1
|
Galdino FE, Rabelo RS, Scarpa I, Yoneda JS, Consonni SR, Paes Leme AF, Smith AM, Harkiolaki M, Cardoso MB. Internalization and Cellular Fate of Protein Corona-Coated Nanoparticles by Multimodal Multi-Scale Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2409065. [PMID: 39648571 DOI: 10.1002/smll.202409065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/25/2024] [Indexed: 12/10/2024]
Abstract
Upon exposure to biological environments, nanoparticles are rapidly coated with biomolecules, predominantly proteins, which alter their colloidal stability, biodistribution, and cell interactions. Despite extensive efforts to investigate the nanoparticles' fate, only a few studies use high-resolution characterization methods that allow in-depth characterization, and the existing methodologies are unable to differentiate particles internalized at the onset of incubation from those taken up toward the end of an incubation period. In this study, these limitations related to incubation disparities are overcame and precisely monitored the spatiotemporal displacement of colloidally stable protein corona-coated nanoparticles within cells. An unprecedented application of cryogenic X-ray nanotomography, combined with high-resolution, super-resolution, and correlative microscopy techniques, revealed the migration of nanoparticles to the perinuclear region while monitoring the evolution of cellular organelles in fully hydrated cells under near-native conditions, without the need for contrasting agents. Notably, this tracking indicates the progressive fusion of vesicles carrying the nanoparticles intracellularly. This strategy demonstrates the potential for uncovering the temporal aspects of nanoparticle behavior within cells and can be adaptable to a wide range of nanoparticles and cell types, offering a versatile and powerful tool to follow nanoparticles in cellular environments.
Collapse
Affiliation(s)
- Flávia E Galdino
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil
| | - Renata S Rabelo
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Isabella Scarpa
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
- "Gleb Wataghin" Institute of Physics, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil
| | - Juliana S Yoneda
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Sílvio R Consonni
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil
| | - Adriana F Paes Leme
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Andrew M Smith
- Department of Bioengineering and Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Maria Harkiolaki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Mateus B Cardoso
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil
- "Gleb Wataghin" Institute of Physics, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil
| |
Collapse
|
2
|
Tran UT, Kitami T. Chemical screens for particle-induced macrophage death identifies kinase inhibitors of phagocytosis as targets for toxicity. J Nanobiotechnology 2024; 22:621. [PMID: 39396993 PMCID: PMC11472441 DOI: 10.1186/s12951-024-02885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Nanoparticles are increasingly being used in medicine, cosmetics, food, and manufacturing. However, potential toxicity may limit the use of newly engineered nanoparticles. Prior studies have identified particle characteristics that are predictive of toxicity, although the mechanisms responsible for toxicity remain largely unknown. Nanoparticle treatment in cell culture, combined with high-throughput chemical screen allows for systematic perturbations of thousands of molecular targets against potential pathways of toxicity. The resulting data matrix, called chemical compendium, can provide insights into the mechanism of toxicity as well as help classify nanoparticles based on toxicity pathway. RESULTS We performed unbiased screens of 1280 bioactive chemicals against a panel of four particles, searching for inhibitors of macrophage toxicity. Our hit compounds clustered upon inhibitors of kinases involved in phagocytosis, including focal adhesion kinase (FAK), with varying specificity depending on particles. Interestingly, known inhibitors of cell death including NLRP3 inflammasome inhibitor were unable to suppress particle-induced macrophage death for many of the particles. By searching for upstream receptors of kinases, we identified Cd11b as one of the receptors involved in recognizing a subset of particles. We subsequently used these hit compounds and antibodies to further characterize a larger panel of particles and identified hydrodynamic size as an important particle characteristic in Cd11b-mediated particle uptake and toxicity. CONCLUSIONS Our chemical compendium and workflow can be expanded across cell types and assays to characterize the toxicity mechanism of newly engineered nanoparticles. The data in their current form can also be analyzed to help design future high-throughput screening for nanoparticle toxicity.
Collapse
Affiliation(s)
- Uyen Thi Tran
- Laboratory for Metabolic Networks, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Cell and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Toshimori Kitami
- Laboratory for Metabolic Networks, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.
| |
Collapse
|
3
|
Chali SP, Kang J, Fichter M, Speth KR, Mailänder V, Landfester K. Interfacial Denaturation at the Droplet Simplifies the Formation of Drug-Loaded Protein Nanocapsules to Enhance Immune Response of Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403668. [PMID: 38973298 PMCID: PMC11425835 DOI: 10.1002/advs.202403668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/28/2024] [Indexed: 07/09/2024]
Abstract
Nanocapsules enable multicomponent encapsulation of therapeutic cargoes with high encapsulation content and efficiency, which is vital for cancer immunotherapy. In the past, chemical crosslinking is used to synthesize nanocapsules, which can impede the regulatory approval process. Therefore, a new class of protein nanocapsules is developed by eliminating the need for chemical crosslinking by utilizing protein denaturation through a process that is referred to as "baking at the droplet interface". Such protein nanocapsules with antigens incorporated in the shell and a combination of encapsulated drugs showed an enhancement in the immune response of cells.
Collapse
Affiliation(s)
| | - Jinhong Kang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Michael Fichter
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Kai Robert Speth
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
4
|
Paramanantham A, Asfiya R, Manjunath Y, Xu L, McCully G, Das S, Yang H, Kaifi JT, Srivastava A. Induction of Ferroptosis by an Amalgam of Extracellular Vesicles and Iron Oxide Nanoparticles Overcomes Cisplatin Resistance in Lung Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608664. [PMID: 39229071 PMCID: PMC11370464 DOI: 10.1101/2024.08.19.608664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Extracellular vesicles (EVs) hold potential as effective carriers for drug delivery, providing a promising approach to resolving challenges in lung cancer treatment. Traditional treatments, such as with the chemotherapy drug cisplatin, encounter resistance in standard cell death pathways like apoptosis, prompting the need to explore alternative approaches. This study investigates the potential of iron oxide nanoparticles (IONP) and EVs to induce ferroptosis-a regulated cell death mechanism-in lung cancer cells. We formulated a novel EV and IONP-based system, namely 'ExoFeR', and observed that ExoFeR demonstrated efficient ferroptosis induction, evidenced by downregulation of ferroptosis markers (xCT/SLC7A11 and GPX4), increased intracellular and mitochondrial ferrous iron levels, and morphological changes in mitochondria. To enhance efficacy, tumor-targeting transferrin (TF)-conjugated ExoFeR (ExoFeR TF ) was developed. ExoFeR TF outperformed ExoFeR, exhibiting higher uptake and cell death in lung cancer cells. Mechanistically, nuclear factor erythroid 2-related factor 2 (Nrf2)-a key regulator of genes involved in glutathione biosynthesis, antioxidant responses, lipid metabolism, and iron metabolism-was found downregulated in the ferroptotic cells. Inhibition of Nrf2 intracellular translocation in ExoFeR TF -treated cells was also observed, emphasizing the role of Nrf2 in modulating ferroptosis-dependent cell death. Furthermore, ExoFeR and ExoFeR TF demonstrated the ability to sensitize chemo-resistant cancer cells, including cisplatin-resistant lung cancer patient-derived tumoroid organoids. In summary, ExoFeR TF presents a promising and multifaceted therapeutic approach for combating lung cancer by intrinsically inducing ferroptosis and sensitizing chemo-resistant cells.
Collapse
|
5
|
Phairuang W, Chetiyanukornkul T, Suriyawong P, Amin M, Hata M, Furuuchi M, Yamazaki M, Gotoh N, Furusho H, Yurtsever A, Watanabe S, Sun L. Characterizing Chemical, Environmental, and Stimulated Subcellular Physical Characteristics of Size-Fractionated PMs Down to PM 0.1. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12368-12378. [PMID: 38963641 DOI: 10.1021/acs.est.4c01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Air pollution, especially particulate matter (PM), is a significant environmental pollution worldwide. Studying the chemical, environmental, and life-related cellular physical characteristics of size-fractionated PMs is important because of their different degrees of harmful effects on human respiratory tracts and organ systems, causing severe diseases. This study evaluates the chemical components of size-fractionated PMs down to PM0.1 collected during a biomass-burning episode, including elemental/organic carbon and trace elements. Single particle sizes and distributions of PM0.1, PM0.5-0.1, PM1.0-0.5, and PM2.5-1.0 were analyzed by scanning electron microscopy and Zeta sizer. Two commonly used cell lines, e.g., HeLa and Cos7 cells, and two respiratory-related cell lines including lung cancer/normal cells were utilized for cell cytotoxicity experiments, revealing the key effects of particle sizes and concentrations. A high-speed scanning ion conductance microscope explored particle-stimulated subcellular physical characteristics for all cell lines in dynamics, including surface roughness (SR) and elastic modulus (E). The statistical results of SR showed distinct features among different particle sizes and cell types while a E reduction was universally found. This work provides a comprehensive understanding of the chemical, environmental, and cellular physical characteristics of size-fractionated PMs and sheds light on the necessity of controlling small-sized PM exposures.
Collapse
Affiliation(s)
- Worradorn Phairuang
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Department of Geography, Faculty of Social Sciences, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
| | | | - Phuchiwan Suriyawong
- Research Unit for Energy Economics and Ecological Management, Multidisciplinary Research Institute, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
| | - Muhammad Amin
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Faculty of Engineering, Maritim University of Raja Ali Haji, Tanjung Pinang, Kepulauan Riau 29115, Indonesia
| | - Mitsuhiko Hata
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Masami Furuuchi
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Masahiro Yamazaki
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kakumamachi, Ishikawa 920-1192, Japan
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kakumamachi, Ishikawa 920-1192, Japan
| | - Hirotoshi Furusho
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Ayhan Yurtsever
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Shinji Watanabe
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Linhao Sun
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
6
|
Montizaan D, Bartucci R, Reker-Smit C, de Weerd S, Åberg C, Guryev V, Spierings DCJ, Salvati A. Genome-wide forward genetic screening to identify receptors and proteins mediating nanoparticle uptake and intracellular processing. NATURE NANOTECHNOLOGY 2024; 19:1022-1031. [PMID: 38504023 DOI: 10.1038/s41565-024-01629-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/07/2024] [Indexed: 03/21/2024]
Abstract
Understanding how cells process nanoparticles is crucial to optimize nanomedicine efficacy. However, characterizing cellular pathways is challenging, especially if non-canonical mechanisms are involved. In this Article a genome-wide forward genetic screening based on insertional mutagenesis is applied to discover receptors and proteins involved in the intracellular accumulation (uptake and intracellular processing) of silica nanoparticles. The nanoparticles are covered by a human serum corona known to target the low-density lipoprotein receptor (LDLR). By sorting cells with reduced nanoparticle accumulation and deep sequencing after each sorting, 80 enriched genes are identified. We find that, as well as LDLR, the scavenger receptor SCARB1 also mediates nanoparticle accumulation. Additionally, heparan sulfate acts as a specific nanoparticle receptor, and its role varies depending on cell and nanoparticle type. Furthermore, some of the identified targets affect nanoparticle trafficking to the lysosomes. These results show the potential of genetic screening to characterize nanoparticle pathways. Additionally, they indicate that corona-coated nanoparticles are internalized via multiple receptors.
Collapse
Affiliation(s)
- Daphne Montizaan
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
| | - Roberta Bartucci
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
| | - Catharina Reker-Smit
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
| | - Sander de Weerd
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
| | - Christoffer Åberg
- Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
7
|
Wang X, Wang WX. Tracking the Cellular Degradation of Silver Nanoparticles: Development of a Generic Kinetic Model. ACS NANO 2024; 18:13308-13321. [PMID: 38716827 DOI: 10.1021/acsnano.4c03032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Understanding the degradation of nanoparticles (NPs) after crossing the cell plasma membrane is crucial in drug delivery designs and cytotoxicity assessment. However, the key factors controlling the degradable kinetics remain unclear due to the absence of a quantification model. In this study, subcellular imaging of silver nanoparticles (AgNPs) was used to determine the intracellular transfer of AgNPs, and single particle ICP-MS was utilized to track the degradation process. A cellular kinetic model was subsequently developed to describe the uptake, transfer, and degradation behaviors of AgNPs. Our model demonstrated that the intracellular degradation efficiency of AgNPs was much higher than that determined by mimicking testing, and the degradation of NPs was highly influenced by cellular factors. Specifically, deficiencies in Ca or Zn primarily decreased the kinetic dissolution of NPs, while a Ca deficiency also resulted in the retardation of NP transfer. The biological significance of these kinetic parameters was strongly revealed. Our model indicated that the majority of internalized AgNPs dissolved, with the resulting ions being rapidly depurated. The release of Ag ions was largely dependent on the microvesicle-mediated route. By changing the coating and size of AgNPs, the model results suggested that size influenced the transfer of NPs into the degradation process, whereas coating affected the degradation kinetics. Overall, our developed model provides a valuable tool for understanding and predicting the impacts of the physicochemical properties of NPs and the ambient environment on nanotoxicity and therapeutic efficacy.
Collapse
Affiliation(s)
- Xiangrui Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
8
|
Lee H. Separation of protein corona from nanoparticles under intracellular acidic conditions: effect of protonation on nanoparticle-protein and protein-protein interactions. Phys Chem Chem Phys 2024; 26:4000-4010. [PMID: 38224098 DOI: 10.1039/d3cp04887j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Protein coronas separate from nanoparticles under intracellular acidic conditions however, competitive adsorption of multiple proteins and their protein network formation under different pH conditions have not yet been systematically studied at the atomic scale. Herein, we report all-atom molecular dynamics simulations of plasma proteins (human serum albumin and immunoglobulin gamma-1 chain C) adsorbed to 10 nm-sized carboxyl-terminated polystyrene (PS) nanoparticles at different protonation states that mimic extracellular and intracellular pH conditions of 7, 6-5, and 4.5. Binding free energies are calculated from umbrella sampling simulations, showing the significantly weakened binding between PS particles and proteins at the protonation state at pH 4.5, in agreement with experiments showing the separation of protein corona from nanoparticles at pH 4.5. Mixtures of multiple proteins and PS particles are also simulated, showing much less protein adsorption and protein cluster formation at the protonation state at pH 4.5 than that at higher pH values, which are further confirmed by calculating the diffusivities and hydrodynamic radii of individual proteins. In particular, electrostatic particle-protein and protein-protein interactions are significantly weakened by a combination of particle and protein protonation rather than by particle protonation alone, to an extent dependent on different proteins. These findings help explain the experimental observations regarding separation of protein corona from nanoparticles under intracellular acidic conditions at pH 4.5 but not at higher pH, supporting that acidification cannot be the only reason for this separation during the process of endosome maturation.
Collapse
Affiliation(s)
- Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin-si, 16890, South Korea.
| |
Collapse
|
9
|
da Costa Marques R, Hüppe N, Speth KR, Oberländer J, Lieberwirth I, Landfester K, Mailänder V. Proteomics reveals time-dependent protein corona changes in the intracellular pathway. Acta Biomater 2023; 172:355-368. [PMID: 37839632 DOI: 10.1016/j.actbio.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
The intracellular protein corona has not been fully investigated in the field of nanotechnology-biology (nano-bio) interactions. To effectively understand intracellular protein corona formation and dynamics, we established a workflow to isolate the intracellular protein corona at different uptake times of two nanoparticles - magnetic hydroxyethyl starch nanoparticles (HES-NPs) and magnetic human serum albumin nanocapsules (HSA-NCs). We performed label-free quantitative LC-MS proteomics to analyze the composition of the intracellular protein corona and correlated our findings with results from conventional methods for intracellular trafficking of nanocarriers, such as flow cytometry, transmission electron microscopy (TEM), and confocal microscopy (cLSM). We determined the evolution of the intracellular protein corona. At different time stages the protein corona of the HES-NPs with a slower uptake changed, but there were fewer changes in that of the HSA-NCs with a more rapid uptake. We identified proteins that are involved in macropinocytosis (RAC1, ASAP2) as well as caveolin. This was confirmed by blocking experiments and by TEM studies. The investigated nanocarrier predominantly trafficked from early endosomes as determined by RAB5 identification in proteomics and in cLSM to late endosomes/lysosomes (RAB7, LAMP1, cathepsin K and HSP 90-beta) We further demonstrated differences between nanoparticles with slower and faster uptake kinetics and determined the associated proteome at different time points. Analysis of the intracellular protein corona provides us with effective data to examine the intracellular trafficking of nanocarriers used in efficient drug delivery and intracellular applications. STATEMENT OF SIGNIFICANCE: Many research papers focus on the protein corona on nanoparticles formed in biological fluids, but there are hardly any articles dealing with proteins that come in contact with nanoparticles inside cells. The "intracellular protein corona" studied here is a far more complex and highly demanding field. Most nanocarriers are designed to be taken up into cells. Given this, we chose two different nanocarriers to reveal changes in the proteins in dendritic cells during contact at specific times. Further studies will allow us to examine molecular target proteins using these methods. Our research is a significant addition towards the goal of understanding and thus improving the efficacy of drug nanocarriers.
Collapse
Affiliation(s)
- Richard da Costa Marques
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Natkritta Hüppe
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kai R Speth
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Jennifer Oberländer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Ingo Lieberwirth
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
10
|
Ulanova M, Gloag L, Bongers A, Kim CK, Duong HTK, Kim HN, Gooding JJ, Tilley RD, Biazik J, Wen W, Sachdev PS, Braidy N. Evaluation of Dimercaptosuccinic Acid-Coated Iron Nanoparticles Immunotargeted to Amyloid Beta as MRI Contrast Agents for the Diagnosis of Alzheimer's Disease. Cells 2023; 12:2279. [PMID: 37759500 PMCID: PMC10527350 DOI: 10.3390/cells12182279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Nanoparticle-based magnetic contrast agents have opened the potential for magnetic resonance imaging (MRI) to be used for early non-invasive diagnosis of Alzheimer's disease (AD). Accumulation of amyloid pathology in the brain has shown association with cognitive decline and tauopathy; hence, it is an effective biomarker for the early detection of AD. The aim of this study was to develop a biocompatible magnetic nanoparticle targeted to amyloid beta (Aβ) plaques to increase the sensitivity of T2-weighted MRI for imaging of amyloid pathology in AD. We presented novel iron core-iron oxide nanoparticles stabilized with a dimercaptosuccinic acid coating and functionalized with an anti-Aβ antibody. Nanoparticle biocompatibility and cellular internalization were evaluated in vitro in U-251 glioblastoma cells using cellular assays, proteomics, and transmission electron microscopy. Iron nanoparticles demonstrated no significant in vitro cytotoxicity, and electron microscopy results showed their movement through the endocytic cycle within the cell over a 24 h period. In addition, immunostaining and bio-layer interferometry confirmed the targeted nanoparticle's binding affinity to amyloid species. The iron nanoparticles demonstrated favourable MRI contrast enhancement; however, the addition of the antibody resulted in a reduction in the relaxivity of the particles. The present work shows promising preliminary results in the development of a targeted non-invasive method of early AD diagnosis using contrast-enhanced MRI.
Collapse
Affiliation(s)
- Marina Ulanova
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW 2052, Australia; (M.U.); (C.-K.K.); (W.W.); (P.S.S.)
| | - Lucy Gloag
- Faculty of Science, School of Mathematical and Physical Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Andre Bongers
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia; (A.B.); (R.D.T.); (J.B.)
- Faculty of Medicine, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chul-Kyu Kim
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW 2052, Australia; (M.U.); (C.-K.K.); (W.W.); (P.S.S.)
| | - Hong Thien Kim Duong
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; (H.T.K.D.); (J.J.G.)
| | - Ha Na Kim
- Molecular Surface Interaction Laboratory, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia;
| | - John Justin Gooding
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; (H.T.K.D.); (J.J.G.)
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard D. Tilley
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia; (A.B.); (R.D.T.); (J.B.)
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; (H.T.K.D.); (J.J.G.)
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Joanna Biazik
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia; (A.B.); (R.D.T.); (J.B.)
| | - Wei Wen
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW 2052, Australia; (M.U.); (C.-K.K.); (W.W.); (P.S.S.)
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW 2052, Australia; (M.U.); (C.-K.K.); (W.W.); (P.S.S.)
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW 2052, Australia; (M.U.); (C.-K.K.); (W.W.); (P.S.S.)
| |
Collapse
|
11
|
Chen Y, Hou S. Recent progress in the effect of magnetic iron oxide nanoparticles on cells and extracellular vesicles. Cell Death Discov 2023; 9:195. [PMID: 37380637 DOI: 10.1038/s41420-023-01490-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023] Open
Abstract
At present, iron oxide nanoparticles (IONPs) are widely used in the biomedical field. They have unique advantages in targeted drug delivery, imaging and disease treatment. However, there are many things to pay attention to. In this paper, we reviewed the fate of IONPs in different cells and the influence on the production, separation, delivery and treatment of extracellular vesicles. It aims to provide cutting-edge knowledge related to iron oxide nanoparticles. Only by ensuring the safety and effectiveness of IONPs can their application in biomedical research and clinic be further improved.
Collapse
Affiliation(s)
- Yuling Chen
- Institute of Disaster and Emergency Medicine, Tianjin University, 300072, Tianjin, China.
- Key Laboratory for Disaster Medicine Technology, 300072, Tianjin, China.
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, 300072, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, 300072, Tianjin, China
| |
Collapse
|
12
|
Mateos-Maroto A, Gai M, Brückner M, da Costa Marques R, Harley I, Simon J, Mailänder V, Morsbach S, Landfester K. Systematic modulation of the lipid composition enables the tuning of liposome cellular uptake. Acta Biomater 2023; 158:463-474. [PMID: 36599401 DOI: 10.1016/j.actbio.2022.12.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023]
Abstract
As liposomes have been widely explored as drug delivery carriers over the past decades, they are one of the most promising platforms due to their biocompatibility and versatility for surface functionalization. However, to improve the specific design of liposomes for future biomedical applications such as nanovaccines, it is necessary to understand how these systems interact with cell membranes, as most of their potential applications require them to be internalized by cells. Even though several investigations on the cellular uptake of liposomes were conducted, the effect of the liposome membrane properties on internalization in different cell lines remains unclear. Here, we demonstrate how the cellular uptake behavior of liposomes can be driven towards preferential interaction with dendritic cells (DC2.4) as compared to macrophages (RAW264.7) by tuning the lipid composition with varied molar ratios of the lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). Cellular internalization efficiency was analyzed by flow cytometry, as well as liposome-cell membrane co-localization by confocal laser scanning microscopy. The corresponding proteomic analysis of the protein corona was performed in order to unravel the possible effect on the internalization. The obtained results of this work reveal that it is possible to modulate the cellular uptake towards enhanced internalization by dendritic cells just by modifying the applied lipids and, thus, mainly the physico-chemical properties of the liposomes. STATEMENT OF SIGNIFICANCE: In the field of nanomedicine, it is of key importance to develop new specific and efficient drug carriers. In this sense, liposomes are one of the most widely known carrier types and used in clinics with good results. However, the exact interaction mechanisms of liposomes with cells remain unclear, which is of great importance for the design of new drug delivery platforms. Therefore, in this work we demonstrate that cellular uptake depends on the lipid composition. We are able to enhance the uptake in a specific cell type just by tuning the content of a lipid in the liposome membrane. This finding could be a step towards the selective design of liposomes to be internalized by specific cells with promising applications in biomedicine.
Collapse
Affiliation(s)
- Ana Mateos-Maroto
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Meiyu Gai
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Maximilian Brückner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Richard da Costa Marques
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Iain Harley
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Johanna Simon
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Svenja Morsbach
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
13
|
Han S, da Costa Marques R, Simon J, Kaltbeitzel A, Koynov K, Landfester K, Mailänder V, Lieberwirth I. Endosomal sorting results in a selective separation of the protein corona from nanoparticles. Nat Commun 2023; 14:295. [PMID: 36653346 PMCID: PMC9847456 DOI: 10.1038/s41467-023-35902-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
The formation of the protein corona is a well-known effect when nanoparticles (NP) are exposed to biological environments. The protein corona is the most important factor, which determines the rate and route of endocytosis, and decisively impacts cellular processes and even the release of the active pharmaceutical ingredient from the nanoparticles. While many studies concentrate on the effect of the protein corona formation extracellularly or the uptake consequences, little is known about the fate of the protein corona inside of cells. Here, we reconstruct for the first time the separation of the protein corona from the NPs by the cell and their further fate. Ultimately, the NPs and protein corona are separated from each other and end up in morphologically different cellular compartments. The cell directs the NPs towards recycling endosomes, whereas the protein corona gathers in multivesicular bodies. From this, we conclude that the NPs are prepared for subsequent exocytosis, while the protein corona remains in the cell and is finally metabolized there.
Collapse
Affiliation(s)
- Shen Han
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Richard da Costa Marques
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Johanna Simon
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Anke Kaltbeitzel
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Ingo Lieberwirth
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| |
Collapse
|
14
|
Deville S, Garcia Romeu H, Oeyen E, Mertens I, Nelissen I, Salvati A. Macrophages Release Extracellular Vesicles of Different Properties and Composition Following Exposure to Nanoparticles. Int J Mol Sci 2022; 24:ijms24010260. [PMID: 36613705 PMCID: PMC9820242 DOI: 10.3390/ijms24010260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Extracellular vesicles are membrane-bound carriers with complex cargoes, which play a major role in intercellular communication, for instance, in the context of the immune response. Macrophages are known to release extracellular vesicles in response to different stimuli, and changes in their size, number, and composition may provide important insights into the responses induced. Macrophages are also known to be highly efficient in clearing nanoparticles, when in contact with them, and in triggering the immune system. However, little is known about how the nature and composition of the vesicles released by these cells may vary upon nanoparticle exposure. In order to study this, in this work, alveolar-like macrophages were exposed to a panel of nanoparticles with varying surface and composition, including amino-modified and carboxylated polystyrene and plain silica. We previously showed that these nanoparticles induced very different responses in these cells. Here, experimental conditions were carefully tuned in order to separate the extracellular vesicles released by the macrophages several hours after exposure to sub-toxic concentrations of the same nanoparticles. After separation, different methods, including high-sensitivity flow cytometry, TEM imaging, Western blotting, and nanoparticle tracking analysis, were combined in order to characterize the extracellular vesicles. Finally, proteomics was used to determine their composition and how it varied upon exposure to the different nanoparticles. Our results show that depending on the nanoparticles' properties. The macrophages produced extracellular vesicles of varying number, size, and protein composition. This indicates that macrophages release specific signals in response to nanoparticles and overall suggests that extracellular vesicles can reflect subtle responses to nanoparticles and nanoparticle impact on intercellular communication.
Collapse
Affiliation(s)
- Sarah Deville
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Health Unit, Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium
- Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590 Diepenbeek, Belgium
| | - Hector Garcia Romeu
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Eline Oeyen
- Health Unit, Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium
- Centre for Proteomics (CfP), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Inge Mertens
- Health Unit, Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium
- Centre for Proteomics (CfP), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Inge Nelissen
- Health Unit, Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium
- Correspondence: (I.N.); (A.S.); Tel.: +32-14-33-51-07 (I.N.); +31-5036-39831 (A.S.)
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Correspondence: (I.N.); (A.S.); Tel.: +32-14-33-51-07 (I.N.); +31-5036-39831 (A.S.)
| |
Collapse
|
15
|
Oberländer J, Ayerbe R, Cabellos J, da Costa Marques R, Li B, Günday-Türeli N, Türeli AE, Ofir R, Shalom EI, Mailänder V. Higher Loading of Gold Nanoparticles in PAD Mesenchymal-like Stromal Cells Leads to a Decreased Exocytosis. Cells 2022; 11:cells11152323. [PMID: 35954168 PMCID: PMC9367297 DOI: 10.3390/cells11152323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
Cell therapy is an important new method in medicine and is being used for the treatment of an increasing number of diseases. The challenge here is the precise tracking of cells in the body and their visualization. One method to visualize cells more easily with current methods is their labeling with nanoparticles before injection. However, for a safe and sufficient cell labeling, the nanoparticles need to remain in the cell and not be exocytosed. Here, we test a glucose-PEG-coated gold nanoparticle for the use of such a cell labeling. To this end, we investigated the nanoparticle exocytosis behavior from PLX-PAD cells, a cell type currently in clinical trials as a potential therapeutic agent. We showed that the amount of exocytosed gold from the cells was influenced by the uptake time and loading amount. This observation will facilitate the safe labeling of cells with nanoparticles in the future and contribute to stem cell therapy research.
Collapse
Affiliation(s)
- Jennifer Oberländer
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55122 Mainz, Germany; (J.O.); (R.d.C.M.)
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Rafael Ayerbe
- LEITAT Technological Center, c/Innovació, 2, 08225 Terrassa, Spain; (R.A.); (J.C.)
| | - Joan Cabellos
- LEITAT Technological Center, c/Innovació, 2, 08225 Terrassa, Spain; (R.A.); (J.C.)
| | - Richard da Costa Marques
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55122 Mainz, Germany; (J.O.); (R.d.C.M.)
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Bin Li
- MyBiotech GmbH, Industriestraße 1 B, 66802 Überherrn, Germany; (B.L.); (N.G.-T.); (A.E.T.)
| | - Nazende Günday-Türeli
- MyBiotech GmbH, Industriestraße 1 B, 66802 Überherrn, Germany; (B.L.); (N.G.-T.); (A.E.T.)
| | - Akif Emre Türeli
- MyBiotech GmbH, Industriestraße 1 B, 66802 Überherrn, Germany; (B.L.); (N.G.-T.); (A.E.T.)
| | - Racheli Ofir
- Pluristem Therapeutics Inc., Matam Park, Building 05, Haifa 3508409, Israel; (R.O.); (E.I.S.)
| | - Eliran Ish Shalom
- Pluristem Therapeutics Inc., Matam Park, Building 05, Haifa 3508409, Israel; (R.O.); (E.I.S.)
| | - Volker Mailänder
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55122 Mainz, Germany; (J.O.); (R.d.C.M.)
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
16
|
da Costa Marques R, Simon J, d’Arros C, Landfester K, Jurk K, Mailänder V. Proteomics reveals differential adsorption of angiogenic platelet lysate proteins on calcium phosphate bone substitute materials. Regen Biomater 2022; 9:rbac044. [PMID: 35936551 PMCID: PMC9348553 DOI: 10.1093/rb/rbac044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Protein adsorption on biomaterials for bone substitution, such as calcium phosphates (CaP), evokes biological responses and shapes the interactions of biomaterials with the surrounding biological environment. Proteins adsorb when CaP materials are combined with growth factor-rich hemoderivatives prior to implantation to achieve enhanced angiogenesis and stimulate new bone formation. However, the identification of the adsorbed proteins and their angiogenic effect on bone homeostasis remain incompletely investigated. In this study, we analyzed the adsorbed complex protein composition on CaP surfaces when using the hemoderivatives plasma, platelet lysate in plasma (PL), and washed platelet lysate proteins (wPL). We detected highly abundant, non-regenerative proteins and anti-angiogenic proteins adsorbed on CaP surfaces after incubation with PL and wPL by liquid chromatography and mass spectrometry (LC–MS) proteomics. Additionally, we measured a decreased amount of adsorbed pro-angiogenic growth factors. Tube formation assays with human umbilical endothelial cells demonstrated that the CaP surfaces only stimulate an angiogenic response when kept in the hemoderivative medium but not after washing with PBS. Our results highlight the necessity to correlate biomaterial surfaces with complex adsorbed protein compositions to tailor the biomaterial surface toward an enrichment of pro-angiogenic factors.
Collapse
Affiliation(s)
- Richard da Costa Marques
- University Medical Center of the Johannes Gutenberg-University Mainz Dermatology Clinic, , Langenbeckstr. 1, Mainz, 55131, Germany
- Max Planck Institute for Polymer Research , Ackermannweg 10, Mainz, 55128, Germany
| | - Johanna Simon
- University Medical Center of the Johannes Gutenberg-University Mainz Dermatology Clinic, , Langenbeckstr. 1, Mainz, 55131, Germany
- Max Planck Institute for Polymer Research , Ackermannweg 10, Mainz, 55128, Germany
| | - Cyril d’Arros
- INSERM, UMR 1229, Regenerative Medicine and Skeleton, ONIRIS, Université de Nantes , Nantes, 44042, France
- Biomatlante—Advanced Medical Solutions Group Plc , Vigneux-de-Bretagne, 44360, France
| | - Katharina Landfester
- Max Planck Institute for Polymer Research , Ackermannweg 10, Mainz, 55128, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz , Langenbeckstrasse 1, Mainz, 55131, Germany
| | - Volker Mailänder
- University Medical Center of the Johannes Gutenberg-University Mainz Dermatology Clinic, , Langenbeckstr. 1, Mainz, 55131, Germany
- Max Planck Institute for Polymer Research , Ackermannweg 10, Mainz, 55128, Germany
| |
Collapse
|
17
|
Mühlberg E, Burtscher M, Umstätter F, Fricker G, Mier W, Uhl P. Trends in liposomal nanocarrier strategies for the oral delivery of biologics. Nanomedicine (Lond) 2021; 16:1813-1832. [PMID: 34269068 DOI: 10.2217/nnm-2021-0177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The number of approved macromolecular drugs such as peptides, proteins and antibodies steadily increases. Since drugs with high molecular weight are commonly not suitable for oral delivery, research on carrier strategies enabling oral administration is of vital interest. In past decades, nanocarriers, in particular liposomes, have been exhaustively investigated as oral drug-delivery platform. Despite their successful application as parenteral delivery vehicles, liposomes have up to date not succeeded for oral administration. However, a plenitude of approaches aiming to increase the oral bioavailability of macromolecular drugs administered by liposomal formulations has been published. Here, we summarize the strategies published in the last 10 years (vaccine strategies excluded) with a main focus on strategies proven efficient in animal models.
Collapse
Affiliation(s)
- Eric Mühlberg
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
| | - Mira Burtscher
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
| | - Florian Umstätter
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
| | - Gert Fricker
- Department of Pharmaceutical Technology & Biopharmacy, Institute for Pharmacy & Molecular Biotechnology, Ruprecht-Karls University, Im Neuenheimer Feld 329, Heidelberg, 69120, Germany
| | - Walter Mier
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
| | - Philipp Uhl
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
| |
Collapse
|
18
|
Li H, Wang Y, Tang Q, Yin D, Tang C, He E, Zou L, Peng Q. The protein corona and its effects on nanoparticle-based drug delivery systems. Acta Biomater 2021; 129:57-72. [PMID: 34048973 DOI: 10.1016/j.actbio.2021.05.019] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/25/2021] [Accepted: 05/18/2021] [Indexed: 02/04/2023]
Abstract
In most cases, once nanoparticles (NPs) enter the blood, their surface is covered by biological molecules, especially proteins, forming a so-called protein corona (PC). As a result, what the cells of the body "see" is not the NPs as formulated by the chemists, but the PC. In this way, the PC can influence the effects of the NPs and even mask the desired effects of the NP components. While this can argue for trying to inhibit protein-nanomaterial interactions, encapsulating NPs in an endogenous PC may increase their clinical usefulness. In this review, we briefly introduce the concept of the PC, its formation and its effects on the behavior of NPs. We also discuss how to reduce the formation of PCs or exploit them to enhance NP functions. Studying the interactions between proteins and NPs will provide insights into their clinical activity in health and disease. STATEMENT OF SIGNIFICANCE: The formation of protein corona (PC) will affect the operation of nanoparticles (NPs) in vivo. Since there are many proteins in the blood, it is impossible to completely overcome the formation of PC. Therefore, the use of PCs to deliver drug is the best choice. De-opsonins adsorbed on NPs can reduce macrophage phagocytosis and cytotoxicity of NPs, and prolong their circulation in blood. Albumin, apolipoprotein and transferrin are typical de-opsonins. In present review, we mainly discuss how to optimize the delivery of nanoparticles through the formation of albumin corona, transferrin corona and apolipoprotein corona in vivo or in vitro.
Collapse
Affiliation(s)
- Hanmei Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu university, Chengdu 610106, China
| | - Yao Wang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Qi Tang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Dan Yin
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Chuane Tang
- School of Mechanical Engineering, Chengdu university, Chengdu 610106, China
| | - En He
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu university, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu university, Chengdu 610106, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
19
|
Ding Y, Zhang R, Li B, Du Y, Li J, Tong X, Wu Y, Ji X, Zhang Y. Tissue distribution of polystyrene nanoplastics in mice and their entry, transport, and cytotoxicity to GES-1 cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116974. [PMID: 33784569 DOI: 10.1016/j.envpol.2021.116974] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/12/2021] [Accepted: 03/16/2021] [Indexed: 05/14/2023]
Abstract
With the widespread use of plastics and nanotechnology products, nanoplastics (NPs) have become a potential threat to human health. It is of great practical significance to study and evaluate the distribution of NPs in mice as mammal models and their entry, transport, and cytotoxicity in human cell lines. In this study, we detected the tissue distribution of fluorescent polystyrene nanoplastics (PS-NPs) in mice and assessed their endocytosis, transport pathways, and cytotoxic effects in GES-1 cells. We found that PS-NPs were clearly visible in gastric, intestine, and liver tissues of mice and in GES-1 cells treated with PS-NPs. Entry of PS-NPs into GES-1 cells decreased with the inhibition of caveolae-mediated endocytosis (nystatin), clathrin-mediated endocytosis (chlorpromazine HCl), micropinocytosis (ethyl-isopropyl amiloride), RhoA (CCG-1423), and F-actin polymerization (lantrunculin A). Rac1 inhibitors (NSC 23766) had no significant effect on PS-NPs entering GES-1 cells. F-actin levels significantly decreased in CCG-1423-pretreated GES-1 cells exposed to PS-NPs. GES-1 cell ultrastructural features indicated that internalized PS-NPs can be encapsulated in vesicles, autophagosomes, lysosomes, and lysosomal residues. RhoA, F-actin, RAB7, and LAMP1 levels in PS-NPs-treated GES-1 cells were remarkably up-regulated and the Rab5 level was significantly down-regulated compared to levels in untreated cells. PS-NPs treatment decreased cell proliferation rates and increased cell apoptosis. The formation of autophagosomes and autolysosomes and levels of LC3II increased with the length of PS-NPs treatment. The results indicated that cells regulated endocytosis in response to PS-NPs through the RhoA/F-actin signaling pathway and internalized PS-NPs in the cytoplasm, autophagosomes, or lysosomes produced cytotoxicity. These results illustrate the potential threat of NPs pollution to human health.
Collapse
Affiliation(s)
- Yunfei Ding
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Ruiqing Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Boqing Li
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yunqiu Du
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Jing Li
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xiaohan Tong
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yulong Wu
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xiaofei Ji
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Ying Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
20
|
Escaping the endosome: assessing cellular trafficking mechanisms of non-viral vehicles. J Control Release 2021; 335:465-480. [PMID: 34077782 DOI: 10.1016/j.jconrel.2021.05.038] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022]
Abstract
Non-viral vehicles hold therapeutic promise in advancing the delivery of a variety of cargos in vitro and in vivo, including small molecule drugs, biologics, and especially nucleic acids. However, their efficacy at the cellular level is limited by several delivery barriers, with endolysosomal degradation being most significant. The entrapment of vehicles and their cargo in the acidified endosome prevents access to the cytosol, nucleus, and other subcellular compartments. Understanding the factors that contribute to uptake and intracellular trafficking, especially endosomal entrapment and release, is key to overcoming delivery obstacles within cells. In this review, we summarize and compare experimental techniques for assessing the extent of endosomal escape of a variety of non-viral vehicles and describe proposed escape mechanisms for different classes of lipid-, polymer-, and peptide-based delivery agents. Based on this evaluation, we present forward-looking strategies utilizing information gained from mechanistic studies to inform the rational design of efficient delivery vehicles.
Collapse
|
21
|
Sousa de Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev 2021; 50:5397-5434. [PMID: 33666625 PMCID: PMC8111542 DOI: 10.1039/d0cs01127d] [Citation(s) in RCA: 457] [Impact Index Per Article: 114.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 12/19/2022]
Abstract
Nanoparticles (NPs) have attracted considerable attention in various fields, such as cosmetics, the food industry, material design, and nanomedicine. In particular, the fast-moving field of nanomedicine takes advantage of features of NPs for the detection and treatment of different types of cancer, fibrosis, inflammation, arthritis as well as neurodegenerative and gastrointestinal diseases. To this end, a detailed understanding of the NP uptake mechanisms by cells and intracellular localization is essential for safe and efficient therapeutic applications. In the first part of this review, we describe the several endocytic pathways involved in the internalization of NPs and we discuss the impact of the physicochemical properties of NPs on this process. In addition, the potential challenges of using various inhibitors, endocytic markers and genetic approaches to study endocytosis are addressed along with the principal (semi) quantification methods of NP uptake. The second part focuses on synthetic and bio-inspired substances, which can stimulate or decrease the cellular uptake of NPs. This approach could be interesting in nanomedicine where a high accumulation of drugs in the target cells is desirable and clearance by immune cells is to be avoided. This review contributes to an improved understanding of NP endocytic pathways and reveals potential substances, which can be used in nanomedicine to improve NP delivery.
Collapse
Affiliation(s)
- Mauro Sousa de Almeida
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Eva Susnik
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Barbara Drasler
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
- Department of Chemistry, University of FribourgChemin du Musée 91700 FribourgSwitzerland
| | | |
Collapse
|
22
|
Wang C, Chen B, He M, Hu B. Composition of Intracellular Protein Corona around Nanoparticles during Internalization. ACS NANO 2021; 15:3108-3122. [PMID: 33570905 DOI: 10.1021/acsnano.0c09649] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It has been well established that the early-stage interactions of nanoparticles with cells are governed by the extracellular protein corona. However, after entering into the cells, the evolving protein corona is the key to subsequent processing of nanoparticles by cells. To identify the protein corona around intracellular nanoparticles, it is essential to maintain its original compositions during cell treatment. Herein, we develop a paraformaldehyde (PFA) cross-linking strategy to stabilize corona compositions when extracting protein coronas from cells, providing original information on protein coronas around intercellular gold nanoparticles (AuNPs). The stability of the protein corona after PFA cross-linking was carefully investigated with several characterization methods, and the results demonstrate that PFA cross-linking successfully prevents the dissociation and exchange of corona proteins. Then the recovered intracellular protein corona around AuNPs from living HepG2 cells with a PFA cross-linking strategy was subjected to nanoHPLC-MS/MS for proteomic analysis. It was found that the compositions of intracellular protein coronas are dominated by cell-derived proteins and undergo significant variation of protein species and amounts over time during internalization. Time-resolved analysis provides relevant proteins involved in nanoparticle cellular uptake and transportation, indicating that AuNPs are endocytosed mainly by a clathrin-mediated uptake mechanism and directed into an endolysosomal pathway toward their final destination. Such proteomic-based results are verified by pharmacological inhibition and TEM imaging analysis. This work provides a universal strategy to study compositions of protein corona around intercellular nanoparticles and could be a footstone to link the formation of protein corona around nanoparticles to their biological function in cells.
Collapse
Affiliation(s)
- Chuan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
23
|
Yadav K, Ali SA, Mohanty AK, Muthusamy E, Subaharan K, Kaul G. MSN, MWCNT and ZnO nanoparticle-induced CHO-K1 cell polarisation is linked to cytoskeleton ablation. J Nanobiotechnology 2021; 19:45. [PMID: 33579304 PMCID: PMC7881565 DOI: 10.1186/s12951-021-00779-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/19/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The cellular response to nanoparticles (NPs) for the mechanical clue and biochemical changes are unexplored. Here, we provide the comprehensive analysis of the Chinese Hamster Ovary (CHO-K1) cell line to study cell behaviour following the exposure of mesoporous silica nanoparticle (MSN), multiwall carbon nanotubes (MWCNTs), and zinc oxide (ZnO) NPs. RESULTS Through the high-throughput proteomic study, we observed that the effect of NPs is alone not restricted to cell viability but also on cell polarisation. In the case of MSN, no drastic changes were observed in cellular morphology, but it upregulated chaperons that might prevent protein aggregation. However, MWCNT showed elongated cell appearance with numerous cytoplasmic vacuoles, and induce lamellipodia formation through actin polymerisation. The cytoskeleton remodelling was accompanied by the increased expression of Dlc-1, cofilin and Rac1 proteins. While ZnO NPs resulted in the rounded cell morphology along with nuclear abnormalities. The proteome analysis revealed that UBXN11 control cell roundness and DOCK3 leads to actin stress fibre formation and finally, loss of cell adhesion. It enhances the expression of catastrophic DNA damage and apoptotic proteins, which was unrecoverable even after 72 h, as confirmed by the colony formation assay. All three NPs trigger over-expression of the endocytic pathway, ubiquitination, and proteasomal complex proteins. The data indicate that ZnO and MSN entered into the cells through clathrin-mediated pathways; whereas, MWCNT invades through ER-mediated phagocytosis. CONCLUSIONS Based on the incubation and concentration of NPs, our work provides evidence for the activation of Rac-Rho signalling pathway to alter cytoskeleton dynamics. Our results assist as a sensitive early molecular readout for nanosafety assessment.
Collapse
Affiliation(s)
- Karmveer Yadav
- N.T. Lab-1, Division of Animal Biochemistry, ICAR-National Dairy Research Institute, Karnal, 132001, India.
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Ashok Kumar Mohanty
- Cell Biology and Proteomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Eshwarmoorthy Muthusamy
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Kesavan Subaharan
- Division of Germplasm, Conservation and Utilisation, National Bureau of Agricultural Insect Resources, Bangalore, 560024, India
| | - Gautam Kaul
- N.T. Lab-1, Division of Animal Biochemistry, ICAR-National Dairy Research Institute, Karnal, 132001, India.
| |
Collapse
|
24
|
Simon J, Kuhn G, Fichter M, Gehring S, Landfester K, Mailänder V. Unraveling the In Vivo Protein Corona. Cells 2021; 10:cells10010132. [PMID: 33445454 PMCID: PMC7826990 DOI: 10.3390/cells10010132] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the behavior of nanoparticles upon contact with a physiological environment is of urgent need in order to improve their properties for a successful therapeutic application. Most commonly, the interaction of nanoparticles with plasma proteins are studied under in vitro conditions. However, this has been shown to not reflect the complex situation after in vivo administration. Therefore, here we focused on the investigation of magnetic nanoparticles with blood proteins under in vivo conditions. Importantly, we observed a radically different proteome in vivo in comparison to the in vitro situation underlining the significance of in vivo protein corona studies. Next to this, we found that the in vivo corona profile does not significantly change over time. To mimic the in vivo situation, we established an approach, which we termed “ex vivo” as it uses whole blood freshly prepared from an animal. Overall, we present a comprehensive analysis focusing on the interaction between nanoparticles and blood proteins under in vivo conditions and how to mimic this situation with our ex vivo approach. This knowledge is needed to characterize the true biological identity of nanoparticles.
Collapse
Affiliation(s)
- Johanna Simon
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; (J.S.); (G.K.); (K.L.)
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr 1, 55131 Mainz, Germany
| | - Gabor Kuhn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; (J.S.); (G.K.); (K.L.)
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr 1, 55131 Mainz, Germany
| | - Michael Fichter
- Children’s Hospital, University Medical Center, Johannes Gutenberg University, 55128 Mainz, Germany; (M.F.); (S.G.)
| | - Stephan Gehring
- Children’s Hospital, University Medical Center, Johannes Gutenberg University, 55128 Mainz, Germany; (M.F.); (S.G.)
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; (J.S.); (G.K.); (K.L.)
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; (J.S.); (G.K.); (K.L.)
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr 1, 55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
25
|
Lacasse V, Beaudoin S, Jean S, Leyton JV. A Novel Proteomic Method Reveals NLS Tagging of T-DM1 Contravenes Classical Nuclear Transport in a Model of HER2-Positive Breast Cancer. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:99-119. [PMID: 33024794 PMCID: PMC7522293 DOI: 10.1016/j.omtm.2020.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 08/27/2020] [Indexed: 11/01/2022]
Abstract
The next breakthrough for protein therapeutics is effective intracellular delivery and accumulation within target cells. Nuclear localization signal (NLS)-tagged therapeutics have been hindered by the lack of efficient nuclear localization due to endosome entrapment. Although development of strategies for tagging therapeutics with technologies capable of increased membrane penetration has resulted in proportional increased potency, nonspecific membrane penetration limits target specificity and, hence, widespread clinical success. There is a long-standing idea that nuclear localization of NLS-tagged agents occurs exclusively via classical nuclear transport. In the present study, we modified the antibody-drug conjugate trastuzumab-emtansine (T-DM1) with a classical NLS linked to cholic acid (cell accumulator [Accum]) that enables modified antibodies to escape endosome entrapment and increase nuclear localization efficiency without abrogating receptor targeting. In parallel, we developed a proteomics-based method to evaluate nuclear transport. Accum-modified T-DM1 significantly enhanced cytotoxic efficacy in the human epidermal growth factor receptor 2 (HER2)-positive SKBR3 breast cancer system. We discovered that efficacy was dependent on the nonclassical importin-7. Our evaluation reveals that when multiple classical NLS tagging occurs, cationic charge build-up as opposed to sequence dominates and becomes a substrate for importin-7. This study results in an effective target cell-specific NLS therapeutic and a general approach to guide future NLS-based development initiatives.
Collapse
Affiliation(s)
- Vincent Lacasse
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Université de Sherbrooke (UdeS), Sherbrooke, QC J1H 5N4, Canada
| | - Simon Beaudoin
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Université de Sherbrooke (UdeS), Sherbrooke, QC J1H 5N4, Canada
| | - Steve Jean
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, CHUS, UdeS, Sherbrooke, QC J1H 5N4, Canada
| | - Jeffrey V Leyton
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Université de Sherbrooke (UdeS), Sherbrooke, QC J1H 5N4, Canada.,Sherbrooke Molecular Imaging Centre (CIMS), Centre de Recherche du CHUS, UdeS, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
26
|
Salah E, Abouelfetouh MM, Pan Y, Chen D, Xie S. Solid lipid nanoparticles for enhanced oral absorption: A review. Colloids Surf B Biointerfaces 2020; 196:111305. [DOI: 10.1016/j.colsurfb.2020.111305] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/24/2020] [Accepted: 08/01/2020] [Indexed: 12/26/2022]
|
27
|
Madni A, Rehman S, Sultan H, Khan MM, Ahmad F, Raza MR, Rai N, Parveen F. Mechanistic Approaches of Internalization, Subcellular Trafficking, and Cytotoxicity of Nanoparticles for Targeting the Small Intestine. AAPS PharmSciTech 2020; 22:3. [PMID: 33221968 PMCID: PMC7680634 DOI: 10.1208/s12249-020-01873-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Targeting the small intestine employing nanotechnology has proved to be a more effective way for site-specific drug delivery. The drug targeting to the small intestine can be achieved via nanoparticles for its optimum bioavailability within the systemic circulation. The small intestine is a remarkable candidate for localized drug delivery. The intestine has its unique properties. It has a less harsh environment than the stomach, provides comparatively more retention time, and possesses a greater surface area than other parts of the gastrointestinal tract. This review focuses on elaborating the intestinal barriers and approaches to overcome these barriers for internalizing nanoparticles and adopting different cellular trafficking pathways. We have discussed various factors that contribute to nanocarriers' cellular uptake, including their surface chemistry, surface morphology, and functionalization of nanoparticles. Furthermore, the fate of nanoparticles after their uptake at cellular and subcellular levels is also briefly explained. Finally, we have delineated the strategies that are adopted to determine the cytotoxicity of nanoparticles.
Collapse
Affiliation(s)
- Asadullah Madni
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Sadia Rehman
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Humaira Sultan
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Faiz Ahmad
- Departments of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - M Rafi Raza
- Department of Mechanical Engineering, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Nadia Rai
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Farzana Parveen
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
28
|
Brückner M, Simon J, Jiang S, Landfester K, Mailänder V. Preparation of the protein corona: How washing shapes the proteome and influences cellular uptake of nanocarriers. Acta Biomater 2020; 114:333-342. [PMID: 32726673 DOI: 10.1016/j.actbio.2020.07.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/23/2022]
Abstract
A protein coat, termed the protein corona, assembles around the nanocarriers´ surface once it gets in contact with a biological environment. We show that the media used for the washing of protein corona can be crucial. This is true for the downstream analysis as well as for the pre-coating used in in vitro or in vivo. This has been widely overlooked so far. In this paper we focus on eight different washing media and analyze how they influence the composition of the hard protein corona of several nanocarriers incubated with human blood plasma and serum. SDS-PAGE and LC-MS analysis showed major differences in protein corona profiles when using diverse washing media. While plasma and serum proteins already have different complexities, each washing media changes the composition of proteins detected by downstream methods with different key proteins bound to the nanocarriers´ surface. Furthermore, the protein structure of the most abundant blood proteins incubated in the different media was analyzed with nanoDSF. This also emphasized the importance of the washing media, which had a significant influence on the protein adsorption stability. Lastly, cell uptake experiments for HeLa and RAW 264.7 macrophages also indicated an influence of the washing media. In conclusion, picking a specific washing media is on the one hand an important factor for downstream detection of protein compositions and may on the other hand be used to deliberately tune the protein corona for pre-adsorbed proteins from complex protein compositions. This might further support a guided delivery of the nanocarrier to a desired location within a physiological environment. STATEMENT OF SIGNIFICANCE: The successfully application of nanocarriers as drug delivery vehicles is currently hampered by a limited understanding of the nanocarriers´ behavior in a complex biological environment. Once the nanocarrier comes into contact with blood plasma or serum, biomolecules rapidly adsorb onto their surface, covering the nanocarriers and forming a protein corona, which then dictates their biological identity. Analyzing the composition of this dynamic network of bound molecules, has already been shown to be influenced by various factors. However, the impact of the washing media used for the protein corona preparation has so far been neglected. In the present study, we demonstrate a quantitative influence of the washing media on the composition of the hard corona of different nanocarrier systems, which additionally affects protein stability and cellular uptake behavior.
Collapse
|
29
|
Paßlick D, Reinholz J, Simon J, Piradashvili K, Jiang S, Li M, Landfester K, Mailänder V. Nanovaccine impact on dendritic cells: transcriptome analysis enables new insights into antigen and adjuvant effects. Nanomedicine (Lond) 2020; 15:2053-2069. [PMID: 32885728 DOI: 10.2217/nnm-2019-0460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: For vaccines the combination between an antigen and adjuvants are both crucially important to trigger an effective immune response in dendritic cells. Innovative adjuvants like resiquimod or muramyldipeptide have their target protein inside the cell. Materials & methods: Up/downregulation and proteome expression was investigated for the adjuvant combination resiquimod and muramyldipeptide in a soluble form versus encapsulated into a nanocarrier. Results: We found that 1225 genes were upregulated after nanocarrier treatment while 478 genes were downregulated. Most prominent were interferon-stimulated genes with more than 25-times higher expression after nanocarrier treatment, for example RSAD2 and ISG15, which were recently found to have antiviral or antitumor effects. Conclusion: Encapsulation gives a more effective upregulation of vaccine-related genes.
Collapse
Affiliation(s)
- David Paßlick
- Dermatology Clinic, University Medical Center Mainz, Langenbeckstraße 1, Mainz, 55131, Germany.,Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Jonas Reinholz
- Dermatology Clinic, University Medical Center Mainz, Langenbeckstraße 1, Mainz, 55131, Germany.,Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Johanna Simon
- Dermatology Clinic, University Medical Center Mainz, Langenbeckstraße 1, Mainz, 55131, Germany.,Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Keti Piradashvili
- Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Shuai Jiang
- Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Mengyi Li
- Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Katharina Landfester
- Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Volker Mailänder
- Dermatology Clinic, University Medical Center Mainz, Langenbeckstraße 1, Mainz, 55131, Germany.,Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| |
Collapse
|
30
|
Thiramanas R, Jiang S, Simon J, Landfester K, Mailänder V. Silica Nanocapsules with Different Sizes and Physicochemical Properties as Suitable Nanocarriers for Uptake in T-Cells. Int J Nanomedicine 2020; 15:6069-6084. [PMID: 32884263 PMCID: PMC7439283 DOI: 10.2147/ijn.s246322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction Adoptive T-cell immunotherapy emerged as a powerful and promising cancer therapy, as the problem regarding the immuno-reaction between different donors and recipients can be avoided. However, this approach is challenging. After long cultivation and expansion under laboratory media conditions, T-cells are losing their viability and function due to immune checkpoint proteins, leading to decreased efficiency in killing cancer cells. Therefore, a new strategy to improve T-cell survival and function is needed. With the advantages of nanotechnology and the biocompatibility of silica-based material, silica nanocapsules (SiNCs) provide an ideal delivery system to transport therapeutic biomolecules to T-cells. Up to now, there is a lack of cellular uptake studies of nanocarriers towards T-cells. Methods We systematically studied the influence of various physicochemical properties such as sizes, core hydrophobicities, surface charges, and surface functionalities of SiNC for their impact on cellular uptake and toxicity in CD8+ T-cells by flow cytometry and confocal laser scanning microscopy. Cytokine secretion assay was performed using the enzyme-linked immunosorbent assay. To identify suitable uptake conditions for SiNCs into CD8+ T-cells, the impact of human serum in cell culture medium was also investigated. Results The major impact on cellular uptake and toxicity was found to be size- and dose-dependent. Smaller sizes of SiNCs than 100 nm caused significant toxicity to the cells. It was found that the formed protein corona reduced the toxicity of the SiNCs. However, it also inhibited their uptake. Conclusion Overall, we present a set of different criteria for a suitable design of nanocarriers and cell culture conditions, which need to be carefully considered for T-cell immunotherapy in vitro to facilitate uptake while avoiding toxicity.
Collapse
Affiliation(s)
- Raweewan Thiramanas
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany.,Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Mainz, 55128, Germany
| | - Shuai Jiang
- Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Mainz, 55128, Germany
| | - Johanna Simon
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany.,Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Mainz, 55128, Germany
| | - Katharina Landfester
- Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Mainz, 55128, Germany
| | - Volker Mailänder
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany.,Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Mainz, 55128, Germany
| |
Collapse
|
31
|
Hua S. Advances in Oral Drug Delivery for Regional Targeting in the Gastrointestinal Tract - Influence of Physiological, Pathophysiological and Pharmaceutical Factors. Front Pharmacol 2020; 11:524. [PMID: 32425781 PMCID: PMC7212533 DOI: 10.3389/fphar.2020.00524] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/03/2020] [Indexed: 12/22/2022] Open
Abstract
The oral route is by far the most common route of drug administration in the gastrointestinal tract and can be used for both systemic drug delivery and for treating local gastrointestinal diseases. It is the most preferred route by patients, due to its advantages, such as ease of use, non-invasiveness, and convenience for self-administration. Formulations can also be designed to enhance drug delivery to specific regions in the upper or lower gastrointestinal tract. Despite the clear advantages offered by the oral route, drug delivery can be challenging as the human gastrointestinal tract is complex and displays a number of physiological barriers that affect drug delivery. Among these challenges are poor drug stability, poor drug solubility, and low drug permeability across the mucosal barriers. Attempts to overcome these issues have focused on improved understanding of the physiology of the gastrointestinal tract in both healthy and diseased states. Innovative pharmaceutical approaches have also been explored to improve regional drug targeting in the gastrointestinal tract, including nanoparticulate formulations. This review will discuss the physiological, pathophysiological, and pharmaceutical considerations influencing drug delivery for the oral route of administration, as well as the conventional and novel drug delivery approaches. The translational challenges and development aspects of novel formulations will also be addressed.
Collapse
Affiliation(s)
- Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
32
|
Sikora KN, Hardie JM, Castellanos-García LJ, Liu Y, Reinhardt BM, Farkas ME, Rotello VM, Vachet RW. Dual Mass Spectrometric Tissue Imaging of Nanocarrier Distributions and Their Biochemical Effects. Anal Chem 2019; 92:2011-2018. [PMID: 31825199 DOI: 10.1021/acs.analchem.9b04398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nanomaterial-based drug delivery vehicles are able to deliver therapeutics in a controlled, targeted manner. Currently, however, there are limited analytical methods that can detect both nanomaterial distributions and their biochemical effects concurrently. In this study, we demonstrate that matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and laser ablation inductively coupled plasma mass spectrometry imaging (LA-ICP-MSI) can be used together to obtain nanomaterial distributions and biochemical consequences. These studies employ nanoparticle-stabilized capsules (NPSCs) loaded with siRNA as a testbed. MALDI-MSI experiments on spleen tissues from intravenously injected mice indicate that NPSCs loaded with anti-TNF-α siRNA cause changes to the lipid composition in white pulp regions of the spleen, as anticipated, based on pathways known to be affected by TNF-α, whereas NPSCs loaded with scrambled siRNA do not cause the predicted changes. Interestingly, LA-ICP-MSI experiments reveal that the NPSCs primarily localize in the red pulp, suggesting that the observed changes in lipid composition are due to diffusive rather than localized effects on TNF-α production. Such information is only accessible by combining data from the two modalities, which we accomplish by using the heme signals from MALDI-MSI and iron signals from LA-ICP-MSI to overlay the images. Several unexpected changes in lipid composition also occur in regions where the NPSCs are found, suggesting that the NPSCs themselves can influence tissue biochemistry as well.
Collapse
Affiliation(s)
- Kristen N Sikora
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Joseph M Hardie
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | | | - Yuanchang Liu
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Biidaaban M Reinhardt
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Michelle E Farkas
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Vincent M Rotello
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Richard W Vachet
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
33
|
Highly sensitive and selective fluorescent monomer/polymer probes for Hg2+ and Ag+ recognition and imaging of Hg2+ in living cells. Anal Bioanal Chem 2019; 412:881-894. [DOI: 10.1007/s00216-019-02297-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 12/22/2022]
|
34
|
Sieber S, Grossen P, Bussmann J, Campbell F, Kros A, Witzigmann D, Huwyler J. Zebrafish as a preclinical in vivo screening model for nanomedicines. Adv Drug Deliv Rev 2019; 151-152:152-168. [PMID: 30615917 DOI: 10.1016/j.addr.2019.01.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022]
Abstract
The interactions of nanomedicines with biological environments is heavily influenced by their physicochemical properties. Formulation design and optimization are therefore key steps towards successful nanomedicine development. Unfortunately, detailed assessment of nanomedicine formulations, at a macromolecular level, in rodents is severely limited by the restricted imaging possibilities within these animals. Moreover, rodent in vivo studies are time consuming and expensive, limiting the number of formulations that can be practically assessed in any one study. Consequently, screening and optimisation of nanomedicine formulations is most commonly performed in surrogate biological model systems, such as human-derived cell cultures. However, despite the time and cost advantages of classical in vitro models, these artificial systems fail to reflect and mimic the complex biological situation a nanomedicine will encounter in vivo. This has acutely hampered the selection of potentially successful nanomedicines for subsequent rodent in vivo studies. Recently, zebrafish have emerged as a promising in vivo model, within nanomedicine development pipelines, by offering opportunities to quickly screen nanomedicines under in vivo conditions and in a cost-effective manner so as to bridge the current gap between in vitro and rodent studies. In this review, we outline several advantageous features of the zebrafish model, such as biological conservation, imaging modalities, availability of genetic tools and disease models, as well as their various applications in nanomedicine development. Critical experimental parameters are discussed and the most beneficial applications of the zebrafish model, in the context of nanomedicine development, are highlighted.
Collapse
Affiliation(s)
- Sandro Sieber
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Philip Grossen
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jeroen Bussmann
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Frederick Campbell
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University of British Columbia, Health Sciences Mall, Vancouver, British Columbia, Canada..
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
35
|
Champanhac C, Simon J, Landfester K, Mailänder V. Timing of Heparin Addition to the Biomolecular Corona Influences the Cellular Uptake of Nanocarriers. Biomacromolecules 2019; 20:3724-3732. [PMID: 31449399 DOI: 10.1021/acs.biomac.9b00777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Few studies have considered the interaction of nanocarriers with drugs and the implications for their individual efficiency. Here, we demonstrate that heparin, a common anticoagulant, interacts with nanocarriers. Hence, nanocarriers, precoated with heparin and plasma in different conditions, were incubated with cancer cells, as well as primary cells from human blood. The relation between the timing of the heparin's addition to the nanocarrier and the cellular uptake extent was assessed by flow cytometry. Through proteomics the effect of heparin on the biomolecular corona composition was determined. We found that HeLa cells, monocytes and macrophages reacted differently to the presence of heparin: the uptake of the precoated nanocarriers decreased for HeLa and primary monocytes, while it increased for macrophages. Heparin induced no obvious change in the protein corona composition; thus, we suggest that heparin itself, through its adsorption on the nanocarrier, was responsible for the change of uptake.
Collapse
Affiliation(s)
- Carole Champanhac
- Max-Planck-Institute for Polymer Research , Ackermannweg 10 , 55122 Mainz , Germany
| | - Johanna Simon
- Max-Planck-Institute for Polymer Research , Ackermannweg 10 , 55122 Mainz , Germany.,Department of Dermatology , University Medical Center of the Johannes Gutenberg-University Mainz , Langenbeckstraße 1 , 55131 Mainz , Germany
| | - Katharina Landfester
- Max-Planck-Institute for Polymer Research , Ackermannweg 10 , 55122 Mainz , Germany
| | - Volker Mailänder
- Max-Planck-Institute for Polymer Research , Ackermannweg 10 , 55122 Mainz , Germany.,Department of Dermatology , University Medical Center of the Johannes Gutenberg-University Mainz , Langenbeckstraße 1 , 55131 Mainz , Germany
| |
Collapse
|
36
|
Kuruvilla J, Bayat N, Cristobal S. Proteomic Analysis of Endothelial Cells Exposed to Ultrasmall Nanoparticles Reveals Disruption in Paracellular and Transcellular Transport. Proteomics 2019; 19:e1800228. [PMID: 30632670 DOI: 10.1002/pmic.201800228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/12/2018] [Indexed: 11/10/2022]
Abstract
The large interactive surfaces of nanoparticles (NPs) increase the opportunities to develop NPs for vascular targeting. Proteomic analysis of endothelial cells exposed to NPs reveals the cellular response and turns the focus into the impairment of the endothelial permeability. Here, quantitative proteomics and transcriptome sequencing are combined to evaluate the effects of exposure to sub-lethal concentrations of TiO2 -USNPs and TiO2 -NPs on human dermal microvascular endothelial cells. Endothelial cells react to preserve the semi-permeable properties that are essential for vascular tissue fluid homeostasis, vascular development, and angiogenesis. The main impact of the exposure was alteration of functional complexes involved in cell adhesion, vesicular transport, and cytoskeletal structure. Those are the core cellular structures that are linked to the permeability and the integrity of the endothelial tissue. Moreover, the extracellular proteins uptake along wih the NPs into the endothelial cells escape the lysosomal degradation pathway. These findings improve the understanding of the interaction of NPs with endothelial cell. The effects of the studied NPs modulating cell-cell adhesion and vesicular transport can help to evaluate the distribution of NPs via intravenous administration.
Collapse
Affiliation(s)
- Jacob Kuruvilla
- Department of Clinical and Experimental Medicine, Cell Biology, Faculty of Medicine, Linköping University, Linköping, SE-58185, Sweden
| | - Narges Bayat
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-10691, Sweden
| | - Susana Cristobal
- Department of Clinical and Experimental Medicine, Cell Biology, Faculty of Medicine, Linköping University, Linköping, SE-58185, Sweden.,IKERBASQUE, Basque Foundation for Science, Departments of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Leioa, ES-48490, Spain
| |
Collapse
|
37
|
Simon J, Müller J, Ghazaryan A, Morsbach S, Mailänder V, Landfester K. Protein denaturation caused by heat inactivation detrimentally affects biomolecular corona formation and cellular uptake. NANOSCALE 2018; 10:21096-21105. [PMID: 30427359 DOI: 10.1039/c8nr07424k] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Adsorption of blood proteins to the surface of nanocarriers is known to be the critical factor influencing cellular interactions and eventually determining the successful application of nanocarriers as drug carriers in vivo. There is an increasing number of reports summarizing large data sets of all identified corona proteins. However, to date our knowledge about the multiple mechanisms mediating interactions between proteins and nanocarriers is still limited. In this study, we investigate the influence of protein structure on the adsorption process and focus on the effect of heat inactivation of serum and plasma, which is a common cell culture procedure used to inactivate the complement system. As in general routine lab procedure, heat inactivation was performed at 56 °C for 30 min in order to denature heat labile proteins. When nanocarriers were exposed to native versus heat inactivated serum, we saw that the cellular uptake by macrophages was significantly affected. These results were then correlated with an altered corona composition that depended on the treatment of the protein source. In summary, we were able to prove that the protein structure is one of the key parameters determining protein corona formation.
Collapse
Affiliation(s)
- Johanna Simon
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Reinholz J, Landfester K, Mailänder V. The challenges of oral drug delivery via nanocarriers. Drug Deliv 2018; 25:1694-1705. [PMID: 30394120 PMCID: PMC6225504 DOI: 10.1080/10717544.2018.1501119] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/06/2018] [Accepted: 07/12/2018] [Indexed: 01/11/2023] Open
Abstract
The oral application of pharmaceuticals is unarguably the most convenient method of application. Especially for protein- or peptide-based drugs, however, the effectiveness is significantly reduced due to enzymatic digestion in the stomach as well as a poor bioavailability in the small intestine. For these difficult formulations, the encapsulation into nanocarriers would protect the sensitive drug and thus could considerably improve the efficiency of oral drug delivery. In the last years, many candidate biodegradable nanomaterials for such carrier systems have been published. However, before the cargo can be released, the nanocarrier needs to cross multiple barriers of the human body, including a layer of intestinal mucus and epithelial as well as endothelial cells. For overcoming these cellular barriers, transcytosis is favored over a paracellular transport for most nanomaterials as paracellular transport routes lack selectivity of transported molecules once opened up. The exact mechanisms behind the transcellular translocations are up to now still not completely understood. For the vast majority of nanocarriers, the rate of transcellular transport is not sufficient to realize their application in oral drug delivery. Especially trafficking into the endolysosomal pathway often marks a key problem. In this review, we focus on the molecular mechanisms of overcoming cellular barriers, especially transcytosis, and highlight difficulties of oral drug delivery via nanocarriers.
Collapse
Affiliation(s)
- Jonas Reinholz
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Volker Mailänder
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Max Planck Institute for Polymer Research, Mainz, Germany
| |
Collapse
|
39
|
Cai X, Dong J, Liu J, Zheng H, Kaweeteerawat C, Wang F, Ji Z, Li R. Multi-hierarchical profiling the structure-activity relationships of engineered nanomaterials at nano-bio interfaces. Nat Commun 2018; 9:4416. [PMID: 30356046 PMCID: PMC6200803 DOI: 10.1038/s41467-018-06869-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022] Open
Abstract
Increasing concerns over the possible risks of nanotechnology necessitates breakthroughs in structure-activity relationship (SAR) analyses of engineered nanomaterials (ENMs) at nano-bio interfaces. However, current nano-SARs are often based on univariate assessments and fail to provide tiered views on ENM-induced bio-effects. Here we report a multi-hierarchical nano-SAR assessment for a representative ENM, Fe2O3, by metabolomics and proteomics analyses. The established nano-SAR profile allows the visualizing of the contributions of seven basic properties of Fe2O3 to its diverse bio-effects. For instance, although surface reactivity is responsible for Fe2O3-induced cell migration, the inflammatory effects of Fe2O3 are determined by aspect ratio (nanorods) or surface reactivity (nanoplates). These nano-SARs are examined in THP-1 cells and animal lungs, which allow us to decipher the detailed mechanisms including NLRP3 inflammasome pathway and monocyte chemoattractant protein-1-dependent signaling. This study provides more insights for nano-SARs, and may facilitate the tailored design of ENMs to render them desired bio-effects.
Collapse
Affiliation(s)
- Xiaoming Cai
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School of Public Health, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123 China
| | - Jun Dong
- Wuhan Academy of Agricultural Science, Wuhan, Hubei 430000 China
| | - Jing Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023 China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School of Public Health, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123 China
| | - Chitrada Kaweeteerawat
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Nueng, 12120 Thailand
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023 China
| | - Zhaoxia Ji
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
- Living Proof, Inc., Cambridge, MA 02142 United States
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School of Public Health, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123 China
| |
Collapse
|
40
|
Tonigold M, Simon J, Estupiñán D, Kokkinopoulou M, Reinholz J, Kintzel U, Kaltbeitzel A, Renz P, Domogalla MP, Steinbrink K, Lieberwirth I, Crespy D, Landfester K, Mailänder V. Pre-adsorption of antibodies enables targeting of nanocarriers despite a biomolecular corona. NATURE NANOTECHNOLOGY 2018; 13:862-869. [PMID: 29915272 DOI: 10.1038/s41565-018-0171-6] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/21/2018] [Indexed: 05/17/2023]
Abstract
To promote drug delivery to exact sites and cell types, the surface of nanocarriers is functionalized with targeting antibodies or ligands, typically coupled by covalent chemistry. Once the nanocarrier is exposed to biological fluid such as plasma, however, its surface is inevitably covered with various biomolecules forming the protein corona, which masks the targeting ability of the nanoparticle. Here, we show that we can use a pre-adsorption process to attach targeting antibodies to the surface of the nanocarrier. Pre-adsorbed antibodies remain functional and are not completely exchanged or covered by the biomolecular corona, whereas coupled antibodies are more affected by this shielding. We conclude that pre-adsorption is potentially a versatile, efficient and rapid method of attaching targeting moieties to the surface of nanocarriers.
Collapse
Affiliation(s)
- Manuel Tonigold
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Johanna Simon
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | | | - Jonas Reinholz
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Ulrike Kintzel
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Patricia Renz
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Matthias P Domogalla
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kerstin Steinbrink
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | - Daniel Crespy
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Volker Mailänder
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- Max Planck Institute for Polymer Research, Mainz, Germany.
| |
Collapse
|
41
|
Morsbach S, Gonella G, Mailänder V, Wegner S, Wu S, Weidner T, Berger R, Koynov K, Vollmer D, Encinas N, Kuan SL, Bereau T, Kremer K, Weil T, Bonn M, Butt HJ, Landfester K. Engineering von Proteinen an Oberflächen: Von komplementärer Charakterisierung zu Materialoberflächen mit maßgeschneiderten Funktionen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Svenja Morsbach
- Max Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Grazia Gonella
- Max Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Volker Mailänder
- Max Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
- Abteilung für Dermatologie; Universitätsmedizin der Johannes Gutenberg-Universität Mainz; Langenbeckstraße 1 55131 Mainz Deutschland
| | - Seraphine Wegner
- Max Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Si Wu
- Max Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Tobias Weidner
- Max Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
- Abteilung für Chemie; Universität Aarhus; Langelandsgade 140 8000 Aarhus C Dänemark
| | - Rüdiger Berger
- Max Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Kaloian Koynov
- Max Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Doris Vollmer
- Max Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Noemí Encinas
- Max Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Seah Ling Kuan
- Max Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Tristan Bereau
- Max Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Kurt Kremer
- Max Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Tanja Weil
- Max Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Mischa Bonn
- Max Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Hans-Jürgen Butt
- Max Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Katharina Landfester
- Max Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| |
Collapse
|
42
|
Morsbach S, Gonella G, Mailänder V, Wegner S, Wu S, Weidner T, Berger R, Koynov K, Vollmer D, Encinas N, Kuan SL, Bereau T, Kremer K, Weil T, Bonn M, Butt HJ, Landfester K. Engineering Proteins at Interfaces: From Complementary Characterization to Material Surfaces with Designed Functions. Angew Chem Int Ed Engl 2018; 57:12626-12648. [PMID: 29663610 PMCID: PMC6391961 DOI: 10.1002/anie.201712448] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/13/2018] [Indexed: 01/17/2023]
Abstract
Once materials come into contact with a biological fluid containing proteins, proteins are generally—whether desired or not—attracted by the material's surface and adsorb onto it. The aim of this Review is to give an overview of the most commonly used characterization methods employed to gain a better understanding of the adsorption processes on either planar or curved surfaces. We continue to illustrate the benefit of combining different methods to different surface geometries of the material. The thus obtained insight ideally paves the way for engineering functional materials that interact with proteins in a predetermined manner.
Collapse
Affiliation(s)
- Svenja Morsbach
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Grazia Gonella
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Department of Dermatology, University Medical Center Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Seraphine Wegner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Si Wu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Tobias Weidner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Rüdiger Berger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Doris Vollmer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Noemí Encinas
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Seah Ling Kuan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Tristan Bereau
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
43
|
Weber C, Simon J, Mailänder V, Morsbach S, Landfester K. Preservation of the soft protein corona in distinct flow allows identification of weakly bound proteins. Acta Biomater 2018; 76:217-224. [PMID: 29885856 DOI: 10.1016/j.actbio.2018.05.057] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/25/2018] [Accepted: 05/31/2018] [Indexed: 12/22/2022]
Abstract
Nanocarriers that are used for targeted drug delivery come in contact with biological liquids and subsequently proteins will adsorb to the nanocarriers' surface to form the so called 'protein corona'. The protein corona defines the biological identity and determines the biological response towards the nanocarriers in the body. To make nanomedicine safe and reliable it is required to get a better insight into this protein corona and, therefore, the adsorbed proteins have to be characterized. Currently, centrifugation is the common method to isolate the protein corona for further investigations. However, with this method it is only possible to investigate the strongly bound proteins, also referred to as 'hard protein corona'. Therefore, we want to introduce a new separation technique to separate nanoparticles including the soft protein corona containing also loosely bound proteins for further characterization. The used separation technique is the asymmetric flow field-flow fractionation (AF4). We were able to separate the nanoparticles with proteins forming the soft protein corona and were able to show that in our system only the hard protein corona directly influenced the cell uptake behavior. STATEMENT OF SIGNIFICANCE Currently, there is an ongoing debate whether only strongly bound proteins (hard corona) or also loosely bound proteins (soft corona) contribute to the biological identity of nanocarriers, because up to now isolation of the soft corona was not possible. Here, asymmetric flow field-flow fractionation was used to isolate nanoparticles with a preserved soft corona from the biological medium. This enabled the characterization of the soft corona composition and to evaluate its influence on cellular uptake. For our system we found that only the strongly bound proteins (hard corona) determined cell internalization. This method can now be used to evaluate the impact of the soft corona further and to characterize nanomaterials that cannot be separated from blood plasma by other means.
Collapse
|
44
|
Simon J, Müller LK, Kokkinopoulou M, Lieberwirth I, Morsbach S, Landfester K, Mailänder V. Exploiting the biomolecular corona: pre-coating of nanoparticles enables controlled cellular interactions. NANOSCALE 2018; 10:10731-10739. [PMID: 29845991 DOI: 10.1039/c8nr03331e] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Formation of the biomolecular corona ultimately determines the successful application of nanoparticles in vivo. Adsorption of biomolecules such as proteins is an inevitable process that takes place instantaneously upon contact with physiological fluid (e.g. blood). Therefore, strategies are needed to control this process in order to improve the properties of the nanoparticles and to allow targeted drug delivery. Here, we show that the design of the protein corona by a pre-formed protein corona with tailored properties enables targeted cellular interactions. Nanoparticles were pre-coated with immunoglobulin depleted plasma to create and design a protein corona that reduces cellular uptake by immune cells. It was proven that a pre-formed protein corona remains stable even after nanoparticles were re-introduced to plasma. This opens up the great potential to exploit protein corona formation, which will significantly influence the development of novel nanomaterials.
Collapse
Affiliation(s)
- Johanna Simon
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany. and Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Laura K Müller
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Maria Kokkinopoulou
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ingo Lieberwirth
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Svenja Morsbach
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Volker Mailänder
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany. and Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
45
|
Chen Q, Wang N, Zhu M, Lu J, Zhong H, Xue X, Guo S, Li M, Wei X, Tao Y, Yin H. TiO 2 nanoparticles cause mitochondrial dysfunction, activate inflammatory responses, and attenuate phagocytosis in macrophages: A proteomic and metabolomic insight. Redox Biol 2018; 15:266-276. [PMID: 29294438 PMCID: PMC5752088 DOI: 10.1016/j.redox.2017.12.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in food and cosmetics but the health impact of human exposure remains poorly defined. Emerging evidence suggests that TiO2 NPs may elicit immune responses by acting on macrophages. Our proteomic study showed that treatment of macrophages with TiO2 NPs led to significant re-organization of cell membrane and activation of inflammation. These observations were further corroborated with transmission electron microscopy (TEM) experiments, which demonstrated that TiO2 NPs were trapped inside of multi-vesicular bodies (MVB) through endocytotic pathways. TiO2 NP caused significant mitochondrial dysfunction by increasing levels of mitochondrial reactive oxygen species (ROS), decreasing ATP generation, and decreasing metabolic flux in tricarboxylic acid (TCA) cycle from 13C-labelled glutamine using GC-MS-based metabolic flux analysis. Further lipidomic analysis showed that TiO2 NPs significantly decreased levels of cardiolipins, an important class of mitochondrial phospholipids for maintaining proper function of electron transport chains. Furthermore, TiO2 NP exposure activates inflammatory responses by increasing mRNA levels of TNF-α, iNOS, and COX-2. Consistently, our targeted metabolomic analysis showed significantly increased production of COX-2 metabolites including PGD2, PGE2, and 15d-PGJ2. In addition, TiO2 NP also caused significant attenuation of phagocytotic function of macrophages. In summary, our studies utilizing multiple powerful omic techniques suggest that human exposure of TiO2 NPs may have profound impact on macrophage function through activating inflammatory responses and causing mitochondrial dysfunction without physical presence in mitochondria.
Collapse
Affiliation(s)
- Qun Chen
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| | - Ningning Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Mingjiang Zhu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Jianhong Lu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Huiqin Zhong
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Xinli Xue
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Shuoyuan Guo
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Min Li
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Xinben Wei
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Yongzhen Tao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Huiyong Yin
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
46
|
Reinholz J, Diesler C, Schöttler S, Kokkinopoulou M, Ritz S, Landfester K, Mailänder V. Protein machineries defining pathways of nanocarrier exocytosis and transcytosis. Acta Biomater 2018. [PMID: 29530823 DOI: 10.1016/j.actbio.2018.03.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The transport of nanocarriers through barriers like the gut in a living organism involves the transcytosis of these nanocarriers through the cell layer dividing two compartments. Understanding how this process works is not only essential to further developing strategies for a more effective nanocarrier transport system but also for providing fundamental insights into the barrier function as a means of protection against micro- and nanoplastics in the food chain. We therefore set out to investigate the different uptake mechanisms, intracellular trafficking and the routes for exocytosis for small polystyrene nanoparticles (PS-NPs ca. 100 nm) as mimicking nanocarriers in a Caco-2 cell model for gut-blood transition. We used label-free, quantitative mass spectrometry (MS) for determining the proteome that adhered to transversed nanoparticles. From this rich proteomics dataset, as well as previous studies, we generated stable-transfected Caco-2 cell lines carrying the green fluorescent protein (GFP) coupled to proteins of interest for uptake, early, late and exocytotic endosomes. We detected the spatial and temporal overlap of such marked endosomes with the nanocarrier signal in confocal laser scanning and super-resolution microscopy. There was a clear distinction in the time course of nanoparticle trafficking between groups of proteins for endocytosis, intracellular storage and putatively transcytosis and we identified several key transcytotic markers like Rab3 and Copine1. Moreover, we postulate the necessity of a certain protein composition on endosomes for successful transcytosis of nanocarriers. Finally, we define the two-sided impasse of the lysosome as a dead end for nano-plastic and the limit of nanocarriers in the 100 nm range. STATEMENT OF SIGNIFICANCE Here we focus on mechanisms of transcytosis and how we can follow these with methods not used before. First, we use mass spectrometry of transcytosed nanoparticles to pick proteins of the transcytosis machinery describing key proteins involved. We can detect the complex mixtures of proteins. As this is a dynamic process involving whole families of proteins interacting with each other and as this is an orchestrated process we coined the term protein machineries for this active interplay. By genetically modifying the proteins attaching GFP we are able to follow the transcytosis pathway. We evaluate the process in a quantitative manner over time. This reveals that the most obvious obstacle to transcytosis is a routing of the nanocarriers to the lysosomes.
Collapse
|
47
|
Lloyd-Lewis B, Krueger CC, Sargeant TJ, D'Angelo ME, Deery MJ, Feret R, Howard JA, Lilley KS, Watson CJ. Stat3-mediated alterations in lysosomal membrane protein composition. J Biol Chem 2018; 293:4244-4261. [PMID: 29343516 PMCID: PMC5868265 DOI: 10.1074/jbc.ra118.001777] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Indexed: 12/19/2022] Open
Abstract
Lysosome function is essential in cellular homeostasis. In addition to its recycling role, the lysosome has recently been recognized as a cellular signaling hub. We have shown in mammary epithelial cells, both in vivo and in vitro, that signal transducer and activator of transcription 3 (Stat3) modulates lysosome biogenesis and can promote the release of lysosomal proteases that culminates in cell death. To further investigate the impact of Stat3 on lysosomal function, we conducted a proteomic screen of changes in lysosomal membrane protein components induced by Stat3 using an iron nanoparticle enrichment strategy. Our results show that Stat3 activation not only elevates the levels of known membrane proteins but results in the appearance of unexpected factors, including cell surface proteins such as annexins and flotillins. These data suggest that Stat3 may coordinately regulate endocytosis, intracellular trafficking, and lysosome biogenesis to drive lysosome-mediated cell death in mammary epithelial cells. The methodologies described in this study also provide significant improvements to current techniques used for the purification and analysis of the lysosomal proteome.
Collapse
Affiliation(s)
- Bethan Lloyd-Lewis
- From the Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom,
| | - Caroline C Krueger
- From the Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Timothy J Sargeant
- the Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia, and
| | - Michael E D'Angelo
- From the Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Michael J Deery
- the Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | - Renata Feret
- the Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | - Julie A Howard
- the Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | - Kathryn S Lilley
- the Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | - Christine J Watson
- From the Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom,
| |
Collapse
|
48
|
Juling S, Böhmert L, Lichtenstein D, Oberemm A, Creutzenberg O, Thünemann AF, Braeuning A, Lampen A. Comparative proteomic analysis of hepatic effects induced by nanosilver, silver ions and nanoparticle coating in rats. Food Chem Toxicol 2018; 113:255-266. [PMID: 29408364 DOI: 10.1016/j.fct.2018.01.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 01/09/2023]
Abstract
The presence of nano-scaled particles in food and food-related products has drawn attention to the oral uptake of nanoparticles and their interactions with biological systems. In the present study, we used a toxicoproteomics approach to allow for the untargeted experimental identification and comparative analysis of cellular responses in rat liver after repeated-dose treatment with silver nanoparticles, ions, and the coating matrix used for particle stabilization. The proteomic analysis revealed treatment-related effects caused by exposure to silver in particulate and ionic form. Both silver species induced similar patterns of signaling and metabolic alterations. Silver-induced cellular alterations comprised, amongst others, proteins involved in metal homeostasis, oxidative stress response, and energy metabolism. However, we discovered that secondary nano-scaled structures were formed from ionic silver. Furthermore, also the coating matrix alone gave rise to the formation of nano-scaled particles. The present data confirm, complement, and extend previous knowledge on silver toxicity in rodent liver by providing a comprehensive proteomic data set. The observation of secondary particle formation from non-particle controls underlines the difficulties in separating particle-, ion-, and matrix coating-related effects in biological systems. Awareness of this issue will support proper evaluation of nanotoxicology-related data in the future.
Collapse
Affiliation(s)
- Sabine Juling
- BfR, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Linda Böhmert
- BfR, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Dajana Lichtenstein
- BfR, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Axel Oberemm
- BfR, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Otto Creutzenberg
- ITEM, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs Str. 1, 30623 Hannover, Germany
| | - Andreas F Thünemann
- BAM, German Federal Institute for Materials Research and Testing, Unter Den Eichen 87, 12205 Berlin, Germany
| | - Albert Braeuning
- BfR, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Alfonso Lampen
- BfR, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
49
|
Edlich A, Volz P, Brodwolf R, Unbehauen M, Mundhenk L, Gruber AD, Hedtrich S, Haag R, Alexiev U, Kleuser B. Crosstalk between core-multishell nanocarriers for cutaneous drug delivery and antigen-presenting cells of the skin. Biomaterials 2018; 162:60-70. [PMID: 29438881 DOI: 10.1016/j.biomaterials.2018.01.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/24/2018] [Accepted: 01/31/2018] [Indexed: 01/15/2023]
Abstract
Owing their unique chemical and physical properties core-multishell (CMS) nanocarriers are thought to underlie their exploitable biomedical use for a topical treatment of skin diseases. This highlights the need to consider not only the efficacy of CMS nanocarriers but also the potentially unpredictable and adverse consequences of their exposure thereto. As CMS nanocarriers are able to penetrate into viable layers of normal and stripped human skin ex vivo as well as in in vitro skin disease models the understanding of nanoparticle crosstalk with components of the immune system requires thorough investigation. Our studies highlight the biocompatible properties of CMS nanocarriers on Langerhans cells of the skin as they did neither induce cytotoxicity and genotoxicity nor cause reactive oxygen species (ROS) or an immunological response. Nevertheless, CMS nanocarriers were efficiently taken up by Langerhans cells via divergent endocytic pathways. Bioimaging of CMS nanocarriers by fluorescence lifetime imaging microscopy (FLIM) and flow cytometry indicated not only a localization within the lysosomes but also an energy-dependent exocytosis of unmodified CMS nanocarriers into the extracellular environment.
Collapse
Affiliation(s)
- Alexander Edlich
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Pierre Volz
- Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany
| | - Robert Brodwolf
- Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany
| | - Michael Unbehauen
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Lars Mundhenk
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Achim D Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Sarah Hedtrich
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Ulrike Alexiev
- Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany.
| | - Burkhard Kleuser
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
50
|
Maysinger D, Moquin A, Choi J, Kodiha M, Stochaj U. Gold nanourchins and celastrol reorganize the nucleo- and cytoskeleton of glioblastoma cells. NANOSCALE 2018; 10:1716-1726. [PMID: 29308473 DOI: 10.1039/c7nr07833a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The physicochemical properties and cytotoxicity of diverse gold nanoparticle (AuNP) morphologies with smooth surfaces have been examined extensively. Much less is known about AuNPs with irregular surfaces. This study focuses on the effects of gold nanourchins in glioblastoma cells. With limited success of monotherapies for glioblastoma, multimodal treatment has become the preferred regimen. One possible example for such future therapeutic applications is the combination of AuNPs with the natural cytotoxic agent celastrol. Here, we used complementary physical, chemical and biological methods to characterize AuNPs and investigate their impact on glioblastoma cells. Our results show that gold nanourchins altered glioblastoma cell morphology and reorganized the nucleo- and cytoskeleton. These changes were dependent on gold nanourchin surface modification. PEGylated nanourchins had no significant effect on glioblastoma cell morphology or viability, unless they were combined with celastrol. By contrast, CTAB-nanourchins adversely affected the nuclear lamina, microtubules and filamentous actin. These alterations correlated with significant glioblastoma cell death. We identified several mechanisms that contributed to the impact of AuNPs on the cytoskeleton and cell survival. Specifically, CTAB-nanourchins caused a significant increase in the abundance of Rock1. This protein kinase is a key regulator of the cytoskeleton. In addition, CTAB-nanourchins led to a marked decline in pro-survival signaling via the PI3 kinase-Akt pathway. Taken together, our study provides new insights into the molecular pathways and structural components altered by gold nanourchins and their implications for multimodal glioblastoma therapy.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
| | | | | | | | | |
Collapse
|