16 receptor on effector cells, and successful targeting and destruction of cancer cells by high-affinity CD16+ NK cells in two cancer cell lines.
Collapse
Affiliation(s)
- Leah E Knepper
- Department of Chemistry, Lehigh University, Bethlehem, PA, 18015, USA
| | - Emily T Ankrom
- Department of Chemistry, Lehigh University, Bethlehem, PA, 18015, USA
| | - Damien Thévenin
- Department of Chemistry, Lehigh University, Bethlehem, PA, 18015, USA.
| |
Collapse
|
5
|
Knepper LE, Ankrom ET, Thévenin D. Enhancing Anti-Cancer Immune Response by Acidosis-sensitive Nanobody Display. RESEARCH SQUARE 2024:rs.3.rs-4750804. [PMID: 39184093 PMCID: PMC11343302 DOI: 10.21203/rs.3.rs-4750804/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
One of the main challenges with many cancer immuno-therapies is that they depend on biomarkers for targeting. These biomarkers are often associated with tumors but are not specific to a particular tumor, which can lead to damage in healthy tissues, resistance to treatment, and the need for customization for different types of cancer due to the variations in targets. A promising alternative approach is to target the acidic microenvironment found in most solid tumor types. This can be achieved using the pH (Low) Insertion Peptide (pHLIP), which inserts selectively into cell membranes in acidic conditions, sparing healthy tissues. pHLIP has shown potential for imaging, drug delivery, and surface display. For instance, we previously used pHLIP to display epitopes on the surfaces of cancer cells, enabling antibody-mediated immune cell recruitment and selective killing of cancer cells. In this study, we further this concept by directly fusing an anti-CD16 nanobody, which activates Natural Killer (NK) cells, to pHLIP, eliminating the need for antibody recruitment. Our results demonstrate pH-sensitive insertion into cancer cells, activation of the CD16 receptor on effector cells, and successful targeting and destruction of cancer cells by high-affinity CD16 + NK cells in two cancer cell lines.
Collapse
|
6
|
Deskeuvre M, Lan J, Messens J, Riant O, Feron O, Frédérick R. A novel approach to pH-Responsive targeted cancer Therapy: Inhibition of FaDu cancer cell proliferation with a pH low insertion Peptide-Conjugated DGAT1 inhibitor. Int J Pharm 2024; 657:124132. [PMID: 38641019 DOI: 10.1016/j.ijpharm.2024.124132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Targeting enzymes involved in lipid metabolism is increasingly recognized as a promising anticancer strategy. Efficient inhibition of diacylglycerol O-transferase 1 (DGAT1) can block fatty acid (FA) storage. This, in turn, triggers an increase in free polyunsaturated FA concentration, leading to peroxidation and ferroptosis. In this study, we report the development of a pH-sensitive peptide (pHLIP)-drug conjugate designed to selectively deliver DGAT1 inhibitors to cancer cells nested within the acidic microenvironment of tumors. We utilized two previously established pHLIP sequences for coupling with drugs. The study of DGAT1 conjugates in large unilamellar vesicles (LUVs) of different compositions did not reveal enhanced pH-dependent insertion compared to POPC LUVs. However, using in vitro 3D tumor spheroids, significant antiproliferative effects were observed upon exposure to pHLIP-T863 (DGAT1 inhibitor) conjugates, surpassing the inhibitory activity of T863 alone. In conclusion, our study provides the first evidence that pHLIP-based conjugates with DGAT1 inhibitors have the potential to specifically target the acidic compartment of tumors. Moreover, it sheds light on the limitations of LUV models in capturing the pH-dependency of such conjugates.
Collapse
Affiliation(s)
- Marine Deskeuvre
- Louvain Drug Research Institute (LDRI), Medicinal Chemistry Research Group (CMFA), Université Catholique de Louvain (UCLouvain), 73 Avenue Emmanuel Mounier, B-1200 Brussel, Belgium; Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 57 Avenue Hippocrate B1.57.04, B-1200 Brussels, Belgium
| | - Junjie Lan
- Institute of Condensed Matter and Nanosciences, MOST Division, Place Louis Pasteur, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve B-1348, Belgium
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie (VIB), 1050 Brussels, Belgium; Brussels Center for Redox Biology, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Olivier Riant
- Institute of Condensed Matter and Nanosciences, MOST Division, Place Louis Pasteur, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve B-1348, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 57 Avenue Hippocrate B1.57.04, B-1200 Brussels, Belgium; Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, B-1300 Wavre, Belgium
| | - Raphaël Frédérick
- Louvain Drug Research Institute (LDRI), Medicinal Chemistry Research Group (CMFA), Université Catholique de Louvain (UCLouvain), 73 Avenue Emmanuel Mounier, B-1200 Brussel, Belgium.
| |
Collapse
|
7
|
Ghafoor MH, Song BL, Zhou L, Qiao ZY, Wang H. Self-Assembly of Peptides as an Alluring Approach toward Cancer Treatment and Imaging. ACS Biomater Sci Eng 2024; 10:2841-2862. [PMID: 38644736 DOI: 10.1021/acsbiomaterials.4c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Cancer is a severe threat to humans, as it is the second leading cause of death after cardiovascular diseases and still poses the biggest challenge in the world of medicine. Due to its higher mortality rates and resistance, it requires a more focused and productive approach to provide the solution for it. Many therapies promising to deliver favorable results, such as chemotherapy and radiotherapy, have come up with more negatives than positives. Therefore, a new class of medicinal solutions and a more targeted approach is of the essence. This review highlights the alluring properties, configurations, and self-assembly of peptide molecules which benefit the traditional approach toward cancer therapy while sparing the healthy cells in the process. As targeted drug delivery systems, self-assembled peptides offer a wide spectrum of conjugation, biocompatibility, degradability-controlled responsiveness, and biomedical applications, including cancer treatment and cancer imaging.
Collapse
Affiliation(s)
- Muhammad Hamza Ghafoor
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ben-Li Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lei Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
8
|
Kelly JJ, Ankrom ET, Newkirk SE, Thévenin D, Pires MM. Targeted acidosis mediated delivery of antigenic MHC-binding peptides. Front Immunol 2024; 15:1337973. [PMID: 38665920 PMCID: PMC11043575 DOI: 10.3389/fimmu.2024.1337973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Cytotoxic T lymphocytes are the primary effector immune cells responsible for protection against cancer, as they target peptide neoantigens presented through the major histocompatibility complex (MHC) on cancer cells, leading to cell death. Targeting peptide-MHC (pMHC) complex offers a promising strategy for immunotherapy due to their specificity and effectiveness against cancer. In this work, we exploit the acidic tumor micro-environment to selectively deliver antigenic peptides to cancer using pH(low) insertion peptides (pHLIP). We demonstrated the delivery of MHC binding peptides directly to the cytoplasm of melanoma cells resulted in the presentation of antigenic peptides on MHC, and activation of T cells. This work highlights the potential of pHLIP as a vehicle for the targeted delivery of antigenic peptides and its presentation via MHC-bound complexes on cancer cell surface for activation of T cells with implications for enhancing anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Joey J. Kelly
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Emily T. Ankrom
- Department of Chemistry, Lehigh University, Bethlehem, PA, United States
| | - Sarah E. Newkirk
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Damien Thévenin
- Department of Chemistry, Lehigh University, Bethlehem, PA, United States
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
9
|
Reshetnyak YK, Andreev OA, Engelman DM. Aiming the magic bullet: targeted delivery of imaging and therapeutic agents to solid tumors by pHLIP peptides. Front Pharmacol 2024; 15:1355893. [PMID: 38545547 PMCID: PMC10965573 DOI: 10.3389/fphar.2024.1355893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/05/2024] [Indexed: 11/11/2024] Open
Abstract
The family of pH (Low) Insertion Peptides (pHLIP) comprises a tumor-agnostic technology that uses the low pH (or high acidity) at the surfaces of cells within the tumor microenvironment (TME) as a targeted biomarker. pHLIPs can be used for extracellular and intracellular delivery of a variety of imaging and therapeutic payloads. Unlike therapeutic delivery targeted to specific receptors on the surfaces of particular cells, pHLIP targets cancer, stromal and some immune cells all at once. Since the TME exhibits complex cellular crosstalk interactions, simultaneous targeting and delivery to different cell types leads to a significant synergistic effect for many agents. pHLIPs can also be positioned on the surfaces of various nanoparticles (NPs) for the targeted intracellular delivery of encapsulated payloads. The pHLIP technology is currently advancing in pre-clinical and clinical applications for tumor imaging and treatment.
Collapse
Affiliation(s)
- Yana K. Reshetnyak
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Oleg A. Andreev
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Donald M. Engelman
- Molecular Biophysics and Biochemistry Department, Yale, New Haven, CT, United States
| |
Collapse
|
10
|
Kelly JJ, Ankrom E, Thévenin D, Pires MM. Targeted Acidosis Mediated Delivery of Antigenic MHC-Binding Peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562409. [PMID: 37904977 PMCID: PMC10614887 DOI: 10.1101/2023.10.18.562409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Cytotoxic T lymphocytes are the primary effector immune cells responsible for protection against cancer, as they target peptide neoantigens presented through the major histocompatibility complex (MHC) on cancer cells, leading to cell death. Targeting peptide-MHC (pMHC) complexes offers a promising strategy for immunotherapy due to its specificity and effectiveness against cancer. In this work, we exploit the acidic tumor micro-environment to selectively deliver antigenic peptides to cancer cells using pH(low) insertion peptides (pHLIP). We demonstrated that the delivery of MHC binding peptides directly to the cytoplasm of melanoma cells resulted in the presentation of antigenic peptides on MHC, and subsequent activation of T cells. This work highlights the potential of pHLIP as a vehicle for targeted delivery of antigenic peptides and their presentation via MHC-bound complexes on cancer cell surfaces for activation of T cells with implications for enhancing anti-cancer immunotherapy.
Collapse
|
11
|
Wachira FW, Githirwa DC, McPartlon T, Nazarenko V, Gonzales JJC, Gazura MM, Leen C, Clary HR, Alston C, Klees LM, Yao L, An M. D-to-E and T19V Variants of the pH-Low Insertion Peptide and Their Doxorubicin Conjugates Interact with Membrane at Higher pH Ranges Than WT. Biochemistry 2023; 62:2997-3011. [PMID: 37793002 DOI: 10.1021/acs.biochem.3c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
To improve targeted cargo delivery to cancer cells, pH-Low Insertion Peptide (pHLIP) variants were developed to interact with the membrane at pH values higher than those of the WT. The Asp-to-Glu variants aim to increase side chain pKa without disturbing the sequence of protonations that underpin membrane insertion. The Thr19 variants represent efforts to perturb the critical Pro20 residue. To study the effect of cargo on pHLIP insertion, doxorubicin (Dox), a fluorescent antineoplastic drug, was conjugated to selected variants near the inserting C-terminus. Variants and conjugates were characterized on a POPC membrane using Trp and Dox fluorescence methods to define the entire pH range of insertion (pHinitial-pHfinal). Compared to WT with a pHi-pHf range of 6.7-5.6, D25E-D31E-D33E, D14E-D25E-D31E-D33E, and T19V-D25E variants demonstrated higher pHi-pHf ranges of 7.3-6.1, 7.3-6.3, and 8.2-5.4, respectively. The addition of Dox expanded the pHi-pHf range, mainly by shifting pHi to higher pH values (e.g., WT pHLIP-Dox has a pHi-pHf range of 7.7-5.2). Despite the low Hill coefficient observed for the conjugates, D14E-D25E-D31E-D33E pHLIP-Dox completed insertion by a pHf of 5.7. However, the Dox cargo remained in the hydrophobic membrane interior after pHLIP insertion, which may impede drug release. Finally, a logistic function can describe pHLIP insertion as a peripheral-to-TM (start-to-finish) two-state transition; wherever possible, we discuss data deviating from such sigmoidal fitting in support of the idea that pH-specific intermediate states distinct from the initial peripheral state and the final TM state exist at intervening pH values.
Collapse
Affiliation(s)
- Faith W Wachira
- Department of Chemistry, State University of New York (SUNY), Binghamton University, Binghamton, New York 13902, United States
| | - Dancan C Githirwa
- Department of Chemistry, State University of New York (SUNY), Binghamton University, Binghamton, New York 13902, United States
| | - Thomas McPartlon
- Department of Chemistry, State University of New York (SUNY), Binghamton University, Binghamton, New York 13902, United States
| | - Vladyslav Nazarenko
- Department of Chemistry, State University of New York (SUNY), Binghamton University, Binghamton, New York 13902, United States
| | - Jerel J C Gonzales
- Department of Chemistry, State University of New York (SUNY), Binghamton University, Binghamton, New York 13902, United States
| | - Makenzie M Gazura
- Department of Chemistry, State University of New York (SUNY), Binghamton University, Binghamton, New York 13902, United States
| | - Caitlin Leen
- Department of Chemistry, State University of New York (SUNY), Binghamton University, Binghamton, New York 13902, United States
| | - Hannah R Clary
- Department of Chemistry, State University of New York (SUNY), Binghamton University, Binghamton, New York 13902, United States
| | - Claire Alston
- Department of Chemistry, State University of New York (SUNY), Binghamton University, Binghamton, New York 13902, United States
| | - Lukas M Klees
- Department of Chemistry, State University of New York (SUNY), Binghamton University, Binghamton, New York 13902, United States
| | - Lan Yao
- Department of Chemistry, State University of New York (SUNY), Binghamton University, Binghamton, New York 13902, United States
- Department of Physics, SUNY, Binghamton University, Binghamton, New York 13902, United States
| | - Ming An
- Department of Chemistry, State University of New York (SUNY), Binghamton University, Binghamton, New York 13902, United States
| |
Collapse
|
12
|
Asrorov AM, Wang H, Zhang M, Wang Y, He Y, Sharipov M, Yili A, Huang Y. Cell penetrating peptides: Highlighting points in cancer therapy. Drug Dev Res 2023; 84:1037-1071. [PMID: 37195405 DOI: 10.1002/ddr.22076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/29/2023] [Indexed: 05/18/2023]
Abstract
Cell-penetrating peptides (CPPs), first identified in HIV a few decades ago, deserved great attention in the last two decades; especially to support the penetration of anticancer drug means. In the drug delivery discipline, they have been involved in various approaches from mixing with hydrophobic drugs to the use of genetically conjugated proteins. The early classification as cationic and amphipathic CPPs has been extended to a few more classes such as hydrophobic and cyclic CPPs so far. Developing potential sequences utilized almost all methods of modern science: choosing high-efficiency peptides from natural protein sequences, sequence-based comparison, amino acid substitution, obtaining chemical and/or genetic conjugations, in silico approaches, in vitro analysis, animal experiments, etc. The bottleneck effect in this discipline reveals the complications that modern science faces in drug delivery research. Most CPP-based drug delivery systems (DDSs) efficiently inhibited tumor volume and weight in mice, but only in rare cases reduced their levels and continued further processes. The integration of chemical synthesis into the development of CPPs made a significant contribution and even reached the clinical stage as a diagnostic tool. But constrained efforts still face serious problems in overcoming biobarriers to reach further achievements. In this work, we reviewed the roles of CPPs in anticancer drug delivery, focusing on their amino acid composition and sequences. As the most suitable point, we relied on significant changes in tumor volume in mice resulting from CPPs. We provide a review of individual CPPs and/or their derivatives in a separate subsection.
Collapse
Affiliation(s)
- Akmal M Asrorov
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Institute of Bioorganic Chemistry, AS of Uzbekistan, Tashkent, Uzbekistan
- Department of Natural Substances Chemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Huiyuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Meng Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yonghui Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yang He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mirkomil Sharipov
- Institute of Bioorganic Chemistry, AS of Uzbekistan, Tashkent, Uzbekistan
| | - Abulimiti Yili
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute for Drug Discovery, Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai, China
| |
Collapse
|
13
|
Rizzo S, Sikorski E, Park S, Im W, Vasquez‐Montes V, Ladokhin AS, Thévenin D. Promoting the activity of a receptor tyrosine phosphatase with a novel pH-responsive transmembrane agonist inhibits cancer-associated phenotypes. Protein Sci 2023; 32:e4742. [PMID: 37515426 PMCID: PMC10461461 DOI: 10.1002/pro.4742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 07/30/2023]
Abstract
Cell signaling by receptor protein tyrosine kinases (RTKs) is tightly controlled by the counterbalancing actions of receptor protein tyrosine phosphatases (RPTPs). Due to their role in attenuating the signal-initiating potency of RTKs, RPTPs have long been viewed as therapeutic targets. However, the development of activators of RPTPs has remained limited. We previously reported that the homodimerization of a representative member of the RPTP family (protein tyrosine phosphatase receptor J or PTPRJ) is regulated by specific transmembrane (TM) residues. Disrupting this interaction by single point mutations promotes PTPRJ access to its RTK substrates (e.g., EGFR and FLT3), reduces RTK's phosphorylation and downstream signaling, and ultimately antagonizes RTK-driven cell phenotypes. Here, we designed and tested a series of first-in-class pH-responsive TM peptide agonists of PTPRJ that are soluble in aqueous solution but insert as a helical TM domain in lipid membranes when the pH is lowered to match that of the acidic microenvironment of tumors. The most promising peptide reduced EGFR's phosphorylation and inhibited cancer cell EGFR-driven migration and proliferation, similar to the PTPRJ's TM point mutations. Developing tumor-selective and TM-targeting peptide binders of critical RPTPs could afford a potentially transformative approach to studying RPTP's selectivity mechanism without requiring less specific inhibitors and represent a novel class of therapeutics against RTK-driven cancers.
Collapse
Affiliation(s)
- Sophie Rizzo
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
| | - Eden Sikorski
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
| | - Soohyung Park
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | - Wonpil Im
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | - Victor Vasquez‐Montes
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansas CityKansasUSA
| | - Alexey S. Ladokhin
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansas CityKansasUSA
| | - Damien Thévenin
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
| |
Collapse
|
14
|
Kondrashov A, Sapkota S, Sharma A, Riano I, Kurzrock R, Adashek JJ. Antibody-Drug Conjugates in Solid Tumor Oncology: An Effectiveness Payday with a Targeted Payload. Pharmaceutics 2023; 15:2160. [PMID: 37631374 PMCID: PMC10459723 DOI: 10.3390/pharmaceutics15082160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are at the forefront of the drug development revolution occurring in oncology. Formed from three main components-an antibody, a linker molecule, and a cytotoxic agent ("payload"), ADCs have the unique ability to deliver cytotoxic agents to cells expressing a specific antigen, a great leap forward from traditional chemotherapeutic approaches that cause widespread effects without specificity. A variety of payloads can be used, including most frequently microtubular inhibitors (auristatins and maytansinoids), as well as topoisomerase inhibitors and alkylating agents. Finally, linkers play a critical role in the ADCs' effect, as cleavable moieties that serve as linkers impact site-specific activation as well as bystander killing effects, an upshot that is especially important in solid tumors that often express a variety of antigens. While ADCs were initially used in hematologic malignancies, their utility has been demonstrated in multiple solid tumor malignancies, including breast, gastrointestinal, lung, cervical, ovarian, and urothelial cancers. Currently, six ADCs are FDA-approved for the treatment of solid tumors: ado-trastuzumab emtansine and trastuzumab deruxtecan, both anti-HER2; enfortumab-vedotin, targeting nectin-4; sacituzuzmab govitecan, targeting Trop2; tisotumab vedotin, targeting tissue factor; and mirvetuximab soravtansine, targeting folate receptor-alpha. Although they demonstrate utility and tolerable safety profiles, ADCs may become ineffective as tumor cells undergo evolution to avoid expressing the specific antigen being targeted. Furthermore, the current cost of ADCs can be limiting their reach. Here, we review the structure and functions of ADCs, as well as ongoing clinical investigations into novel ADCs and their potential as treatments of solid malignancies.
Collapse
Affiliation(s)
- Aleksei Kondrashov
- Department of Internal Medicine, Saint Agnes Hospital, Baltimore, MD 21229, USA; (A.K.); (S.S.)
| | - Surendra Sapkota
- Department of Internal Medicine, Saint Agnes Hospital, Baltimore, MD 21229, USA; (A.K.); (S.S.)
| | - Aditya Sharma
- Department of Internal Medicine, Dartmouth Health, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; (A.S.); (I.R.)
| | - Ivy Riano
- Department of Internal Medicine, Dartmouth Health, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; (A.S.); (I.R.)
- Division of Hematology and Oncology, Dartmouth Cancer Center, Lebanon, NH 03755, USA
| | - Razelle Kurzrock
- WIN Consortium, 94550 Paris, France;
- MCW Cancer Center, Milwaukee, WI 53226, USA
- Division of Oncology and Hematology, University of Nebraska, Omaha, NE 68198, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Jacob J. Adashek
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD 21287, USA
| |
Collapse
|
15
|
Ouyang J, Sheng Y, Wang W. Recent Advances of Studies on Cell-Penetrating Peptides Based on Molecular Dynamics Simulations. Cells 2022; 11:cells11244016. [PMID: 36552778 PMCID: PMC9776715 DOI: 10.3390/cells11244016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
With the ability to transport cargo molecules across cell membranes with low toxicity, cell-penetrating peptides (CPPs) have become promising candidates for next generation peptide-based drug delivery vectors. Over the past three decades since the first CPP was discovered, a great deal of work has been done on the cellular uptake mechanisms and the applications for the delivery of therapeutic molecules, and significant advances have been made. But so far, we still do not have a precise and unified understanding of the structure-activity relationship of the CPPs. Molecular dynamics (MD) simulations provide a method to reveal peptide-membrane interactions at the atomistic level and have become an effective complement to experiments. In this paper, we review the progress of the MD simulations on CPP-membrane interactions, including the computational methods and technical improvements in the MD simulations, the research achievements in the CPP internalization mechanism, CPP decoration and coupling, and the peptide-induced membrane reactions during the penetration process, as well as the comparison of simulated and experimental results.
Collapse
Affiliation(s)
- Jun Ouyang
- School of Public Courses, Bengbu Medical College, Bengbu 233030, China
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yuebiao Sheng
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- High Performance Computing Center, Nanjing University, Nanjing 210093, China
- Correspondence: (Y.S.); (W.W.)
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Correspondence: (Y.S.); (W.W.)
| |
Collapse
|
16
|
Abstract
Significance: Cancer-associated tissue-specific lactic acidosis stimulates and mediates tumor invasion and metastasis and is druggable. Rarely, malignancy causes systemic lactic acidosis, the role of which is poorly understood. Recent Advances: The understanding of the role of lactate has shifted dramatically since its discovery. Long recognized as only a waste product, lactate has become known as an alternative metabolism substrate and a secreted nutrient that is exchanged between the tumor and the microenvironment. Tissue-specific lactic acidosis is targeted to improve the host body's anticancer defense and serves as a tool that allows the targeting of anticancer compounds. Systemic lactic acidosis is associated with poor survival. In patients with solid cancer, systemic lactic acidosis is associated with an extremely poor prognosis, as revealed by the analysis of 57 published cases in this study. Although it is considered a pathology worth treating, targeting systemic lactic acidosis in patients with solid cancer is usually inefficient. Critical Issues: Research gaps include simple questions, such as the unknown nuclear pH of the cancer cells and its effects on chemotherapy outcomes, pH sensitivity of glycosylation in cancer cells, in vivo mechanisms of response to acidosis in the absence of lactate, and overinterpretation of in vitro results that were obtained by using cells that were not preadapted to acidic environments. Future Directions: Numerous metabolism-targeting anticancer compounds induce lactatemia, lactic acidosis, or other types of acidosis. Their potential to induce acidic environments is largely overlooked, although the acidosis might contribute to a substantial portion of the observed clinical effects. Antioxid. Redox Signal. 37, 1130-1152.
Collapse
Affiliation(s)
- Petr Heneberg
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
17
|
Deskeuvre M, Lan J, Dierge E, Messens J, Riant O, Corbet C, Feron O, Frédérick R. Targeting cancer cells in acidosis with conjugates between the carnitine palmitoyltransferase 1 inhibitor etomoxir and pH (low) Insertion Peptides. Int J Pharm 2022; 624:122041. [PMID: 35868479 DOI: 10.1016/j.ijpharm.2022.122041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 10/17/2022]
Abstract
Targeting enzymes involved in tumor metabolism is a promising way to tackle cancer progression. The inhibition of carnitine palmitoyltransferase 1 (CPT1) by etomoxir (Eto) efficiently slows down the growth of various cancers. Unfortunately, the clinical use of this drug was abandoned because of hepatotoxic effects. We report the development of pH-sensitive peptide (pHLIP)-drug conjugate to deliver Eto selectively to cancer cells exposed to acidic microenvironmental conditions. A newly designed sequence for the pHLIP peptide, named pHLIPd, was compared with a previously published reference pHLIP peptide, named pHLIPr. We showed that the conjugate between pHLIPd and Eto has a better pH-dependent insertion and structuration than the pHLIPr-based conjugate inside POPC vesicles. We observed antiproliferative effects when applied on acid-adapted cancer cells, reaching a larger inhibitory activity than Eto alone. In conclusion, this study brings the first evidence that pHLIP-based conjugates with a CPT1 inhibitor has the potential to specifically target the tumor acidic compartment and exert anticancer effects while sparing healthy tissues.
Collapse
Affiliation(s)
- Marine Deskeuvre
- Louvain Drug Research Institute (LDRI), Medicinal Chemistry Research Group (CMFA), Université Catholique de Louvain (UCLouvain), 73 Avenue Emmanuel Mounier, B-1200 Brussel, Belgium; Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 57 Avenue Hippocrate B1.57.04, B-1200 Brussels, Belgium
| | - Junjie Lan
- Institute of Condensed Matter and Nanosciences, MOST Division, Place Louis Pasteur, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve B-1348, Belgium
| | - Emeline Dierge
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 57 Avenue Hippocrate B1.57.04, B-1200 Brussels, Belgium
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), 1050 Brussels, Belgium; Brussels Center for Redox Biology, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Olivier Riant
- Institute of Condensed Matter and Nanosciences, MOST Division, Place Louis Pasteur, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve B-1348, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 57 Avenue Hippocrate B1.57.04, B-1200 Brussels, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 57 Avenue Hippocrate B1.57.04, B-1200 Brussels, Belgium
| | - Raphaël Frédérick
- Louvain Drug Research Institute (LDRI), Medicinal Chemistry Research Group (CMFA), Université Catholique de Louvain (UCLouvain), 73 Avenue Emmanuel Mounier, B-1200 Brussel, Belgium.
| |
Collapse
|
18
|
Bauer D, Visca H, Weerakkody A, Carter LM, Samuels Z, Kaminsky S, Andreev OA, Reshetnyak YK, Lewis JS. PET Imaging of Acidic Tumor Environment With 89Zr-labeled pHLIP Probes. Front Oncol 2022; 12:882541. [PMID: 35664740 PMCID: PMC9160799 DOI: 10.3389/fonc.2022.882541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Acidosis of the tumor microenvironment is a hallmark of tumor progression and has emerged as an essential biomarker for cancer diagnosis, prognosis, and evaluation of treatment response. A tool for quantitatively visualizing the acidic tumor environment could significantly advance our understanding of the behavior of aggressive tumors, improving patient management and outcomes. 89Zr-labeled pH-low insertion peptides (pHLIP) are a class of radiopharmaceutical imaging probes for the in vivo analysis of acidic tumor microenvironments via positron emission tomography (PET). Their unique structure allows them to sense and target acidic cancer cells. In contrast to traditional molecular imaging agents, pHLIP's mechanism of action is pH-dependent and does not rely on the presence of tumor-specific molecular markers. In this study, one promising acidity-imaging PET probe ([89Zr]Zr-DFO-Cys-Var3) was identified as a candidate for clinical translation.
Collapse
Affiliation(s)
- David Bauer
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Hannah Visca
- Department of Physics, University of Rhode Island, Kingston, RI, United States
| | - Anuradha Weerakkody
- Department of Physics, University of Rhode Island, Kingston, RI, United States
| | - Lukas M. Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Zachary Samuels
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Spencer Kaminsky
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Oleg A. Andreev
- Department of Physics, University of Rhode Island, Kingston, RI, United States
| | - Yana K. Reshetnyak
- Department of Physics, University of Rhode Island, Kingston, RI, United States
| | - Jason S. Lewis
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
- Department of Pharmacology Program, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
19
|
Sikorski EL, Wehr J, Ferraro NJ, Rizzo SM, Pires MM, Thévenin D. Selective Display of a Chemoattractant Agonist on Cancer Cells Activates the Formyl Peptide Receptor 1 on Immune Cells. Chembiochem 2022; 23:e202100521. [PMID: 35199442 PMCID: PMC9035110 DOI: 10.1002/cbic.202100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/26/2022] [Indexed: 11/11/2022]
Abstract
Current immunotherapeutics often work by directing components of the immune system to recognize biomarkers on the surface of cancer cells to generate an immune response. However, variable changes in biomarker distribution and expression can result in inconsistent patient response. The development of a more universal tumor-homing strategy has the potential to improve selectivity and extend therapy to cancers with decreased expression or absence of specific biomarkers. Here, we designed a bifunctional agent that exploits the inherent acidic microenvironment of most solid tumors to selectively graft the surface of cancer cells with a formyl peptide receptor ligand (FPRL). Our approach is based on the pH(Low) insertion peptide (pHLIP), a unique peptide that selectively targets tumors in vivo by anchoring to cancer cells in a pH-dependent manner. We establish that selectively remodeling cancer cells with a pHLIP-based FPRL activates formyl peptide receptors on recruited immune cells, potentially initiating an immune response towards tumors.
Collapse
Affiliation(s)
- Eden L. Sikorski
- Department of Chemistry, Lehigh University. Bethlehem, Pennsylvania 18015, United States
| | - Janessa Wehr
- Department of Chemistry, Lehigh University. Bethlehem, Pennsylvania 18015, United States
| | - Noel J. Ferraro
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Sophia M. Rizzo
- Department of Chemistry, Lehigh University. Bethlehem, Pennsylvania 18015, United States
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Damien Thévenin
- Department of Chemistry, Lehigh University. Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
20
|
Otieno SA, Qiang W. Roles of key residues and lipid dynamics reveal pHLIP-membrane interactions at intermediate pH. Biophys J 2021; 120:4649-4662. [PMID: 34624273 PMCID: PMC8595900 DOI: 10.1016/j.bpj.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/16/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
The pH-low insertion peptide (pHLIP) and its analogs sense the microenvironmental pH variations in tumorous cells and serve as useful anticancer drug deliveries. The pHLIP binds peripherally to membranes and adopts random coil conformation at the physiological pH. The peptide switches from random coil to α-helical conformation and inserts unidirectionally into membrane bilayers when pH drops below a critical transition value that has been routinely determined by the Trp fluorescence spectroscopy. Recent high-resolution studies using solid-state NMR spectroscopy revealed the presence of thermodynamically stable intermediate states of membrane-associated pHLIP around the fluorescence-based transition pH-value. However, the molecular structural features and their mechanistic roles of these intermediate states in the pH-driven membrane insertion process of pHLIP remain largely unknown. This work utilizes solid-state NMR spectroscopy to explore 1) the mechanistic roles of key proline and arginine residues within the pHLIP sequence at intermediate pH-values, and 2) the changes in lipid dynamics at intermediate pH-values in multiple types of model bilayers with anionic phospholipid and/or cholesterol. Our results demonstrate several molecular structural and dynamics changes at around the transition pH-values, including the isomerization of proline-threonine backbone configuration, breaking of arginine-aspartic acid salt bridge and the formation of arginine-lipid interactions, and a universal decreasing of dynamics in lipid headgroups and alkyl chains. Overall, the outcomes provide important insights on the molecular interactions between pHLIP and membrane bilayers at intermediate pH-values and, therefore, prompt the understanding of pH-driven membrane insertion process of this anticancer drug-delivering peptide.
Collapse
Affiliation(s)
- Sarah A Otieno
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York
| | - Wei Qiang
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York.
| |
Collapse
|
21
|
Gutman H, Bazylevich A, Prasad C, Dorfman O, Hesin A, Marks V, Patsenker L, Gellerman G. Discovery of Dolastatinol: A Synthetic Analog of Dolastatin 10 and Low Nanomolar Inhibitor of Tubulin Polymerization. ACS Med Chem Lett 2021; 12:1596-1604. [PMID: 34676042 DOI: 10.1021/acsmedchemlett.1c00432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
We developed a highly potent anticancer agent, dolastatinol, which is a methylene hydroxyl derivative of dolastatin 10. Dolastatinol is a synthetic analog of dolastatin 10, synthesized by a solid-phase peptide Fmoc chemistry protocol on 2-chlorotrityl chloride resin utilizing a pH-triggering self-immolative monosuccinate linker. The introduction of the C-terminus hydroxyl methylene functionality preserves the anticancer properties of the parent dolastatin 10, including strong suppression of the cell proliferation, migration, high cytotoxicity. Our research establishes a new facile route toward the further development of C-terminus-modified dolastatin-10-based microtubule inhibitors for anticancer treatment.
Collapse
Affiliation(s)
- Hodaya Gutman
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel
| | - Andrii Bazylevich
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel
| | | | - Ortal Dorfman
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel
| | - Arkadi Hesin
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Vered Marks
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel
| | - Leonid Patsenker
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel
| | - Gary Gellerman
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel
| |
Collapse
|
22
|
Zou T, Lu W, Mezhuev Y, Lan M, Li L, Liu F, Cai T, Wu X, Cai Y. A review of nanoparticle drug delivery systems responsive to endogenous breast cancer microenvironment. Eur J Pharm Biopharm 2021; 166:30-43. [PMID: 34098073 DOI: 10.1016/j.ejpb.2021.05.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 12/26/2022]
Abstract
Breast cancer, as a malignant disease that seriously threatens women's health, urgently needs to be researched to develop effective and safe therapeutic drugs. Nanoparticle drug delivery systems (NDDS), provide a powerful means for drug targeting to the breast cancer, enhancing the bioavailability and reducing the adverse effects of anticancer drug. However, the breast cancer microenvironment together with heterogeneity of cancer, impedes the tumor targeting effect of NDDS. Breast cancer microenvironment, exerts endogenous stimuli, such as hypoxia, acidosis, and aberrant protease expression, shape a natural shelter for tumor growth, invasion and migration. On the basis of the ubiquitous of endogenous stimuli in the breast cancer microenvironment, researchers exploited them to design the stimuli-responsive NDDS, which response to endogenous stimulus, targeted release drug in breast cancer microenvironment. In this review, we highlighted the effect of the breast cancer microenvironment, summarized innovative NDDS responsive to the internal stimuli in the tumor microenvironment, including the material, the targeting groups, the loading drugs, targeting position and the function of stimuli-responsive nanoparticle drug delivery system. The limitations and potential applications of the stimuli-responsive nanoparticle drug delivery systems for breast cancer treatment were discussed to further the application.
Collapse
Affiliation(s)
- Tengteng Zou
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Wenping Lu
- Guang an'men Hospital China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yaroslav Mezhuev
- Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russia
| | - Meng Lan
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Lihong Li
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Fengjie Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang 110036, PR China.
| | - Xiaoyu Wu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada.
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Key Lab of Traditional Chinese Medicine Information Technology, Jinan University, Guangzhou 510632, PR China; Cancer Research Institute, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
23
|
Chen YH, Yu MM, Wang ZG. Inhibition of MDA-MB-231 cell proliferation by pHLIP(Var7)-P1AP and SPECT imaging of MDA-MB-231 breast cancer-bearing nude mice using 125I-pHLIP(Var7)-P1AP. Nuklearmedizin 2021; 60:240-248. [PMID: 33759146 DOI: 10.1055/a-1307-1923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIM To observe the effect of pHLIP(Var7)-P1AP on the proliferation of MDA-MB-231 triple-negative breast cancer cells and the small-animal single-photon-emission computed tomography (SPECT) imaging of breast cancer-bearing mice carrying MDA-MB-231 cells. METHODS Peptide pHLIP(Var7)-P1AP was synthesized by solid-phase peptide synthesis. The binding of fluorescently labeled pHLIP(Var7)-P1AP to MDA-MB-231 cells under various pH conditions and its effect on MDA-MB-231 cell proliferation were analyzed. pHLIP(Var7)-P1AP was labeled with 125I, and the biological distribution of 125I-pHLIP(Var7)-P1AP in the breast cancer mouse model carrying MDA-MB-231 cells as well as the outcome of small-animal SPECT imaging were evaluated. RESULTS pHLIP(Var7)-P1AP was successfully synthesized. Under pH 6.0, fluorescently labeled pHLIP(Var7)-P1AP had a higher binding ability to MDA-MB-231 cells and significantly inhibited the proliferation of MDA-MB-231 cells. The labeling efficiency of pHLIP(Var7)-P1AP with 125I was 33.1 ± 2.7 %, and the radiochemical purity was 98.5 ± 1.8 %. 125I-pHLIP(Var7)-P1AP showed a high concentration in tumors. Small-animal SPECT imaging showed clearly visible tumors at 4 h after injection. CONCLUSIONS In the acidic environment, pHLIP(Var7)-P1AP can efficiently target MDA-MB-231 cells and inhibit their growth. Small-animal SPECT of 125I-pHLIP(Var7)-P1AP can clearly image tumors.
Collapse
Affiliation(s)
- Yue Hua Chen
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ming Ming Yu
- Nuclear Medicine Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhen Guang Wang
- Nuclear Medicine Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
24
|
Targeting the Hypoxic and Acidic Tumor Microenvironment with pH-Sensitive Peptides. Cells 2021; 10:cells10030541. [PMID: 33806273 PMCID: PMC8000199 DOI: 10.3390/cells10030541] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/27/2022] Open
Abstract
The delivery of cancer therapeutics can be limited by pharmacological issues such as poor bioavailability and high toxicity to healthy tissue. pH-low insertion peptides (pHLIPs) represent a promising tool to overcome these limitations. pHLIPs allow for the selective delivery of agents to tumors on the basis of pH, taking advantage of the acidity of the hypoxic tumor microenvironment. This review article highlights the various applications in which pHLIPs have been utilized for targeting and treating diseases in hypoxic environments, including delivery of small molecule inhibitors, toxins, nucleic acid analogs, fluorescent dyes, and nanoparticles.
Collapse
|
25
|
An Experimental Study on [ 125I]I-pHLIP (Var7) for SPECT/CT Imaging of an MDA-MB-231 Triple-Negative Breast Cancer Mouse Model by Targeting the Tumor Microenvironment. Mol Imaging 2021; 2021:5565932. [PMID: 33746628 PMCID: PMC7953584 DOI: 10.1155/2021/5565932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/15/2021] [Indexed: 12/19/2022] Open
Abstract
Objective To evaluate the diagnostic efficacy of MDA-MB-231 triple-negative breast cancer with 125I-labeled pHLIP (Var7) by single-photon emission computed tomography/computed tomography (SPECT/CT) imaging. Methods The binding fraction of [125I]I-pHLIP (Var7) and MDA-MB-231 cells was measured at pH 7.4 and pH 6.0, and tumor-bearing mice were subjected to small-animal SPECT/CT imaging studies. Results At pH = 6.0, the binding fractions of [125I]I-pHLIP (Var7) and MDA-MB-231 cells at 10 min, 40 min, 1 h, and 2 h were 1.9 ± 0.1%, 3.5 ± 0.1%, 6.3 ± 0.8%, and 6.6 ± 0.3%, respectively. At pH = 7.4, there was no measured binding between [125I]I-pHLIP (Var7) and MDA-MB-231 cells. Small-animal SPECT/CT imaging showed clearly visible tumors at 1 and 2 h after injection. Conclusions [125I]I-pHLIP (Var7) could bind to MDA-MB-231 cells in an acidic environment, and small-animal SPECT/CT imaging showed clear tumors at 1 and 2 h after probe injection.
Collapse
|
26
|
Burns V, Mertz B. Using Simulation to Understand the Role of Titration on the Stability of a Peptide-Lipid Bilayer Complex. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12272-12280. [PMID: 32988206 PMCID: PMC7778881 DOI: 10.1021/acs.langmuir.0c02038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The pH-low insertion peptide (pHLIP) is an anionic membrane-active peptide with promising potential for applications in imaging of cancer tumors and targeted delivery of chemotherapeutics. The key advantage of pHLIP lies in its acid sensitivity: in acidic cellular environments, pHLIP can insert unidirectionally into the plasma membrane. Partitioning-folding coupling is triggered by titration of the acidic residues in pHLIP, transforming pHLIP from a hydrophilic to a hydrophobic peptide. Despite this knowledge, the reverse pathway that leads to exit of the peptide from the plasma membrane is poorly understood. Our hypothesis is that sequential deprotonation of pHLIP is a prerequisite for exit of the peptide from the plasma membrane. We carried out molecular dynamics (MD) simulations to characterize the effect that deprotonation of the acidic residues of pHLIP has on the stability of the peptide when inserted into a model lipid bilayer of 1-palmitoyl-2-oleoyl-sn-3-phosphocholine (POPC). Initiation of the exit mechanism is facilitated by a complex relationship between the peptide, bulk solvent, and the membrane environment. As the N-terminal acidic residues of pHLIP are deprotonated, localized loss of helicity drives unfolding of the peptide and more pronounced interactions with the bilayer at the lipid-water interface. Deprotonation of the C-terminal acidic residues (D25, D31, D33, and E34) leads to further loss of secondary structure distal from the C-terminus, as well as formation of a water channel that stabilizes the orientation of pHLIP parallel to the membrane normal. Together, these results help explain how stabilization of intermediates between the surface-bound and inserted states of pHLIP occur and provide insights into rational design of pHLIP variants with modified abilities of insertion.
Collapse
Affiliation(s)
- Violetta Burns
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Blake Mertz
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
- WVU Cancer Institute, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
27
|
Cell-penetrating peptides in oncologic pharmacotherapy: A review. Pharmacol Res 2020; 162:105231. [PMID: 33027717 DOI: 10.1016/j.phrs.2020.105231] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 01/10/2023]
Abstract
Cancer is the second leading cause of death in the world and its treatment is extremely challenging, mainly due to its complexity. Cell-Penetrating Peptides (CPPs) are peptides that can transport into the cell a wide variety of biologically active conjugates (or cargoes), and are, therefore, promising in the treatment and in the diagnosis of several types of cancer. Some notable examples are TAT and Penetratin, capable of penetrating the central nervous system (CNS) and, therefore, acting in cancers of this system, such as Glioblastoma Multiforme (GBM). These above-mentioned peptides, conjugated with traditional chemotherapeutic such as Doxorubicin (DOX) and Paclitaxel (PTX), have also been shown to induce apoptosis of breast and liver cancer cells, as well as in lung cancer cells, respectively. In other cancers, such as esophageal cancer, the attachment of Magainin 2 (MG2) to Bombesin (MG2B), another CPP, led to pronounced anticancer effects. Other examples are CopA3, that selectively decreased the viability of gastric cancer cells, and the CPP p28. Furthermore, in preclinical tests, the anti-tumor efficacy of this peptide was evaluated on human breast cancer, prostate cancer, ovarian cancer, and melanoma cells in vitro, leading to high expression of p53 and promoting cell cycle arrest. Despite the numerous in vitro and in vivo studies with promising results, and the increasing number of clinical trials using CPPs, few treatments reach the expected clinical efficacy. Usually, their clinical application is limited by its poor aqueous solubility, immunogenicity issues and dose-limiting toxicity. This review describes the most recent advances and innovations in the use of CPPs in several types of cancer, highlighting their crucial importance for various purposes, from therapeutic to diagnosis. Further clinical trials with these peptides are warranted to examine its effects on various types of cancer.
Collapse
|
28
|
Zhang W, Yu L, Ji T, Wang C. Tumor Microenvironment-Responsive Peptide-Based Supramolecular Drug Delivery System. Front Chem 2020; 8:549. [PMID: 32775317 PMCID: PMC7388741 DOI: 10.3389/fchem.2020.00549] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
Physical and biochemical differences between tumor tissues and normal tissues provide promising triggering factors that can be utilized to engineer stimuli-responsive drug delivery platforms for cancer treatment. Rationally designed peptide-based supramolecular architectures can perform structural conversion by responding to the tumor microenvironment and achieve the controlled release of antitumor drugs. This mini review summarizes recent approaches for designing internal trigger-responsive drug delivery platforms using peptide-based materials. Peptide assemblies that exhibit a stimuli-responsive structural conversion upon acidic pH, high temperature, high oxidative potential, and the overexpressed proteins in tumor tissues are emphatically introduced. We also discuss the challenges of current peptide-based supramolecular delivery platforms against cancer.
Collapse
Affiliation(s)
- Wenbo Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biophysics and Structural Biology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Lanlan Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biophysics and Structural Biology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Tianjiao Ji
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Chenxuan Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biophysics and Structural Biology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
29
|
Reshetnyak YK, Moshnikova A, Andreev OA, Engelman DM. Targeting Acidic Diseased Tissues by pH-Triggered Membrane-Associated Peptide Folding. Front Bioeng Biotechnol 2020; 8:335. [PMID: 32411684 PMCID: PMC7198868 DOI: 10.3389/fbioe.2020.00335] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/26/2020] [Indexed: 12/19/2022] Open
Abstract
The advantages of targeted therapy have motivated many efforts to find distinguishing features between the molecular cell surface landscapes of diseased and normal cells. Typically, the features have been proteins, lipids or carbohydrates, but other approaches are emerging. In this discussion, we examine the use of cell surface acidity as a feature that can be exploited by using pH-sensitive peptide folding to target agents to diseased cell surfaces or cytoplasms.
Collapse
Affiliation(s)
- Yana K Reshetnyak
- Department of Physics, The University of Rhode Island, Kingston, RI, United States
| | - Anna Moshnikova
- Department of Physics, The University of Rhode Island, Kingston, RI, United States
| | - Oleg A Andreev
- Department of Physics, The University of Rhode Island, Kingston, RI, United States
| | - Donald M Engelman
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
30
|
Wehr J, Sikorski EL, Bloch E, Feigman MS, Ferraro NJ, Baybutt TR, Snook AE, Pires MM, Thévenin D. pH-Dependent Grafting of Cancer Cells with Antigenic Epitopes Promotes Selective Antibody-Mediated Cytotoxicity. J Med Chem 2020; 63:3713-3722. [PMID: 32196345 DOI: 10.1021/acs.jmedchem.0c00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A growing class of immunotherapeutics work by redirecting components of the immune system to recognize markers on the surface of cancer cells. However, such modalities will remain confined to a relatively small subgroup of patients because of the lack of universal targetable tumor biomarkers among all patients. Here, we designed a unique class of agents that exploit the inherent acidity of solid tumors to selectively graft cancer cells with immuno-engager epitopes. Our targeting approach is based on pHLIP, a unique peptide that selectively targets tumors in vivo by anchoring to cancer cell surfaces in a pH-dependent manner. We established that pHLIP-antigen conjugates trigger the recruitment of antibodies to the surface of cancer cells and induce cytotoxicity by peripheral blood mononuclear and engineered NK cells. These results indicate that these agents have the potential to be applicable to treating a wide range of solid tumors and to circumvent problems associated with narrow windows of selectivity.
Collapse
Affiliation(s)
- Janessa Wehr
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Eden L Sikorski
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Elizabeth Bloch
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Mary S Feigman
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Noel J Ferraro
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Trevor R Baybutt
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Marcos M Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Damien Thévenin
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
31
|
Kaplan AR, Pham H, Liu Y, Oyaghire S, Bahal R, Engelman DM, Glazer PM. Ku80-Targeted pH-Sensitive Peptide-PNA Conjugates Are Tumor Selective and Sensitize Cancer Cells to Ionizing Radiation. Mol Cancer Res 2020; 18:873-882. [PMID: 32098827 DOI: 10.1158/1541-7786.mcr-19-0661] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 01/19/2020] [Accepted: 02/20/2020] [Indexed: 11/16/2022]
Abstract
The development of therapeutic agents that specifically target cancer cells while sparing healthy tissue could be used to enhance the efficacy of cancer therapy without increasing its toxicity. Specific targeting of cancer cells can be achieved through the use of pH-low insertion peptides (pHLIP), which take advantage of the acidity of the tumor microenvironment to deliver cargoes selectively to tumor cells. We developed a pHLIP-peptide nucleic acid (PNA) conjugate as an antisense reagent to reduce expression of the otherwise undruggable DNA double-strand break repair factor, KU80, and thereby radiosensitize tumor cells. Increased antisense activity of the pHLIP-PNA conjugate was achieved by partial mini-PEG sidechain substitution of the PNA at the gamma position, designated pHLIP-αKu80(γ). We evaluated selective effects of pHLIP-αKu80(γ) in cancer cells in acidic culture conditions as well as in two subcutaneous mouse tumor models. Fluorescently labeled pHLIP-αKu80(γ) delivers specifically to acidic cancer cells and accumulates preferentially in tumors when injected i.v. in mice. Furthermore, pHLIP-αKu80(γ) selectively reduced KU80 expression in cells under acidic conditions and in tumors in vivo. When pHLIP-αKu80(γ) was administered to mice prior to local tumor irradiation, tumor growth was substantially reduced compared with radiation treatment alone. Furthermore, there was no evidence of acute toxicity associated with pHLIP-αKu80(γ) administration to the mice. These results establish pHLIP-αKu80(γ) as a tumor-selective radiosensitizing agent. IMPLICATIONS: This study describes a novel agent, pHLIP-αKu80(γ), which combines PNA antisense and pHLIP technologies to selectively reduce the expression of the DNA repair factor KU80 in tumors and confer tumor-selective radiosensitization.
Collapse
Affiliation(s)
- Alanna R Kaplan
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.,Department of Pathology, Yale University, New Haven, Connecticut
| | - Ha Pham
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.,University of Central Florida College of Medicine, Orlando, Florida
| | - Yanfeng Liu
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut
| | - Stanley Oyaghire
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut
| | - Raman Bahal
- University of Connecticut, Storrs, Connecticut
| | - Donald M Engelman
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut. .,Department of Genetics, Yale University, New Haven, Connecticut
| |
Collapse
|
32
|
Yu M, Chen Y, Wang Z, Ding X. pHLIP(Var7)-P1AP suppresses tumor cell proliferation in MDA-MB-231 triple-negative breast cancer by targeting protease activated receptor 1. Breast Cancer Res Treat 2020; 180:379-384. [PMID: 32034579 PMCID: PMC7066270 DOI: 10.1007/s10549-020-05560-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/31/2020] [Indexed: 01/17/2023]
Abstract
PURPOSE Protease-activated receptor 1 (PAR1) is a signaling protein ubiquitously present on the surface of tumor cells, and its homologous protein fragment, PAR1-activating peptide (P1AP), can inhibit protein signal transduction of PAR1/G in tumor cells. pH (Low) insertion peptide (pHLIP) can target the acidic tumor microenvironment (TME) and can be used as an excellent carrier to deliver P1AP to tumor cells for therapeutic purposes. METHODS PAR1 expression on the surface of MDA-MB-231 cells and human MCF10A mammary epithelial cells was observed. The binding between fluorescent-labeled pHLIP(Var7)-P1AP and MDA-MB-231 cells under different pH values was analyzed. The effect of pHLIP(Var7)-P1AP on the proliferation of MDA-MB-231 cells was analyzed under the conditions of pH 7.4 and 6.0. RESULTS PAR1 was highly expressed on the surface of MDA-MB-231 cells. In an acidic environment (pH 6.0 and 5.0), fluorescent-labeled pHLIP(Var7)-P1AP and MDA-MB-231 cells had a high binding ability, and the binding ability increased with the decrease in pH. In an acidic environment (pH 6.0), pHLIP(Var7)-P1AP significantly inhibited MDA-MB-231 cell proliferation. With 0.5 μg, 1 μg, 2 μg, 4 μg, and 8 μg of pHLIP(Var7)-P1AP, the cell proliferation inhibition rates were 3.39%, 5.27%, 14.29%, 22.14%, and 35.69%, respectively. CONCLUSION PAR1 was highly expressed on the surface of MDA-MB-231 cells. pHLIP(Var7)-P1AP can effectively target MDA-MB-231 cells in an acidic environment and inhibit the growth of MDA-MB-231 cells by inhibiting the signal transduction of PAR1/G protein.
Collapse
Affiliation(s)
- MingMing Yu
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, No. 59, Haier Rd., Qingdao, 266100, China
| | - YueHua Chen
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - ZhenGuang Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, No. 59, Haier Rd., Qingdao, 266100, China.
| | - XiaoDong Ding
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
33
|
Dallavalle S, Dobričić V, Lazzarato L, Gazzano E, Machuqueiro M, Pajeva I, Tsakovska I, Zidar N, Fruttero R. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist Updat 2020; 50:100682. [PMID: 32087558 DOI: 10.1016/j.drup.2020.100682] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Multidrug resistance (MDR) is the dominant cause of the failure of cancer chemotherapy. The design of antitumor drugs that are able to evade MDR is rapidly evolving, showing that this area of biomedical research attracts great interest in the scientific community. The current review explores promising recent approaches that have been developed with the aim of circumventing or overcoming MDR. Encouraging results have been obtained in the investigation of the MDR-modulating properties of various classes of natural compounds and their analogues. Inhibition of P-gp or downregulation of its expression have proven to be the main mechanisms by which MDR can be surmounted. The use of hybrid molecules that are able to simultaneously interact with two or more cancer cell targets is currently being explored as a means to circumvent drug resistance. This strategy is based on the design of hybrid compounds that are obtained either by merging the structural features of separate drugs, or by conjugating two drugs or pharmacophores via cleavable/non-cleavable linkers. The approach is highly promising due to the pharmacokinetic and pharmacodynamic advantages that can be achieved over the independent administration of the two individual components. However, it should be stressed that the task of obtaining successful multivalent drugs is a very challenging one. The conjugation of anticancer agents with nitric oxide (NO) donors has recently been developed, creating a particular class of hybrid that can combat tumor drug resistance. Appropriate NO donors have been shown to reverse drug resistance via nitration of ABC transporters and by interfering with a number of metabolic enzymes and signaling pathways. In fact, hybrid compounds that are produced by covalently attaching NO-donors and antitumor drugs have been shown to elicit a synergistic cytotoxic effect in a variety of drug resistant cancer cell lines. Another strategy to circumvent MDR is based on nanocarrier-mediated transport and the controlled release of chemotherapeutic drugs and P-gp inhibitors. Their pharmacokinetics are governed by the nanoparticle or polymer carrier and make use of the enhanced permeation and retention (EPR) effect, which can increase selective delivery to cancer cells. These systems are usually internalized by cancer cells via endocytosis and accumulate in endosomes and lysosomes, thus preventing rapid efflux. Other modalities to combat MDR are described in this review, including the pharmaco-modulation of acridine, which is a well-known scaffold in the development of bioactive compounds, the use of natural compounds as means to reverse MDR, and the conjugation of anticancer drugs with carriers that target specific tumor-cell components. Finally, the outstanding potential of in silico structure-based methods as a means to evaluate the ability of antitumor drugs to interact with drug transporters is also highlighted in this review. Structure-based design methods, which utilize 3D structural data of proteins and their complexes with ligands, are the most effective of the in silico methods available, as they provide a prediction regarding the interaction between transport proteins and their substrates and inhibitors. The recently resolved X-ray structure of human P-gp can help predict the interaction sites of designed compounds, providing insight into their binding mode and directing possible rational modifications to prevent them from becoming P-gp drug substrates. In summary, although major efforts were invested in the search for new tools to combat drug resistant tumors, they all require further implementation and methodological development. Further investigation and progress in the abovementioned strategies will provide significant advances in the rational combat against cancer MDR.
Collapse
Affiliation(s)
- Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Vladimir Dobričić
- Department of Pharmaceutical Chemistry, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Loretta Lazzarato
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Elena Gazzano
- Department of Oncology, Università degli Studi di Torino, Via Santena 5/bis, 10126 Turin, Italy
| | - Miguel Machuqueiro
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, C8 Building, Campo Grande, 1749-016, Lisbon, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Ilza Pajeva
- QSAR and Molecular Modelling Department, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 105, 1113 Sofia, Bulgaria
| | - Ivanka Tsakovska
- QSAR and Molecular Modelling Department, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 105, 1113 Sofia, Bulgaria
| | - Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Roberta Fruttero
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Turin, Italy.
| |
Collapse
|
34
|
Svoronos AA, Bahal R, Pereira MC, Barrera FN, Deacon JC, Bosenberg M, DiMaio D, Glazer PM, Engelman DM. Tumor-Targeted, Cytoplasmic Delivery of Large, Polar Molecules Using a pH-Low Insertion Peptide. Mol Pharm 2020; 17:461-471. [PMID: 31855437 DOI: 10.1021/acs.molpharmaceut.9b00883] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumor-targeted drug delivery systems offer not only the advantage of an enhanced therapeutic index, but also the possibility of overcoming the limitations that have largely restricted drug design to small, hydrophobic, "drug-like" molecules. Here, we explore the ability of a tumor-targeted delivery system centered on the use of a pH-low insertion peptide (pHLIP) to directly deliver moderately polar, multi-kDa molecules into tumor cells. A pHLIP is a short, pH-responsive peptide capable of inserting across a cell membrane to form a transmembrane helix at acidic pH. pHLIPs target the acidic tumor microenvironment with high specificity, and a drug attached to the inserting end of a pHLIP can be translocated across the cell membrane during the insertion process. We investigate the ability of wildtype pHLIP to deliver peptide nucleic acid (PNA) cargoes of varying sizes across lipid membranes. We find that pHLIP effectively delivers PNAs up to ∼7 kDa into cells in a pH-dependent manner. In addition, pHLIP retains its tumor-targeting capabilities when linked to cargoes of this size, although the amount delivered is reduced for PNA cargoes greater than ∼6 kDa. As drug-like molecules are traditionally restricted to sizes of ∼500 Da, this constitutes an order-of-magnitude expansion in the size range of deliverable drug candidates.
Collapse
Affiliation(s)
| | - Raman Bahal
- Department of Pharmaceutical Sciences , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Mohan C Pereira
- Department of Science & Mathematics , Cedarville University , Cedarville , Ohio 45314 , United States
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | | | | | | | | | | |
Collapse
|
35
|
Rao BD, Chakraborty H, Chaudhuri A, Chattopadhyay A. Differential sensitivity of pHLIP to ester and ether lipids. Chem Phys Lipids 2019; 226:104849. [PMID: 31836521 DOI: 10.1016/j.chemphyslip.2019.104849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
pH (low) insertion peptide (pHLIP) is a polypeptide from the third transmembrane helix of bacteriorhodopsin. The pH-dependent membrane insertion of pHLIP has been conveniently exploited for translocation of cargo molecules and as a novel imaging agent in cancer biology due to low extracellular pH in cancer tissues. Although the application of pHLIP for imaging tumor and targeted drug delivery is well studied, literature on pHLIP-membrane interaction is relatively less studied. Keeping this in mind, we explored the differential interaction of pHLIP with ester and ether lipid membranes utilizing fluorescence and CD spectroscopy. We report, for the first time, higher binding affinity of pHLIP toward ether lipid relative to ester lipid membranes. There results gain relevance since Halobacterium halobium (source of bacteriorhodopsin) is enriched with ether lipids. In addition, we monitored the difference in microenvironment around pHLIP tryptophans utilizing red edge excitation shift and observed increased motional restriction of water molecules in the interfacial region in ether lipid membranes. These changes were accompanied with increase in helicity of pHLIP in ether lipid relative to ester lipid membranes. Our results assume further relevance since ether lipids are upregulated in cancer cells and have emerged as potential biomarkers of various diseases including cancer.
Collapse
Affiliation(s)
- Bhagyashree D Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India; CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India
| | - Hirak Chakraborty
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India; School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India
| | - Arunima Chaudhuri
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India.
| |
Collapse
|
36
|
Vasquez-Montes V, Gerhart J, Thévenin D, Ladokhin AS. Divalent Cations and Lipid Composition Modulate Membrane Insertion and Cancer-Targeting Action of pHLIP. J Mol Biol 2019; 431:5004-5018. [PMID: 31689432 PMCID: PMC6920566 DOI: 10.1016/j.jmb.2019.10.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023]
Abstract
The pH-Low Insertion Peptide (pHLIP) has emerged as an important tool for targeting cancer cells; it has been assumed that its targeting mechanism depends solely on the mild acidic environment surrounding tumors. Here, we examine the role of Ca2+ and Mg2+ on pHLIP's insertion, cellular targeting, and drug delivery. We demonstrate that physiologically relevant concentrations of either cation can shift the protonation-dependent transition by up to several pH units toward basic pH and induce substantial protonation-independent transmembrane insertion of pHLIP at pH as high as 10. Consistent with these results, the ability of pHLIP to deliver the cytotoxic compound monomethyl-auristatin-F to HeLa cells is increased several fold in presence of Ca2+. Complementary measurements with model membranes confirmed this Ca2+/Mg2+-dependent membrane-insertion mechanism. The magnitude of this alternative Ca2+/Mg2+-dependent effect is also modulated by lipid composition-specifically by the presence of phosphatidylserine-providing new clues to pHLIP's unique tumor-targeting ability in vivo. These results exemplify the complex coupling between protonation of anionic residues and lipid-selective targeting by divalent cations, which is relevant to the general signaling on membrane interfaces.
Collapse
Affiliation(s)
- Victor Vasquez-Montes
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Janessa Gerhart
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, PA, 18015, USA
| | - Damien Thévenin
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, PA, 18015, USA
| | - Alexey S Ladokhin
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
37
|
Pershina AG, Brikunova OY, Demin AM, Shevelev OB, Razumov IA, Zavjalov EL, Malkeyeva D, Kiseleva E, Krakhmal' NV, Vtorushin SV, Yarnykh VL, Ivanov VV, Pleshko RI, Krasnov VP, Ogorodova LM. pH-triggered delivery of magnetic nanoparticles depends on tumor volume. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 23:102086. [PMID: 31449887 DOI: 10.1016/j.nano.2019.102086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/04/2019] [Accepted: 08/13/2019] [Indexed: 01/21/2023]
Abstract
Nowadays there is growing recognition of the fact that biological systems have a greater impact on nanoparticle target delivery in tumors than nanoparticle design. Here we investigate the targeted delivery of Fe3O4 magnetic nanoparticles conjugated with pH-low-insertion peptide (MNP-pHLIP) on orthotopically induced MDA-MB-231 human breast carcinoma xenografts of varying volumes as a model of cancer progression. Using in vivo magnetic resonance imaging and subsequent determination of iron content in tumor samples by inductively coupled plasma atomic emission spectroscopy we found that MNP-pHLIP accumulation depends on tumor volume. Transmission electron microscopy, histological analysis and immunohistochemical staining of tumor samples suggest that blood vessel distribution is the key factor in determining the success of the accumulation of nanoparticles in tumors.
Collapse
Affiliation(s)
- Alexandra G Pershina
- Siberian State Medical University, Tomsk, Russia; National Research Tomsk Polytechnic University, Tomsk, Russia.
| | - Olga Ya Brikunova
- Siberian State Medical University, Tomsk, Russia; National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Alexander M Demin
- Postovsky Institute of Organic Synthesis UB RAS, Yekaterinburg, Russia
| | - Oleg B Shevelev
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Ivan A Razumov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | | | - Dina Malkeyeva
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Elena Kiseleva
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | | | | | - Vasily L Yarnykh
- Department of Radiology, University of Washington, WA, USA; Research Institute of Biology and Biophysics, National Research Tomsk State University, Tomsk, Russia
| | | | | | - Victor P Krasnov
- Postovsky Institute of Organic Synthesis UB RAS, Yekaterinburg, Russia
| | | |
Collapse
|
38
|
Sokka IK, Ekholm FS, Johansson MP. Increasing the Potential of the Auristatin Cancer-Drug Family by Shifting the Conformational Equilibrium. Mol Pharm 2019; 16:3600-3608. [PMID: 31199662 PMCID: PMC6750905 DOI: 10.1021/acs.molpharmaceut.9b00437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Monomethyl auristatin E and monomethyl
auristatin F are widely
used cytotoxic agents in antibody–drug conjugates (ADCs), a
group of promising cancer drugs. The ADCs specifically target cancer
cells, releasing the auristatins inside, which results in the prevention
of mitosis. The auristatins suffer from a potentially serious flaw,
however. In solution, the molecules exist in an equal mixture of two
conformers, cis and trans. Only the trans-isomer is biologically active
and the isomerization process, i.e., the conversion of cis to trans
is slow. This significantly diminishes the efficiency of the drugs
and their corresponding ADCs, and perhaps more importantly, raises
concerns over drug safety. The potency of the auristatins would be
enhanced by decreasing the amount of the biologically inactive isomer,
either by stabilizing the trans-isomer or destabilizing the cis-isomer.
Here, we follow the computer-aided design strategy of shifting the
conformational equilibrium and employ high-level quantum chemical
modeling to identify promising candidates for improved auristatins.
Coupled cluster calculations predict that a simple halogenation in
the norephedrine/phenylalanine residues shifts the isomer equilibrium
almost completely toward the active trans-conformation, due to enhanced
intramolecular interactions specific to the active isomer.
Collapse
Affiliation(s)
- Iris K Sokka
- Department of Chemistry , University of Helsinki , P.O. Box 55, FI-00014 Helsinki , Finland
| | - Filip S Ekholm
- Department of Chemistry , University of Helsinki , P.O. Box 55, FI-00014 Helsinki , Finland
| | - Mikael P Johansson
- Department of Chemistry , University of Helsinki , P.O. Box 55, FI-00014 Helsinki , Finland.,Helsinki Institute of Sustainability Science, HELSUS , FI-00014 Helsinki , Finland
| |
Collapse
|
39
|
Pillai SR, Damaghi M, Marunaka Y, Spugnini EP, Fais S, Gillies RJ. Causes, consequences, and therapy of tumors acidosis. Cancer Metastasis Rev 2019; 38:205-222. [PMID: 30911978 PMCID: PMC6625890 DOI: 10.1007/s10555-019-09792-7] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
While cancer is commonly described as "a disease of the genes," it is also associated with massive metabolic reprogramming that is now accepted as a disease "Hallmark." This programming is complex and often involves metabolic cooperativity between cancer cells and their surrounding stroma. Indeed, there is emerging clinical evidence that interrupting a cancer's metabolic program can improve patients' outcomes. The most commonly observed and well-studied metabolic adaptation in cancers is the fermentation of glucose to lactic acid, even in the presence of oxygen, also known as "aerobic glycolysis" or the "Warburg Effect." Much has been written about the mechanisms of the Warburg effect, and this remains a topic of great debate. However, herein, we will focus on an important sequela of this metabolic program: the acidification of the tumor microenvironment. Rather than being an epiphenomenon, it is now appreciated that this acidosis is a key player in cancer somatic evolution and progression to malignancy. Adaptation to acidosis induces and selects for malignant behaviors, such as increased invasion and metastasis, chemoresistance, and inhibition of immune surveillance. However, the metabolic reprogramming that occurs during adaptation to acidosis also introduces therapeutic vulnerabilities. Thus, tumor acidosis is a relevant therapeutic target, and we describe herein four approaches to accomplish this: (1) neutralizing acid directly with buffers, (2) targeting metabolic vulnerabilities revealed by acidosis, (3) developing acid-activatable drugs and nanomedicines, and (4) inhibiting metabolic processes responsible for generating acids in the first place.
Collapse
Affiliation(s)
- Smitha R Pillai
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33602, USA
| | - Mehdi Damaghi
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33602, USA
| | - Yoshinori Marunaka
- Research Institute for Clinical Physiology, Kyoto, 604-8472, Japan
- Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | | | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (National Institute of Health), Viale Regina Elena, 299, 00161, Rome, Italy.
| | - Robert J Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33602, USA.
| |
Collapse
|
40
|
Vander Linden C, Corbet C. Therapeutic Targeting of Cancer Stem Cells: Integrating and Exploiting the Acidic Niche. Front Oncol 2019; 9:159. [PMID: 30941310 PMCID: PMC6433943 DOI: 10.3389/fonc.2019.00159] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/25/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSC) or tumor-initiating cells represent a small subpopulation of cells within the tumor bulk that share features with somatic stem cells, such as self-renewal and pluripotency. From a clinical point of view, CSC are thought to be the main drivers of tumor relapse in patients by supporting treatment resistance and dissemination to distant organs. Both genome instability and microenvironment-driven selection support tumor heterogeneity and enable the emergence of resistant cells with stem-like properties, when therapy is applied. Besides hypoxia and nutrient deprivation, acidosis is another selection barrier in the tumor microenvironment (TME) which provides a permissive niche to shape more aggressive and fitter cancer cell phenotypes. This review describes our current knowledge about the influence of the "acidic niche" on the stem-like phenotypic features of cancer cells. In addition, we briefly survey new therapeutic options that may help eradicate CSC by integrating and/or exploiting the acidic niche, and thereby contribute to prevent the occurrence of therapy resistance as well as metastatic dissemination.
Collapse
Affiliation(s)
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| |
Collapse
|
41
|
Gerhart J, Thévenin AF, Bloch E, King KE, Thévenin D. Inhibiting Epidermal Growth Factor Receptor Dimerization and Signaling Through Targeted Delivery of a Juxtamembrane Domain Peptide Mimic. ACS Chem Biol 2018; 13:2623-2632. [PMID: 30133245 DOI: 10.1021/acschembio.8b00555] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Overexpression and deregulation of the epidermal growth factor receptor (EGFR) are implicated in multiple human cancers and therefore are a focus for the development of therapeutics. Current strategies aimed at inhibiting EGFR activity include monoclonal antibodies and tyrosine kinase inhibitors. However, activating mutations severely limit the efficacy of these therapeutics. There is thus a growing need for novel methods to inhibit EGFR. One promising approach involves blocking the association of the cytoplasmic juxtamembrane (JM) domain of EGFR, which has been shown to be essential for receptor dimerization and kinase function. Here, we aim to improve the selectivity and efficacy of an EGFR JM peptide mimic by utilizing the pH(low) insertion peptide (pHLIP), a unique molecule that can selectively target cancer cells solely based on their extracellular acidity. This delivery strategy potentially allows for more selective targeting to tumors than current methods and for anchoring the peptide mimic to the cytoplasmic leaflet of the plasma membrane, increasing its local concentration and thus efficacy. We show that the conjugated construct is capable of inhibiting EGFR phosphorylation and downstream signaling and of inducing concentration- and pH-dependent toxicity in cervical cancer cells. We envision that this approach could be expanded to the modulation of other single-span membrane receptors whose activity is mediated by JM domains.
Collapse
Affiliation(s)
- Janessa Gerhart
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Anastasia F. Thévenin
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Elizabeth Bloch
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Kelly E. King
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Damien Thévenin
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
42
|
Rao BD, Chakraborty H, Keller S, Chattopadhyay A. Aggregation Behavior of pHLIP in Aqueous Solution at Low Concentrations: A Fluorescence Study. J Fluoresc 2018; 28:967-973. [PMID: 29959578 DOI: 10.1007/s10895-018-2260-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
Abstract
pH (low) insertion peptide (pHLIP) is a 36-residue peptide derived from the third transmembrane helix of the membrane protein bacteriorhodopsin. The hydrophobicity of this peptide makes it prone to aggregation even at low concentrations, but this has not been studied in detail. In this work, we characterized monomeric and aggregated forms of pHLIP in aqueous solution (pH 8) at low concentrations (~μM) using fluorescence-based approaches, complemented by circular dichroism (CD) spectroscopy. We show here that monomeric and aggregated pHLIP display differential red edge excitation shift (REES) and CD spectra. These spectroscopic features allowed us to show that pHLIP aggregates even at low concentrations. A detailed knowledge of the aggregation behavior of pHLIP under these conditions will be useful for monitoring and quantifying its interaction with membranes.
Collapse
Affiliation(s)
- Bhagyashree D Rao
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India.,Academy for Scientific and Innovative Research, Ghaziabad, India
| | - Hirak Chakraborty
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India.,School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India
| | - Sandro Keller
- Molecular Biophysics, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Amitabha Chattopadhyay
- Academy for Scientific and Innovative Research, Ghaziabad, India. .,CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India.
| |
Collapse
|
43
|
Burns KE, Delehanty JB. Cellular delivery of doxorubicin mediated by disulfide reduction of a peptide-dendrimer bioconjugate. Int J Pharm 2018; 545:64-73. [PMID: 29709616 DOI: 10.1016/j.ijpharm.2018.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/08/2018] [Accepted: 04/13/2018] [Indexed: 02/07/2023]
Abstract
In this study, we developed a peptide-dendrimer-drug conjugate system for the pH-triggered direct cytosolic delivery of the cancer chemotherapeutic doxorubicin (DOX) using the pH Low Insertion Peptide (pHLIP). We synthesized a pHLIP-dendrimer-DOX conjugate in which a single copy of pHLIP displayed a generation three dendrimer bearing multiple copies of DOX via disulfide linkages. Biophysical analysis showed that both the dendrimer and a single DOX conjugate inserted into membrane bilayers in a pH-dependent manner. Time-resolved confocal microscopy indicate the single DOX conjugate may undergo a faster rate of membrane translocation, due to greater nuclear localization of DOX at 24 h and 48 h post delivery. At 72 h, however, the levels of DOX nuclear accumulation for both constructs were identical. Cytotoxicity assays revealed that both constructs mediated ∼80% inhibition of cellular proliferation at 10 µM, the dendrimer complex exhibited a 17% greater cytotoxic effect at lower concentrations and greater than three-fold improvement in IC50 over free DOX. Our findings show proof of concept that the dendrimeric display of DOX on the pHLIP carrier (1) facilitates the pH-dependent and temporally-controlled release of DOX to the cytosol, (2) eliminates the endosomal sequestration of the drug cargo, and (3) augments DOX cytotoxicity relative to the free drug.
Collapse
Affiliation(s)
- Kelly E Burns
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Code 6900, Washington DC 20375, United States; National Research Council, Washington DC 20001, United States
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Code 6900, Washington DC 20375, United States.
| |
Collapse
|
44
|
Wyatt LC, Moshnikova A, Crawford T, Engelman DM, Andreev OA, Reshetnyak YK. Peptides of pHLIP family for targeted intracellular and extracellular delivery of cargo molecules to tumors. Proc Natl Acad Sci U S A 2018; 115:E2811-E2818. [PMID: 29507241 PMCID: PMC5866553 DOI: 10.1073/pnas.1715350115] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The pH (low) insertion peptides (pHLIPs) target acidity at the surfaces of cancer cells and show utility in a wide range of applications, including tumor imaging and intracellular delivery of therapeutic agents. Here we report pHLIP constructs that significantly improve the targeted delivery of agents into tumor cells. The investigated constructs include pHLIP bundles (conjugates consisting of two or four pHLIP peptides linked by polyethylene glycol) and Var3 pHLIPs containing either the nonstandard amino acid, γ-carboxyglutamic acid, or a glycine-leucine-leucine motif. The performance of the constructs in vitro and in vivo was compared with previous pHLIP variants. A wide range of experiments was performed on nine constructs including (i) biophysical measurements using steady-state and kinetic fluorescence, circular dichroism, and oriented circular dichroism to study the pH-dependent insertion of pHLIP variants across the membrane lipid bilayer; (ii) cell viability assays to gauge the pH-dependent potency of peptide-toxin constructs by assessing the intracellular delivery of the polar, cell-impermeable cargo molecule amanitin at physiological and low pH (pH 7.4 and 6.0, respectively); and (iii) tumor targeting and biodistribution measurements using fluorophore-peptide conjugates in a breast cancer mouse model. The main principles of the design of pHLIP variants for a range of medical applications are discussed.
Collapse
Affiliation(s)
- Linden C Wyatt
- Physics Department, University of Rhode Island, Kingston, RI 02881
| | - Anna Moshnikova
- Physics Department, University of Rhode Island, Kingston, RI 02881
| | - Troy Crawford
- Physics Department, University of Rhode Island, Kingston, RI 02881
| | - Donald M Engelman
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | - Oleg A Andreev
- Physics Department, University of Rhode Island, Kingston, RI 02881;
| | | |
Collapse
|
45
|
Ai F, Wang N, Zhang X, Sun T, Zhu Q, Kong W, Wang F, Zhu G. An upconversion nanoplatform with extracellular pH-driven tumor-targeting ability for improved photodynamic therapy. NANOSCALE 2018; 10:4432-4441. [PMID: 29451577 DOI: 10.1039/c7nr06874c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Upconversion nanoparticles (UCNPs) are widely utilized for photodynamic therapy (PDT) due to their specific upconverting luminescence that utilizes near infrared (NIR) light to excite photosensitizers (PSs) for PDT. The efficiency of UCNP-based PDT will be improved if the cancer-targeting property of nanomedicine is enhanced. Herein, we employed the pH low insertion peptide (pHLIP), a cancer-targeting moiety, to functionalize an 808 nm excited UCNP-based nanoplatform that has a minimized over-heating effect to perform PDT. pHLIP can bring cargo specifically into cancer cells under an acidic environment, realizing the effective active-targeting abilities to cancer cells or tumor due to acidosis. The pHLIP-functionalized nanoplatform was assembled and well characterized. The nanoplatform shows an efficient NIR-irradiated PDT effect in cancer cells, especially under a slightly acidic condition that mimics the tumor microenvironment, and this effectiveness is attributed to the targeting properties of pHLIP to cancer cells under acidic conditions that favor the entry of the nanoplatform. Furthermore, the pHLIP-functionalized nanoplatform shows a favorable safety profile in mice with a high maximum tolerated dose (MTD), which may broaden the availability of administration in vivo. The efficient in vivo antitumor activity is achieved through intratumor injection of the nanoplatform followed by NIR irradiation on the breast tumor. The nanoparticles are largely accumulated in the tumor site, revealing the excellent tumor-targeting properties of the pHLIP-functionalized nanoplatform, which ensures efficient PDT in vivo. Moreover, the nanoparticles have a long retention time in the bloodstream, indicating their stability in vivo. Overall, we provide an example of a UCNP-based nanosystem with tumor-targeting properties to perform efficient PDT both in vitro and in vivo.
Collapse
Affiliation(s)
- Fujin Ai
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Vasquez-Montes V, Gerhart J, King KE, Thévenin D, Ladokhin AS. Comparison of lipid-dependent bilayer insertion of pHLIP and its P20G variant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:534-543. [PMID: 29138065 DOI: 10.1016/j.bbamem.2017.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/18/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023]
Abstract
The ability of the pH-Low Insertion Peptide (pHLIP) to insert into lipid membranes in a transbilayer conformation makes it an important tool for targeting acidic diseased tissues. pHLIP can also serve as a model template for thermodynamic studies of membrane insertion. We use intrinsic fluorescence and circular dichroism spectroscopy to examine the effect of replacing pHLIP's central proline on the pH-triggered lipid-dependent conformational switching of the peptide. We find that the P20G variant (pHLIP-P20G) has a higher helical propensity than the native pHLIP (pHLIP-WT), in both water:organic solvent mixtures and in the presence of lipid bilayers. Spectral shifts of tryptophan fluorescence reveal that with both pHLIP-WT and pHLIP-P20G, the deeply penetrating interfacial form (traditionally called State II) is populated only in pure phosphocholine bilayers. The presence of either anionic lipids or phosphatidylethanolamine leads to a much shallower penetration of the peptide (referred to here as State IIS, for "shallow"). This novel state can be differentiated from soluble state by a reduction in accessibility of tryptophans to acrylamide and by FRET to vesicles doped with Dansyl-PE, but not by a spectral shift in fluorescence emission. FRET experiments indicate free energies for interfacial partitioning range from 6.2 to 6.8kcal/mol and are marginally more favorable for pHLIP-P20G. The effective pKa for the insertion of both peptides depends on the lipid composition, but is always higher for pHLIP-P20G than for pHLIP-WT by approximately one pH unit, which corresponds to a difference of 1.3kcal/mol in free energy of protonation favoring insertion of pHLIP-P20G.
Collapse
Affiliation(s)
- Victor Vasquez-Montes
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, United States
| | - Janessa Gerhart
- Department of Chemistry, Lehigh University, Bethlehem, PA, 18015, United States
| | - Kelly E King
- Department of Chemistry, Lehigh University, Bethlehem, PA, 18015, United States
| | - Damien Thévenin
- Department of Chemistry, Lehigh University, Bethlehem, PA, 18015, United States
| | - Alexey S Ladokhin
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, United States.
| |
Collapse
|
47
|
Ciavatta ML, Lefranc F, Carbone M, Mollo E, Gavagnin M, Betancourt T, Dasari R, Kornienko A, Kiss R. Marine Mollusk-Derived Agents with Antiproliferative Activity as Promising Anticancer Agents to Overcome Chemotherapy Resistance. Med Res Rev 2017; 37:702-801. [PMID: 27925266 PMCID: PMC5484305 DOI: 10.1002/med.21423] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 12/18/2022]
Abstract
The chemical investigation of marine mollusks has led to the isolation of a wide variety of bioactive metabolites, which evolved in marine organisms as favorable adaptations to survive in different environments. Most of them are derived from food sources, but they can be also biosynthesized de novo by the mollusks themselves, or produced by symbionts. Consequently, the isolated compounds cannot be strictly considered as "chemotaxonomic markers" for the different molluscan species. However, the chemical investigation of this phylum has provided many compounds of interest as potential anticancer drugs that assume particular importance in the light of the growing literature on cancer biology and chemotherapy. The current review highlights the diversity of chemical structures, mechanisms of action, and, most importantly, the potential of mollusk-derived metabolites as anticancer agents, including those biosynthesized by mollusks and those of dietary origin. After the discussion of dolastatins and kahalalides, compounds previously studied in clinical trials, the review covers potentially promising anticancer agents, which are grouped based on their structural type and include terpenes, steroids, peptides, polyketides and nitrogen-containing compounds. The "promise" of a mollusk-derived natural product as an anticancer agent is evaluated on the basis of its ability to target biological characteristics of cancer cells responsible for poor treatment outcomes. These characteristics include high antiproliferative potency against cancer cells in vitro, preferential inhibition of the proliferation of cancer cells over normal ones, mechanism of action via nonapoptotic signaling pathways, circumvention of multidrug resistance phenotype, and high activity in vivo, among others. The review also includes sections on the targeted delivery of mollusk-derived anticancer agents and solutions to their procurement in quantity.
Collapse
Affiliation(s)
- Maria Letizia Ciavatta
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital ErasmeUniversité Libre de Bruxelles (ULB)1070BrusselsBelgium
| | - Marianna Carbone
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Ernesto Mollo
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Margherita Gavagnin
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Tania Betancourt
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Ramesh Dasari
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Alexander Kornienko
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie ExpérimentaleFaculté de Pharmacie, Université Libre de Bruxelles (ULB)1050BrusselsBelgium
| |
Collapse
|
48
|
Applications of pHLIP Technology for Cancer Imaging and Therapy. Trends Biotechnol 2017; 35:653-664. [PMID: 28438340 DOI: 10.1016/j.tibtech.2017.03.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 12/14/2022]
Abstract
Acidity is a biomarker of cancer that is not subject to the blunting clonal selection effects that reduce the efficacy of other biomarker technologies, such as antibody targeting. The pH (low) insertion peptides (pHLIP®s) provide new opportunities for targeting acidic tissues. Through the physical mechanism of membrane-associated folding, pHLIPs are triggered by the acidic microenvironment to insert and span the membranes of tumor cells. The pHLIP platform can be applied to imaging acidic tissues, delivering cell-permeable and impermeable molecules to the cytoplasm, and promoting the cellular uptake of nanoparticles. Since acidosis is a hallmark of tumor development, progression, and aggressiveness, the pHLIP technology may prove useful in targeting cancer cells and metastases for tumor diagnosis, imaging, and therapy.
Collapse
|
49
|
Burns KE, Hensley H, Robinson MK, Thévenin D. Therapeutic Efficacy of a Family of pHLIP-MMAF Conjugates in Cancer Cells and Mouse Models. Mol Pharm 2017; 14:415-422. [PMID: 28048942 DOI: 10.1021/acs.molpharmaceut.6b00847] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The targeting of therapeutics specifically to diseased tissue is crucial for the development of successful cancer treatments. The approach here is based on the pH(low) insertion peptide (pHLIP) for the delivery of a potent mitotic inhibitor monomethyl auristatin F (MMAF). We investigated six pHLIP variants conjugated to MMAF to compare their efficacy in vitro against cultured cancer cells. While all pHLIP-MMAF conjugates exhibit potent pH- and concentration-dependent killing, their cytotoxicity profiles are remarkably different. We also show that the lead conjugate exhibits significant therapeutic efficacy in mouse models without overt toxicities. This study confirms pHLIP-monomethyl auristatin conjugates as possible new therapeutic options for cancer treatment and supports their further development.
Collapse
Affiliation(s)
- Kelly E Burns
- Department of Chemistry, Lehigh University , 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Harvey Hensley
- Molecular Therapeutics Program, Fox Chase Cancer Center , 333 Cottman Avenue, Philadelphia, Pennsylvania 19111, United States
| | - Matthew K Robinson
- Molecular Therapeutics Program, Fox Chase Cancer Center , 333 Cottman Avenue, Philadelphia, Pennsylvania 19111, United States
| | - Damien Thévenin
- Department of Chemistry, Lehigh University , 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
50
|
Narayanan T, Weerakkody D, Karabadzhak AG, Anderson M, Andreev OA, Reshetnyak YK. pHLIP Peptide Interaction with a Membrane Monitored by SAXS. J Phys Chem B 2016; 120:11484-11491. [PMID: 27726396 PMCID: PMC5209755 DOI: 10.1021/acs.jpcb.6b06643] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
pH (Low) Insertion Peptides (pHLIP peptides) find application in studies of membrane-associated folding because spontaneous insertion of these peptides is conveniently triggered by varying pH. Here, we employed small-angle X-ray scattering (SAXS) to investigate a wild-type (WT) pHLIP peptide oligomeric state in solution at high concentrations and monitor changes in the liposome structure upon peptide insertion into the bilayer. We established that even at high concentrations (up to 300 μM) the WT pHLIP peptide at pH 8.0 does not form oligomers larger than tetramers (which exhibit concentration-dependent transfer to the monomeric state, as was shown previously). This finding has significance for medical applications when high concentration of the peptide is injected into blood and diluted in blood circulation. The interaction of WT pHLIP peptide with liposomes does not alter the unilamellar vesicle structure upon peptide adsorption by the lipid bilayer at high pH or upon insertion across the bilayer at low pH. At the same time, SAXS data clearly demonstrate the insertion of the peptide into the membrane at low pH, which opens the possibility of investigating the kinetic process of polypeptide insertion and exit from the membrane in real time by time-resolved SAXS.
Collapse
Affiliation(s)
| | - Dhammika Weerakkody
- Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | | | - Michael Anderson
- Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Oleg A. Andreev
- Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Yana K. Reshetnyak
- Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|