1
|
Oak ASW, Bagchi A, Brukman MJ, Toth J, Ford J, Zheng Y, Nace A, Yang R, Hsieh JC, Hayden JE, Ruthel G, Ray A, Kim E, Shenoy VB, Cotsarelis G. Wnt signaling modulates mechanotransduction in the epidermis to drive hair follicle regeneration. SCIENCE ADVANCES 2025; 11:eadq0638. [PMID: 39970220 PMCID: PMC11838001 DOI: 10.1126/sciadv.adq0638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025]
Abstract
Most wounds form scars without hair follicles. However, in the wound-induced hair neogenesis (WIHN) model of skin regeneration, wounds regenerate hair follicles if tissue rigidity is optimal. Although WIHN depends on Wnt signaling, whether Wnt performs a mechanoregulatory role that contributes to regeneration remains uncharacterized. Here, we demonstrate that Wnt signaling affects mechanosensitivity at both cellular and tissue levels to drive WIHN. Atomic force microscopy revealed an attenuated substrate rigidity response in epidermal but not dermal cells of healing wounds. Super-resolution microscopy and nanoneedle probing of intracellular compartments in live human keratinocytes revealed that Wnt-induced chromatin remodeling triggers a 10-fold drop in nuclear rigidity without jeopardizing the nucleocytoskeletal mechanical coupling. Mechanistically, Wnt signaling orchestrated a massive reorganization of actin architecture and recruited adherens junctions to generate a mechanical syncytium-a cohesive contractile unit with superior capacity for force coordination and collective durotaxis. Collectively, our findings unveil Wnt signaling's mechanoregulatory role that manipulates the machinery of mechanotransduction to drive regeneration.
Collapse
Affiliation(s)
- Allen S. W. Oak
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amrit Bagchi
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew J. Brukman
- Singh Center for Nanotechnology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua Toth
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jamie Ford
- Singh Center for Nanotechnology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Zheng
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arben Nace
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruifeng Yang
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jen-Chih Hsieh
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anisa Ray
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elaine Kim
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vivek B. Shenoy
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - George Cotsarelis
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Yu C, Zeng W, Wang B, Cui X, Gao Z, Yin J, Liu L, Wei X, Wei Y, Dai Z. Stiffer Is Stickier: Adhesion in Elastic Nanofilms. NANO LETTERS 2025; 25:1876-1882. [PMID: 39905944 DOI: 10.1021/acs.nanolett.4c05309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
When two objects are brought into contact, separating them typically requires overcoming a detachment force. While this adhesion-induced force is vital for thin film materials in a range of nature and engineering systems, its quantitative understanding remains elusive due to the complex interplay between nonlinear deformation and adhesion. Here we perform controlled experiments and develop formal theories for the detachment force in a canonical configuration: separation of a sphere from an elastic graphene film. We observe that applying tension to the film can increase both its apparent out-of-plane stiffness and its detachment force, a behavior that cannot be explained by macroscopic adhesion theories. We attribute this unusual "stiffer-stickier" behavior to long-range intermolecular forces and demonstrate that it is a general phenomenon for elastic nanofilms, explainable through a multiscale theory that we develop. The ideas introduced here offer a generic strategy to understand the adhesion of slender structures across various length scales.
Collapse
Affiliation(s)
- Chuanli Yu
- Department of Mechanics and Engineering Science, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China
| | - Weijia Zeng
- Department of Mechanics and Engineering Science, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China
| | - Bingjie Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Xuwei Cui
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhida Gao
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China
| | - Jun Yin
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China
| | - Luqi Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xianlong Wei
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Yueguang Wei
- Department of Mechanics and Engineering Science, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China
| | - Zhaohe Dai
- Department of Mechanics and Engineering Science, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Zou J, Peng B, Fan N, Liu Y. Simulation and experimental study on the influence of lamina on nanoneedle penetration into the cell nucleus. Biomech Model Mechanobiol 2024; 23:1241-1262. [PMID: 38526703 DOI: 10.1007/s10237-024-01836-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/21/2024] [Indexed: 03/27/2024]
Abstract
We have developed a finite element model to simulate the penetration of nanoneedles into the cellular nucleus. It is found that the nuclear lamina, the primary supporting structure of the nuclear membrane, plays a crucial role in maintaining the integrity of the nuclear envelope and enhancing stress concentration in the nuclear membrane. Notably, nuclear lamina A exhibits a more pronounced effect compared to nuclear lamina B. Subsequently, we further conducted experiments by controlling the time of osteopontin (OPN) treatment to modify the nuclear lamina density, and the results showed that an increase in nuclear lamina density enhances the probability of nanoneedle penetration into the nuclear membrane. Through employing both simulation and experimental techniques, we have gathered compelling evidence indicating that an augmented density of nuclear lamina A can enhance the penetration of nanoneedles into the nuclear membrane.
Collapse
Affiliation(s)
- Jie Zou
- School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Bei Peng
- School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Na Fan
- School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
4
|
Qu S, Yi C, Zhao Q, Ni Y, Ouyang S, Qi H, Cheng GJ, Zhang Y. Single-Cell Synchro-Subtractive-Additive Nanoscale Surgery with Femtosecond Lasers. NANO LETTERS 2024; 24:8801-8808. [PMID: 38989671 DOI: 10.1021/acs.nanolett.4c00970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Herein, an in situ "synchro-subtractive-additive" technique of femtosecond laser single-cell surgery (FLSS) is presented to address the inadequacies of existing surgical methods for single-cell manipulation. This process is enabled by synchronized nanoscale three-dimensional (3D) subtractive and additive manufacturing with ultrahigh precision on various parts of the cells, in that the precise removal and modification of a single-cell structure are realized by nonthermal ablation, with synchronously ultrafast solidification of the specially designed hydrogel by two photopolymerizations. FLSS is a minimally invasive technique with a post-operative survival rate of 70% and stable proliferation. It opens avenues for bottom-up synthetic biology, offering new methods for artificially synthesizing organelle-like 3D structures and modifying the physiological activities of cells.
Collapse
Affiliation(s)
- Shuyuan Qu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Medical Research Institute, School of Medicine, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Chenqi Yi
- Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Qin Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Medical Research Institute, School of Medicine, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Yueqi Ni
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Medical Research Institute, School of Medicine, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Simin Ouyang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Medical Research Institute, School of Medicine, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Haoning Qi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Medical Research Institute, School of Medicine, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Gary J Cheng
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906, United States
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Medical Research Institute, School of Medicine, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| |
Collapse
|
5
|
Wang C, Gu C, Popp C, Vashisth P, Mustfa SA, Martella DA, Spiteri C, McLennan S, Sun N, Riddle M, Eide CR, Parsons M, Tolar J, McGrath JA, Chiappini C. Integrating Porous Silicon Nanoneedles within Medical Devices for Nucleic Acid Nanoinjection. ACS NANO 2024; 18:14938-14953. [PMID: 38726598 PMCID: PMC11171749 DOI: 10.1021/acsnano.4c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 06/12/2024]
Abstract
Porous silicon nanoneedles can interface with cells and tissues with minimal perturbation for high-throughput intracellular delivery and biosensing. Typically, nanoneedle devices are rigid, flat, and opaque, which limits their use for topical applications in the clinic. We have developed a robust, rapid, and precise substrate transfer approach to incorporate nanoneedles within diverse substrates of arbitrary composition, flexibility, curvature, transparency, and biodegradability. With this approach, we integrated nanoneedles on medically relevant elastomers, hydrogels, plastics, medical bandages, catheter tubes, and contact lenses. The integration retains the mechanical properties and transfection efficiency of the nanoneedles. Transparent devices enable the live monitoring of cell-nanoneedle interactions. Flexible devices interface with tissues for efficient, uniform, and sustained topical delivery of nucleic acids ex vivo and in vivo. The versatility of this approach highlights the opportunity to integrate nanoneedles within existing medical devices to develop advanced platforms for topical delivery and biosensing.
Collapse
Affiliation(s)
- Cong Wang
- Centre
for Craniofacial and Regenerative Biology, King’s College London, SE1 9RT London, U.K.
- London
Centre for Nanotechnology, King’s
College London, WC2R 2LS London, U.K.
| | - Chenlei Gu
- Centre
for Craniofacial and Regenerative Biology, King’s College London, SE1 9RT London, U.K.
- London
Centre for Nanotechnology, King’s
College London, WC2R 2LS London, U.K.
| | - Courtney Popp
- Department
of Pediatrics, Medical School, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Priya Vashisth
- Centre
for Craniofacial and Regenerative Biology, King’s College London, SE1 9RT London, U.K.
| | - Salman Ahmad Mustfa
- Centre
for Craniofacial and Regenerative Biology, King’s College London, SE1 9RT London, U.K.
| | - Davide Alessandro Martella
- Centre
for Craniofacial and Regenerative Biology, King’s College London, SE1 9RT London, U.K.
- London
Centre for Nanotechnology, King’s
College London, WC2R 2LS London, U.K.
| | - Chantelle Spiteri
- Centre
for Craniofacial and Regenerative Biology, King’s College London, SE1 9RT London, U.K.
| | - Samuel McLennan
- Centre
for Craniofacial and Regenerative Biology, King’s College London, SE1 9RT London, U.K.
| | - Ningjia Sun
- Centre
for Craniofacial and Regenerative Biology, King’s College London, SE1 9RT London, U.K.
| | - Megan Riddle
- Department
of Pediatrics, Medical School, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Cindy R. Eide
- Department
of Pediatrics, Medical School, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Maddy Parsons
- Randall
Centre for Cell and Molecular Biophysics, King’s College London, SE1 1UL London, U.K.
| | - Jakub Tolar
- Department
of Pediatrics, Medical School, University
of Minnesota, Minneapolis, Minnesota 55455, United States
- Stem
Cell Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John A. McGrath
- St
John’s
Institute of Dermatology, King’s
College London, SE1 7EP London, U.K.
| | - Ciro Chiappini
- Centre
for Craniofacial and Regenerative Biology, King’s College London, SE1 9RT London, U.K.
- London
Centre for Nanotechnology, King’s
College London, WC2R 2LS London, U.K.
| |
Collapse
|
6
|
Rahamathulla M, Murugesan S, Gowda DV, Alamri AH, Ahmed MM, Osmani RAM, Ramamoorthy S, Veeranna B. The Use of Nanoneedles in Drug Delivery: an Overview of Recent Trends and Applications. AAPS PharmSciTech 2023; 24:216. [PMID: 37857918 DOI: 10.1208/s12249-023-02661-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023] Open
Abstract
Nanoneedles (NN) are growing rapidly as a means of navigating biological membranes and delivering therapeutics intracellularly. Nanoneedle arrays (NNA) are among the most potential resources to achieve therapeutic effects by administration of drugs through the skin. Although this is based on well-established approaches, its implementations are rapidly developing as an important pharmaceutical and biological research phenomenon. This study intends to provide a broad overview of current NNA research, with an emphasis on existing approaches, applications, and types of compounds released by these systems. A nanoneedle-based delivery device with great spatial and temporal accuracy, minimal interference, and low toxicity could transfer biomolecules into living organisms. Due to its vast potential, NN has been widely used as a capable transportation system of many therapeutic active substances, from cancer therapy, vaccine delivery, cosmetics, and bio-sensing nanocarrier drugs to genes. The use of nanoneedles for drug delivery offers new opportunities for the rapid, targeted, and exact administration of biomolecules into cell membranes for high-resolution research of biological systems, and it can treat a wide range of biological challenges. As a result, the literature has analyzed existing patents to emphasize the status of NNA in biological applications.
Collapse
Affiliation(s)
- Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Santhosh Murugesan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - D V Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - Ali H Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, 570015, Karnataka, India.
| | - Sathish Ramamoorthy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - Balamuralidhara Veeranna
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, 570015, Karnataka, India.
| |
Collapse
|
7
|
Rostami M, Ahmadian MT. Numerical investigation of force and deflection of nanoneedle penetration into cell using finite element approach: Parameter study and experimental validation of results. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3749. [PMID: 37431177 DOI: 10.1002/cnm.3749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/07/2023] [Accepted: 06/11/2023] [Indexed: 07/12/2023]
Abstract
This paper aims to develop a numerical methodology to investigate the penetration process of nanoneedles into cells and the corresponding force and indentation length. The finite element approach via the explicit dynamic method handles convergence difficulties in the nonlinear phenomenon. The cell is modeled as an isotropic elastic hemiellipsoidal shell with a thickness of 200 nm, which represents the lipid membrane and actin cortex, encapsulating cytoplasm that is regarded as an Eulerian body because of its fluid-type behavior. Nanoneedles with diameters 400, 200, and 50 nm are considered for model development based on available experimental data. The Von Mises strain failure criterion is used for rupture detection. A parameter study using 1, 2.5, 5, 7.5, and 10 kPa shows that Young's modulus of the HeLa cell membrane is about 5 kPa. Moreover, a failure strain of 1.2 chosen among 0.2, 0.4, 0.6, 0.8, 1, and 1.2 matches best the experimental data. In addition, a diameter study shows that the relations between force-diameter and indentation length-diameter are linear and polynomial, respectively. Furthermore, regarding the experimental data and by using contour of minimum principal stress around needle and an analytical equation for calculation of buckling force of a woven fabric, we proposed that for a given cell, membrane structural stability-a function of the coupled effect of Young's modulus and actin meshwork size-contributes directly to needle insertion success rate for that type of cell.
Collapse
Affiliation(s)
- M Rostami
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran
| | - M T Ahmadian
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
8
|
Ramesh SV, Ramesh PV, Ganga S, Gopalakrishnan ST. Commentary: Ophthalmic medicine and surgery on the nanoscale: More than just a pipe dream. Indian J Ophthalmol 2023; 71:2367-2368. [PMID: 37322645 PMCID: PMC10417985 DOI: 10.4103/ijo.ijo_346_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Affiliation(s)
| | | | - S Ganga
- Junior Resident, Mahathma Eye Hospital Private Limited, Trichy, Tamil Nadu, India
| | | |
Collapse
|
9
|
Zhang Z, Gaetjens TK, Yu Y, Paul Mallory D, Abel SM, Yu Y. Propulsive cell entry diverts pathogens from immune degradation by remodeling the phagocytic synapse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538287. [PMID: 37162866 PMCID: PMC10168248 DOI: 10.1101/2023.04.25.538287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Phagocytosis is a critical immune function for infection control and tissue homeostasis. This process is typically described as non-moving pathogens being internalized and degraded in phagolysosomes. For pathogens that evade immune degradation, the prevailing view is that virulence factors that biochemically disrupt the biogenesis of phagoslysosomes are required. In contrast, here we report that physical forces exerted by pathogens during cell entry divert them away from the canonical phagolysosomal degradation pathway, and this altered intracellular fate is determined at the time of phagocytic synapse formation. We used the eukaryotic parasite Toxoplasma gondii as a model because live Toxoplasma uses gliding motility to actively invade into host cells. To differentiate the effect of physical forces from that of virulence factors in phagocytosis, we developed a strategy that used magnetic forces to induce propulsive entry of inactivated Toxoplasma into macrophage cells. Experiments and computer simulations collectively reveal that large propulsive forces suppress productive activation of receptors by hindering their spatial segregation from phosphatases at the phagocytic synapse. Consequently, the inactivated parasites, instead of being degraded in phagolysosomes, are engulfed into vacuoles that fail to mature into degradative units, following an intracellular pathway strikingly similar to that of the live motile parasite. Using opsonized beads, we further confirmed that this mechanism is general, not specific to the parasite used. These results reveal previously unknown aspects of immune evasion by demonstrating how physical forces exerted during active cell entry, independent of virulence factors, can help pathogens circumvent phagolysosomal degradation.
Collapse
Affiliation(s)
- Zihan Zhang
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
| | - Thomas K. Gaetjens
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996
| | - Yanqi Yu
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
| | - D. Paul Mallory
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
| | - Steven M. Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
| |
Collapse
|
10
|
Wang Z, Wang H, Lin S, Labib M, Ahmed S, Das J, Angers S, Sargent EH, Kelley SO. Efficient Delivery of Biological Cargos into Primary Cells by Electrodeposited Nanoneedles via Cell-Cycle-Dependent Endocytosis. NANO LETTERS 2023. [PMID: 37040490 DOI: 10.1021/acs.nanolett.2c05083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Nanoneedles are a useful tool for delivering exogenous biomolecules to cells. Although therapeutic applications have been explored, the mechanism regarding how cells interact with nanoneedles remains poorly studied. Here, we present a new approach for the generation of nanoneedles, validated their usefulness in cargo delivery, and studied the underlying genetic modulators during delivery. We fabricated arrays of nanoneedles based on electrodeposition and quantified its efficacy of delivery using fluorescently labeled proteins and siRNAs. Notably, we revealed that our nanoneedles caused the disruption of cell membranes, enhanced the expression of cell-cell junction proteins, and downregulated the expression of transcriptional factors of NFκB pathways. This perturbation trapped most of the cells in G2 phase, in which the cells have the highest endocytosis activities. Taken together, this system provides a new model for the study of interactions between cells and high-aspect-ratio materials.
Collapse
Affiliation(s)
- Zongjie Wang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
| | - Hansen Wang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
| | - Sichun Lin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| | - Mahmoud Labib
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, Illinois 60208, United States
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth, PL6 8BU, United Kingdom
| | - Sharif Ahmed
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jagotamoy Das
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Stephane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| | - Edward H Sargent
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto M5S 3G4, Canada
| | - Shana O Kelley
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biochemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
11
|
Mechanical detection of interactions between proteins related to intermediate filament and transcriptional regulation in living cells. Biosens Bioelectron 2022; 216:114603. [DOI: 10.1016/j.bios.2022.114603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/14/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022]
|
12
|
Viswan A, Yamagishi A, Hoshi M, Furuhata Y, Kato Y, Makimoto N, Takeshita T, Kobayashi T, Iwata F, Kimura M, Yoshizumi T, Nakamura C. Microneedle Array-Assisted, Direct Delivery of Genome-Editing Proteins Into Plant Tissue. FRONTIERS IN PLANT SCIENCE 2022; 13:878059. [PMID: 35812975 PMCID: PMC9263851 DOI: 10.3389/fpls.2022.878059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Genome editing in plants employing recombinant DNA often results in the incorporation of foreign DNA into the host genome. The direct delivery of genome-editing proteins into plant tissues is desired to prevent undesirable genetic alterations. However, in most currently available methods, the point of entry of the genome-editing proteins cannot be controlled and time-consuming processes are required to select the successfully transferred samples. To overcome these limitations, we considered a novel microneedle array (MNA)-based delivery system, in which the needles are horizontally aligned from the substrate surface, giving it a comb-like configuration. We aimed to deliver genome-editing proteins directly into the inner layers of leaf tissues; palisade, the spongy and subepidermal L2 layers of the shoot apical meristem (SAM) which include cells that can differentiate into germlines. The array with needles 2 μm wide and 60 μm long was effective in inserting into Arabidopsis thaliana leaves and Glycine max (L.) Merr. (soybeans) SAM without the needles buckling or breaking. The setup was initially tested for the delivery of Cre recombinase into the leaves of the reporter plant A. thaliana by quantifying the GUS (β-glucuronidase) expression that occurred by the recombination of the loxP sites. We observed GUS expression at every insertion. Additionally, direct delivery of Cas9 ribonucleoprotein (RNP) targeting the PDS11/18 gene in soybean SAM showed an 11 bp deletion in the Cas9 RNP target site. Therefore, this method effectively delivered genome-editing proteins into plant tissues with precise control over the point of entry.
Collapse
Affiliation(s)
- Anchu Viswan
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Ayana Yamagishi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Masamichi Hoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yuichi Furuhata
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yoshio Kato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Natsumi Makimoto
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Toshihiro Takeshita
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takeshi Kobayashi
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Futoshi Iwata
- Graduate School of Medical Photonics, Shizuoka University, Hamamatsu, Japan
| | - Mitsuhiro Kimura
- Faculty of Agriculture, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Takeshi Yoshizumi
- Faculty of Agriculture, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Chikashi Nakamura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
13
|
Numano R, Goryu A, Kubota Y, Sawahata H, Yamagiwa S, Matsuo M, Iimura T, Tei H, Ishida M, Kawano T. Nanoscale-tipped wire array injections transfer DNA directly into brain cells ex vivo and in vivo. FEBS Open Bio 2022; 12:835-851. [PMID: 35293154 PMCID: PMC8972050 DOI: 10.1002/2211-5463.13377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/24/2021] [Accepted: 02/04/2022] [Indexed: 11/26/2022] Open
Abstract
Genetic modification to restore cell functions in the brain can be performed through the delivery of biomolecules in a minimally invasive manner into live neuronal cells within brain tissues. However, conventional nanoscale needles are too short (lengths of ~10 µm) to target neuronal cells in ~1‐mm‐thick brain tissues because the neuronal cells are located deep within the tissue. Here, we report the use of nanoscale‐tipped wire (NTW) arrays with diameters < 100 nm and wire lengths of ~200 µm to address biomolecule delivery issues. The NTW arrays were manufactured by growth of silicon microwire arrays and nanotip formation. This technique uses pinpoint, multiple‐cell DNA injections in deep areas of brain tissues, enabling target cells to be marked by fluorescent protein (FP) expression vectors. This technique has potential for use for electrophysiological recordings and biological transfection into neuronal cells. Herein, simply pressing an NTW array delivers and expresses plasmid DNA in multiple‐cultured cells and multiple‐neuronal cells within a brain slice with reduced cell damage. Additionally, DNA transfection is demonstrated using brain cells ex vivo and in vivo. Moreover, knockdown of a critical clock gene after injecting a short hairpin RNA (shRNA) and a genome‐editing vector demonstrates the potential to genetically alter the function of living brain cells, for example, pacemaker cells of the mammalian circadian rhythms. Overall, our NTW array injection technique enables genetic and functional modification of living cells in deep brain tissue areas, both ex vivo and in vivo.
Collapse
Affiliation(s)
- Rika Numano
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Japan.,Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, Japan
| | - Akihiro Goryu
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Japan
| | - Yoshihiro Kubota
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Japan
| | - Hirohito Sawahata
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Japan.,National Institute of Technology, Ibaraki College, Japan
| | - Shota Yamagiwa
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Japan
| | - Minako Matsuo
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Japan.,Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, Japan
| | - Tadahiro Iimura
- Department of Pharmacology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hajime Tei
- Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | - Makoto Ishida
- Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, Japan.,Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Japan
| | - Takeshi Kawano
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Japan
| |
Collapse
|
14
|
Houthaeve G, De Smedt SC, Braeckmans K, De Vos WH. The cellular response to plasma membrane disruption for nanomaterial delivery. NANO CONVERGENCE 2022; 9:6. [PMID: 35103909 PMCID: PMC8807741 DOI: 10.1186/s40580-022-00298-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Delivery of nanomaterials into cells is of interest for fundamental cell biological research as well as for therapeutic and diagnostic purposes. One way of doing so is by physically disrupting the plasma membrane (PM). Several methods that exploit electrical, mechanical or optical cues have been conceived to temporarily disrupt the PM for intracellular delivery, with variable effects on cell viability. However, apart from acute cytotoxicity, subtler effects on cell physiology may occur as well. Their nature and timing vary with the severity of the insult and the efficiency of repair, but some may provoke permanent phenotypic alterations. With the growing palette of nanoscale delivery methods and applications, comes a need for an in-depth understanding of this cellular response. In this review, we summarize current knowledge about the chronology of cellular events that take place upon PM injury inflicted by different delivery methods. We also elaborate on their significance for cell homeostasis and cell fate. Based on the crucial nodes that govern cell fitness and functionality, we give directions for fine-tuning nano-delivery conditions.
Collapse
Affiliation(s)
- Gaëlle Houthaeve
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
15
|
Penedo M, Miyazawa K, Okano N, Furusho H, Ichikawa T, Alam MS, Miyata K, Nakamura C, Fukuma T. Visualizing intracellular nanostructures of living cells by nanoendoscopy-AFM. SCIENCE ADVANCES 2021; 7:eabj4990. [PMID: 34936434 PMCID: PMC10954033 DOI: 10.1126/sciadv.abj4990] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Atomic force microscopy (AFM) is the only technique that allows label-free imaging of nanoscale biomolecular dynamics, playing a crucial role in solving biological questions that cannot be addressed by other major bioimaging tools (fluorescence or electron microscopy). However, such imaging is possible only for systems either extracted from cells or reconstructed on solid substrates. Thus, nanodynamics inside living cells largely remain inaccessible with the current nanoimaging techniques. Here, we overcome this limitation by nanoendoscopy-AFM, where a needle-like nanoprobe is inserted into a living cell, presenting actin fiber three-dimensional (3D) maps, and 2D nanodynamics of the membrane inner scaffold, resulting in undetectable changes in cell viability. Unlike previous AFM methods, the nanoprobe directly accesses the target intracellular components, exploiting all the AFM capabilities, such as high-resolution imaging, nanomechanical mapping, and molecular recognition. These features should greatly expand the range of intracellular structures observable in living cells.
Collapse
Affiliation(s)
- Marcos Penedo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Keisuke Miyazawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Division of Electric Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Faculty of Frontier Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Naoko Okano
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Hirotoshi Furusho
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Takehiko Ichikawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Mohammad Shahidul Alam
- Division of Nano Life Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kazuki Miyata
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Division of Electric Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Faculty of Frontier Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Division of Nano Life Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Chikashi Nakamura
- AIST-INDIA Diverse Assets and Applications International Laboratory (DAILAB), Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Division of Electric Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Faculty of Frontier Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Division of Nano Life Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
16
|
Zhang Y, Li L, Wang J. Role of Ligand Distribution in the Cytoskeleton-Associated Endocytosis of Ellipsoidal Nanoparticles. MEMBRANES 2021; 11:membranes11120993. [PMID: 34940494 PMCID: PMC8705050 DOI: 10.3390/membranes11120993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/27/2022]
Abstract
Nanoparticle (NP)–cell interaction mediated by receptor–ligand bonds is a crucial phenomenon in pathology, cellular immunity, and drug delivery systems, and relies strongly on the shape of NPs and the stiffness of the cell. Given this significance, a fundamental question is raised on how the ligand distribution may affect the membrane wrapping of non-spherical NPs under the influence of cytoskeleton deformation. To address this issue, in this work we use a coupled elasticity–diffusion model to systematically investigate the role of ligand distribution in the cytoskeleton-associated endocytosis of ellipsoidal NPs for different NP shapes, sizes, cytoskeleton stiffness, and the initial receptor densities. In this model, we have taken into account the effects of receptor diffusion, receptor–ligand binding, cytoskeleton and membrane deformations, and changes in the configuration entropy of receptors. By solving this model, we find that the uptake process can be significantly influenced by the ligand distribution. Additionally, there exists an optimal state of such a distribution, which corresponds to the fastest uptake efficiency and depends on the NP aspect ratio and cytoskeleton stiffness. We also find that the optimal distribution usually needs local ligand density to be sufficiently high at the large curvature region. Furthermore, the optimal state of NP entry into cells can tolerate slight changes to the corresponding optimal distribution of the ligands. The tolerance to such a change is enhanced as the average receptor density and NP size increase. These results may provide guidelines to control NP–cell interactions and improve the efficiency of target drug delivery systems.
Collapse
Affiliation(s)
| | - Long Li
- Correspondence: (L.L.); (J.W.)
| | | |
Collapse
|
17
|
Yamagishi A, Ito F, Nakamura C. Study on Cancer Cell Invasiveness via Application of Mechanical Force to Induce Chloride Ion Efflux. Anal Chem 2021; 93:9032-9035. [PMID: 34152726 DOI: 10.1021/acs.analchem.1c01589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chloride channels regulate cell volume by an efflux of chloride ions in response to osmotic stresses. These have been shown to play a role in cancer invasion. However, their function in cancer metastasis remains unclear. As the internal environment of the human body is rarely exposed to osmotic stress, we presumed that Cl- efflux in cancer cells is induced by mechanical stress caused by their crowded environment and invasion of their narrow interstitial spaces. In this study, we recruited atomic force microscopy to apply mechanical stress to mouse or human breast cancer cells with varying degrees of malignancy and examined their Cl- efflux by N-ethoxycarbonylmethyl-6-methoxyquinolinium bromide (MQAE), which is quenched via collision with Cl- ions. We found that intracellular MQAE fluorescence intensity increased immediately after cell compression, demonstrating induction of Cl- efflux by mechanical force. Furthermore, Cl- efflux ability showed correlation with the cancer metastatic potential. These results suggested that mechanical stress induced Cl- efflux may serve as a potential reporter for estimating the invasion ability of cancer cells.
Collapse
Affiliation(s)
- Ayana Yamagishi
- AIST-INDIA DAILAB, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Fumie Ito
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Chikashi Nakamura
- AIST-INDIA DAILAB, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.,Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
18
|
Kaladharan K, Kumar A, Gupta P, Illath K, Santra TS, Tseng FG. Microfluidic Based Physical Approaches towards Single-Cell Intracellular Delivery and Analysis. MICROMACHINES 2021; 12:631. [PMID: 34071732 PMCID: PMC8228766 DOI: 10.3390/mi12060631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022]
Abstract
The ability to deliver foreign molecules into a single living cell with high transfection efficiency and high cell viability is of great interest in cell biology for applications in therapeutic development, diagnostics, and drug delivery towards personalized medicine. Various physical delivery methods have long demonstrated the ability to deliver cargo molecules directly to the cytoplasm or nucleus and the mechanisms underlying most of the approaches have been extensively investigated. However, most of these techniques are bulk approaches that are cell-specific and have low throughput delivery. In comparison to bulk measurements, single-cell measurement technologies can provide a better understanding of the interactions among molecules, organelles, cells, and the microenvironment, which can aid in the development of therapeutics and diagnostic tools. To elucidate distinct responses during cell genetic modification, methods to achieve transfection at the single-cell level are of great interest. In recent years, single-cell technologies have become increasingly robust and accessible, although limitations exist. This review article aims to cover various microfluidic-based physical methods for single-cell intracellular delivery such as electroporation, mechanoporation, microinjection, sonoporation, optoporation, magnetoporation, and thermoporation and their analysis. The mechanisms of various physical methods, their applications, limitations, and prospects are also elaborated.
Collapse
Affiliation(s)
- Kiran Kaladharan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300044, Taiwan; (K.K.); (A.K.)
| | - Ashish Kumar
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300044, Taiwan; (K.K.); (A.K.)
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India; (P.G.); (K.I.)
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India; (P.G.); (K.I.)
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India; (P.G.); (K.I.)
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300044, Taiwan; (K.K.); (A.K.)
| |
Collapse
|
19
|
Li M, Xi N, Liu L. Peak force tapping atomic force microscopy for advancing cell and molecular biology. NANOSCALE 2021; 13:8358-8375. [PMID: 33913463 DOI: 10.1039/d1nr01303c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The advent of atomic force microscopy (AFM) provides an exciting tool to detect molecular and cellular behaviors under aqueous conditions. AFM is able to not only visualize the surface topography of the specimens, but also can quantify the mechanical properties of the specimens by force spectroscopy assay. Nevertheless, integrating AFM topographic imaging with force spectroscopy assay has long been limited due to the low spatiotemporal resolution. In recent years, the appearance of a new AFM imaging mode called peak force tapping (PFT) has shattered this limit. PFT allows AFM to simultaneously acquire the topography and mechanical properties of biological samples with unprecedented spatiotemporal resolution. The practical applications of PFT in the field of life sciences in the past decade have demonstrated the excellent capabilities of PFT in characterizing the fine structures and mechanics of living biological systems in their native states, offering novel possibilities to reveal the underlying mechanisms guiding physiological/pathological activities. In this paper, the recent progress in cell and molecular biology that has been made with the utilization of PFT is summarized, and future perspectives for further progression and biomedical applications of PFT are provided.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China and Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China and University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ning Xi
- Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China and Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China and University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
20
|
Penedo M, Shirokawa T, Alam MS, Miyazawa K, Ichikawa T, Okano N, Furusho H, Nakamura C, Fukuma T. Cell penetration efficiency analysis of different atomic force microscopy nanoneedles into living cells. Sci Rep 2021; 11:7756. [PMID: 33833307 PMCID: PMC8032717 DOI: 10.1038/s41598-021-87319-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/26/2021] [Indexed: 11/11/2022] Open
Abstract
Over the last decade, nanoneedle-based systems have demonstrated to be extremely useful in cell biology. They can be used as nanotools for drug delivery, biosensing or biomolecular recognition inside cells; or they can be employed to select and sort in parallel a large number of living cells. When using these nanoprobes, the most important requirement is to minimize the cell damage, reducing the forces and indentation lengths needed to penetrate the cell membrane. This is normally achieved by reducing the diameter of the nanoneedles. However, several studies have shown that nanoneedles with a flat tip display lower penetration forces and indentation lengths. In this work, we have tested different nanoneedle shapes and diameters to reduce the force and the indentation length needed to penetrate the cell membrane, demonstrating that ultra-thin and sharp nanoprobes can further reduce them, consequently minimizing the cell damage.
Collapse
Affiliation(s)
- Marcos Penedo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan. .,Bioengineering department, Ecole Polytechnique Fédérale de Lausanne, EPFL STI IBI-STI LBNI, Lausanne, Switzerland.
| | - Tetsuya Shirokawa
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Mohammad Shahidul Alam
- Division of Nano Life Science, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Keisuke Miyazawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan.,Division of Electrical Engineering and Computer Science, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan.,Faculty of Frontier Engineering, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Takehiko Ichikawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan
| | - Naoko Okano
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan
| | - Hirotoshi Furusho
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan
| | - Chikashi Nakamura
- AIST-INDIA Diverse Assets and Applications International Laboratory (DAILAB), Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan. .,Division of Electrical Engineering and Computer Science, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan. .,Division of Nano Life Science, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan. .,Faculty of Frontier Engineering, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
21
|
Park S, Nguyen DV, Kang L. Immobilized nanoneedle-like structures for intracellular delivery, biosensing and cellular surgery. Nanomedicine (Lond) 2021; 16:335-349. [PMID: 33533658 DOI: 10.2217/nnm-2020-0337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rapid advancements of nanotechnology over the recent years have reformed the methods used for treating human diseases. Nanostructures including nanoneedles, nanorods, nanowires, nanofibers and nanotubes have exhibited their potential roles in drug delivery, biosensing, cancer therapy, regenerative medicine and intracellular surgery. These high aspect ratio structures enhance targeted drug delivery with spatiotemporal control while also demonstrating their role as an efficient intracellular biosensor with minimal invasiveness. This review discusses the history and emergence of these nanostructures and their fabrication methods. This review also provides an overview of the different applications of nanoneedle systems, further highlighting the importance of greater investigation into these nanostructures for future medicine.
Collapse
Affiliation(s)
- Sol Park
- School of Pharmacy, Faculty of Medicine & Health, University of Sydney, NSW 2006, Australia
| | - Duc-Viet Nguyen
- Nusmetics Pte. Ltd, i4 building, 3 Research Link, Singapore 117602, Republic of Singapore
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine & Health, University of Sydney, NSW 2006, Australia
| |
Collapse
|
22
|
Xu X, Jia J, Guo M. The Most Recent Advances in the Application of Nano-Structures/Nano-Materials for Single-Cell Sampling. Front Chem 2020; 8:718. [PMID: 32974282 PMCID: PMC7469254 DOI: 10.3389/fchem.2020.00718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/13/2020] [Indexed: 11/13/2022] Open
Abstract
The research in endogenous biomolecules from a single cell has grown rapidly in recent years since it is critical for dissecting and scrutinizing the complexity of heterogeneous tissues, especially under pathological conditions, and it is also of key importance to understand the biological processes and cellular responses to various perturbations without the limitation of population averaging. Although conventional techniques, such as micromanipulation or cell sorting methods, are already used along with subsequent molecular examinations, it remains a big challenge to develop new approaches to manipulate and directly extract small quantities of cytosol from single living cells. In this sense, nanostructure or nanomaterial may play a critical role in overcoming these challenges in cellular manipulation and extraction of very small quantities of cells, and provide a powerful alternative to conventional techniques. Since the nanostructures or nanomaterial could build channels between intracellular and extracellular components across cell membrane, through which cytosol could be pumped out and transferred to downstream analyses. In this review, we will first brief the traditional methods for single cell analyses, and then shift our focus to some most promising methods for single-cell sampling with nanostructures, such as glass nanopipette, nanostraw, carbon nanotube probes and other nanomaterial. In this context, particular attentions will be paid to their principles, preparations, operations, superiorities and drawbacks, and meanwhile the great potential of nano-materials for single-cell sampling will also be highlighted and prospected.
Collapse
Affiliation(s)
- Xiaolong Xu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, China
| | - Jianbo Jia
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, China
| | - Mingquan Guo
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, China.,CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
23
|
Lu Z, Wang Z, Li D. Application of atomic force microscope in diagnosis of single cancer cells. BIOMICROFLUIDICS 2020; 14:051501. [PMID: 32922587 PMCID: PMC7474552 DOI: 10.1063/5.0021592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Changes in mechanical properties of cells are closely related to a variety of diseases. As an advanced technology on the micro/nano scale, atomic force microscopy is the most suitable tool for information acquisition of living cells in human body fluids. AFMs are able to measure and characterize the mechanical properties of cells which can be used as effective markers to distinguish between different cell types and cells in different states (benign or cancerous). Therefore, they can be employed to obtain additional information to that obtained via the traditional biochemistry methods for better identifying and diagnosing cancer cells for humans, proposing better treatment methods and prognosis, and unravelling the pathogenesis of the disease. In this report, we review the use of AFMs in cancerous tissues, organs, and cancer cells cultured in vitro to obtain cellular mechanical properties, demonstrate and summarize the results of AFMs in cancer biology, and look forward to possible future applications and the direction of development.
Collapse
Affiliation(s)
- Zhengcheng Lu
- JR3CN and IRAC, University of Bedfordshire, Luton LU1 3JU, United Kingdom
| | - Zuobin Wang
- Authors to whom correspondence should be addressed: and
| | - Dayou Li
- JR3CN and IRAC, University of Bedfordshire, Luton LU1 3JU, United Kingdom
| |
Collapse
|
24
|
Shen T, Shirinzadeh B, Zhong Y, Smith J, Pinskier J, Ghafarian M. Sensing and Modelling Mechanical Response in Large Deformation Indentation of Adherent Cell Using Atomic Force Microscopy. SENSORS 2020; 20:s20061764. [PMID: 32235792 PMCID: PMC7147157 DOI: 10.3390/s20061764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 12/18/2022]
Abstract
The mechanical behaviour of adherent cells when subjected to the local indentation can be modelled via various approaches. Specifically, the tensegrity structure has been widely used in describing the organization of discrete intracellular cytoskeletal components, including microtubules (MTs) and microfilaments. The establishment of a tensegrity model for adherent cells has generally been done empirically, without a mathematically demonstrated methodology. In this study, a rotationally symmetric prism-shaped tensegrity structure is introduced, and it forms the basis of the proposed multi-level tensegrity model. The modelling approach utilizes the force density method to mathematically assure self-equilibrium. The proposed multi-level tensegrity model was developed by densely distributing the fundamental tensegrity structure in the intracellular space. In order to characterize the mechanical behaviour of the adherent cell during the atomic force microscopy (AFM) indentation with large deformation, an integrated model coupling the multi-level tensegrity model with a hyperelastic model was also established and applied. The coefficient of determination between the computational force-distance (F-D) curve and the experimental F-D curve was found to be at 0.977 in the integrated model on average. In the simulation range, along with the increase in the overall deformation, the local stiffness contributed by the cytoskeletal components decreased from 75% to 45%, while the contribution from the hyperelastic components increased correspondingly.
Collapse
Affiliation(s)
- Tianyao Shen
- Robotics and Mechatronics Research Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia; (B.S.); (J.P.); (M.G.)
- Correspondence: ; Tel.: +61-04-5249-2096
| | - Bijan Shirinzadeh
- Robotics and Mechatronics Research Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia; (B.S.); (J.P.); (M.G.)
| | - Yongmin Zhong
- School of Engineering, RMIT University, Bundoora, VIC 3083, Australia;
| | - Julian Smith
- Department of Surgery, Monash University, Clayton, VIC 3800, Australia;
| | - Joshua Pinskier
- Robotics and Mechatronics Research Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia; (B.S.); (J.P.); (M.G.)
| | - Mohammadali Ghafarian
- Robotics and Mechatronics Research Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia; (B.S.); (J.P.); (M.G.)
| |
Collapse
|
25
|
Song J, Meng X, Zhang H, Zhao K, Hu Y, Xie H. Probing Multidimensional Mechanical Phenotyping of Intracellular Structures by Viscoelastic Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1913-1923. [PMID: 31802656 DOI: 10.1021/acsami.9b19597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mechanical phenotyping of complex cellular structures gives insight into the process and function of mechanotransduction in biological systems. Several methods have been developed to characterize intracellular elastic moduli, while direct viscoelastic characterization of intracellular structures is still challenging. Here, we develop a needle tip viscoelastic spectroscopy method to probe multidimensional mechanical phenotyping of intracellular structures during a mini-invasive penetrating process. Viscoelastic spectroscopy is determined by magnetically driven resonant vibration (about 15 kHz) with a tiny amplitude. It not only detects the unique dynamic stiffness, damping, and loss tangent of the cell membrane-cytoskeleton and nucleus-nuclear lamina but also bridges viscoelastic parameters between the mitotic phase and interphase. Self-defined dynamic mechanical ratios of these two phases can identify two malignant cervical cancer cell lines (HeLa-HPV18+, SiHa-HPV16+) whose membrane or nucleus elastic moduli are indistinguishable. This technique provides a quantitative method for studying mechanosensation, mechanotransduction, and mechanoresponse of intracellular structures from a dynamic mechanical perspective. This technique has the potential to become a reliable quantitative measurement method for dynamic mechanical studies of intracellular structures.
Collapse
|
26
|
Kumar SS, Baker MS, Okandan M, Muthuswamy J. Engineering microscale systems for fully autonomous intracellular neural interfaces. MICROSYSTEMS & NANOENGINEERING 2020; 6:1. [PMID: 34567658 PMCID: PMC8433365 DOI: 10.1038/s41378-019-0121-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 05/08/2023]
Abstract
Conventional electrodes and associated positioning systems for intracellular recording from single neurons in vitro and in vivo are large and bulky, which has largely limited their scalability. Further, acquiring successful intracellular recordings is very tedious, requiring a high degree of skill not readily achieved in a typical laboratory. We report here a robotic, MEMS-based intracellular recording system to overcome the above limitations associated with form factor, scalability, and highly skilled and tedious manual operations required for intracellular recordings. This system combines three distinct technologies: (1) novel microscale, glass-polysilicon penetrating electrode for intracellular recording; (2) electrothermal microactuators for precise microscale movement of each electrode; and (3) closed-loop control algorithm for autonomous positioning of electrode inside single neurons. Here we demonstrate the novel, fully integrated system of glass-polysilicon microelectrode, microscale actuators, and controller for autonomous intracellular recordings from single neurons in the abdominal ganglion of Aplysia californica (n = 5 cells). Consistent resting potentials (<-35 mV) and action potentials (>60 mV) were recorded after each successful penetration attempt with the controller and microactuated glass-polysilicon microelectrodes. The success rate of penetration and quality of intracellular recordings achieved using electrothermal microactuators were comparable to that of conventional positioning systems. Preliminary data from in vivo experiments in anesthetized rats show successful intracellular recordings. The MEMS-based system offers significant advantages: (1) reduction in overall size for potential use in behaving animals, (2) scalable approach to potentially realize multi-channel recordings, and (3) a viable method to fully automate measurement of intracellular recordings. This system will be evaluated in vivo in future rodent studies.
Collapse
Affiliation(s)
- Swathy Sampath Kumar
- Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287 USA
| | - Michael S. Baker
- Mechanical Engineering, Sandia National laboratories, Albuquerque, NM USA
| | | | - Jit Muthuswamy
- Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287 USA
| |
Collapse
|
27
|
Flow micropillar array electroporation to enhance size specific transfection to a large population of cells. Bioelectrochemistry 2019; 132:107417. [PMID: 31830670 DOI: 10.1016/j.bioelechem.2019.107417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 11/23/2022]
Abstract
Despite serving as a popular non-viral delivery approach, electroporation carries several drawbacks in its current configurations. We developed a Flow Micropillar-array Electroporation (FME) system to wisely regulate an important transmembrane-determining factor, namely cell size variations among individual cells, to achieve effective transfection. In FME, cells flow through a slit-type microfluidic channel on which carbon electrodes with well-patterned micropillar array texture are integrated as the top and bottom wall. Gravity helps bring cells to the micropillar array surface so that the permeable area on cells in different size populations is specified by their size regardless their random location fact. Without sacrificing cell viability, we demonstrate this FME concept by delivering DNA plasmids to several mammalian cell lines with obvious transfection enhancement when compared to a commercial system (K562: 3.0 folds; A549: 3.3 folds; HeLa: 1.8 folds, COS7: 1.7 folds; 293T: 2.9 folds; mES: 2.5 folds). Moreover, carbon-based electrodes are less expensive, more durable, and convenient for integration with a microfluidic setup which enables rapid and massive transfection capability that many therapeutic application needs. The success of FME may benefit many emerging biological studies and clinical practice that requires effective transfection to a large population of cells in limited processing time.
Collapse
|
28
|
Gao G, Jiang YW, Jia HR, Sun W, Guo Y, Yu XW, Liu X, Wu FG. From perinuclear to intranuclear localization: A cell-penetrating peptide modification strategy to modulate cancer cell migration under mild laser irradiation and improve photothermal therapeutic performance. Biomaterials 2019; 223:119443. [DOI: 10.1016/j.biomaterials.2019.119443] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/30/2019] [Accepted: 08/20/2019] [Indexed: 12/28/2022]
|
29
|
|
30
|
Chen Y, Aslanoglou S, Gervinskas G, Abdelmaksoud H, Voelcker NH, Elnathan R. Cellular Deformations Induced by Conical Silicon Nanowire Arrays Facilitate Gene Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904819. [PMID: 31599099 DOI: 10.1002/smll.201904819] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/29/2019] [Indexed: 06/10/2023]
Abstract
Engineered cell-nanostructured interfaces generated by vertically aligned silicon nanowire (SiNW) arrays have become a promising platform for orchestrating cell behavior, function, and fate. However, the underlying mechanism in SiNW-mediated intracellular access and delivery is still poorly understood. This study demonstrates the development of a gene delivery platform based on conical SiNW arrays for mechanical cell transfection, assisted by centrifugal force, for both adherent and nonadherent cells in vitro. Cells form focal adhesions on SiNWs within 6 h, and maintain high viability and motility. Such a functional and dynamic cell-SiNW interface features conformational changes in the plasma membrane and in some cases the nucleus, promoting both direct penetration and endocytosis; this synergistically facilitates SiNW-mediated delivery of nucleic acids into immortalized cell lines, and into difficult-to-transfect primary immune T cells without pre-activation. Moreover, transfected cells retrieved from SiNWs retain the capacity to proliferate-crucial to future biomedical applications. The results indicate that SiNW-mediated intracellular delivery holds great promise for developing increasingly sophisticated investigative and therapeutic tools.
Collapse
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, 3168, Australia
| | - Stella Aslanoglou
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, 3168, Australia
| | - Gediminas Gervinskas
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, 15 Innovation Walk, Clayton, VIC, 3800, Australia
| | - Hazem Abdelmaksoud
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, 3168, Australia
- INM-Leibniz Institute for New Materials, Campus D2 2, Saarbrücken, 66123, Germany
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| |
Collapse
|
31
|
Selection and Characterization of DNA Aptamers Against FokI Nuclease Domain. Methods Mol Biol 2019; 1867:165-174. [PMID: 30155822 DOI: 10.1007/978-1-4939-8799-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Genome editing with site-specific nucleases (SSNs) may be effective for gene therapy, as SSNs can modify target genes. However, the main limitation of genome editing for clinical use is off-target effects by excess amounts of SSNs within cells. Therefore, a controlled delivery system for SSNs is necessary. Previously we have reported on a zinc finger nuclease (ZFN) delivery system, which combined DNA aptamers against FokI nuclease domain (FokI) and nanoneedles. Here, we describe how DNA aptamers against FokI were selected and characterized for genome editing applications.
Collapse
|
32
|
Abstract
Nanostructured devices are able to foster the technology for cell membrane poration. With the size smaller than a cell, nanostructures allow efficient poration on the cell membrane. Emerging nanostructures with various physical transduction have been demonstrated to accommodate effective intracellular delivery. Aside from improving poration and intracellular delivery performance, nanostructured devices also allow for the discovery of novel physiochemical phenomena and the biological response of the cell. This article provides a brief introduction to the principles of nanostructured devices for cell poration and outlines the intracellular delivery capability of the technology. In the future, we envision more exploration on new nanostructure designs and creative applications in biomedical fields.
Collapse
Affiliation(s)
- Apresio K Fajrial
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309 United States of America
| | | |
Collapse
|
33
|
Abariute L, Lard M, Hebisch E, Prinz CN. Uptake of nanowires by human lung adenocarcinoma cells. PLoS One 2019; 14:e0218122. [PMID: 31226121 PMCID: PMC6588221 DOI: 10.1371/journal.pone.0218122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/27/2019] [Indexed: 12/23/2022] Open
Abstract
Semiconductor nanowires are increasingly used in optoelectronic devices. However, their effects on human health have not been assessed fully. Here, we investigate the effects of gallium phosphide nanowires on human lung adenocarcinoma cells. Four different geometries of nanowires were suspended in the cell culture for 48 hours. We show that cells internalize the nanowires and that the nanowires have no effect on cell proliferation rate, motility, viability and intracellular ROS levels. By blocking specific internalization pathways, we demonstrate that the nanowire uptake is the result of a combination of processes, requiring dynamin and actin polymerization, which suggests an internalization through macropinocytosis and phagocytosis.
Collapse
Affiliation(s)
- Laura Abariute
- Division of Solid State Physics, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Mercy Lard
- Division of Solid State Physics, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Elke Hebisch
- Division of Solid State Physics, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Christelle N. Prinz
- Division of Solid State Physics, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| |
Collapse
|
34
|
Direct Delivery of Cas9-sgRNA Ribonucleoproteins into Cells Using a Nanoneedle Array. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9050965] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system is a powerful and widely used tool for genome editing. Recently, it was reported that direct delivery of Cas9-sgRNA ribonucleoproteins (RNPs) reduced off-target effects. Therefore, non-invasive, high-throughput methods are needed for direct delivery of RNPs into cells. Here, we report a novel method for direct delivery of RNPs into cells using a nanostructure with a high-aspect-ratio and uniform nanoneedles. This nanostructure is composed of tens of thousands of nanoneedles laid across a 2D array. Through insertion of the nanoneedle array previously adsorbed with Cas9-sgRNA, it was possible to deliver RNPs directly into mammalian cells for genome editing.
Collapse
|
35
|
Gopal S, Chiappini C, Penders J, Leonardo V, Seong H, Rothery S, Korchev Y, Shevchuk A, Stevens MM. Porous Silicon Nanoneedles Modulate Endocytosis to Deliver Biological Payloads. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806788. [PMID: 30680803 PMCID: PMC6606440 DOI: 10.1002/adma.201806788] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/09/2019] [Indexed: 05/18/2023]
Abstract
Owing to their ability to efficiently deliver biological cargo and sense the intracellular milieu, vertical arrays of high aspect ratio nanostructures, known as nanoneedles, are being developed as minimally invasive tools for cell manipulation. However, little is known of the mechanisms of cargo transfer across the cell membrane-nanoneedle interface. In particular, the contributions of membrane piercing, modulation of membrane permeability and endocytosis to cargo transfer remain largely unexplored. Here, combining state-of-the-art electron and scanning ion conductance microscopy with molecular biology techniques, it is shown that porous silicon nanoneedle arrays concurrently stimulate independent endocytic pathways which contribute to enhanced biomolecule delivery into human mesenchymal stem cells. Electron microscopy of the cell membrane at nanoneedle sites shows an intact lipid bilayer, accompanied by an accumulation of clathrin-coated pits and caveolae. Nanoneedles enhance the internalization of biomolecular markers of endocytosis, highlighting the concurrent activation of caveolae- and clathrin-mediated endocytosis, alongside macropinocytosis. These events contribute to the nanoneedle-mediated delivery (nanoinjection) of nucleic acids into human stem cells, which distribute across the cytosol and the endolysosomal system. This data extends the understanding of how nanoneedles modulate biological processes to mediate interaction with the intracellular space, providing indications for the rational design of improved cell-manipulation technologies.
Collapse
Affiliation(s)
- Sahana Gopal
- Department of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Department of Materials, Royal School of Mines, Prince Consort Road, London, SW7 2AZ, UK
| | - Ciro Chiappini
- Department of Materials, Royal School of Mines, Prince Consort Road, London, SW7 2AZ, UK
| | - Jelle Penders
- Department of Materials, Royal School of Mines, Prince Consort Road, London, SW7 2AZ, UK
| | - Vincent Leonardo
- Department of Materials, Royal School of Mines, Prince Consort Road, London, SW7 2AZ, UK
| | - Hyejeong Seong
- Department of Materials, Royal School of Mines, Prince Consort Road, London, SW7 2AZ, UK
| | - Stephen Rothery
- Facility for Imaging by Light Microscopy, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London, SW7 2BB, UK
| | - Yuri Korchev
- Department of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Andrew Shevchuk
- Department of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Molly M Stevens
- Department of Materials, Royal School of Mines, Prince Consort Road, London, SW7 2AZ, UK
- Department of Bioengineering, Royal School of Mines, Prince Consort Road, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, Royal School of Mines, Prince Consort Road, London, SW7 2AZ, UK
| |
Collapse
|
36
|
Gong J, Liu J, Tan X, Li Z, Li Q, Zhang J. Bio-Preparation and Regulation of Pyrrole Structure Nano-Pigment Based on Biomimetic Membrane. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E114. [PMID: 30669357 PMCID: PMC6359519 DOI: 10.3390/nano9010114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 12/18/2022]
Abstract
Microbial pigments, regarded as the most potential biomass pigments, have lately attracted increasing attention in textile dyeing due to their sustainability and cleaner production. The pyrrole structure microbial pigment, called prodigiosin, recently have become a research hotspot for its bright colors and antibacterial function. However, in most case the extraction and preparation are time-consuming and expensive processes since these kinds of microbial pigments are intracellular metabolites. In order to promote the application of microbial pigments in textile dyeing, a novel idea of preparing dye liquid of pyrrole structure pigments based on fermentation broth was put forward via increasing the proportion of extracellular pigments. A model membrane platform was established with a planar lipid bilayer to investigate transmembrane transport of microbial pigments and permeability barrier of cell membrane. The nano-dispersion of pigments was produced as the dye liquor owing to high-throughput transmembrane transfer of intracellular pigments and the increase of extracellular pigments proportion. The results indicated that the size and surface electrical properties of the pigments had contributed much to the mass transfer. It is also showed that transmembrane transmission of the intracellular pigments could be regulated by physical and chemical methods. With the improvement of transmembrane transfer efficiency of microbial pigments and the proportion of extracellular pigments, the complicated biological separation process could be avoided and the application of microbial pigments in textile dyeing can be promoted.
Collapse
Affiliation(s)
- Jixian Gong
- School of Textiles Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
- Key Laboratory of Advanced Textile Composites Ministry of Education, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Jiayin Liu
- School of Textiles Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
- Key Laboratory of Advanced Textile Composites Ministry of Education, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Xueqiang Tan
- School of Textiles Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
- Key Laboratory of Advanced Textile Composites Ministry of Education, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Zheng Li
- School of Textiles Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
- Key Laboratory of Advanced Textile Composites Ministry of Education, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Qiujin Li
- School of Textiles Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
- Key Laboratory of Advanced Textile Composites Ministry of Education, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Jianfei Zhang
- School of Textiles Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
- Key Laboratory of Advanced Textile Composites Ministry of Education, Tianjin Polytechnic University, Tianjin 300387, China.
| |
Collapse
|
37
|
Pampaloni NP, Giugliano M, Scaini D, Ballerini L, Rauti R. Advances in Nano Neuroscience: From Nanomaterials to Nanotools. Front Neurosci 2019; 12:953. [PMID: 30697140 PMCID: PMC6341218 DOI: 10.3389/fnins.2018.00953] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/30/2018] [Indexed: 01/04/2023] Open
Abstract
During the last decades, neuroscientists have increasingly exploited a variety of artificial, de-novo synthesized materials with controlled nano-sized features. For instance, a renewed interest in the development of prostheses or neural interfaces was driven by the availability of novel nanomaterials that enabled the fabrication of implantable bioelectronics interfaces with reduced side effects and increased integration with the target biological tissue. The peculiar physical-chemical properties of nanomaterials have also contributed to the engineering of novel imaging devices toward sophisticated experimental settings, to smart fabricated scaffolds and microelectrodes, or other tools ultimately aimed at a better understanding of neural tissue functions. In this review, we focus on nanomaterials and specifically on carbon-based nanomaterials, such as carbon nanotubes (CNTs) and graphene. While these materials raise potential safety concerns, they represent a tremendous technological opportunity for the restoration of neuronal functions. We then describe nanotools such as nanowires and nano-modified MEA for high-performance electrophysiological recording and stimulation of neuronal electrical activity. We finally focus on the fabrication of three-dimensional synthetic nanostructures, used as substrates to interface biological cells and tissues in vitro and in vivo.
Collapse
Affiliation(s)
| | - Michele Giugliano
- Department of Biomedical Sciences and Institute Born-Bunge, Molecular, Cellular, and Network Excitability, Universiteit Antwerpen, Antwerpen, Belgium
| | - Denis Scaini
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
- ELETTRA Synchrotron Light Source, Nanoinnovation Lab, Trieste, Italy
| | - Laura Ballerini
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Rossana Rauti
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
38
|
Yamagishi A, Susaki M, Takano Y, Mizusawa M, Mishima M, Iijima M, Kuroda S, Okada T, Nakamura C. The Structural Function of Nestin in Cell Body Softening is Correlated with Cancer Cell Metastasis. Int J Biol Sci 2019; 15:1546-1556. [PMID: 31337983 PMCID: PMC6643143 DOI: 10.7150/ijbs.33423] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/02/2019] [Indexed: 01/08/2023] Open
Abstract
Intermediate filaments play significant roles in governing cell stiffness and invasive ability. Nestin is a type VI intermediate filament protein that is highly expressed in several high-metastatic cancer cells. Although inhibition of nestin expression was shown to reduce the metastatic capacity of tumor cells, the relationship between this protein and the mechanism of cancer cell metastasis remains unclear. Here, we show that nestin softens the cell body of the highly metastatic mouse breast cancer cell line FP10SC2, thereby enhancing the metastasis capacity. Proximity ligation assay demonstrated increased binding between actin and vimentin in nestin knockout cells. Because nestin copolymerizes with vimentin and nestin has an extremely long tail domain in its C-terminal region, we hypothesized that the tail domain functions as a steric inhibitor of the vimentin-actin interaction and suppresses association of vimentin filaments with the cortical actin cytoskeleton, leading to reduced cell stiffness. To demonstrate this function, we mechanically pulled vimentin filaments in living cells using a nanoneedle modified with vimentin-specific antibodies under manipulation by atomic force microscopy (AFM). The tensile test revealed that mobility of vimentin filaments was increased by nestin expression in FP10SC2 cells.
Collapse
Affiliation(s)
- Ayana Yamagishi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Moe Susaki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Yuta Takano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Mei Mizusawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Mari Mishima
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Masumi Iijima
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
- Department of Biomolecular Science and Reaction, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Shun'ichi Kuroda
- Department of Biomolecular Science and Reaction, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tomoko Okada
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Chikashi Nakamura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
- ✉ Corresponding author: Chikashi Nakamura. Tel.: +81-29-861-2445; fax: +81-29-861-3048; E-mail address:
| |
Collapse
|
39
|
Qian L, Zhao H. Nanoindentation of Soft Biological Materials. MICROMACHINES 2018; 9:E654. [PMID: 30544918 PMCID: PMC6316095 DOI: 10.3390/mi9120654] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 01/01/2023]
Abstract
Nanoindentation techniques, with high spatial resolution and force sensitivity, have recently been moved into the center of the spotlight for measuring the mechanical properties of biomaterials, especially bridging the scales from the molecular via the cellular and tissue all the way to the organ level, whereas characterizing soft biomaterials, especially down to biomolecules, is fraught with more pitfalls compared with the hard biomaterials. In this review we detail the constitutive behavior of soft biomaterials under nanoindentation (including AFM) and present the characteristics of experimental aspects in detail, such as the adaption of instrumentation and indentation response of soft biomaterials. We further show some applications, and discuss the challenges and perspectives related to nanoindentation of soft biomaterials, a technique that can pinpoint the mechanical properties of soft biomaterials for the scale-span is far-reaching for understanding biomechanics and mechanobiology.
Collapse
Affiliation(s)
- Long Qian
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China.
| | - Hongwei Zhao
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China.
| |
Collapse
|
40
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 456] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
41
|
In vitro single-cell dissection revealing the interior structure of cable bacteria. Proc Natl Acad Sci U S A 2018; 115:8517-8522. [PMID: 30082405 DOI: 10.1073/pnas.1807562115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Filamentous Desulfobulbaceae bacteria were recently discovered as long-range transporters of electrons from sulfide to oxygen in marine sediments. The long-range electron transfer through these cable bacteria has created considerable interests, but it has also raised many questions, such as what structural basis will be required to enable micrometer-sized cells to build into centimeter-long continuous filaments? Here we dissected cable bacteria cells in vitro by atomic force microscopy and further explored the interior, which is normally hidden behind the outer membrane. Using nanoscale topographical and mechanical maps, different types of bacterial cell-cell junctions and strings along the cable length were identified. More important, these strings were found to be continuous along the bacterial cells passing through the cell-cell junctions. This indicates that the strings serve an important function in maintaining integrity of individual cable bacteria cells as a united filament. Furthermore, ridges in the outer membrane are found to envelop the individual strings at cell-cell junctions, and they are proposed to strengthen the junctions. Finally, we propose a model for the division and growth of the cable bacteria, which illustrate the possible structural requirements for the formation of centimeter-length filaments in the recently discovered cable bacteria.
Collapse
|
42
|
Wang X, Liu H, Zhu M, Cao C, Xu Z, Tsatskis Y, Lau K, Kuok C, Filleter T, McNeill H, Simmons CA, Hopyan S, Sun Y. Mechanical stability of the cell nucleus - roles played by the cytoskeleton in nuclear deformation and strain recovery. J Cell Sci 2018; 131:jcs.209627. [PMID: 29777038 DOI: 10.1242/jcs.209627] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 05/14/2018] [Indexed: 12/13/2022] Open
Abstract
Extracellular forces transmitted through the cytoskeleton can deform the cell nucleus. Large nuclear deformations increase the risk of disrupting the integrity of the nuclear envelope and causing DNA damage. The mechanical stability of the nucleus defines its capability to maintain nuclear shape by minimizing nuclear deformation and allowing strain to be minimized when deformed. Understanding the deformation and recovery behavior of the nucleus requires characterization of nuclear viscoelastic properties. Here, we quantified the decoupled viscoelastic parameters of the cell membrane, cytoskeleton, and the nucleus. The results indicate that the cytoskeleton enhances nuclear mechanical stability by lowering the effective deformability of the nucleus while maintaining nuclear sensitivity to mechanical stimuli. Additionally, the cytoskeleton decreases the strain energy release rate of the nucleus and might thus prevent shape change-induced structural damage to chromatin.
Collapse
Affiliation(s)
- Xian Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G8.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | - Haijiao Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G8.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | - Min Zhu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G8.,Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Changhong Cao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G8
| | - Zhensong Xu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G8
| | - Yonit Tsatskis
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Kimberly Lau
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Chikin Kuok
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Tobin Filleter
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G8
| | - Helen McNeill
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Craig A Simmons
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G8 .,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8 .,Division of Orthopaedic Surgery, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G8 .,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| |
Collapse
|
43
|
Wang W, Yang R, Zhang F, Yuan B, Yang K, Ma Y. Partner-facilitating transmembrane penetration of nanoparticles: a biological test in silico. NANOSCALE 2018; 10:11670-11678. [PMID: 29897087 DOI: 10.1039/c8nr01204k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Transmembrane penetration of nanoparticles (NPs) promises an effective pathway for cargo delivery into cells, and offers the possibility of organelle-specific targeting for biomedical applications. However, a full understanding of the underlying NP-membrane interaction mechanism is still lacking. In this work, the membrane penetration behavior of NPs is statistically analyzed based on the simulations of over 2.2 ms, which are performed with dissipative particle dynamics (DPD). Influences from multiple factors including the NP concentration, shape and surface chemistry are taken into account. It is interesting to find that, the introduction of a partner NP would greatly facilitate the transmembrane penetration of a host spherical NP. This is probably due to the membrane-mediated cooperation between the NPs. Moreover, the proper selection of a partner NP with specific surface chemistry is of great significance. For example, the best partner for a hydrophilic NP to achieve transmembrane penetration is a Janus-like one, in comparison with the hydrophilic, hydrophobic or randomly surface-decorated NPs. Furthermore, such a partner-facilitating effect in NP translocation also works for a shaped NP although less pronounced. Our results are helpful for a better understanding of the complicated nano-bio interactions, and offer a practical guide to the NP-based drug delivery strategy with high efficiency.
Collapse
Affiliation(s)
- W Wang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, P. R. China.
| | | | | | | | | | | |
Collapse
|
44
|
Gahl TJ, Kunze A. Force-Mediating Magnetic Nanoparticles to Engineer Neuronal Cell Function. Front Neurosci 2018; 12:299. [PMID: 29867315 PMCID: PMC5962660 DOI: 10.3389/fnins.2018.00299] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/18/2018] [Indexed: 12/12/2022] Open
Abstract
Cellular processes like membrane deformation, cell migration, and transport of organelles are sensitive to mechanical forces. Technically, these cellular processes can be manipulated through operating forces at a spatial precision in the range of nanometers up to a few micrometers through chaperoning force-mediating nanoparticles in electrical, magnetic, or optical field gradients. But which force-mediating tool is more suitable to manipulate cell migration, and which, to manipulate cell signaling? We review here the differences in forces sensation to control and engineer cellular processes inside and outside the cell, with a special focus on neuronal cells. In addition, we discuss technical details and limitations of different force-mediating approaches and highlight recent advancements of nanomagnetics in cell organization, communication, signaling, and intracellular trafficking. Finally, we give suggestions about how force-mediating nanoparticles can be used to our advantage in next-generation neurotherapeutic devices.
Collapse
Affiliation(s)
| | - Anja Kunze
- Department of Electrical and Computer Engineering, Montana State University, Bozeman, MT, United States
| |
Collapse
|
45
|
Septiadi D, Crippa F, Moore TL, Rothen-Rutishauser B, Petri-Fink A. Nanoparticle-Cell Interaction: A Cell Mechanics Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704463. [PMID: 29315860 DOI: 10.1002/adma.201704463] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/14/2017] [Indexed: 05/22/2023]
Abstract
Progress in the field of nanoparticles has enabled the rapid development of multiple products and technologies; however, some nanoparticles can pose both a threat to the environment and human health. To enable their safe implementation, a comprehensive knowledge of nanoparticles and their biological interactions is needed. In vitro and in vivo toxicity tests have been considered the gold standard to evaluate nanoparticle safety, but it is becoming necessary to understand the impact of nanosystems on cell mechanics. Here, the interaction between particles and cells, from the point of view of cell mechanics (i.e., bionanomechanics), is highlighted and put in perspective. Specifically, the ability of intracellular and extracellular nanoparticles to impair cell adhesion, cytoskeletal organization, stiffness, and migration are discussed. Furthermore, the development of cutting-edge, nanotechnology-driven tools based on the use of particles allowing the determination of cell mechanics is emphasized. These include traction force microscopy, colloidal probe atomic force microscopy, optical tweezers, magnetic manipulation, and particle tracking microrheology.
Collapse
Affiliation(s)
- Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Federica Crippa
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Thomas Lee Moore
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| |
Collapse
|
46
|
Fan N, Jiang H, Ye Z, Wu G, Kang Y, Wang Q, Ran X, Guo J, Zhang G, Wang G, Peng B. The Insertion Mechanism of a Living Cell Determined by the Stress Segmentation Effect of the Cell Membrane during the Tip-Cell Interaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703868. [PMID: 29717805 DOI: 10.1002/smll.201703868] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/11/2018] [Indexed: 06/08/2023]
Abstract
Atomic force microscopy probes are proved to be powerful tools to measure and manipulate the individual cell, providing potential applications for the controlled drug/protein delivery. However, the measured insertion efficiency varies dramatically from 20 to 80%, in some cases, the nanotip can never penetrate the cell membrane no matter how much force is applied to it. Thus, the insertion mechanism of a living cell during the tip-cell interaction must be thoroughly investigated before this technology comes into practical applications. In this work, a multistructural cell model is established to study the tip-membrane interaction. The simulation results show that the stress of the cell membrane can be divided into two stages by the stress segmentation point S. After point S, the stress of the cell membrane increases slightly and most of the indentation force is allocated to the cytoskeleton. This phenomenon is called "stress segmentation effect of the cell membrane," which confirms the hypothesis based on the experimental studies. Moreover, according to the experimental and numerical studies, the hypothesis of the stress segmentation effect also explains the reason that modifying the cell membrane or using the manmade sharpened nanotip can increase the insertion efficiency.
Collapse
Affiliation(s)
- Na Fan
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| | - Hai Jiang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| | - Zhiyi Ye
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Guiyong Wu
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| | - Yuejun Kang
- Institute for Clean Energy & Advanced Materials, Southwest University, Chongqing, 400715, P. R. China
| | - Qun Wang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| | - Xiaolin Ran
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Jian Guo
- School of Mechanical Engineering, University of South China, Hengyang, Hunan, 421001, P. R. China
| | - Guocheng Zhang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Bei Peng
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| |
Collapse
|
47
|
Ozkan AD, Topal AE, Dikecoglu FB, Guler MO, Dana A, Tekinay AB. Probe microscopy methods and applications in imaging of biological materials. Semin Cell Dev Biol 2018; 73:153-164. [DOI: 10.1016/j.semcdb.2017.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 01/21/2023]
|
48
|
Kawamura R, Miyazaki M, Shimizu K, Matsumoto Y, Silberberg YR, Sathuluri RR, Iijima M, Kuroda S, Iwata F, Kobayashi T, Nakamura C. A New Cell Separation Method Based on Antibody-Immobilized Nanoneedle Arrays for the Detection of Intracellular Markers. NANO LETTERS 2017; 17:7117-7124. [PMID: 29047282 DOI: 10.1021/acs.nanolett.7b03918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Focusing on intracellular targets, we propose a new cell separation technique based on a nanoneedle array (NNA) device, which allows simultaneous insertion of multiple needles into multiple cells. The device is designed to target and lift ("fish") individual cells from a mixed population of cells on a substrate using an antibody-functionalized NNA. The mechanics underlying this approach were validated by force analysis using an atomic force microscope. Accurate high-throughput separation was achieved using one-to-one contacts between the nanoneedles and the cells by preparing a single-cell array in which the positions of the cells were aligned with 10,000 nanoneedles in the NNA. Cell-type-specific separation was realized by controlling the adhesion force so that the cells could be detached in cell-type-independent manner. Separation of nestin-expressing neural stem cells (NSCs) derived from human induced pluripotent stem cells (hiPSCs) was demonstrated using the proposed technology, and successful differentiation to neuronal cells was confirmed.
Collapse
Affiliation(s)
- Ryuzo Kawamura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Central 5 , 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Minami Miyazaki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology , 2-24-26 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Keita Shimizu
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology , 2-24-26 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yuta Matsumoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology , 2-24-26 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yaron R Silberberg
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Central 5 , 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Ramachandra Rao Sathuluri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Central 5 , 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Masumi Iijima
- Department of Biomolecular Science and Reaction, The Institute of Scientific and Industrial Research (ISIR-Sanken), Osaka University , 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Shun'ichi Kuroda
- Department of Biomolecular Science and Reaction, The Institute of Scientific and Industrial Research (ISIR-Sanken), Osaka University , 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Futoshi Iwata
- Department of Mechanical Engineering, Shizuoka University , 3-5-1 Johoku, Hamamatsu 432-8561, Japan
| | - Takeshi Kobayashi
- Research Center for Ubiquitous MEMS and Micro Engineering, AIST , 1-2-1, Namiki, Tsukuba, Ibaraki 305-8564, Japan
| | - Chikashi Nakamura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Central 5 , 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology , 2-24-26 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
49
|
Raczyński P, Górny K, Raczyńska V, Pabiszczak M, Dendzik Z, Gburski Z. On the impact of nanotube diameter on biomembrane indentation - Computer simulations study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:310-318. [PMID: 29100891 DOI: 10.1016/j.bbamem.2017.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/19/2017] [Accepted: 10/27/2017] [Indexed: 12/29/2022]
Abstract
The influence of the single-walled carbon nanotubes on the phospholipid bilayer has been studied using steered molecular dynamics (SMD) simulations. The impact of different nanotubes on the phospholipid bilayer structure is discussed as well as the speed of indentation. Additionally, a series of simulations with pulling out of the nanotubes from the membrane were performed. The deflection of the membrane in both nanoindenation and extraction processes is also discussed. The self-sealing ability of membrane during this process is examined. Complete degradation of the bilayer was not observed even for the most invasive nanoindentation process studied. The obtained results show that carbon nanotubes can be regarded as potential drug carriers for targeted therapy.
Collapse
Affiliation(s)
- Przemysław Raczyński
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland; Silesian Centre of Education & Interdisciplinary Research, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland.
| | - Krzysztof Górny
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland; Silesian Centre of Education & Interdisciplinary Research, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Violetta Raczyńska
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| | - Mateusz Pabiszczak
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| | - Zbigniew Dendzik
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland; Silesian Centre of Education & Interdisciplinary Research, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Zygmunt Gburski
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| |
Collapse
|
50
|
Yan H, Johnston JF, Cahn SB, King MC, Mochrie SGJ. Multiplexed fluctuation-dissipation-theorem calibration of optical tweezers inside living cells. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:113112. [PMID: 29195389 PMCID: PMC6910605 DOI: 10.1063/1.5012782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
In order to apply optical tweezers-based force measurements within an uncharacterized viscoelastic medium such as the cytoplasm of a living cell, a quantitative calibration method that may be applied in this complex environment is needed. We describe an improved version of the fluctuation-dissipation-theorem calibration method, which has been developed to perform in situ calibration in viscoelastic media without prior knowledge of the trapped object. Using this calibration procedure, it is possible to extract values of the medium's viscoelastic moduli as well as the force constant describing the optical trap. To demonstrate our method, we calibrate an optical trap in water, in polyethylene oxide solutions of different concentrations, and inside living fission yeast (S. pombe).
Collapse
Affiliation(s)
- Hao Yan
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Jessica F Johnston
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Sidney B Cahn
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Simon G J Mochrie
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|