1
|
Wang Y, Liu J, Cui H, Zhang L, Li Z, Wang X, Wang J, Chen Q, Zhao Y. Triple-transformable dynamic surroundings for programmed transportation of bio-vulnerable mRNA payloads towards systemic treatment of intractable solid tumors. Biomaterials 2024; 311:122677. [PMID: 38917704 DOI: 10.1016/j.biomaterials.2024.122677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/25/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
The surface physiochemical properties of nanomedicine play a crucial role in modulating biointerfacial reactions in sequential biological compartments, accordingly accomplishing the desired programmed delivery scenario to intracellular targets. PEGylation, which involves modifying the surface with a layer of poly(ethylene glycol), has been validated as an effective strategy for minimizing adverse biointerfacial interactions. However, it has also been observed to impede cellular uptake and intracellular trafficking activities. To address this dilemma, we propose a dynamic surface chemistry approach that actively prevents non-specific reactions in systemic circulation, while readily facilitating cellular uptake by converting into a highly cytomembrane-adhesive state. Moreover, the surface becomes more adhesive to endolysosomal membranes, enabling translocation into the cytosol. In this study, PEGylated mRNA delivery nanoparticulates were tethered with charge-reversible polymers to create dynamic surroundings through click chemistry. Importantly, the dynamic surroundings exhibited negative charges under physiological conditions (pH 7.4). This property prevented degradation by anionic nucleases and structural disassembly induced by endogenous charged biological species. Consequently, the nanoparticles exhibited appreciable stealth function, effectively managing the first pass effect, leading to prolonged blood retention and improved bioavailabilities at targeted cells. Furthermore, the dynamic surroundings shifted towards relatively positive charges in the tumor microenvironment (pH 6.8). As a result, the nanoparticles were more likely to be taken up by tumors due to their electrostatic affinities towards polyanionic cytomembranes. Eventually, the internalized mRNA nanomedicine transformed responsive to the surrounding microenvironment into highly positive charges within acidic endolysosomes (pH 5.0), exerting explosive disruptive potencies on the endolysosomal structures, thus facilitating translocation of mRNA from the digestive endolysosomes into the targeted cytosol. Notably, the dynamic surroundings also reduced the immunogenicity of naked mRNA due to their stealthy properties and rapid endolysosomal translocation functions. In summary, our proposed unique triple-transformable dynamic surface chemistry provided an intriguing delivery scenario that overcomes sequential biological barriers, contributing to efficient expression of the encapsulated mRNA at targeted tumors.
Collapse
Affiliation(s)
- Yue Wang
- Department of Gastric Surgery, Cancer Hospital of Dalian University of Technology, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning, 110042, China; Department of Gastric Surgery, Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning, 110042, China; Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning, 110042, China; China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, Liaoning Province 110122, China
| | - Jun Liu
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China; Jiaxing Qingzhun Pharmaceutical Technology Co., Ltd, Western Kechuang Bay Valley, Tongxiang Town, Jiaxing, Zhejiang, 314500, China
| | - Hongyan Cui
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China
| | - Liuwei Zhang
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China
| | - Zhen Li
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, Liaoning, 116044, China
| | - Xiumei Wang
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Jing Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, China.
| | - Qixian Chen
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China.
| | - Yan Zhao
- Department of Gastric Surgery, Cancer Hospital of Dalian University of Technology, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning, 110042, China; Department of Gastric Surgery, Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning, 110042, China; Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning, 110042, China.
| |
Collapse
|
2
|
Peserico A, Canciello A, Prencipe G, Gramignoli R, Melai V, Scortichini G, Bellocci M, Capacchietti G, Turriani M, Di Pancrazio C, Berardinelli P, Russo V, Mattioli M, Barboni B. Optimization of a nanoparticle uptake protocol applied to amniotic-derived cells: unlocking the therapeutic potential. J Mater Chem B 2024; 12:8977-8992. [PMID: 39140678 DOI: 10.1039/d4tb00607k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Stem cell-based therapy implementation relies heavily on advancements in cell tracking. The present research has been designed to develop a gold nanorod (AuNR) labeling protocol applied to amniotic epithelial cells (AECs) leveraging the pro-regenerative properties of this placental stem cell source which is widely used for both human and veterinary biomedical regenerative applications, although not yet exploited with tracking technologies. Ovine AECs, in native or induced mesenchymal (mAECs) phenotypes via epithelial-mesenchymal transition (EMT), served as the model. Initially, various uptake methods validated on other sources of mesenchymal stromal cells (MSCs) were assessed on mAECs before optimization for AECs. Furthermore, the protocol was implemented by adopting the biological strategy of MitoCeption to improve endocytosis. The results indicate that the most efficient, affordable, and easy protocol leading to internalization of AuNRs in living mAECs recognized the combination of the one-step uptake condition (cell in suspension), centrifugation-mediated internalization method (G-force) and MitoCeption (mitochondrial isolated from mAECs). This protocol produced labeled vital mAECs within minutes, suitable for preclinical and clinical trials. The optimized protocol has the potential to yield feasible labeled amniotic-derived cells for biomedical purposes: up to 10 million starting from a single amniotic membrane. Similar and even higher efficiency was found when the protocol was applied to ovine and human AECs, thereby demonstrating the transferability of the method to cells of different phenotypes and species-specificity, hence validating its great potential for the development of improved biomedical applications in cell-based therapy and diagnostic imaging.
Collapse
Affiliation(s)
- Alessia Peserico
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Angelo Canciello
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Giuseppe Prencipe
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Valeria Melai
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise 'G. Caporale', Campo Boario, 64100 Teramo, Italy
| | - Giampiero Scortichini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise 'G. Caporale', Campo Boario, 64100 Teramo, Italy
| | - Mirella Bellocci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise 'G. Caporale', Campo Boario, 64100 Teramo, Italy
| | - Giulia Capacchietti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Maura Turriani
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Chiara Di Pancrazio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise 'G. Caporale', Campo Boario, 64100 Teramo, Italy
| | - Paolo Berardinelli
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Valentina Russo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Mauro Mattioli
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| |
Collapse
|
3
|
Lee H, Vanhecke D, Balog S, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. The impact of macrophage phenotype and heterogeneity on the total internalized gold nanoparticle counts. NANOSCALE ADVANCES 2024; 6:4572-4582. [PMID: 39263406 PMCID: PMC11385547 DOI: 10.1039/d4na00104d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/30/2024] [Indexed: 09/13/2024]
Abstract
Macrophages play a pivotal role in the internalization and processing of administered nanoparticles (NPs). Furthermore, the phagocytic capacity and immunological properties of macrophages can vary depending on their microenvironment, exhibiting a spectrum of polarization states ranging from pro-inflammatory M1 to anti-inflammatory M2. However, previous research investigating this phenotype-dependent interaction with NPs has predominantly relied on semi-quantitative techniques or conventional metrics to assess intracellular NPs. Here, we focus on the interaction of human monocyte-derived macrophage phenotypes (M1-like and M2-like) with gold NPs (AuNPs) by combining population-based metrics and single-cell analysis by focused ion beam-scanning electron microscopy (FIB-SEM). The multimodal analysis revealed phenotype-dependent response and uptake behavior differences, becoming more pronounced after 48 hours. The study also highlighted phenotype-dependent cell-to-cell heterogeneity in AuNPs uptake and variability in particle number at the single-cell level, which was particularly evident in M2-like macrophages, which increases with time, indicating enhanced heteroscedasticity. Future efforts to design NPs targeting macrophages should consider the phenotypic variations and the distribution of NPs concentrations within a population, including the influence of cell-to-cell heterogeneity. This comprehensive understanding will be critical in developing safe and effective NPs to target different macrophage phenotypes.
Collapse
Affiliation(s)
- Henry Lee
- Adolphe Merkle Institute, University of Fribourg, Switzerland Chemin des Verdiers 4 Fribourg Switzerland +41-26-300-9502
| | - Dimitri Vanhecke
- Adolphe Merkle Institute, University of Fribourg, Switzerland Chemin des Verdiers 4 Fribourg Switzerland +41-26-300-9502
| | - Sandor Balog
- Adolphe Merkle Institute, University of Fribourg, Switzerland Chemin des Verdiers 4 Fribourg Switzerland +41-26-300-9502
| | - Patricia Taladriz-Blanco
- Adolphe Merkle Institute, University of Fribourg, Switzerland Chemin des Verdiers 4 Fribourg Switzerland +41-26-300-9502
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Switzerland Chemin des Verdiers 4 Fribourg Switzerland +41-26-300-9502
- Department of Chemistry, University of Fribourg Chemin du Musée 9 Fribourg Switzerland
| | - Barbara Rothen-Rutishauser
- Adolphe Merkle Institute, University of Fribourg, Switzerland Chemin des Verdiers 4 Fribourg Switzerland +41-26-300-9502
| |
Collapse
|
4
|
Brouwer H, Porbahaie M, Boeren S, Busch M, Bouwmeester H. The in vitro gastrointestinal digestion-associated protein corona of polystyrene nano- and microplastics increases their uptake by human THP-1-derived macrophages. Part Fibre Toxicol 2024; 21:4. [PMID: 38311718 PMCID: PMC10838446 DOI: 10.1186/s12989-024-00563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Micro- and nanoplastics (MNPs) represent one of the most widespread environmental pollutants of the twenty-first century to which all humans are orally exposed. Upon ingestion, MNPs pass harsh biochemical conditions within the gastrointestinal tract, causing a unique protein corona on the MNP surface. Little is known about the digestion-associated protein corona and its impact on the cellular uptake of MNPs. Here, we systematically studied the influence of gastrointestinal digestion on the cellular uptake of neutral and charged polystyrene MNPs using THP-1-derived macrophages. RESULTS The protein corona composition was quantified using LC‒MS-MS-based proteomics, and the cellular uptake of MNPs was determined using flow cytometry and confocal microscopy. Gastrointestinal digestion resulted in a distinct protein corona on MNPs that was retained in serum-containing cell culture medium. Digestion increased the uptake of uncharged MNPs below 500 nm by 4.0-6.1-fold but did not affect the uptake of larger sized or charged MNPs. Forty proteins showed a good correlation between protein abundance and MNP uptake, including coagulation factors, apolipoproteins and vitronectin. CONCLUSION This study provides quantitative data on the presence of gastrointestinal proteins on MNPs and relates this to cellular uptake, underpinning the need to include the protein corona in hazard assessment of MNPs.
Collapse
Affiliation(s)
- Hugo Brouwer
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Mojtaba Porbahaie
- Laboratory of Cell Biology and Immunology, Wageningen University, Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Mathias Busch
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
5
|
Mousa M, Kim YH, Evans ND, Oreffo ROC, Dawson JI. Tracking cellular uptake, intracellular trafficking and fate of nanoclay particles in human bone marrow stromal cells. NANOSCALE 2023; 15:18457-18472. [PMID: 37941481 DOI: 10.1039/d3nr02447d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Clay nanoparticles, in particular synthetic smectites, have generated interest in the field of tissue engineering and regenerative medicine due to their utility as cross-linkers for polymers in biomaterial design and as protein release modifiers for growth factor delivery. In addition, recent studies have suggested a direct influence on the osteogenic differentiation of responsive stem and progenitor cell populations. Relatively little is known however about the mechanisms underlying nanoclay bioactivity and in particular the cellular processes involved in nanoclay-stem cell interactions. In this study we employed confocal microscopy, inductively coupled plasma mass spectrometry and transmission electron microscopy to track the interactions between clay nanoparticles and human bone marrow stromal cells (hBMSCs). In particular we studied nanoparticle cellular uptake mechanisms and uptake kinetics, intracellular trafficking pathways and the fate of endocytosed nanoclay. We found that nanoclay particles present on the cell surface as μm-sized aggregates, enter hBMSCs through clathrin-mediated endocytosis, and their uptake kinetics follow a linear increase with time during the first week of nanoclay addition. The endocytosed particles were observed within the endosomal/lysosomal compartments and we found evidence for both intracellular degradation of nanoclay and exocytosis as well as an increase in autophagosomal activity. Inhibitor studies indicated that endocytosis was required for nanoclay upregulation of alkaline phosphatase activity but a similar dependency was not observed for autophagy. This study into the nature of nanoclay-stem cell interactions, in particular the intracellular processing of nanosilicate, may provide insights into the mechanisms underlying nanoclay bioactivity and inform the successful utilisation of clay nanoparticles in biomaterial design.
Collapse
Affiliation(s)
- Mohamed Mousa
- Bone & Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| | - Yang-Hee Kim
- Bone & Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| | - Nicholas D Evans
- Bone & Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| | - Richard O C Oreffo
- Bone & Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| | - Jonathan I Dawson
- Bone & Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| |
Collapse
|
6
|
Ying K, Zhu Y, Wan J, Zhan C, Wang Y, Xie B, Xu P, Pan H, Wang H. Macrophage membrane-biomimetic adhesive polycaprolactone nanocamptothecin for improving cancer-targeting efficiency and impairing metastasis. Bioact Mater 2023; 20:449-462. [PMID: 35765468 PMCID: PMC9222498 DOI: 10.1016/j.bioactmat.2022.06.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/03/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
The recent remarkable success and safety of mRNA lipid nanoparticle technology for producing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines has stimulated intensive efforts to expand nanoparticle strategies to treat various diseases. Numerous synthetic nanoparticles have been developed for pharmaceutical delivery and cancer treatment. However, only a limited number of nanotherapies have enter clinical trials or are clinically approved. Systemically administered nanotherapies are likely to be sequestered by host mononuclear phagocyte system (MPS), resulting in suboptimal pharmacokinetics and insufficient drug concentrations in tumors. Bioinspired drug-delivery formulations have emerged as an alternative approach to evade the MPS and show potential to improve drug therapeutic efficacy. Here we developed a biodegradable polymer-conjugated camptothecin prodrug encapsulated in the plasma membrane of lipopolysaccharide-stimulated macrophages. Polymer conjugation revived the parent camptothecin agent (e.g., 7-ethyl-10-hydroxy-camptothecin), enabling lipid nanoparticle encapsulation. Furthermore, macrophage membrane cloaking transformed the nonadhesive lipid nanoparticles into bioadhesive nanocamptothecin, increasing the cellular uptake and tumor-tropic effects of this biomimetic therapy. When tested in a preclinical murine model of breast cancer, macrophage-camouflaged nanocamptothecin exhibited a higher level of tumor accumulation than uncoated nanoparticles. Furthermore, intravenous administration of the therapy effectively suppressed tumor growth and the metastatic burden without causing systematic toxicity. Our study describes a combinatorial strategy that uses polymeric prodrug design and cell membrane cloaking to achieve therapeutics with high efficacy and low toxicity. This approach might also be generally applicable to formulate other therapeutic candidates that are not compatible or miscible with biomimetic delivery carriers. Macrophage membrane-biomimetic platform was exploited for nanodelivery of polycaprolactone nanocamptothecin. Macrophage-camouflaged nanocamptothecin exhibited tumor-tropic effects and increased tumor cell adhesion. The nanotherapy effectively suppressed primary tumor growth and the metastatic burden in vivo.
Collapse
|
7
|
Busch M, Brouwer H, Aalderink G, Bredeck G, Kämpfer AAM, Schins RPF, Bouwmeester H. Investigating nanoplastics toxicity using advanced stem cell-based intestinal and lung in vitro models. FRONTIERS IN TOXICOLOGY 2023; 5:1112212. [PMID: 36777263 PMCID: PMC9911716 DOI: 10.3389/ftox.2023.1112212] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Plastic particles in the nanometer range-called nanoplastics-are environmental contaminants with growing public health concern. As plastic particles are present in water, soil, air and food, human exposure via intestine and lung is unavoidable, but possible health effects are still to be elucidated. To better understand the Mode of Action of plastic particles, it is key to use experimental models that best reflect human physiology. Novel assessment methods like advanced cell models and several alternative approaches are currently used and developed in the scientific community. So far, the use of cancer cell line-based models is the standard approach regarding in vitro nanotoxicology. However, among the many advantages of the use of cancer cell lines, there are also disadvantages that might favor other approaches. In this review, we compare cell line-based models with stem cell-based in vitro models of the human intestine and lung. In the context of nanoplastics research, we highlight the advantages that come with the use of stem cells. Further, the specific challenges of testing nanoplastics in vitro are discussed. Although the use of stem cell-based models can be demanding, we conclude that, depending on the research question, stem cells in combination with advanced exposure strategies might be a more suitable approach than cancer cell lines when it comes to toxicological investigation of nanoplastics.
Collapse
Affiliation(s)
- Mathias Busch
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Hugo Brouwer
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Germaine Aalderink
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Gerrit Bredeck
- IUF—Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | | | - Roel P. F. Schins
- IUF—Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands,*Correspondence: Hans Bouwmeester,
| |
Collapse
|
8
|
Dowling CV, Cevaal PM, Faria M, Johnston ST. On predicting heterogeneity in nanoparticle dosage. Math Biosci 2022; 354:108928. [PMID: 36334785 DOI: 10.1016/j.mbs.2022.108928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/15/2022]
Abstract
Nanoparticles are increasingly employed as a vehicle for the targeted delivery of therapeutics to specific cell types. However, much remains to be discovered about the fundamental biology that dictates the interactions between nanoparticles and cells. Accordingly, few nanoparticle-based targeted therapeutics have succeeded in clinical trials. One element that hinders our understanding of nanoparticle-cell interactions is the presence of heterogeneity in nanoparticle dosage data obtained from standard experiments. It is difficult to distinguish between heterogeneity that arises from stochasticity in nanoparticle-cell interactions, and that which arises from heterogeneity in the cell population. Mathematical investigations have revealed that both sources of heterogeneity contribute meaningfully to the heterogeneity in nanoparticle dosage. However, these investigations have relied on simplified models of nanoparticle internalisation. Here we present a stochastic mathematical model of nanoparticle internalisation that incorporates a suite of relevant biological phenomena such as multistage internalisation, cell division, asymmetric nanoparticle inheritance and nanoparticle saturation. Critically, our model provides information about nanoparticle dosage at an individual cell level. We perform model simulations to examine the influence of specific biological phenomena on the heterogeneity in nanoparticle dosage in the absence of heterogeneity in the cell population. Under certain modelling assumptions, we derive analytic approximations of the nanoparticle dosage distribution. We demonstrate that the analytic approximations are accurate, and show that nanoparticle dosage can be described by a Poisson mixture distribution with rate parameters that are a function of Beta-distributed random variables. We discuss the implications of the analytic results with respect to parameter estimation and model identifiability from standard experimental data. Finally, we highlight extensions and directions for future research.
Collapse
Affiliation(s)
- Celia V Dowling
- School of Mathematics and Statistics, The University of Melbourne, Australia
| | - Paula M Cevaal
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Australia
| | - Matthew Faria
- Department of Biomedical Engineering, The University of Melbourne, Australia
| | - Stuart T Johnston
- School of Mathematics and Statistics, The University of Melbourne, Australia.
| |
Collapse
|
9
|
Johnston ST, Faria M. Equation learning to identify nano-engineered particle-cell interactions: an interpretable machine learning approach. NANOSCALE 2022; 14:16502-16515. [PMID: 36314284 DOI: 10.1039/d2nr04668g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Designing nano-engineered particles capable of the delivery of therapeutic and diagnostic agents to a specific target remains a significant challenge. Understanding how interactions between particles and cells are impacted by the physicochemical properties of the particle will help inform rational design choices. Mathematical and computational techniques allow for details regarding particle-cell interactions to be isolated from the interwoven set of biological, chemical, and physical phenomena involved in the particle delivery process. Here we present a machine learning framework capable of elucidating particle-cell interactions from experimental data. This framework employs a data-driven modelling approach, augmented by established biological knowledge. Crucially, the model of particle-cell interactions learned by the framework can be interpreted and analysed, in contrast to the 'black box' models inherent to other machine learning approaches. We apply the framework to association data for thirty different particle-cell pairs. This library of data contains both adherent and suspension cell lines, as well as a diverse collection of particles. We consider hyperbranched polymer and poly(methacrylic acid) particles, from 6 nm to 1032 nm in diameter, with small molecule, monoclonal antibody, and peptide surface functionalisations. Despite the diverse nature of the experiments, the learned models of particle-cell interactions for each particle-cell pair are remarkably consistent: out of 2048 potential models, only four unique models are learned. The models reveal that nonlinear saturation effects are a key feature governing particle-cell interactions. Further, the framework provides robust estimates of particle performance, which facilitates quantitative evaluation of particle design choices.
Collapse
Affiliation(s)
- Stuart T Johnston
- School of Mathematics and Statistics, The University of Melbourne, Victoria, Australia.
| | - Matthew Faria
- Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Donahue ND, Sheth V, Frickenstein AN, Holden A, Kanapilly S, Stephan C, Wilhelm S. Absolute Quantification of Nanoparticle Interactions with Individual Human B Cells by Single Cell Mass Spectrometry. NANO LETTERS 2022; 22:4192-4199. [PMID: 35510841 PMCID: PMC9486247 DOI: 10.1021/acs.nanolett.2c01037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report on the absolute quantification of nanoparticle interactions with individual human B cells using quadrupole-based inductively coupled plasma mass spectrometry (ICP-MS). This method enables the quantification of nanoparticle-cell interactions at single nanoparticle and single cell levels. We demonstrate the efficient and accurate detection of individually suspended B cells and found an ∼100-fold higher association of colloidally stable positively charged nanoparticles with single B cells than neutrally charged nanoparticles. We confirmed that these nanoparticles were internalized by individual B cells and determined that the internalization occurred via energy-dependent pathways consistent with endocytosis. Using dual analyte ICP-MS, we determined that >80% of single B cells were positive for nanoparticles. Our study demonstrates an ICP-MS workflow for the absolute quantification of nanoparticle-cell interactions with single cell and single nanoparticle resolution. This unique workflow could inform the rational design of various nanomaterials for controlling cellular interactions, including immune cell-nanoparticle interactions.
Collapse
Affiliation(s)
- Nathan D. Donahue
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Vinit Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alyssa Holden
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | | | | | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), Norman, Oklahoma, 73019, USA
- Stephenson Cancer Center, Oklahoma City, Oklahoma, 73104, USA
| |
Collapse
|
11
|
Fleming A, Cursi L, Behan JA, Yan Y, Xie Z, Adumeau L, Dawson KA. Designing Functional Bionanoconstructs for Effective In Vivo Targeting. Bioconjug Chem 2022; 33:429-443. [PMID: 35167255 PMCID: PMC8931723 DOI: 10.1021/acs.bioconjchem.1c00546] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
The progress achieved
over the last three decades in the field
of bioconjugation has enabled the preparation of sophisticated nanomaterial–biomolecule
conjugates, referred to herein as bionanoconstructs, for a multitude
of applications including biosensing, diagnostics, and therapeutics.
However, the development of bionanoconstructs for the active targeting
of cells and cellular compartments, both in vitro and in vivo, is challenged by the lack of understanding
of the mechanisms governing nanoscale recognition. In this review,
we highlight fundamental obstacles in designing a successful bionanoconstruct,
considering findings in the field of bionanointeractions. We argue
that the biological recognition of bionanoconstructs is modulated
not only by their molecular composition but also by the collective
architecture presented upon their surface, and we discuss fundamental
aspects of this surface architecture that are central to successful
recognition, such as the mode of biomolecule conjugation and nanomaterial
passivation. We also emphasize the need for thorough characterization
of engineered bionanoconstructs and highlight the significance of
population heterogeneity, which too presents a significant challenge
in the interpretation of in vitro and in
vivo results. Consideration of such issues together will
better define the arena in which bioconjugation, in the future, will
deliver functional and clinically relevant bionanoconstructs.
Collapse
Affiliation(s)
- Aisling Fleming
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lorenzo Cursi
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - James A Behan
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yan Yan
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Zengchun Xie
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Laurent Adumeau
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kenneth A Dawson
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
12
|
Niranjan R, Zafar S, Lochab B, Priyadarshini R. Synthesis and Characterization of Sulfur and Sulfur-Selenium Nanoparticles Loaded on Reduced Graphene Oxide and Their Antibacterial Activity against Gram-Positive Pathogens. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:191. [PMID: 35055210 PMCID: PMC8782023 DOI: 10.3390/nano12020191] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 11/24/2022]
Abstract
Resistance to antimicrobial agents in Gram-positive bacteria has become a major concern in the last decade. Recently, nanoparticles (NP) have emerged as a potential solution to antibiotic resistance. We synthesized three reduced graphene oxide (rGO) nanoparticles, namely rGO, rGO-S, and rGO-S/Se, and characterized them using X-ray diffraction (PXRD), Raman analysis, and thermogravimetric analysis. Transmission electron microscopy confirmed spherical shape nanometer size S and S/Se NPs on the rGO surface. Antibacterial properties of all three nanomaterials were probed against Gram-positive pathogens Staphylococcus aureus and Enterococcus faecalis, using turbidometeric and CFU assays. Among the synthesized nanomaterials, rGO-S/Se exhibited relatively strong antibacterial activity against both Gram-positive microorganism tested in a concentration dependent manner (growth inhibition >90% at 200 μg/mL). Atomic force microscopy of rGO-S/Se treated cells displayed morphological aberrations. Our studies also revealed that rGO composite NPs are able to deposit on the bacterial cell surface, resulting in membrane perturbation and oxidative stress. Taken together, our results suggest a possible three-pronged approach of bacterial cytotoxicity by these graphene-based materials.
Collapse
Affiliation(s)
- Rashmi Niranjan
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar 201314, India;
| | - Saad Zafar
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar 201314, India;
| | - Bimlesh Lochab
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar 201314, India;
| | - Richa Priyadarshini
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar 201314, India;
| |
Collapse
|
13
|
Castillo R, Wu D, Cao Z, Yan R, Fajardo K, Ren J, Lu Y, Wen J. Real-Time Quantification of Cell Internalization Kinetics by Bioluminescent Probes. Methods Mol Biol 2022; 2525:93-107. [PMID: 35836062 DOI: 10.1007/978-1-0716-2473-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Alongside the intracellular transport of nutrients needed for cellular homeostasis, great efforts exist to effectively deliver substances such as proteins and genes into the cell for therapy, gene editing, disease diagnosis, and more. To evaluate the intracellular delivery of such substances, conventional methods impose semi-quantifications and discrete measures of the dynamic process of cellular internalization. Herein, we detail the methods to quantify cell internalization kinetics in real-time using individually nano-encapsulated bioluminescent Firefly Luciferase (FLuc) enzymes as probes. We include a comprehensive protocol to synthesize and characterize the encapsulated FLuc, assay the real-time bioluminescence (BL) in cells, and analyze the real-time BL profile to extract key parameters of cell internalization kinetics. Quantifying the kinetics of intracellular delivery offers the opportunity to resolve the underlying mechanisms governing membrane translocation and provide measures reflecting cellular state and metabolism while playing a critical role in the clinical development of effective vectors.
Collapse
Affiliation(s)
- Roxanne Castillo
- Department of Chemical and Biomolecular Engineering, School of Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Di Wu
- Department of Chemical and Biomolecular Engineering, School of Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zheng Cao
- Department of Chemical and Biomolecular Engineering, School of Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ran Yan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Kalea Fajardo
- Department of Chemical and Biomolecular Engineering, School of Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jie Ren
- Department of Chemical and Biomolecular Engineering, School of Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yunfeng Lu
- Department of Chemical and Biomolecular Engineering, School of Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jing Wen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Seniwal B, Thipe VC, Singh S, Fonseca TCF, Freitas de Freitas L. Recent Advances in Brachytherapy Using Radioactive Nanoparticles: An Alternative to Seed-Based Brachytherapy. Front Oncol 2021; 11:766407. [PMID: 34900715 PMCID: PMC8651618 DOI: 10.3389/fonc.2021.766407] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022] Open
Abstract
Interstitial brachytherapy (BT) is generally used for the treatment of well-confined solid tumors. One example of this is in the treatment of prostate tumors by permanent placement of radioactive seeds within the prostate gland, where low doses of radiation are delivered for several months. However, successful implementation of this technique is hampered due to several posttreatment adverse effects or symptoms and operational and logistical complications associated with it. Recently, with the advancements in nanotechnology, radioactive nanoparticles (radio-NPs) functionalized with tumor-specific biomolecules, injected intratumorally, have been reported as an alternative to seed-based BT. Successful treatment of solid tumors using radio-NPs has been reported in several preclinical studies, on both mice and canine models. In this article, we review the recent advancements in the synthesis and use of radio-NPs as a substitute to seed-based BT. Here, we discuss the limitations of current seed-based BT and advantages of radio-NPs for BT applications. Recent progress on the types of radio-NPs, their features, synthesis methods, and delivery techniques are discussed. The last part of the review focuses on the currently used dosimetry protocols and studies on the dosimetry of nanobrachytherapy applications using radio-NPs. The current challenges and future research directions on the role of radio-NPs in BT treatments are also discussed.
Collapse
Affiliation(s)
- Baljeet Seniwal
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval (CR-CHU de Québec), Axe Médecine Régénératrice, Québec, QC, Canada
| | - Velaphi C Thipe
- Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear (IPEN-CNEN), Cidade Universitária, São Paulo, Brazil.,Department of Radiology, Institute of Green Nanotechnology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Sukhvir Singh
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Delhi, India
| | - Telma C F Fonseca
- Departamento de Engenharia Nuclear-Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Freitas de Freitas
- Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear (IPEN-CNEN), Cidade Universitária, São Paulo, Brazil
| |
Collapse
|
15
|
Nagesetti A, Dulikravich GS, Orlande HRB, Colaco MJ, McGoron AJ. Computational model of silica nanoparticle penetration into tumor spheroids: Effects of methoxy and carboxy PEG surface functionalization and hyperthermia. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3504. [PMID: 34151543 DOI: 10.1002/cnm.3504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/02/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Drug delivery to tumors suffers from poor solubility, specificity, diffusion through the tumor micro-environment and nonoptimal interactions with components of the extracellular matrix and cell surface receptors. Nanoparticles and drug-polymer complexes address many of these problems. However, large size exasperates the problem of slow diffusion through the tumor. Three-dimensional tumor spheroids are good models to evaluate approaches to mitigate these difficulties and aid in design strategies to improve the delivery of drugs to treat cancer effectively. Diffusion of drug carriers is highly dependent on cell uptake rate parameters (association/dissociation) and temperature. Hyperthermia increases molecular transport and is known to act synergistically with chemotherapy to improve treatment. This study presents a new inverse estimation approach based on Bayesian probability for estimating nanoparticle cell uptake rates from experiments. The parameters were combined with a finite element computational model of nanoparticle transport under hyperthermia conditions to explore its effect on tumor porosity, diffusion and particle binding (association and dissociation) at cell surfaces. Carboxy-PEG-silane (cPEGSi) nanoparticles showed higher cell uptake compared to methoxy-PEG-silane (mPEGSi) nanoparticles. Simulations were consistent with experimental results from Skov-3 ovarian cancer spheroids. Amorphous silica (cPEGSi) nanoparticles (58 nm) concentrated at the periphery of the tumor spheroids at 37°C but mild hyperthermia (43°C) increased nanoparticle penetration. Thus, hyperthermia may enhance cancer treatment by improving blood delivery to tumors, enhancing extravasation and penetration into tumors, trigger release of drug from the carrier at the tumor site and possibly lead to synergistic anti-cancer activity with the drug.
Collapse
Affiliation(s)
- Abhignyan Nagesetti
- Department of Biomedical Engineering, Florida International University, Miami, Florida, USA
| | - George S Dulikravich
- Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida, USA
| | - Helcio R B Orlande
- Department of Mechanical Engineering, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo J Colaco
- Department of Mechanical Engineering, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anthony J McGoron
- Department of Biomedical Engineering, Florida International University, Miami, Florida, USA
| |
Collapse
|
16
|
Chen X, Wang Y, Zhang X, Liu C. Advances in super-resolution fluorescence microscopy for the study of nano-cell interactions. Biomater Sci 2021; 9:5484-5496. [PMID: 34286716 DOI: 10.1039/d1bm00676b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the interactions between nanomaterials and biological systems plays an essential role in enhancing the efficacy of nanomedicines and deepening the understanding of the biological domain. Fluorescence microscopy is a powerful optical imaging technique that allows direct visualization of the behavior of fluorescent-labeled nanomaterials in the intracellular microenvironment. However, conventional fluorescence microscopy, such as confocal microscopy, has limited optical resolution due to the diffraction of light and therefore cannot provide the precise details of nanomaterials with diameters of less than ∼250 nm. Fortunately, the development of super-resolution fluorescence microscopy has overcome the resolution limitation, enabling more comprehensive studies of nano-cell interactions. Herein, we have summarized the recent advances in nano-cell interactions investigated by a variety of super-resolution microscopic techniques, which may benefit researchers in this multi-disciplinary area by providing a guideline to select appropriate platforms for studying materiobiology.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Yu Wang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Xuewei Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| |
Collapse
|
17
|
Simonsen JB, Kromann EB. Pitfalls and opportunities in quantitative fluorescence-based nanomedicine studies - A commentary. J Control Release 2021; 335:660-667. [PMID: 34089794 DOI: 10.1016/j.jconrel.2021.05.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022]
Abstract
Fluorescence-based techniques are prevalent in studies of nanomedicine-targeting to cells and tissues. However, fluorescence-based studies are rarely quantitative, thus prohibiting direct comparisons of nanomedicine-performance across studies. With this Commentary, we aim to provoke critical thinking about experimental design by treating some often-overlooked pitfalls in 'quantitative' fluorescence-based experimentation. Focusing on fluorescence-labeled nanoparticles, we cover mechanisms like solvent-interactions and fluorophore-dissociation, which disqualify the assumption that 'a higher fluorescence readout' translates directly to 'a better targeting efficacy'. With departure in recent literature, we propose guidelines for circumventing these pitfalls in studies of tissue-accumulation and cell-uptake, thus covering fluorescence-based techniques like bulk solution fluorescence measurements, fluorescence microscopy, flow cytometry, and infrared fluorescence imaging. With this, we hope to lay a foundation for more 'quantitative thinking' during experimental design, enabling (for example) the estimation and reporting of actual numbers of fluorescent nanoparticles accumulated in cells and organs.
Collapse
Affiliation(s)
- Jens B Simonsen
- Department of Health Technology, Section for Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kgs. Lyngby, Denmark.
| | - Emil B Kromann
- Department of Health Technology, Section for Biomimetics, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
18
|
Sousa de Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev 2021; 50:5397-5434. [PMID: 33666625 PMCID: PMC8111542 DOI: 10.1039/d0cs01127d] [Citation(s) in RCA: 457] [Impact Index Per Article: 114.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 12/19/2022]
Abstract
Nanoparticles (NPs) have attracted considerable attention in various fields, such as cosmetics, the food industry, material design, and nanomedicine. In particular, the fast-moving field of nanomedicine takes advantage of features of NPs for the detection and treatment of different types of cancer, fibrosis, inflammation, arthritis as well as neurodegenerative and gastrointestinal diseases. To this end, a detailed understanding of the NP uptake mechanisms by cells and intracellular localization is essential for safe and efficient therapeutic applications. In the first part of this review, we describe the several endocytic pathways involved in the internalization of NPs and we discuss the impact of the physicochemical properties of NPs on this process. In addition, the potential challenges of using various inhibitors, endocytic markers and genetic approaches to study endocytosis are addressed along with the principal (semi) quantification methods of NP uptake. The second part focuses on synthetic and bio-inspired substances, which can stimulate or decrease the cellular uptake of NPs. This approach could be interesting in nanomedicine where a high accumulation of drugs in the target cells is desirable and clearance by immune cells is to be avoided. This review contributes to an improved understanding of NP endocytic pathways and reveals potential substances, which can be used in nanomedicine to improve NP delivery.
Collapse
Affiliation(s)
- Mauro Sousa de Almeida
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Eva Susnik
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Barbara Drasler
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
- Department of Chemistry, University of FribourgChemin du Musée 91700 FribourgSwitzerland
| | | |
Collapse
|
19
|
Pereira S, Yao R, Gomes M, Jørgensen PT, Wengel J, Azevedo NF, Sobral Santos R. Can Vitamin B12 Assist the Internalization of Antisense LNA Oligonucleotides into Bacteria? Antibiotics (Basel) 2021; 10:antibiotics10040379. [PMID: 33916701 PMCID: PMC8065541 DOI: 10.3390/antibiotics10040379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022] Open
Abstract
The emergence of bacterial resistance to traditional small-molecule antibiotics is fueling the search for innovative strategies to treat infections. Inhibiting the expression of essential bacterial genes using antisense oligonucleotides (ASOs), particularly composed of nucleic acid mimics (NAMs), has emerged as a promising strategy. However, their efficiency depends on their association with vectors that can translocate the bacterial envelope. Vitamin B12 is among the largest molecules known to be taken up by bacteria and has very recently started to gain interest as a trojan-horse vector. Gapmers and steric blockers were evaluated as ASOs against Escherichia coli (E. coli). Both ASOs were successfully conjugated to B12 by copper-free azide-alkyne click-chemistry. The biological effect of the two conjugates was evaluated together with their intracellular localization in E. coli. Although not only B12 but also both B12-ASO conjugates interacted strongly with E. coli, they were mostly colocalized with the outer membrane. Only 6–9% were detected in the cytosol, which showed to be insufficient for bacterial growth inhibition. These results suggest that the internalization of B12-ASO conjugates is strongly affected by the low uptake rate of the B12 in E. coli and that further studies are needed before considering this strategy against biofilms in vivo.
Collapse
Affiliation(s)
- Sara Pereira
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.P.); (M.G.); (N.F.A.)
| | - Ruwei Yao
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; (R.Y.); (P.T.J.); (J.W.)
| | - Mariana Gomes
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.P.); (M.G.); (N.F.A.)
| | - Per Trolle Jørgensen
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; (R.Y.); (P.T.J.); (J.W.)
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; (R.Y.); (P.T.J.); (J.W.)
| | - Nuno Filipe Azevedo
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.P.); (M.G.); (N.F.A.)
| | - Rita Sobral Santos
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.P.); (M.G.); (N.F.A.)
- Correspondence:
| |
Collapse
|
20
|
FitzGerald LI, Johnston AP. It’s what’s on the inside that counts: Techniques for investigating the uptake and recycling of nanoparticles and proteins in cells. J Colloid Interface Sci 2021; 587:64-78. [DOI: 10.1016/j.jcis.2020.11.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/15/2020] [Accepted: 11/23/2020] [Indexed: 01/19/2023]
|
21
|
Khan SN, Han P, Chaudhury R, Bickerton S, Lee JS, Calderon B, Pellowe A, Gonzalez A, Fahmy T. Direct Comparison of B Cell Surface Receptors as Therapeutic Targets for Nanoparticle Delivery of BTK Inhibitors. Mol Pharm 2021; 18:850-861. [PMID: 33428414 DOI: 10.1021/acs.molpharmaceut.0c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Targeting different cell surface receptors with nanoparticle (NP)-based platforms can result in differential particle binding properties that may impact their localization, bioavailability, and, ultimately, the therapeutic efficacy of an encapsulated payload. Conventional in vitro assays comparing the efficacy of targeted NPs often do not adequately control for these differences in particle-receptor binding, potentially confounding their therapeutic readouts and possibly even limiting their experimental value. In this work, we characterize the conditions under which NPs loaded with Bruton's Tyrosine Kinase (BTK) inhibitor differentially suppress primary B cell activation when targeting either CD19 (internalizing) or B220 (noninternalizing) surface receptors. Surface binding of fluorescently labeled CD19- and B220-targeted NPs was analyzed and quantitatively correlated with the number of bound particles at given treatment concentrations. Using this binding data, suppression of B cell activation was directly compared for differentially targeted (CD19 vs B220) NPs loaded with a BTK inhibitor at a range of particle drug loading concentrations. When NPs were loaded with lower amounts of drug, CD19-mediated internalization demonstrated increased inhibition of B cell proliferation compared with B220 NPs. However, these differences were mitigated when particles were loaded with higher concentrations of BTK inhibitor and B220-mediated "paracrine-like" delivery demonstrated superior suppression of cellular activation when cells were bound to lower overall numbers of NPs. Taken together, these results demonstrate that inhibition of B cell activation can be optimized for NPs targeting either internalizing or noninternalizing surface receptors and that particle internalization is likely not a requisite endpoint when designing particles for delivery of BTK inhibitor to B cells.
Collapse
Affiliation(s)
- Shihan N Khan
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06520, United States.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Patrick Han
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Rabib Chaudhury
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Sean Bickerton
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Jung Seok Lee
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Brenda Calderon
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Amanda Pellowe
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Anjelica Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Tarek Fahmy
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, United States.,Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
22
|
Laurini E, Aulic S, Marson D, Fermeglia M, Pricl S. Cationic Dendrimers for siRNA Delivery: An Overview of Methods for In Vitro/In Vivo Characterization. Methods Mol Biol 2021; 2282:209-244. [PMID: 33928579 DOI: 10.1007/978-1-0716-1298-9_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This chapter reviews the different techniques for analyzing the chemical-physical properties, transfection efficiency, cytotoxicity, and stability of covalent cationic dendrimers (CCDs) and self-assembled cationic dendrons (ACDs) for siRNA delivery in the presence and absence of their nucleic cargos. On the basis of the reported examples, a standard essential set of techniques is described for each step of a siRNA/nanovector (NV) complex characterization process: (1) analysis of the basic chemical-physical properties of the NV per se; (2) characterization of the morphology, size, strength, and stability of the siRNA/NV ensemble; (3) characterization and quantification of the cellular uptake and release of the siRNA fragment; (4) in vitro and (5) in vivo experiments for the evaluation of the corresponding gene silencing activity; and (6) assessment of the intrinsic toxicity of the NV and the siRNA/NV complex.
Collapse
Affiliation(s)
- Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy.
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
23
|
Madni A, Rehman S, Sultan H, Khan MM, Ahmad F, Raza MR, Rai N, Parveen F. Mechanistic Approaches of Internalization, Subcellular Trafficking, and Cytotoxicity of Nanoparticles for Targeting the Small Intestine. AAPS PharmSciTech 2020; 22:3. [PMID: 33221968 PMCID: PMC7680634 DOI: 10.1208/s12249-020-01873-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Targeting the small intestine employing nanotechnology has proved to be a more effective way for site-specific drug delivery. The drug targeting to the small intestine can be achieved via nanoparticles for its optimum bioavailability within the systemic circulation. The small intestine is a remarkable candidate for localized drug delivery. The intestine has its unique properties. It has a less harsh environment than the stomach, provides comparatively more retention time, and possesses a greater surface area than other parts of the gastrointestinal tract. This review focuses on elaborating the intestinal barriers and approaches to overcome these barriers for internalizing nanoparticles and adopting different cellular trafficking pathways. We have discussed various factors that contribute to nanocarriers' cellular uptake, including their surface chemistry, surface morphology, and functionalization of nanoparticles. Furthermore, the fate of nanoparticles after their uptake at cellular and subcellular levels is also briefly explained. Finally, we have delineated the strategies that are adopted to determine the cytotoxicity of nanoparticles.
Collapse
Affiliation(s)
- Asadullah Madni
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Sadia Rehman
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Humaira Sultan
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Faiz Ahmad
- Departments of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - M Rafi Raza
- Department of Mechanical Engineering, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Nadia Rai
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Farzana Parveen
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
24
|
Shin H, Kwak M, Lee TG, Lee JY. Quantifying the level of nanoparticle uptake in mammalian cells using flow cytometry. NANOSCALE 2020; 12:15743-15751. [PMID: 32677657 DOI: 10.1039/d0nr01627f] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Reliable quantification of nanoparticle uptake in mammalian cells is essential to study the effects of nanoparticles in the fields of medicine and environmental science. Most conventional quantification methods, such as electron microscopy or confocal imaging, are laborious and semi-quantitative and therefore not readily applicable to routine analyses. Here, we developed assays to quantify fluorescently labelled nanoparticle uptake in mammalian cells using a flow cytometer. The first approach was to measure the percentage of nanoparticle-containing cells based on a cutoff fluorescence intensity as set from a histogram of control cells, which is a quick and easy way to relatively compare nanoparticle uptake in the same set of experiments. The second approach was to measure the calibrated fluorescence intensity of the nanoparticle-treated cells in molecules of equivalent soluble fluorophore (MESF) values using calibration beads, which allows for comparisons between different sets of experiments. We successfully applied the developed assays to more readily measure fluorescence-labelled silica nanoparticle uptake in A549 lung carcinoma cells in a quantitative rather than semi-quantitative manner. We further tested the assays with nine different types of mammalian cells and investigated the correlation between cell type/size and nanoparticle uptake.
Collapse
Affiliation(s)
- HyeRim Shin
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| | | | | | | |
Collapse
|
25
|
Rapid Evaluation of Antibody Fragment Endocytosis for Antibody Fragment-Drug Conjugates. Biomolecules 2020; 10:biom10060955. [PMID: 32630402 PMCID: PMC7355425 DOI: 10.3390/biom10060955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/12/2020] [Accepted: 06/23/2020] [Indexed: 12/31/2022] Open
Abstract
Antibody-drug conjugates (ADCs) have emerged as the most promising strategy in targeted cancer treatment. Recent strategies for the optimization ADCs include the development of antibody fragment-drug conjugates (FDCs). The critical factor in the successful development of ADCs and FDCs is the identification of tumor antigen-specific and internalizing antibodies (Abs). However, systematic comparison or correlation studies of internalization rates with different antibody formats have not been reported previously. In this study, we generated a panel of scFv-phage Abs using phage display technology and their corresponding scFv and scFv-Fc fragments and evaluated their relative internalization kinetics in relation to their antibody forms. We found that the relative rates and levels of internalization of scFv-phage antibodies positively correlate with their scFv and scFv-Fc forms. Our systematic study demonstrates that endocytosis of scFv-phage can serve as a predictive indicator for the assessment of Ab fragment internalization. Additionally, the present study demonstrates that endocytic antibodies can be rapidly screened and selected from phage antibody libraries prior to the conversion of phage antibodies for the generation of the conventional antibody format. Our strategic approach for the identification and evaluation of endocytic antibodies would expedite the selection for optimal antibodies and antibody fragments and be broadly applicable to ADC and FDC development.
Collapse
|
26
|
Johnston ST, Faria M, Crampin EJ. Isolating the sources of heterogeneity in nano-engineered particle-cell interactions. J R Soc Interface 2020; 17:20200221. [PMID: 32429827 PMCID: PMC7276543 DOI: 10.1098/rsif.2020.0221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/20/2020] [Indexed: 11/12/2022] Open
Abstract
Nano-engineered particles have the potential to enhance therapeutic success and reduce toxicity-based treatment side effects via the targeted delivery of drugs to cells. This delivery relies on complex interactions between numerous biological, chemical and physical processes. The intertwined nature of these processes has thus far hindered attempts to understand their individual impact. Variation in experimental data, such as the number of particles inside each cell, further inhibits understanding. Here, we present a mathematical framework that is capable of examining the impact of individual processes during particle delivery. We demonstrate that variation in experimental particle uptake data can be explained by three factors: random particle motion; variation in particle-cell interactions; and variation in the maximum particle uptake per cell. Without all three factors, the experimental data cannot be explained. This work provides insight into biological mechanisms that cause heterogeneous responses to treatment, and enables precise identification of treatment-resistant cell subpopulations.
Collapse
Affiliation(s)
- Stuart T. Johnston
- Systems Biology Laboratory, School of Mathematics and Statistics, and Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Melbourne School of Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Matthew Faria
- Systems Biology Laboratory, School of Mathematics and Statistics, and Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Melbourne School of Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Edmund J. Crampin
- Systems Biology Laboratory, School of Mathematics and Statistics, and Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Melbourne School of Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
- School of Medicine, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
27
|
Huang X, Cavalcante DP, Townley HE. Macrophage-like THP-1 cells show effective uptake of silica nanoparticles carrying inactivated diphtheria toxoid for vaccination. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2020; 22:23. [PMID: 32435151 PMCID: PMC7223038 DOI: 10.1007/s11051-019-4720-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/22/2019] [Indexed: 06/11/2023]
Abstract
Nanoparticles may be used in vaccinology as an antigen delivery and/or an immunostimulant to enhance immunity. Porous silica has been identified as an effective adjuvant for more than a decade, and we have therefore investigated the take up rate by an immortalized macrophage-like cell line of a number of mesoporous silica nanoparticles (MSNPs) with differing diameter and pore size. The MSNPs were synthesized using a sol-gel reaction and post-synthesis removal of the template. The MSNPs showed a clear distribution in take up rate peaking at 217 nm, whereas a comparison with solid spherical nanoparticles showed a similar distribution peaking at 377 nm. The MSNPs were investigated before and after loading with antigen. Diphtheria toxoid was used as a proof-of-concept antigen and showed a peak macrophage internalization of 53.42% for loaded LP3 particles which had a diameter of 217.75 ± 5.44 nm and large 16.5 nm pores. Optimal MSNP sizes appeared to be in the 200-400 nm range, and larger pores showed better antigen loading. The mesoporous silica particles were shown to be generally biocompatible, and cell viability was not altered by the loading of particles with or without antigen. Graphical abstract.
Collapse
Affiliation(s)
- Xinyue Huang
- Nuffield Department of women’s and reproductive health, Oxford University, John Radcliffe Hospital, Oxford, UK
| | | | - Helen E Townley
- Nuffield Department of women’s and reproductive health, Oxford University, John Radcliffe Hospital, Oxford, UK
- Department of Engineering Science, Oxford University, Park’s Road, Oxford, UK
| |
Collapse
|
28
|
Faria M, Björnmalm M, Crampin EJ, Caruso F. A few clarifications on MIRIBEL. NATURE NANOTECHNOLOGY 2020; 15:2-3. [PMID: 31925392 DOI: 10.1038/s41565-019-0612-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Matthew Faria
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Systems Biology Laboratory, School of Mathematics and Statistics and Melbourne School of Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Mattias Björnmalm
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Department of Materials, Imperial College London, London, UK
- Institute of Biomedical Engineering, Department of Bioengineering, Imperial College London, London, UK
| | - Edmund J Crampin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Systems Biology Laboratory, School of Mathematics and Statistics and Melbourne School of Engineering, The University of Melbourne, Parkville, Victoria, Australia.
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
29
|
Khatri S, Hansen J, Mendes AC, Chronakis IS, Hung SC, Mellins ED, Astakhova K. Citrullinated Peptide Epitope Targets Therapeutic Nanoparticles to Human Neutrophils. Bioconjug Chem 2019; 30:2584-2593. [PMID: 31524379 DOI: 10.1021/acs.bioconjchem.9b00518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Multiple drugs have been proposed for reducing harsh symptoms of human rheumatic diseases. However, a targeted therapy with mild to no side effects is still missing. In this study, we have prepared and tested a series of therapeutic nanoparticles for specific targeting of human neutrophils associated with rheumatoid arthritis. In doing this, a series of citrullinated peptide epitopes derived from human proteins, fibrinogen, vimentin, and histone 3, were screened with regard to specific recognition of neutrophils. The most potent epitope proved to be a mutated fragment of an alpha chain in human fibrinogen. Next, a straightforward synthetic strategy was developed for nanoparticles decorated with this citrullinated peptide epitope and an antisense oligonucleotide targeting disease associated microRNA miR-125b-5p. Our study shows that the nanoparticles specifically recognize neutrophils and knock down miR-125b-5p, with no apparent toxicity to human cells. In contrast to organic dendrimers, chitosan-hyaluronic acid formulations do not activate human innate immune response. Our data proves that the strategy we report herein is effective in developing peptide epitopes for decorating delivery vehicles bearing biological drugs, targeted to a specific cell type.
Collapse
Affiliation(s)
- Sangita Khatri
- Department of Chemistry , Technical University of Denmark , Kongens Lyngby , Region Hovedstaden 2800 , Denmark
| | - Jonas Hansen
- Department of Chemistry , Technical University of Denmark , Kongens Lyngby , Region Hovedstaden 2800 , Denmark.,Institute of Molecular Medicine , Sechenov First Moscow State Medical University , Moscow 119991 , Russia
| | - Ana C Mendes
- DTU Food , Technical University of Denmark , Kongens Lyngby , Region Hovedstaden 2800 , Denmark
| | - Ioannis S Chronakis
- DTU Food , Technical University of Denmark , Kongens Lyngby , Region Hovedstaden 2800 , Denmark
| | - Shu-Chen Hung
- Department of Pediatrics, Program in Immunology , Stanford University School of Medicine , Stanford , California 94305 , United States of America
| | - Elizabeth D Mellins
- Department of Pediatrics, Program in Immunology , Stanford University School of Medicine , Stanford , California 94305 , United States of America
| | - Kira Astakhova
- Department of Chemistry , Technical University of Denmark , Kongens Lyngby , Region Hovedstaden 2800 , Denmark
| |
Collapse
|
30
|
Simpson JD, Smith SA, Thurecht KJ, Such G. Engineered Polymeric Materials for Biological Applications: Overcoming Challenges of the Bio-Nano Interface. Polymers (Basel) 2019; 11:E1441. [PMID: 31480780 PMCID: PMC6780590 DOI: 10.3390/polym11091441] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/11/2022] Open
Abstract
Nanomedicine has generated significant interest as an alternative to conventional cancertherapy due to the ability for nanoparticles to tune cargo release. However, while nanoparticletechnology has promised significant benefit, there are still limited examples of nanoparticles inclinical practice. The low translational success of nanoparticle research is due to the series ofbiological roadblocks that nanoparticles must migrate to be effective, including blood and plasmainteractions, clearance, extravasation, and tumor penetration, through to cellular targeting,internalization, and endosomal escape. It is important to consider these roadblocks holistically inorder to design more effective delivery systems. This perspective will discuss how nanoparticlescan be designed to migrate each of these biological challenges and thus improve nanoparticledelivery systems in the future. In this review, we have limited the literature discussed to studiesinvestigating the impact of polymer nanoparticle structure or composition on therapeutic deliveryand associated advancements. The focus of this review is to highlight the impact of nanoparticlecharacteristics on the interaction with different biological barriers. More specific studies/reviewshave been referenced where possible.
Collapse
Affiliation(s)
- Joshua D Simpson
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, the University of Queensland, St Lucia QLD 4072, Australia;
| | - Samuel A Smith
- School of Chemistry, University of Melbourne, Parkville VIC 3010, Australia;
| | - Kristofer J. Thurecht
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, the University of Queensland, St Lucia QLD 4072, Australia;
| | - Georgina Such
- School of Chemistry, University of Melbourne, Parkville VIC 3010, Australia;
| |
Collapse
|
31
|
Prasad C, Banerjee R. Ultrasound-Triggered Spatiotemporal Delivery of Topotecan and Curcumin as Combination Therapy for Cancer. J Pharmacol Exp Ther 2019; 370:876-893. [PMID: 30988010 DOI: 10.1124/jpet.119.256487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/08/2019] [Indexed: 08/30/2023] Open
Abstract
Chemotherapy is limited by the low availability of drug at the tumor site and drug resistance by the tumor. In this report we describe a combination therapy for codelivery of two anticancer drugs with spatiotemporal control by ultrasound pulses. We developed curcumin and topotecan-coencapsulated nanoconjugates Cur_Tpt_NC.MB to have an ultrasound contrast property. MDA MB 231 and B16F10 cells were incubated with Cur_Tpt_NC.MB and exposed to ultrasound. Ultrasound exposure reduced the IC50 concentration of topotecan and curcumin significantly (P < 0.05) compared with free drug. Antitumor efficacy study of the Cur_Tpt_NC.MB in B16F10 melanoma tumor-bearing C57BL/6 mice showed that ultrasound exposure of right tumor reduced growth by 3.5 times compared with the unexposed left tumor of same mice and 14.8 times compared with a group treated with a physical mixture of drugs. These results suggest that the nanotherapeutic system we developed induces site-specific inhibition of tumor growth at a high rate and has the potential to be used as a therapeutic regimen for spatiotemporal delivery of dual drugs for treatment of cancer.
Collapse
Affiliation(s)
- Chandrashekhar Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai, India
| | - Rinti Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai, India
| |
Collapse
|
32
|
Faria M, Noi KF, Dai Q, Björnmalm M, Johnston ST, Kempe K, Caruso F, Crampin EJ. Revisiting cell–particle association in vitro: A quantitative method to compare particle performance. J Control Release 2019; 307:355-367. [DOI: 10.1016/j.jconrel.2019.06.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 01/08/2023]
|
33
|
Kaurav M, Kumar R, Jain A, Pandey RS. Novel Biomimetic Reconstituted Built-in Adjuvanted Hepatitis B Vaccine for Transcutaneous Immunization. J Pharm Sci 2019; 108:3550-3559. [PMID: 31348940 DOI: 10.1016/j.xphs.2019.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023]
Abstract
Transcutaneous immunization is the administration of a vaccine on the skin to generate efficient systemic and mucosal immune responses against an antigen. In the present study, reconstituted hepatitis B surface antigen vesicles (HBsAg-REVs) integrated with monophosphoryl lipid A were prepared by the delipidation-reconstitution method and tested as built-in adjuvanted vaccine, system for transcutaneous immunization using a combined approach of tape strippings, and enhanced antigen skin contact time. Prepared vesicles were extensively characterized for size, shape, zeta potential, and antigen protein loading efficiency. Following topical application, HBsAg-REVs skin permeation on isolated rat skin and cell uptake by bone marrow-derived dendritic cells were determined by confocal laser scanning microscopy and flow cytometry, respectively. The humoral and cellular immune responses elicited by HBsAg-REVs via transcutaneous immunization were comparable to the marketed intramuscular hepatitis B vaccine formulation with predefined immunization protocols. This study supports that delivery of reconstituted HBsAg vesicles via transcutaneous route may open a new vista for designing topical vaccines with possible immune protection against hepatitis B in future.
Collapse
Affiliation(s)
- Monika Kaurav
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495009, India
| | - Rajendra Kumar
- National UGC Centre of Excellence in NanoBiomedical Applications, Panjab University, Chandigarh 160014, India
| | - Atul Jain
- National UGC Centre of Excellence in NanoBiomedical Applications, Panjab University, Chandigarh 160014, India
| | - Ravi Shankar Pandey
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495009, India.
| |
Collapse
|
34
|
Depalo N, Fanizza E, Vischio F, Denora N, Laquintana V, Cutrignelli A, Striccoli M, Giannelli G, Agostiano A, Curri ML, Scavo MP. Imaging modification of colon carcinoma cells exposed to lipid based nanovectors for drug delivery: a scanning electron microscopy investigation. RSC Adv 2019; 9:21810-21825. [PMID: 35518842 PMCID: PMC9066453 DOI: 10.1039/c9ra02381j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/10/2019] [Indexed: 11/21/2022] Open
Abstract
The adsorption at cell surfaces and cell internalization of two drug delivery lipid based nanovectors has been investigated by means of Field Emission Scanning Electron Microscopy (FE-SEM) operating at low beam voltage on two different colon carcinoma cell lines, CaCo-2 and CoLo-205, that were compared with the M14 melanoma cell line, as a reference. The cells were incubated with the investigated multifunctional nanovectors, based on liposomes and magnetic micelles loaded with 5-fluorouracil, as a chemotherapeutic agent, and a FE-SEM systematic investigation was performed, enabling a detailed imaging of any morphological changes of the drug exposed cells as a function of time. The results of the FE-SEM investigation were validated by MTS assay and immunofluorescence staining of the Ki-67 protein performed on the investigated cell lines at different times. The two nanoformulations resulted in a comparable effect on CaCo-2 and M14 cell lines, while for CoLo 205 cells, the liposomes provided an cytotoxic activity higher than that observed in the case of the micelles. The study highlighted the high potential of FE-SEM as a valuable complementary technique for imaging and monitoring in time the drug effects on the selected cells exposed to the two different nanoformulations.
Collapse
Affiliation(s)
- Nicoletta Depalo
- Institute for Physical-Chemical Processes (IPCF)-CNR SS Bari Via Orabona 4 70125 Bari Italy
| | - Elisabetta Fanizza
- Institute for Physical-Chemical Processes (IPCF)-CNR SS Bari Via Orabona 4 70125 Bari Italy
- Università degli Studi di Bari Aldo Moro, Dipartimento di Chimica Via Orabona 4 70125 Bari Italy
| | - Fabio Vischio
- Università degli Studi di Bari Aldo Moro, Dipartimento di Chimica Via Orabona 4 70125 Bari Italy
| | - Nunzio Denora
- Institute for Physical-Chemical Processes (IPCF)-CNR SS Bari Via Orabona 4 70125 Bari Italy
- Università degli Studi di Bari Aldo Moro, Dipartimento di Farmacia, Scienze del Farmaco Via Orabona 4 70125 Bari Italy
| | - Valentino Laquintana
- Università degli Studi di Bari Aldo Moro, Dipartimento di Farmacia, Scienze del Farmaco Via Orabona 4 70125 Bari Italy
| | - Annalisa Cutrignelli
- Università degli Studi di Bari Aldo Moro, Dipartimento di Farmacia, Scienze del Farmaco Via Orabona 4 70125 Bari Italy
| | - Marinella Striccoli
- Institute for Physical-Chemical Processes (IPCF)-CNR SS Bari Via Orabona 4 70125 Bari Italy
| | - Gianluigi Giannelli
- Personalized Medicine Laboratory, National Institute of Gastroenterology - Research Hospital "S. De Bellis" Via Turi 27, Castellana Grotte Bari Italy
| | - Angela Agostiano
- Institute for Physical-Chemical Processes (IPCF)-CNR SS Bari Via Orabona 4 70125 Bari Italy
- Università degli Studi di Bari Aldo Moro, Dipartimento di Chimica Via Orabona 4 70125 Bari Italy
| | - Maria Lucia Curri
- Institute for Physical-Chemical Processes (IPCF)-CNR SS Bari Via Orabona 4 70125 Bari Italy
- Università degli Studi di Bari Aldo Moro, Dipartimento di Chimica Via Orabona 4 70125 Bari Italy
| | - Maria Principia Scavo
- Personalized Medicine Laboratory, National Institute of Gastroenterology - Research Hospital "S. De Bellis" Via Turi 27, Castellana Grotte Bari Italy
| |
Collapse
|
35
|
Kuhn J, Smirnov A, Criss AK, Columbus L. Quantifying Carcinoembryonic Antigen-like Cell Adhesion Molecule-Targeted Liposome Delivery Using Imaging Flow Cytometry. Mol Pharm 2019; 16:2354-2363. [PMID: 30995063 DOI: 10.1021/acs.molpharmaceut.8b01274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Carcinoembryonic antigen-like cell adhesion molecules (CEACAMs) are human cell-surface proteins that can exhibit increased expression on tumor cells and are thus a potential target for novel tumor-seeking therapeutic delivery methods. We hypothesize that engineered nanoparticles containing a known interaction partner of CEACAM, Neisseria gonorrhoeae outer membrane protein Opa, can be used to deliver cargo to specific cellular targets. In this study, the cell association and uptake of protein-free liposomes and Opa proteoliposomes into CEACAM-expressing cells were measured using imaging flow cytometry. A size-dependent internalization of liposomes into HeLa cells was observed through endocytic pathways. Opa-dependent, CEACAM1-mediated uptake of liposomes into HeLa cells was observed, with limited colocalization with endosomal and lysosomal trafficking compartments. Given the overexpression of CEACAM1 on several distinct cancers and interest in using CEACAM1 as a component in treatment strategies, these results support further pursuit of investigating Opa-dependent specificity and the internalization mechanism for therapeutic delivery.
Collapse
|
36
|
Ding SSL, Subbiah SK, Khan MSA, Farhana A, Mok PL. Empowering Mesenchymal Stem Cells for Ocular Degenerative Disorders. Int J Mol Sci 2019; 20:E1784. [PMID: 30974904 PMCID: PMC6480671 DOI: 10.3390/ijms20071784] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 12/24/2022] Open
Abstract
Multipotent mesenchymal stem cells (MSCs) have been employed in numerous pre-clinical and clinical settings for various diseases. MSCs have been used in treating degenerative disorders pertaining to the eye, for example, age-related macular degeneration, glaucoma, retinitis pigmentosa, diabetic retinopathy, and optic neuritis. Despite the known therapeutic role and mechanisms of MSCs, low cell precision towards the targeted area and cell survivability at tissue needing repair often resulted in a disparity in therapeutic outcomes. In this review, we will discuss the current and feasible strategy options to enhance treatment outcomes with MSC therapy. We will review the application of various types of biomaterials and advances in nanotechnology, which have been employed on MSCs to augment cellular function and differentiation for improving treatment of visual functions. In addition, several modes of gene delivery into MSCs and the types of associated therapeutic genes that are important for modulation of ocular tissue function and repair will be highlighted.
Collapse
Affiliation(s)
- Shirley Suet Lee Ding
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Mohammed Safwan Ali Khan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas University, College Station, Texas 77843, USA.
| | - Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O. Box 2014, Aljouf Province, Saudi Arabia.
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O. Box 2014, Aljouf Province, Saudi Arabia.
| |
Collapse
|
37
|
Rothen-Rutishauser B, Bourquin J, Petri-Fink A. Nanoparticle-Cell Interactions: Overview of Uptake, Intracellular Fate and Induction of Cell Responses. BIOLOGICAL RESPONSES TO NANOSCALE PARTICLES 2019. [DOI: 10.1007/978-3-030-12461-8_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
38
|
Abstract
As a consequence of their increase in annual production and widespread distribution in the environment, nanoparticles potentially pose a significant public health risk. The sought-after catalytic activity granted by their physiochemical properties doubles as a hazard to physiological processes following exposure through inhalation, oral, transdermal, subcutaneous, and intravenous uptake. Upon uptake into the body, their size, morphology, surface charge, coating, and chemical composition augment the response of biological systems to the materials and enhance their toxicity. Identification of each property is necessary to predict the harm imposed by foreign nanomaterials in the body. Assay methods ranging from endotoxin and lactate dehydrogenase (LDH) signaling to apoptosis and oxidative stress detection supply valuable techniques for exposing biomarkers of nanoparticle-induced cellular damage. Spectroscopic investigation of epithelial barrier permeation and distribution within living cells reveals the proclivity of nanoparticles to penetrate the body's natural defensive boundaries and deposit themselves in cytotoxic locations. Combination of the various characterization methodologies and assays is required for every new nanoparticulate system despite preexisting data for similar systems due to the lack of deterministic trends among investigated nanoparticles. The propensity of nanomaterials to denature proteins and oxidize substrates in their local environment generates significant concern for the applicability of several traditional in vitro assays, and the modification of susceptible approaches into novel methods suitable for the evaluation of nanoparticles comprises the focus of future work centered on nanoparticle toxicity analysis.
Collapse
Affiliation(s)
- Dustin T Savage
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - J Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - Thomas D Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
39
|
Bisso PW, Gaglione S, Guimarães PPG, Mitchell MJ, Langer R. Nanomaterial Interactions with Human Neutrophils. ACS Biomater Sci Eng 2018; 4:4255-4265. [PMID: 31497639 PMCID: PMC6731026 DOI: 10.1021/acsbiomaterials.8b01062] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neutrophils are the most abundant circulating leukocyte and the first point of contact between many drug delivery formulations and human cells. Despite their prevalence and implication in a range of immune functions, little is known about how human neutrophils respond to synthetic particulates. Here, we describe how ex vivo human neutrophils respond to particles which vary in both size (5 nm to 2 μm) and chemistry (lipids, poly(styrene), poly(lactic-co-glycolic acid), and gold). In particular, we show that (i) particle uptake is rapid, typically plateauing within 15 min; (ii) for a given particle chemistry, neutrophils preferentially take up larger particles at the nanoscale, up to 200 nm in size; (iii) uptake of nanoscale poly(styrene) and liposomal particles at concentrations of up to 5 μg/mL does not enhance apoptosis, activation, or cell death; (iv) particle-laden neutrophils retain the ability to degranulate normally in response to chemical stimulation; and (v) ingested particles reside in intracellular compartments that are retained during activation and degranulation. Aside from the implications for design of intravenously delivered particulate formulations in general, we expect these observations to be of particular use for targeting nanoparticles to circulating neutrophils, their clearance site (bone marrow), or distal sites of active inflammation.
Collapse
Affiliation(s)
- Paul W. Bisso
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephanie Gaglione
- Department of Chemical Engineering, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Pedro P. G. Guimarães
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
40
|
González-Paredes A, Sitia L, Ruyra A, Morris CJ, Wheeler GN, McArthur M, Gasco P. Solid lipid nanoparticles for the delivery of anti-microbial oligonucleotides. Eur J Pharm Biopharm 2018; 134:166-177. [PMID: 30468838 DOI: 10.1016/j.ejpb.2018.11.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022]
Abstract
Novel alternatives to antibiotics are urgently needed for the successful treatment of antimicrobial resistant (AMR) infections. Experimental antibacterial oligonucleotide therapeutics, such as transcription factor decoys (TFD), are a promising approach to circumvent AMR. However, the therapeutic potential of TFD is contingent upon the development of carriers that afford efficient DNA protection against nucleases and delivery of DNA to the target infection site. As a carrier for TFD, here we present three prototypes of anionic solid lipid nanoparticles that were coated with either the cationic bolaamphiphile 12-bis-tetrahydroacridinium or with protamine. Both compounds switched particles zeta potential to positive values, showing efficient complexation with TFD and demonstrable protection from deoxyribonuclease. The effective delivery of TFD into bacteria was confirmed by confocal microscopy while SLN-bacteria interactions were studied by flow cytometry. Antibacterial efficacy was confirmed using a model TFD targeting the Fur iron uptake pathway in E. coli under microaerobic conditions. Biocompatibility of TFD-SLN was assessed using in vitro epithelial cell and in vivo Xenopus laevis embryo models. Taken together these results indicate that TFD-SLN complex can offer preferential accumulation of TFD in bacteria and represent a promising class of carriers for this experimental approach to tackling the worldwide AMR crisis.
Collapse
Affiliation(s)
| | - Leopoldo Sitia
- Procarta Biosystems Ltd., Innovation Centre, Norwich Research Park, Norwich NR4 7UH, UK; Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK
| | - Angels Ruyra
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - Grant N Wheeler
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Michael McArthur
- Procarta Biosystems Ltd., Innovation Centre, Norwich Research Park, Norwich NR4 7UH, UK; Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK
| | - Paolo Gasco
- Nanovector Srl., Via Livorno 60, 10144 Turin, Italy
| |
Collapse
|
41
|
Heck J, Rox K, Lünsdorf H, Lückerath T, Klaassen N, Medina E, Goldmann O, Feldmann C. Zirconyl Clindamycinphosphate Antibiotic Nanocarriers for Targeting Intracellular Persisting Staphylococcus aureus. ACS OMEGA 2018; 3:8589-8594. [PMID: 31458988 PMCID: PMC6644946 DOI: 10.1021/acsomega.8b00637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/13/2018] [Indexed: 06/10/2023]
Abstract
[ZrO]2+[CLP]2- (CLP: clindamycinphosphate) inorganic-organic hybrid nanoparticles (IOH-NPs) represent a novel strategy to treat persisting, recurrent infections with multiresistant Staphylococcus aureus. [ZrO]2+[CLP]2- is prepared in water and contains the approved antibiotic with unprecedented high load (82 wt % CLP per nanoparticle). The IOH-NPs result in 70-150-times higher antibiotic concentrations at difficult-to-reach infection sites, offering new options for improved drug delivery for chronic and difficult-to-treat infections.
Collapse
Affiliation(s)
- Joachim
G. Heck
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Katharina Rox
- Helmholtz-Zentrum
für Infektionsforschung, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
- Deutsches
Zentrum für Infektionsforschung, Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Heinrich Lünsdorf
- Helmholtz-Zentrum
für Infektionsforschung, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Thorsten Lückerath
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Nicole Klaassen
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Eva Medina
- Helmholtz-Zentrum
für Infektionsforschung, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Oliver Goldmann
- Helmholtz-Zentrum
für Infektionsforschung, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Claus Feldmann
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| |
Collapse
|
42
|
Selby LI, Aurelio L, Yuen D, Graham B, Johnston APR. Quantifying Cellular Internalization with a Fluorescent Click Sensor. ACS Sens 2018; 3:1182-1189. [PMID: 29676153 DOI: 10.1021/acssensors.8b00219] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to determine the amount of material endocytosed by a cell is important for our understanding of cell biology and in the design of effective carriers for drug delivery. To quantify internalization by fluorescence, the signal from material remaining on the cell surface must be differentiated from endocytosed material. Sensors for internalization offer advantages over traditional methods for achieving this as they exhibit improved sensitivity, allow for multiple fluorescent markers to be used simultaneously, and are amenable to high-throughput analysis. We have developed a small fluorescent internalization sensor, similar in size to a standard fluorescent dye, that can be conjugated to proteins and uses the rapid and highly specific bio-orthogonal reaction between a tetrazine and a trans-cyclooctene group to switch off the surface signal. The sensor can be attached to a variety of materials using simple chemistry and is compatible with flow cytometry and fluorescence microscopy, making it a useful tool to study the uptake of material into cells.
Collapse
Affiliation(s)
- Laura I. Selby
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Luigi Aurelio
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Daniel Yuen
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Angus P. R. Johnston
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
43
|
Ferreira NH, Furtado RA, Ribeiro AB, de Oliveira PF, Ozelin SD, de Souza LDR, Neto FR, Miura BA, Magalhães GM, Nassar EJ, Tavares DC. Europium(III)-doped yttrium vanadate nanoparticles reduce the toxicity of cisplatin. J Inorg Biochem 2018; 182:9-17. [DOI: 10.1016/j.jinorgbio.2018.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/29/2017] [Accepted: 01/22/2018] [Indexed: 12/29/2022]
|
44
|
Keshavarz M, Tan B, Venkatakrishnan K. Multiplex Photoluminescent Silicon Nanoprobe for Diagnostic Bioimaging and Intracellular Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700548. [PMID: 29593957 PMCID: PMC5867044 DOI: 10.1002/advs.201700548] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/10/2017] [Indexed: 05/29/2023]
Abstract
Herein, a label-free multiplex photoluminescent silicon nanoprobe (PLSN-probe) is introduced as a potential substitute for quantum dots (QDs) in bioimaging. An inherently non-photoluminescent silicon substrate is altered to create the PLSN-probe, to overcome the major drawbacks of presently available QDs. Additionally, crystallinity alterations of the multiplane crystalline PLSN-probes lead to broad absorption and multiplex fluorescence emissions, which are attributed to the simultaneous existence of multiple crystal planes. The PLSN-probe not only demonstrates unique optical properties that can be exploited for bioimaging but also exhibits cell-selective uptake that allows the differentiation and diagnosis of HeLa and fibroblast cells. Moreover, multiplex emissions of the PLSN-probe illuminate different organelles such as the nucleus, nucleolemma, and cytoskeleton, depending on size-based preferential uptake by the cell organs. This in vitro study reveals that cancerous HeLa cells have a higher propensity for taking up the PLSN-probe compared to fibroblast cells, allowing the diagnosis of cancerous HeLa cells. Additionally, the fluorescence intensity per unit area of the cell is found to be a reliable means for distinguishing between dead and healthy cells. It is anticipated that the multifunctionality of the PLSN-probes will lead to better insight into the use of such probes for bioimaging and diagnosis applications.
Collapse
Affiliation(s)
- Meysam Keshavarz
- Nanocharacterization LaboratoryDepartment of Aerospace EngineeringRyerson University350 Victoria StreetTorontoONM5B 2K3Canada
- Institute for Biomedical EngineeringScience and Technology (iBEST)Partnership between Ryerson University and St. Michael's HospitalTorontoONM5B 1W8Canada
- Ultrashort Laser Nanomanufacturing Research FacilityDepartment of Mechanical and Industrial EngineeringRyerson University350 Victoria StreetTorontoONM5B 2K3Canada
- NanoBioInterface FacilityDepartment of Mechanical and Industrial EngineeringRyerson University350 Victoria StreetTorontoONM5B 2K3Canada
| | - Bo Tan
- Nanocharacterization LaboratoryDepartment of Aerospace EngineeringRyerson University350 Victoria StreetTorontoONM5B 2K3Canada
| | - Krishnan Venkatakrishnan
- Ultrashort Laser Nanomanufacturing Research FacilityDepartment of Mechanical and Industrial EngineeringRyerson University350 Victoria StreetTorontoONM5B 2K3Canada
- Keenan Research Centre for Biomedical ScienceSt. Michael's HospitalTorontoONM5B 1W8Canada
| |
Collapse
|
45
|
Tammam S, Malak P, Correa D, Rothfuss O, Azzazy HME, Lamprecht A, Schulze-Osthoff K. Nuclear delivery of recombinant OCT4 by chitosan nanoparticles for transgene-free generation of protein-induced pluripotent stem cells. Oncotarget 2018; 7:37728-37739. [PMID: 27183911 PMCID: PMC5122344 DOI: 10.18632/oncotarget.9276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/16/2016] [Indexed: 01/01/2023] Open
Abstract
Protein-based reprogramming of somatic cells is a non-genetic approach for the generation of induced pluripotent stem cells (iPSCs), whereby reprogramming factors, such as OCT4, SOX2, KLF4 and c-MYC, are delivered as functional proteins. The technique is considered safer than transgenic methods, but, unfortunately, most protein-based protocols provide very low reprogramming efficiencies. In this study, we developed exemplarily a nanoparticle (NP)-based delivery system for the reprogramming factor OCT4. To this end, we expressed human OCT4 in Sf9 insect cells using a baculoviral expression system. Recombinant OCT4 showed nuclear localization in Sf9 cells indicating proper protein folding. In comparison to soluble OCT4 protein, encapsulation of OCT4 in nuclear-targeted chitosan NPs strongly stabilized its DNA-binding activity even under cell culture conditions. OCT4-loaded NPs enabled cell treatment with high micromolar concentrations of OCT4 and successfully delivered active OCT4 into human fibroblasts. Chitosan NPs therefore provide a promising tool for the generation of transgene-free iPSCs.
Collapse
Affiliation(s)
- Salma Tammam
- Laboratory of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany.,Department of Chemistry, The American University in Cairo, 11835 Cairo, Egypt
| | - Peter Malak
- Interfaculty Institute for Biochemistry, University of Tuebingen, 72076 Tuebingen, Germany
| | - Daphne Correa
- Interfaculty Institute for Biochemistry, University of Tuebingen, 72076 Tuebingen, Germany
| | - Oliver Rothfuss
- Interfaculty Institute for Biochemistry, University of Tuebingen, 72076 Tuebingen, Germany
| | - Hassan M E Azzazy
- Department of Chemistry, The American University in Cairo, 11835 Cairo, Egypt
| | - Alf Lamprecht
- Laboratory of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany.,Laboratory of Pharmaceutical Engineering, University of Franche-Comté, 25000 Besançon, France
| | - Klaus Schulze-Osthoff
- Interfaculty Institute for Biochemistry, University of Tuebingen, 72076 Tuebingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center, 69120 Heidelberg, Germany
| |
Collapse
|
46
|
Pulido-Reyes G, Leganes F, Fernández-Piñas F, Rosal R. Bio-nano interface and environment: A critical review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:3181-3193. [PMID: 28731222 DOI: 10.1002/etc.3924] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/19/2017] [Indexed: 05/25/2023]
Abstract
The bio-nano interface is the boundary where engineered nanomaterials (ENMs) meet the biological system, exerting the biological function for which they have been designed or inducing adverse effects on other cells or organisms when they reach nontarget scenarios (i.e., the natural environment). Research has been performed to determine the fate, transport, and toxic properties of ENMs, but much of it is focused on pristine or so-called as-manufactured ENMs, or else modifications of the materials were not assessed. We review the most recent progress regarding the bio-nano interface and the transformations that ENMs undergo in the environment, paying special attention to the adsorption of environmental biomolecules on the surface of ENMs. Whereas the protein corona has received considerable attention in the fields of biomedics and human toxicology, its environmental analogue (the eco-corona) has been much less studied. A section dedicated to the analytical methods for studying and characterizing the eco-corona is also presented. We conclude by presenting and discussing the key problems and knowledge gaps that need to be resolved in the near future regarding the bio-nano interface and the eco-corona. Environ Toxicol Chem 2017;36:3181-3193. © 2017 SETAC.
Collapse
Affiliation(s)
- Gerardo Pulido-Reyes
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Francisco Leganes
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Roberto Rosal
- Departamento de Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
47
|
Tomić S, Janjetović K, Mihajlović D, Milenković M, Kravić-Stevović T, Marković Z, Todorović-Marković B, Spitalsky Z, Micusik M, Vučević D, Čolić M, Trajković V. Graphene quantum dots suppress proinflammatory T cell responses via autophagy-dependent induction of tolerogenic dendritic cells. Biomaterials 2017; 146:13-28. [DOI: 10.1016/j.biomaterials.2017.08.040] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 12/20/2022]
|
48
|
Milosevic AM, Rodriguez‐Lorenzo L, Balog S, Monnier CA, Petri‐Fink A, Rothen‐Rutishauser B. Assessing the Stability of Fluorescently Encoded Nanoparticles in Lysosomes by Using Complementary Methods. Angew Chem Int Ed Engl 2017; 56:13382-13386. [PMID: 28767191 PMCID: PMC5659134 DOI: 10.1002/anie.201705422] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/22/2017] [Indexed: 02/02/2023]
Abstract
Nanoparticles (NPs) are promising tools in biomedical research. In vitro testing is still the first method for initial evaluation; however, NP colloidal behavior and integrity, in particular inside cells (that is, in lysosomes), are largely unknown and difficult to evaluate because of the complexity of the environment. Furthermore, while the majority of NPs are usually labeled with fluorescent dyes for tracking purposes, the effect of the lysosomal environment on the fluorophore properties, as well as the ensuing effects on data interpretation, is often only sparsely addressed. In this work, we have employed several complementary analytical methods to better understand the fate of fluorescently encoded NPs and identify potential pitfalls that may arise from focusing primary analysis on a single attribute, for example, fluorophore detection. Our study shows that in a lysosomal environment NPs can undergo significant changes resulting in dye quenching and distorted fluorescence signals.
Collapse
Affiliation(s)
- Ana M. Milosevic
- Adolphe Merkle InstituteUniversity of FribourgCh. des Verdiers 4Fribourg1700Switzerland
| | | | - Sandor Balog
- Adolphe Merkle InstituteUniversity of FribourgCh. des Verdiers 4Fribourg1700Switzerland
| | - Christophe A. Monnier
- Adolphe Merkle InstituteUniversity of FribourgCh. des Verdiers 4Fribourg1700Switzerland
| | - Alke Petri‐Fink
- Adolphe Merkle InstituteUniversity of FribourgCh. des Verdiers 4Fribourg1700Switzerland
| | | |
Collapse
|
49
|
Milosevic AM, Rodriguez-Lorenzo L, Balog S, Monnier CA, Petri-Fink A, Rothen-Rutishauser B. Assessing the Stability of Fluorescently Encoded Nanoparticles in Lysosomes by Using Complementary Methods. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ana M. Milosevic
- Adolphe Merkle Institute; University of Fribourg; Ch. des Verdiers 4 Fribourg 1700 Switzerland
| | - Laura Rodriguez-Lorenzo
- Adolphe Merkle Institute; University of Fribourg; Ch. des Verdiers 4 Fribourg 1700 Switzerland
| | - Sandor Balog
- Adolphe Merkle Institute; University of Fribourg; Ch. des Verdiers 4 Fribourg 1700 Switzerland
| | - Christophe A. Monnier
- Adolphe Merkle Institute; University of Fribourg; Ch. des Verdiers 4 Fribourg 1700 Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute; University of Fribourg; Ch. des Verdiers 4 Fribourg 1700 Switzerland
| | | |
Collapse
|
50
|
Kim SH, Lee M, Cho M, Kim IS, Park KI, Lee H, Jang JH. Inverted Quasi-Spherical Droplets on Polydopamine-TiO2
Substrates for Enhancing Gene Delivery. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/18/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Seung-Hyun Kim
- Department of Chemical and Biomolecular Engineering; Yonsei University; 50 Yonsei-ro Seodaemun-gu Seoul 03722 Republic of Korea
| | - Mihyun Lee
- Department of Chemistry; Korea Advanced Institute of Science and Technology; 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
- Department of Health Sciences and Technology; ETH Zürich Otto-Stern-Weg 7 8093 Zürich Switzerland
| | - Mira Cho
- Department of Chemical and Biomolecular Engineering; Yonsei University; 50 Yonsei-ro Seodaemun-gu Seoul 03722 Republic of Korea
| | - Il-Sun Kim
- Department of Pediatric; Yonsei University College of Medicine; 50-1 Yonsei-ro Seodaemun-gu Seoul 03722 Republic of Korea
| | - Kook In Park
- Department of Pediatric; Yonsei University College of Medicine; 50-1 Yonsei-ro Seodaemun-gu Seoul 03722 Republic of Korea
| | - Haeshin Lee
- Department of Chemistry; Korea Advanced Institute of Science and Technology; 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| | - Jae-Hyung Jang
- Department of Chemical and Biomolecular Engineering; Yonsei University; 50 Yonsei-ro Seodaemun-gu Seoul 03722 Republic of Korea
| |
Collapse
|