1
|
Podvin S, Florio J, Spencer B, Mante M, Guzman E, Arias C, Mosier C, Phan VV, Yoon MC, Almaliti J, O’Donoghue AJ, Gerwick WH, Rissman RA, Hook V. Activation of Cytosolic Cathepsin B Activity in the Brain by Traumatic Brain Injury and Inhibition by the Neutral pH Selective Inhibitor Probe Z-Arg-Lys-AOMK. ACS Chem Neurosci 2025; 16:1297-1308. [PMID: 40130579 PMCID: PMC11969537 DOI: 10.1021/acschemneuro.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/30/2025] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
Cathepsin B has been shown to contribute to deficits in traumatic brain injury (TBI), an important risk factor for Alzheimer's disease (AD). Cathepsin B is elevated in TBI and AD patients, as well as in animal models of these conditions. Knockout of the cathepsin B gene results in amelioration of TBI-induced motor dysfunction and improvement of AD memory deficit in mice. The mechanism of cathepsin B pathogenesis in these brain disorders has been hypothesized to involve its translocation to the cytosol from its normal lysosomal location. This study, therefore, evaluated brain cytosolic cathepsin B activity in the controlled cortical impact (CCI) mouse model of TBI. CCI-TBI resulted in motor deficits demonstrated by the rotarod assay, brain tissue lesions, and disorganization of the hippocampus. Significantly, CCI-TBI increased cytosolic cathepsin B activity in the brain cortex in the ipsilateral brain hemisphere that received the CCI-TBI injury, with a concomitant decrease in the lysosomal fraction. Cathepsin B activity was monitored using the substrate Z-Nle-Lys-Arg-AMC which specifically detects cathepsin B activity but not other cysteine proteases. The normal lysosomal distribution of cathepsin B was observed by its discrete localization in brain cortical cells. CCI-TBI resulted in a more diffuse cellular distribution of cathepsin B consistent with translocation to the cytosol. Further studies utilized the novel neutral pH-selective inhibitor, Z-Arg-Lys-AOMK, that specifically inhibits cathepsin B at neutral pH 7.2 of the cytosol but not at acidic pH 4.6 of lysosomes. Daily administration of Z-Arg-Lys-AOMK (ip), beginning 1 day before CCI-TBI, resulted in the reduction of the increased cytosolic cathepsin B activity induced by CCI-TBI. The inhibitor also reduced cathepsin B activities in homogenates of the brain cortex and hippocampus which were increased by CCI-TBI. Furthermore, the Z-Arg-Lys-AOMK inhibitor resulted in the reduction of motor function deficit resulting from CCI-TBI. These findings demonstrate the activation of cytosolic cathepsin B activity in CCI-TBI mouse brain injury.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Jazmin Florio
- Department
of Physiology and Neuroscience, USC Alzheimer’s
Therapeutic Research Institute, 9880 Mesa Rim Road, San Diego, California 92121, United States
| | - Brian Spencer
- Department
of Physiology and Neuroscience, USC Alzheimer’s
Therapeutic Research Institute, 9880 Mesa Rim Road, San Diego, California 92121, United States
| | - Michael Mante
- Department
of Physiology and Neuroscience, USC Alzheimer’s
Therapeutic Research Institute, 9880 Mesa Rim Road, San Diego, California 92121, United States
| | - Estefani Guzman
- Department
of Physiology and Neuroscience, USC Alzheimer’s
Therapeutic Research Institute, 9880 Mesa Rim Road, San Diego, California 92121, United States
| | - Carlos Arias
- Department
of Physiology and Neuroscience, USC Alzheimer’s
Therapeutic Research Institute, 9880 Mesa Rim Road, San Diego, California 92121, United States
| | - Charles Mosier
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Von V. Phan
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, United States
| | - Michael C. Yoon
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Jehad Almaliti
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
- Department
Pharmaceutical Sciences, College of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Anthony J. O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - William H. Gerwick
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Robert A. Rissman
- Department
of Physiology and Neuroscience, USC Alzheimer’s
Therapeutic Research Institute, 9880 Mesa Rim Road, San Diego, California 92121, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Department
of Neurosciences and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Stojilkovic SS, Sokanovic SJ, Constantin S. What is known and unknown about the role of neuroendocrine genes Ptprn and Ptprn2. Front Endocrinol (Lausanne) 2025; 16:1531723. [PMID: 39926347 PMCID: PMC11802530 DOI: 10.3389/fendo.2025.1531723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
The protein tyrosine phosphatase receptors N and N2 are encoded by the Ptprn and Ptprn2 genes expressed in neuroendocrine cells of the hypothalamus, pituitary gland, and diffuse neuroendocrine system, including the pancreas, lung, and intestine. Unlike other members of the protein tyrosine phosphatase receptor family, PTPRN and PTPRN2 lack protein tyrosine phosphatase activity due to mutation of two residues in their intracellular catalytic domains. However, during evolution these proteins acquired new cellular roles beyond tyrosine dephosphorylation in the centralized and diffuse neuroendocrine systems. Here we discuss the current understanding and lack of information about the actions of these proteins, focusing on neuroendocrine cells of the hypothalamus, pituitary, and pancreas.
Collapse
Affiliation(s)
- Stanko S. Stojilkovic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| | | | | |
Collapse
|
3
|
Wilkie IC. Basement Membranes, Brittlestar Tendons, and Their Mechanical Adaptability. BIOLOGY 2024; 13:375. [PMID: 38927255 PMCID: PMC11200632 DOI: 10.3390/biology13060375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Basement membranes (BMs) are thin layers of extracellular matrix that separate epithelia, endothelia, muscle cells, and nerve cells from adjacent interstitial connective tissue. BMs are ubiquitous in almost all multicellular animals, and their composition is highly conserved across the Metazoa. There is increasing interest in the mechanical functioning of BMs, including the involvement of altered BM stiffness in development and pathology, particularly cancer metastasis, which can be facilitated by BM destabilization. Such BM weakening has been assumed to occur primarily through enzymatic degradation by matrix metalloproteinases. However, emerging evidence indicates that non-enzymatic mechanisms may also contribute. In brittlestars (Echinodermata, Ophiuroidea), the tendons linking the musculature to the endoskeleton consist of extensions of muscle cell BMs. During the process of brittlestar autotomy, in which arms are detached for the purpose of self-defense, muscles break away from the endoskeleton as a consequence of the rapid destabilization and rupture of their BM-derived tendons. This contribution provides a broad overview of current knowledge of the structural organization and biomechanics of non-echinoderm BMs, compares this with the equivalent information on brittlestar tendons, and discusses the possible relationship between the weakening phenomena exhibited by BMs and brittlestar tendons, and the potential translational value of the latter as a model system of BM destabilization.
Collapse
Affiliation(s)
- Iain C Wilkie
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
4
|
Mukherjee M, Mukherjee C, Ghosh V, Jain A, Sadhukhan S, Dagar S, Sahu BS. Endoplasmic reticulum stress impedes regulated secretion by governing key exocytotic and granulogenic molecular switches. J Cell Sci 2024; 137:jcs261257. [PMID: 38348894 DOI: 10.1242/jcs.261257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 02/05/2024] [Indexed: 03/20/2024] Open
Abstract
Dense core vesicles (DCVs) and synaptic vesicles are specialised secretory vesicles in neurons and neuroendocrine cells, and abnormal release of their cargo is associated with various pathophysiologies. Endoplasmic reticulum (ER) stress and inter-organellar communication are also associated with disease biology. To investigate the functional status of regulated exocytosis arising from the crosstalk of a stressed ER and DCVs, ER stress was modelled in PC12 neuroendocrine cells using thapsigargin. DCV exocytosis was severely compromised in ER-stressed PC12 cells and was reversed to varying magnitudes by ER stress attenuators. Experiments with tunicamycin, an independent ER stressor, yielded similar results. Concurrently, ER stress also caused impaired DCV exocytosis in insulin-secreting INS-1 cells. Molecular analysis revealed blunted SNAP25 expression, potentially attributed to augmented levels of ATF4, an inhibitor of CREB that binds to the CREB-binding site. The effects of loss of function of ATF4 in ER-stressed cells substantiated this attribution. Our studies revealed severe defects in DCV exocytosis in ER-stressed cells for the first time, mediated by reduced levels of key exocytotic and granulogenic switches regulated via the eIF2α (EIF2A)-ATF4 axis.
Collapse
Affiliation(s)
- Mohima Mukherjee
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | | | - Vinayak Ghosh
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | - Aamna Jain
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | - Souren Sadhukhan
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | - Sushma Dagar
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | | |
Collapse
|
5
|
Baghdassarian HM, Lewis NE. Resource allocation in mammalian systems. Biotechnol Adv 2024; 71:108305. [PMID: 38215956 PMCID: PMC11182366 DOI: 10.1016/j.biotechadv.2023.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
Cells execute biological functions to support phenotypes such as growth, migration, and secretion. Complementarily, each function of a cell has resource costs that constrain phenotype. Resource allocation by a cell allows it to manage these costs and optimize their phenotypes. In fact, the management of resource constraints (e.g., nutrient availability, bioenergetic capacity, and macromolecular machinery production) shape activity and ultimately impact phenotype. In mammalian systems, quantification of resource allocation provides important insights into higher-order multicellular functions; it shapes intercellular interactions and relays environmental cues for tissues to coordinate individual cells to overcome resource constraints and achieve population-level behavior. Furthermore, these constraints, objectives, and phenotypes are context-dependent, with cells adapting their behavior according to their microenvironment, resulting in distinct steady-states. This review will highlight the biological insights gained from probing resource allocation in mammalian cells and tissues.
Collapse
Affiliation(s)
- Hratch M Baghdassarian
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
6
|
Wu W, Krijgsveld J. Secretome Analysis: Reading Cellular Sign Language to Understand Intercellular Communication. Mol Cell Proteomics 2024; 23:100692. [PMID: 38081362 PMCID: PMC10793180 DOI: 10.1016/j.mcpro.2023.100692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
A significant portion of mammalian proteomes is secreted to the extracellular space to fulfill crucial roles in cell-to-cell communication. To best recapitulate the intricate and multi-faceted crosstalk between cells in a live organism, there is an ever-increasing need for methods to study protein secretion in model systems that include multiple cell types. In addition, posttranslational modifications further expand the complexity and versatility of cellular communication. This review aims to summarize recent strategies and model systems that employ cellular coculture, chemical biology tools, protein enrichment, and proteomic methods to characterize the composition and function of cellular secretomes. This is all geared towards gaining better understanding of organismal biology in vivo mediated by secretory signaling.
Collapse
Affiliation(s)
- Wei Wu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore; Department of Pharmacy, National University of Singapore, Singapore, Singapore.
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
7
|
Lee GG, Zeng K, Duffy CM, Sriharsha Y, Yoo S, Park JH. In vivo characterization of the maturation steps of a pigment dispersing factor neuropeptide precursor in the Drosophila circadian pacemaker neurons. Genetics 2023; 225:iyad118. [PMID: 37364299 PMCID: PMC10471210 DOI: 10.1093/genetics/iyad118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 05/19/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
Pigment dispersing factor (PDF) is a key signaling molecule coordinating the neuronal network associated with the circadian rhythms in Drosophila. The precursor (proPDF) of the mature PDF (mPDF) consists of 2 motifs, a larger PDF-associated peptide (PAP) and PDF. Through cleavage and amidation, the proPDF is predicted to produce cleaved-PAP (cPAP) and mPDF. To delve into the in vivo mechanisms underlying proPDF maturation, we generated various mutations that eliminate putative processing sites and then analyzed the effect of each mutation on the production of cPAP and mPDF by 4 different antibodies in both ectopic and endogenous conditions. We also assessed the knockdown effects of processing enzymes on the proPDF maturation. At the functional level, circadian phenotypes were measured for all mutants and knockdown lines. As results, we confirm the roles of key enzymes and their target residues: Amontillado (Amon) for the cleavage at the consensus dibasic KR site, Silver (Svr) for the removal of C-terminal basic residues from the intermediates, PAP-KR and PDF-GK, derived from proPDF, and PHM (peptidylglycine-α-hydroxylating monooxygenase) for the amidation of PDF. Our results suggest that the C-terminal amidation occurs independently of proPDF cleavage. Moreover, the PAP domain is important for the proPDF trafficking into the secretory vesicles and a close association between cPAP and mPDF following cleavage seems required for their stability within the vesicles. These studies highlight the biological significance of individual processing steps and the roles of the PAP for the stability and function of mPDF which is essential for the circadian clockworks.
Collapse
Affiliation(s)
- Gyunghee G Lee
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Kevin Zeng
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Cole M Duffy
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Yadali Sriharsha
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Siuk Yoo
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Jae H Park
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
- Genome Science and Technology Graduate Program, University of Tennessee, Knoxville, TN 37996, USA
- NeuroNET Research Center, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
8
|
Quinn J, Ethier EC, Novielli A, Malone A, Ramirez CE, Salloum L, Trombetta BA, Kivisäkk P, Bremang M, Selzer S, Fournier M, Das S, Xing Y, Arnold SE, Carlyle BC. Cerebrospinal Fluid and Brain Proteoforms of the Granin Neuropeptide Family in Alzheimer's Disease. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:649-667. [PMID: 36912488 PMCID: PMC10080684 DOI: 10.1021/jasms.2c00341] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/11/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The granin neuropeptide family is composed of acidic secretory signaling molecules that act throughout the nervous system to help modulate synaptic signaling and neural activity. Granin neuropeptides have been shown to be dysregulated in different forms of dementia, including Alzheimer's disease (AD). Recent studies have suggested that the granin neuropeptides and their protease-cleaved bioactive peptides (proteoforms) may act as both powerful drivers of gene expression and as a biomarker of synaptic health in AD. The complexity of granin proteoforms in human cerebrospinal fluid (CSF) and brain tissue has not been directly addressed. We developed a reliable nontryptic mass spectrometry assay to comprehensively map and quantify endogenous neuropeptide proteoforms in the brain and CSF of individuals diagnosed with mild cognitive impairment and dementia due to AD compared to healthy controls, individuals with preserved cognition despite AD pathology ("Resilient"), and those with impaired cognition but no AD or other discernible pathology ("Frail"). We drew associations between neuropeptide proteoforms, cognitive status, and AD pathology values. Decreased levels of VGF proteoforms were observed in CSF and brain tissue from individuals with AD compared to controls, while select proteoforms from chromogranin A showed the opposite effect. To address mechanisms of neuropeptide proteoform regulation, we showed that the proteases Calpain-1 and Cathepsin S can cleave chromogranin A, secretogranin-1, and VGF into proteoforms found in both the brain and CSF. We were unable to demonstrate differences in protease abundance in protein extracts from matched brains, suggesting that regulation may occur at the level of transcription.
Collapse
Affiliation(s)
- James
P. Quinn
- Massachusetts
General Hospital Department of Neurology, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Elizabeth C. Ethier
- Massachusetts
General Hospital Department of Neurology, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Angelo Novielli
- Massachusetts
General Hospital Department of Neurology, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Aygul Malone
- Advanced
Proteomics Facility, Department of Biochemistry, University of Oxford, Oxford, Oxfordshire OX1 3QU, United Kingdom
| | - Christopher E. Ramirez
- Massachusetts
General Hospital Department of Neurology, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Lauren Salloum
- Massachusetts
General Hospital Department of Neurology, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Bianca A. Trombetta
- Massachusetts
General Hospital Department of Neurology, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Pia Kivisäkk
- Massachusetts
General Hospital Department of Neurology, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Michael Bremang
- Proteome
Sciences LLC, Frankfurt am Main, Hessen 60438, Germany
| | - Stefan Selzer
- Proteome
Sciences LLC, Frankfurt am Main, Hessen 60438, Germany
| | - Marjorie Fournier
- Advanced
Proteomics Facility, Department of Biochemistry, University of Oxford, Oxford, Oxfordshire OX1 3QU, United Kingdom
| | - Sudeshna Das
- Massachusetts
General Hospital Department of Neurology, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Yaoyi Xing
- Department
of Physiology, Anatomy & Genetics, University
of Oxford, Oxford, Oxfordshire OX1 3QU, United Kingdom
- Kavli
Institute for Nanoscience Discovery, University
of Oxford, Oxford OX1 3QU, United
Kingdom
| | - Steven E. Arnold
- Massachusetts
General Hospital Department of Neurology, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Becky C. Carlyle
- Massachusetts
General Hospital Department of Neurology, Harvard Medical School, Boston, Massachusetts 02129, United States
- Department
of Physiology, Anatomy & Genetics, University
of Oxford, Oxford, Oxfordshire OX1 3QU, United Kingdom
- Kavli
Institute for Nanoscience Discovery, University
of Oxford, Oxford OX1 3QU, United
Kingdom
| |
Collapse
|
9
|
González-Jamett A, Maldifassi MC, Cárdenas AM. Isolation and Purification of Chromaffin Granules from Adrenal Glands and Cultured Neuroendocrine Cells. Methods Mol Biol 2023; 2565:283-296. [PMID: 36205901 DOI: 10.1007/978-1-0716-2671-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chromaffin granules isolated from adrenal glands constitute a powerful experimental tool to the study of secretory vesicle components and their participation in fusion and docking processes, vesicle aggregation, and interactions with cytosolic components. Although it is possible to isolate and purify chromaffin granules from adrenal glands of different species, bovine adrenal glands are the most used tissue source due to its easy handling and the large amount of granules that can be obtained from this tissue. In this chapter, we describe an easy-to-use and short-term protocol for efficiently obtaining highly purified chromaffin granules from bovine adrenal medulla. We additionally include protocols to isolate granules from cultured bovine chromaffin cells and PC12 cells, as well as a section to obtain chromaffin granules from mouse adrenal glands.
Collapse
Affiliation(s)
- Arlek González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | - María Constanza Maldifassi
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ana María Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
10
|
Hayakawa E, Guzman C, Horiguchi O, Kawano C, Shiraishi A, Mohri K, Lin MF, Nakamura R, Nakamura R, Kawai E, Komoto S, Jokura K, Shiba K, Shigenobu S, Satake H, Inaba K, Watanabe H. Mass spectrometry of short peptides reveals common features of metazoan peptidergic neurons. Nat Ecol Evol 2022; 6:1438-1448. [PMID: 35941202 PMCID: PMC9525235 DOI: 10.1038/s41559-022-01835-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022]
Abstract
The evolutionary origins of neurons remain unknown. Although recent genome data of extant early-branching animals have shown that neural genes existed in the common ancestor of animals, the physiological and genetic properties of neurons in the early evolutionary phase are still unclear. Here, we performed a mass spectrometry-based comprehensive survey of short peptides from early-branching lineages Cnidaria, Porifera and Ctenophora. We identified a number of mature ctenophore neuropeptides that are expressed in neurons associated with sensory, muscular and digestive systems. The ctenophore peptides are stored in vesicles in cell bodies and neurites, suggesting volume transmission similar to that of cnidarian and bilaterian peptidergic systems. A comparison of genetic characteristics revealed that the peptide-expressing cells of Cnidaria and Ctenophora express the vast majority of genes that have pivotal roles in maturation, secretion and degradation of neuropeptides in Bilateria. Functional analysis of neuropeptides and prediction of receptors with machine learning demonstrated peptide regulation of a wide range of target effector cells, including cells of muscular systems. The striking parallels between the peptidergic neuronal properties of Cnidaria and Bilateria and those of Ctenophora, the most basal neuron-bearing animals, suggest a common evolutionary origin of metazoan peptidergic nervous systems.
Collapse
Affiliation(s)
- Eisuke Hayakawa
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Christine Guzman
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Osamu Horiguchi
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Chihiro Kawano
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Kurato Mohri
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Mei-Fang Lin
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ryotaro Nakamura
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ryo Nakamura
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Erina Kawai
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Shinya Komoto
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Imaging Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kei Jokura
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Shuji Shigenobu
- Center for the Development of New Model Organisms, National Institute for Basic Biology, Okazaki, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
11
|
Tanguy E, Wolf A, Wang Q, Chasserot-Golaz S, Ory S, Gasman S, Vitale N. Phospholipase D1-generated phosphatidic acid modulates secretory granule trafficking from biogenesis to compensatory endocytosis in neuroendocrine cells. Adv Biol Regul 2021; 83:100844. [PMID: 34876384 DOI: 10.1016/j.jbior.2021.100844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
Calcium-regulated exocytosis is a multi-step process that allows specialized secretory cells to release informative molecules such as neurotransmitters, neuropeptides, and hormones for intercellular communication. The biogenesis of secretory vesicles from the Golgi cisternae is followed by their transport towards the cell periphery and their docking and fusion to the exocytic sites of the plasma membrane allowing release of vesicular content. Subsequent compensatory endocytosis of the protein and lipidic constituents of the vesicles maintains cell homeostasis. Despite the fact that lipids represent the majority of membrane constituents, little is known about their contribution to these processes. Using a combination of electrochemical measurement of single chromaffin cell catecholamine secretion and electron microscopy of roof-top membrane sheets associated with genetic, silencing and pharmacological approaches, we recently reported that diverse phosphatidic acid (PA) species regulates catecholamine release efficiency by controlling granule docking and fusion kinetics. The enzyme phospholipase D1 (PLD1), producing PA from phosphatidylcholine, seems to be the major responsible of these effects in this model. Here, we extended this work using spinning disk confocal microscopy showing that inhibition of PLD activity also reduced the velocity of granules undergoing a directed motion. Furthermore, a dopamine β-hydroxylase (DβH) internalization assay revealed that PA produced by PLD is required for an optimal recovery of vesicular membrane content by compensatory endocytosis. Thus, among numerous roles that have been attributed to PA our work gives core to the key regulatory role in secretion that has been proposed in different cell models. Few leads to explain these multiple functions of PA along the secretory pathway are discussed.
Collapse
Affiliation(s)
- Emeline Tanguy
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Alexander Wolf
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Qili Wang
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Sylvette Chasserot-Golaz
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Stéphane Ory
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Stéphane Gasman
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Nicolas Vitale
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France.
| |
Collapse
|
12
|
Quinn JP, Kandigian SE, Trombetta BA, Arnold SE, Carlyle BC. VGF as a biomarker and therapeutic target in neurodegenerative and psychiatric diseases. Brain Commun 2021; 3:fcab261. [PMID: 34778762 PMCID: PMC8578498 DOI: 10.1093/braincomms/fcab261] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Neurosecretory protein VGF (non-acronymic) belongs to the granin family of neuropeptides. VGF and VGF-derived peptides have been repeatedly identified in well-powered and well-designed multi-omic studies as dysregulated in neurodegenerative and psychiatric diseases. New therapeutics is urgently needed for these devastating and costly diseases, as are new biomarkers to improve disease diagnosis and mechanistic understanding. From a list of 537 genes involved in Alzheimer's disease pathogenesis, VGF was highlighted by the Accelerating Medicines Partnership in Alzheimer's disease as the potential therapeutic target of greatest interest. VGF levels are consistently decreased in brain tissue and CSF samples from patients with Alzheimer's disease compared to controls, and its levels correlate with disease severity and Alzheimer's disease pathology. In the brain, VGF exists as multiple functional VGF-derived peptides. Full-length human VGF1-615 undergoes proteolytic processing by prohormone convertases and other proteases in the regulated secretory pathway to produce at least 12 active VGF-derived peptides. In cell and animal models, these VGF-derived peptides have been linked to energy balance regulation, neurogenesis, synaptogenesis, learning and memory, and depression-related behaviours throughout development and adulthood. The C-terminal VGF-derived peptides, TLQP-62 (VGF554-615) and TLQP-21 (VGF554-574) have differential effects on Alzheimer's disease pathogenesis, neuronal and microglial activity, and learning and memory. TLQP-62 activates neuronal cell-surface receptors and regulates long-term hippocampal memory formation. TLQP-62 also prevents immune-mediated memory impairment, depression-like and anxiety-like behaviours in mice. TLQP-21 binds to microglial cell-surface receptors, triggering microglial chemotaxis and phagocytosis. These actions were reported to reduce amyloid-β plaques and decrease neuritic dystrophy in a transgenic mouse model of familial Alzheimer's disease. Expression differences of VGF-derived peptides have also been associated with frontotemporal lobar dementias, amyotrophic lateral sclerosis, Lewy body diseases, Huntington's disease, pain, schizophrenia, bipolar disorder, depression and antidepressant response. This review summarizes current knowledge and highlights questions for future investigation regarding the roles of VGF and its dysregulation in neurodegenerative and psychiatric disease. Finally, the potential of VGF and VGF-derived peptides as biomarkers and novel therapeutic targets for neurodegenerative and psychiatric diseases is highlighted.
Collapse
Affiliation(s)
- James P Quinn
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Savannah E Kandigian
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Bianca A Trombetta
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven E Arnold
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Becky C Carlyle
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Barranco N, Plá V, Alcolea D, Sánchez-Domínguez I, Fischer-Colbrie R, Ferrer I, Lleó A, Aguado F. Dense core vesicle markers in CSF and cortical tissues of patients with Alzheimer's disease. Transl Neurodegener 2021; 10:37. [PMID: 34565482 PMCID: PMC8466657 DOI: 10.1186/s40035-021-00263-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
Background New fluid biomarkers for Alzheimer's disease (AD) that reveal synaptic and neural network dysfunctions are needed for clinical practice and therapeutic trial design. Dense core vesicle (DCV) cargos are promising cerebrospinal fluid (CSF) indicators of synaptic failure in AD patients. However, their value as biomarkers has not yet been determined. Methods Immunoassays were performed to analyze the secretory proteins prohormone convertases PC1/3 and PC2, carboxypeptidase E (CPE), secretogranins SgIII and SgII, and Cystatin C in the cerebral cortex (n = 45, provided by Bellvitge University Hospital) and CSF samples (n = 66, provided by The Sant Pau Initiative on Neurodegeneration cohort) from AD patients (n = 56) and age-matched controls (n = 55).
Results In AD tissues, most DCV proteins were aberrantly accumulated in dystrophic neurites and activated astrocytes, whereas PC1/3, PC2 and CPE were also specifically accumulated in hippocampal granulovacuolar degeneration bodies. AD individuals displayed an overall decline of secretory proteins in the CSF. Interestingly, in AD patients, the CSF levels of prohormone convertases strongly correlated inversely with those of neurodegeneration markers and directly with cognitive impairment status. Conclusions These results demonstrate marked alterations of neuronal-specific prohormone convertases in CSF and cortical tissues of AD patients. The neuronal DCV cargos are biomarker candidates for synaptic dysfunction and neurodegeneration in AD. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-021-00263-0.
Collapse
Affiliation(s)
- Neus Barranco
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain
| | - Virginia Plá
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.,Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Daniel Alcolea
- Memory Unit, Department of Neurology, Sant Pau Biomedical Research Institute. Sant Pau Hospital, Autonomous University of Barcelona, 08041, Barcelona, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Irene Sánchez-Domínguez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain
| | | | - Isidro Ferrer
- Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain.,Department of Pathology and Experimental Therapeutics, University of Barcelona, and Bellvitge University Hospital, Bellvitge Biomedical Research Institute, Hospitalet de Llobregat, Spain
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Sant Pau Biomedical Research Institute. Sant Pau Hospital, Autonomous University of Barcelona, 08041, Barcelona, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Fernando Aguado
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain. .,Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
14
|
Wen G, Pang H, Wu X, Jiang E, Zhang X, Zhan X. Proteomic characterization of secretory granules in dopaminergic neurons indicates chromogranin/secretogranin-mediated protein processing impairment in Parkinson's disease. Aging (Albany NY) 2021; 13:20335-20358. [PMID: 34420933 PMCID: PMC8436928 DOI: 10.18632/aging.203415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022]
Abstract
Parkinson’s disease (PD) is an aging disorder related to vesicle transport dysfunctions and neurotransmitter secretion. Secretory granules (SGs) are large dense-core vesicles for the biosynthesis of neuropeptides and hormones. At present, the involvement of SGs impairment in PD remains unclear. In the current study, we found that the number of SGs in tyrosine hydroxylase-positive neurons and the marker proteins secretogranin III (Scg3) significantly decreased in the substantia nigra and striatum regions of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) exposed mice. Proteomic study of SGs purified from the dopaminergic SH-sy5Y cells under 1-methyl-4-phenylpyridinium (MPP+) treatments (ProteomeXchange PXD023937) identified 536 significantly differentially expressed proteins. The result indicated that disabled lysosome and peroxisome, lipid and energy metabolism disorders are three characteristic features. Protein-protein interaction analysis of 56 secretory proteins and 140 secreted proteins suggested that the peptide processing mediated by chromogranin/secretogranin in SGs was remarkably compromised, accompanied by decreased candidate proteins and peptides neurosecretory protein (VGF), neuropeptide Y, apolipoprotein E, and an increased level of proenkephalin. The current study provided an extensive proteinogram of SGs in PD. It is helpful to understand the molecular mechanisms in the disease.
Collapse
Affiliation(s)
- Gehua Wen
- School of Forensic Medicine, China Medical University, Shenyang, PR China
| | - Hao Pang
- School of Forensic Medicine, China Medical University, Shenyang, PR China
| | - Xu Wu
- School of Forensic Medicine, China Medical University, Shenyang, PR China
| | - Enzhu Jiang
- School of Forensic Medicine, China Medical University, Shenyang, PR China
| | - Xique Zhang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Xiaoni Zhan
- School of Forensic Medicine, China Medical University, Shenyang, PR China
| |
Collapse
|
15
|
Jiang Z, Lietz CB, Podvin S, Yoon MC, Toneff T, Hook V, O’Donoghue AJ. Differential Neuropeptidomes of Dense Core Secretory Vesicles (DCSV) Produced at Intravesicular and Extracellular pH Conditions by Proteolytic Processing. ACS Chem Neurosci 2021; 12:2385-2398. [PMID: 34153188 PMCID: PMC8267839 DOI: 10.1021/acschemneuro.1c00133] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
![]()
Neuropeptides mediate
cell–cell signaling in the nervous
and endocrine systems. The neuropeptidome is the spectrum of peptides
generated from precursors by proteolysis within dense core secretory
vesicles (DCSV). DCSV neuropeptides and contents are released to the
extracellular environment where further processing for neuropeptide
formation may occur. To assess the DCSV proteolytic capacity for production
of neuropeptidomes at intravesicular pH 5.5 and extracellular pH 7.2,
neuropeptidomics, proteomics, and protease assays were conducted using
chromaffin granules (CG) purified from adrenal medulla. CG are an
established model of DCSV. The CG neuropeptidome consisted of 1239
unique peptides derived from 15 proneuropeptides that were colocalized
with 64 proteases. Distinct CG neuropeptidomes were generated at the
internal DCSV pH of 5.5 compared to the extracellular pH of 7.2. Class-specific
protease inhibitors differentially regulated neuropeptidome production
involving aspartic, cysteine, serine, and metallo proteases. The substrate
cleavage properties of CG proteases were assessed by multiplex substrate
profiling by mass spectrometry (MSP-MS) that uses a synthetic peptide
library containing diverse cleavage sites for endopeptidases and exopeptidases.
Parallel inhibitor-sensitive cleavages for neuropeptidome production
and peptide library proteolysis led to elucidation of six CG proteases
involved in neuropeptidome production, represented by cathepsins A,
B, C, D, and L and carboxypeptidase E (CPE). The MSP-MS profiles of
these six enzymes represented the majority of CG proteolytic cleavages
utilized for neuropeptidome production. These findings provide new
insight into the DCSV proteolytic system for production of distinct
neuropeptidomes at the internal CG pH of 5.5 and at the extracellular
pH of 7.2.
Collapse
Affiliation(s)
- Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Christopher B. Lietz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Michael C. Yoon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Thomas Toneff
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Department of Neuroscience and Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
16
|
Göhde R, Naumann B, Laundon D, Imig C, McDonald K, Cooper BH, Varoqueaux F, Fasshauer D, Burkhardt P. Choanoflagellates and the ancestry of neurosecretory vesicles. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190759. [PMID: 33550951 PMCID: PMC7934909 DOI: 10.1098/rstb.2019.0759] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2020] [Indexed: 01/08/2023] Open
Abstract
Neurosecretory vesicles are highly specialized trafficking organelles that store neurotransmitters that are released at presynaptic nerve endings and are, therefore, important for animal cell-cell signalling. Despite considerable anatomical and functional diversity of neurons in animals, the protein composition of neurosecretory vesicles in bilaterians appears to be similar. This similarity points towards a common evolutionary origin. Moreover, many putative homologues of key neurosecretory vesicle proteins predate the origin of the first neurons, and some even the origin of the first animals. However, little is known about the molecular toolkit of these vesicles in non-bilaterian animals and their closest unicellular relatives, making inferences about the evolutionary origin of neurosecretory vesicles extremely difficult. By comparing 28 proteins of the core neurosecretory vesicle proteome in 13 different species, we demonstrate that most of the proteins are present in unicellular organisms. Surprisingly, we find that the vesicular membrane-associated soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein synaptobrevin is localized to the vesicle-rich apical and basal pole in the choanoflagellate Salpingoeca rosetta. Our 3D vesicle reconstructions reveal that the choanoflagellates S. rosetta and Monosiga brevicollis exhibit a polarized and diverse vesicular landscape reminiscent of the polarized organization of chemical synapses that secrete the content of neurosecretory vesicles into the synaptic cleft. This study sheds light on the ancestral molecular machinery of neurosecretory vesicles and provides a framework to understand the origin and evolution of secretory cells, synapses and neurons. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.
Collapse
Affiliation(s)
- Ronja Göhde
- Sars International Centre for Molecular Marine Biology, University of Bergen, 5006 Bergen, Norway
| | - Benjamin Naumann
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Davis Laundon
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Gottingen, Germany
| | - Kent McDonald
- Electron Microscope Laboratory, University of California, Berkeley, CA 94720, USA
| | - Benjamin H. Cooper
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Gottingen, Germany
| | - Frédérique Varoqueaux
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Dirk Fasshauer
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Pawel Burkhardt
- Sars International Centre for Molecular Marine Biology, University of Bergen, 5006 Bergen, Norway
| |
Collapse
|
17
|
Oti T, Satoh K, Uta D, Nagafuchi J, Tateishi S, Ueda R, Takanami K, Young LJ, Galione A, Morris JF, Sakamoto T, Sakamoto H. Oxytocin Influences Male Sexual Activity via Non-synaptic Axonal Release in the Spinal Cord. Curr Biol 2020; 31:103-114.e5. [PMID: 33125871 DOI: 10.1016/j.cub.2020.09.089] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/21/2020] [Accepted: 09/29/2020] [Indexed: 01/15/2023]
Abstract
Oxytocinergic neurons in the paraventricular nucleus of the hypothalamus that project to extrahypothalamic brain areas and the lumbar spinal cord play an important role in the control of erectile function and male sexual behavior in mammals. The gastrin-releasing peptide (GRP) system in the lumbosacral spinal cord is an important component of the neural circuits that control penile reflexes in rats, circuits that are commonly referred to as the "spinal ejaculation generator (SEG)." We have examined the functional interaction between the SEG neurons and the hypothalamo-spinal oxytocin system in rats. Here, we show that SEG/GRP neurons express oxytocin receptors and are activated by oxytocin during male sexual behavior. Intrathecal injection of oxytocin receptor antagonist not only attenuates ejaculation but also affects pre-ejaculatory behavior during normal sexual activity. Electron microscopy of potassium-stimulated acute slices of the lumbar cord showed that oxytocin-neurophysin-immunoreactivity was detected in large numbers of neurosecretory dense-cored vesicles, many of which are located close to the plasmalemma of axonal varicosities in which no electron-lucent microvesicles or synaptic membrane thickenings were visible. These results suggested that, in rats, release of oxytocin in the lumbar spinal cord is not limited to conventional synapses but occurs by exocytosis of the dense-cored vesicles from axonal varicosities and acts by diffusion-a localized volume transmission-to reach oxytocin receptors on GRP neurons and facilitate male sexual function.
Collapse
Affiliation(s)
- Takumi Oti
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan; Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka, Kanagawa 259-1293, Japan
| | - Keita Satoh
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan; Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | - Daisuke Uta
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Junta Nagafuchi
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Sayaka Tateishi
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan; Department of Biology, Faculty of Science, Okayama University, 3-1-1 Kita-ku, Tsushimanaka, Okayama 700-8530, Japan
| | - Ryota Ueda
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan; Department of Biology, Faculty of Science, Okayama University, 3-1-1 Kita-ku, Tsushimanaka, Okayama 700-8530, Japan
| | - Keiko Takanami
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan; Mouse Genomics Resources Laboratory, National Institute of Genetics, Yata, Mishima, Shizuoka 411-8540, Japan
| | - Larry J Young
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Center for Social Neural Networks, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - John F Morris
- Department of Physiology, Anatomy & Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Tatsuya Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan; Department of Physiology, Anatomy & Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| |
Collapse
|
18
|
Konijnenberg E, Tijms BM, Gobom J, Dobricic V, Bos I, Vos S, Tsolaki M, Verhey F, Popp J, Martinez-Lage P, Vandenberghe R, Lleó A, Frölich L, Lovestone S, Streffer J, Bertram L, Blennow K, Teunissen CE, Veerhuis R, Smit AB, Scheltens P, Zetterberg H, Visser PJ. APOE ε4 genotype-dependent cerebrospinal fluid proteomic signatures in Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2020; 12:65. [PMID: 32460813 PMCID: PMC7254647 DOI: 10.1186/s13195-020-00628-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/06/2020] [Indexed: 02/04/2023]
Abstract
Background Aggregation of amyloid β into plaques in the brain is one of the earliest pathological events in Alzheimer’s disease (AD). The exact pathophysiology leading to dementia is still uncertain, but the apolipoprotein E (APOE) ε4 genotype plays a major role. We aimed to identify the molecular pathways associated with amyloid β aggregation using cerebrospinal fluid (CSF) proteomics and to study the potential modifying effects of APOE ε4 genotype. Methods We tested 243 proteins and protein fragments in CSF comparing 193 subjects with AD across the cognitive spectrum (65% APOE ε4 carriers, average age 75 ± 7 years) against 60 controls with normal CSF amyloid β, normal cognition, and no APOE ε4 allele (average age 75 ± 6 years). Results One hundred twenty-nine proteins (53%) were associated with aggregated amyloid β. APOE ε4 carriers with AD showed altered concentrations of proteins involved in the complement pathway and glycolysis when cognition was normal and lower concentrations of proteins involved in synapse structure and function when cognitive impairment was moderately severe. APOE ε4 non-carriers with AD showed lower expression of proteins involved in synapse structure and function when cognition was normal and lower concentrations of proteins that were associated with complement and other inflammatory processes when cognitive impairment was mild. Repeating analyses for 114 proteins that were available in an independent EMIF-AD MBD dataset (n = 275) showed that 80% of the proteins showed group differences in a similar direction, but overall, 28% effects reached statistical significance (ranging between 6 and 87% depending on the disease stage and genotype), suggesting variable reproducibility. Conclusions These results imply that AD pathophysiology depends on APOE genotype and that treatment for AD may need to be tailored according to APOE genotype and severity of the cognitive impairment.
Collapse
Affiliation(s)
- Elles Konijnenberg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
| | - Johan Gobom
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
| | - Isabelle Bos
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Stephanie Vos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Magda Tsolaki
- 1st Department of Neurology, AHEPA University Hospital, Thessaloniki, Macedonia, Greece
| | - Frans Verhey
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Julius Popp
- Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - Pablo Martinez-Lage
- Department of Neurology, Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, San Sebastian, Spain
| | | | - Alberto Lleó
- Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Lutz Frölich
- Department of Geriatric Psychiatry, Zentralinstitut für Seelische Gesundheit, University of Heidelberg, Mannheim, Germany
| | - Simon Lovestone
- Department of Psychiatry, University of Oxford, Oxford, UK.,Janssen R&D, Beerse, Belgium
| | - Johannes Streffer
- Early Clinical Neurology, UCB Biopharma SPRL, Braine-l'Alleud, Belgium.,Present Address: Janssen R&D, LLC, Beerse, Belgium
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany.,School of Public Health, Imperial College London, London, UK.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Kaj Blennow
- Clinical Neurochemistry Lab, Institute of Neuroscience and Physiology, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Charlotte E Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Robert Veerhuis
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden.,Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute, London, UK
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands.,Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Instutet, Stockholm, Sweden
| |
Collapse
|
19
|
Birinci Y, Preobraschenski J, Ganzella M, Jahn R, Park Y. Isolation of large dense-core vesicles from bovine adrenal medulla for functional studies. Sci Rep 2020; 10:7540. [PMID: 32371955 PMCID: PMC7200684 DOI: 10.1038/s41598-020-64486-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/17/2020] [Indexed: 01/17/2023] Open
Abstract
Large dense-core vesicles (LDCVs) contain a variety of neurotransmitters, proteins, and hormones such as biogenic amines and peptides, together with microRNAs (miRNAs). Isolation of LDCVs is essential for functional studies including vesicle fusion, vesicle acidification, monoamine transport, and the miRNAs stored in LDCVs. Although several methods were reported for purifying LDCVs, the final fractions are significantly contaminated by other organelles, compromising biochemical characterization. Here we isolated LDCVs (chromaffin granules) with high yield and purity from bovine adrenal medulla. The fractionation protocol combines differential and continuous sucrose gradient centrifugation, allowing for reducing major contaminants such as mitochondria. Purified LDCVs show robust acidification by the endogenous V-ATPase and undergo SNARE-mediated fusion with artificial membranes. Interestingly, LDCVs contain specific miRNAs such as miR-375 and miR-375 is stabilized by protein complex against RNase A. This protocol can be useful in research on the biological functions of LDCVs.
Collapse
Affiliation(s)
- Yelda Birinci
- Department of Molecular Biology and Genetics, Koç University, Istanbul, 34450, Turkey
| | - Julia Preobraschenski
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Marcelo Ganzella
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany.
| | - Yongsoo Park
- Department of Molecular Biology and Genetics, Koç University, Istanbul, 34450, Turkey. .,Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar.
| |
Collapse
|
20
|
Dabral D, Coorssen JR. Combined targeted Omic and Functional Assays Identify Phospholipases A₂ that Regulate Docking/Priming in Calcium-Triggered Exocytosis. Cells 2019; 8:cells8040303. [PMID: 30986994 PMCID: PMC6523306 DOI: 10.3390/cells8040303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/24/2019] [Accepted: 03/28/2019] [Indexed: 12/12/2022] Open
Abstract
The fundamental molecular mechanism underlying the membrane merger steps of regulated exocytosis is highly conserved across cell types. Although involvement of Phospholipase A₂ (PLA₂) in regulated exocytosis has long been suggested, its function or that of its metabolites-a lyso-phospholipid and a free fatty acid-remain somewhat speculative. Here, using a combined bioinformatics and top-down discovery proteomics approach, coupled with lipidomic analyses, PLA₂ were found to be associated with release-ready cortical secretory vesicles (CV) that possess the minimal molecular machinery for docking, Ca2+ sensing and membrane fusion. Tightly coupling the molecular analyses with well-established quantitative fusion assays, we show for the first time that inhibition of a CV surface calcium independent intracellular PLA₂ and a luminal secretory PLA₂ significantly reduce docking/priming in the late steps of regulated exocytosis, indicating key regulatory roles in the critical step(s) preceding membrane merger.
Collapse
Affiliation(s)
- Deepti Dabral
- Molecular Physiology and Molecular Medicine Research Group, School of Medicine, Western Sydney University, Campbelltown Campus, NSW 2560, Australia.
| | - Jens R Coorssen
- Department of Health Sciences, Faculty of Applied Health Sciences and Department of Biological Sciences, Faculty of Mathematics & Science, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
21
|
Hook V, Kind T, Podvin S, Palazoglu M, Tran C, Toneff T, Samra S, Lietz C, Fiehn O. Metabolomics Analyses of 14 Classical Neurotransmitters by GC-TOF with LC-MS Illustrates Secretion of 9 Cell-Cell Signaling Molecules from Sympathoadrenal Chromaffin Cells in the Presence of Lithium. ACS Chem Neurosci 2019; 10:1369-1379. [PMID: 30698015 DOI: 10.1021/acschemneuro.8b00432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The classical small molecule neurotransmitters are essential for cell-cell signaling in the nervous system for regulation of behaviors and physiological functions. Metabolomics approaches are ideal for quantitative analyses of neurotransmitter profiles but have not yet been achieved for the repertoire of 14 classical neurotransmitters. Therefore, this study developed targeted metabolomics analyses by full scan gas chromatography/time-of-flight mass spectrometry (GC-TOF) and hydrophilic interaction chromatography-QTRAP mass spectrometry (HILIC-MS/MS) operated in positive ionization mode for identification and quantitation of 14 neurotransmitters consisting of acetylcholine, adenosine, anandamide, aspartate, dopamine, epinephrine, GABA, glutamate, glycine, histamine, melatonin, norepinephrine, serine, and serotonin. GC-TOF represents a new metabolomics method for neurotransmitter analyses. Sensitive measurements of 11 neurotransmitters were achieved by GC-TOF, and three neurotransmitters were analyzed by LC-MS/MS (acetylcholine, anandamide, and melatonin). The limits of detection (LOD) and limits of quantitation (LOQ) were assessed for linearity for GC-TOF and LC-MS/MS protocols. In neurotransmitter-containing dense core secretory vesicles of adrenal medulla, known as chromaffin granules (CG), metabolomics measured the concentrations of 9 neurotransmitters consisting of the catecholamines dopamine, norepinephrine, and epinephrine, combined with glutamate, serotonin, adenosine, aspartate, glycine, and serine. The CG neurotransmitters were constitutively secreted from sympathoadrenal chromaffin cells in culture. Nicotine- and KCl-stimulated release of the catecholamines and adenosine. Lithium, a drug used for the treatment of bipolar disorder, decreased the constitutive secretion of dopamine and norepinephrine and decreased nicotine-stimulated secretion of epinephrine. Lithium had no effect on other secreted neurotransmitters. Overall, the newly developed GC-TOF with LC-MS/MS metabolomics methods for analyses of 14 neurotransmitters will benefit investigations of neurotransmitter regulation in biological systems and in human disease conditions related to drug treatments.
Collapse
Affiliation(s)
- Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Department of Neurosciences and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Tobias Kind
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Mine Palazoglu
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Carol Tran
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Thomas Toneff
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Stephanie Samra
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Christopher Lietz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Oliver Fiehn
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
22
|
Abbineni PS, Coorssen JR. Sphingolipids modulate docking, Ca 2+ sensitivity and membrane fusion of native cortical vesicles. Int J Biochem Cell Biol 2018; 104:43-54. [PMID: 30195064 DOI: 10.1016/j.biocel.2018.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/31/2018] [Accepted: 09/01/2018] [Indexed: 12/16/2022]
Abstract
Docking, priming, and membrane fusion of secretory vesicles (i.e. regulated exocytosis) requires lipids and proteins. Sphingolipids, in particular, sphingosine and sphingosine-1-phosphate, have been implicated in the modulation of exocytosis. However, the specific exocytotic steps that sphingolipids modulate and the enzymes that regulate sphingolipid concentrations on native secretory vesicle membranes remain unknown. Here we use tightly coupled functional and molecular analyses of fusion-ready cell surface complexes and cortical vesicles isolated from oocytes to assess the role of sphingolipids in the late, Ca2+-triggered steps of exocytosis. The molecular changes resulting from treatments with sphingolipid modifying compounds coupled with immunoblotting analysis revealed the presence of sphingosine kinase on native vesicles; the presence of a sphingosine-1-phosphate phosphatase is also indicated. Changes in sphingolipid concentrations on vesicles altered their docking/priming, Ca2+-sensitivity, and ability to fuse, indicating that sphingolipid concentrations are tightly regulated and maintained at optimal levels and ratios to ensure efficient exocytosis.
Collapse
Affiliation(s)
- Prabhodh S Abbineni
- Department of Molecular Physiology, and the WSU Molecular Medicine Research Group, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Jens R Coorssen
- Department of Health Sciences, Faculty of Applied Health Sciences, Department of Biology, Faculty of Mathematics and Science, Brock University, St. Catharines, Ontario, Canada.
| |
Collapse
|
23
|
Lietz CB, Toneff T, Mosier C, Podvin S, O'Donoghue AJ, Hook V. Phosphopeptidomics Reveals Differential Phosphorylation States and Novel SxE Phosphosite Motifs of Neuropeptides in Dense Core Secretory Vesicles. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:935-947. [PMID: 29556927 PMCID: PMC5943185 DOI: 10.1007/s13361-018-1915-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 05/23/2023]
Abstract
Neuropeptides are vital for cell-cell communication and function in the regulation of the nervous and endocrine systems. They are generated by post-translational modification (PTM) steps resulting in small active peptides generated from prohormone precursors. Phosphorylation is a significant PTM for the bioactivity of neuropeptides. From the known diversity of distinct neuropeptide functions, it is hypothesized that the extent of phosphorylation varies among different neuropeptides. To assess this hypothesis, neuropeptide-containing dense core secretory vesicles from bovine adrenal medullary chromaffin cells were subjected to global phosphopeptidomics analyses by liquid chromatography (LC)-mass spectrometry (MS/MS). Phosphopeptides were identified directly by LC-MS/MS and indirectly by phosphatase treatment followed by LC-MS/MS. The data identified numerous phosphorylated peptides derived from neuropeptide precursors such as chromogranins, secretogranins, proenkephalin and pro-NPY. Phosphosite occupancies were observed at high and low levels among identified peptides and many of the high occupancy phosphopeptides represent prohormone-derived peptides with currently unknown bioactivities. Peptide sequence analyses demonstrated SxE as the most prevalent phosphorylation site motif, corresponding to phosphorylation sites of the Fam20C protein kinase known to be present in the secretory pathway. The range of high to low phosphosite occupancies for neuropeptides demonstrates cellular regulation of neuropeptide phosphorylation. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Christopher B Lietz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr. MC0719, La Jolla, CA, 92093-0719, USA
| | - Thomas Toneff
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr. MC0719, La Jolla, CA, 92093-0719, USA
| | - Charles Mosier
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr. MC0719, La Jolla, CA, 92093-0719, USA
| | - Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr. MC0719, La Jolla, CA, 92093-0719, USA
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr. MC0719, La Jolla, CA, 92093-0719, USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr. MC0719, La Jolla, CA, 92093-0719, USA.
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
24
|
Ross JA, Reyes BAS, Van Bockstaele EJ. Amyloid beta peptides, locus coeruleus-norepinephrine system and dense core vesicles. Brain Res 2018; 1702:46-53. [PMID: 29577889 DOI: 10.1016/j.brainres.2018.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 10/17/2022]
Abstract
The evolution of peptidergic signaling systems in the central nervous system serves a distinct and crucial role in brain processes and function. The diversity of physiological peptides and the complexity of their regulation and secretion from the dense core vesicles (DCV) throughout the brain is a topic greatly in need of investigation, though recent years have shed light on cellular and molecular mechanisms that are summarized in this review. Here, we focus on the convergence of peptidergic systems onto the Locus Coeruleus (LC), the sole provider of norepinephrine (NE) to the cortex and hippocampus, via large DCV. As the LC-NE system is one of the first regions of the brain to undergo degeneration in Alzheimer's Disease (AD), and markers of DCV have consistently been demonstrated to have biomarker potential for AD progression, here we summarize the current literature linking the LC-NE system with DCV dysregulation and Aβ peptides. We also include neuroanatomical data suggesting that the building blocks of senile plaques, Aβ monomers, may be localized to DCV of the LC and noradrenergic axon terminals of the prefrontal cortex. Finally, we explore the putative consequences of chronic stress on Aβ production and the role that DCV may play in LC degeneration. Clinical data of immunological markers of DCV in AD patients are discussed.
Collapse
Affiliation(s)
- Jennifer A Ross
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA 19102, United States.
| | - Beverly A S Reyes
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA 19102, United States
| | - Elisabeth J Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA 19102, United States
| |
Collapse
|
25
|
Jackson MB. Chemistry in a vesicle. J Gen Physiol 2017; 149:893-896. [PMID: 28899933 PMCID: PMC5694936 DOI: 10.1085/jgp.201711894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Slow fusion pore expansion could retain molecules within vesicles, enabling a chemical reaction that modifies secreted products.
Collapse
Affiliation(s)
- Meyer B Jackson
- Department of Neuroscience, University of Wisconsin, Madison, WI
| |
Collapse
|
26
|
Sahu BS, Manna PT, Edgar JR, Antrobus R, Mahata SK, Bartolomucci A, Borner GHH, Robinson MS. Role of clathrin in dense core vesicle biogenesis. Mol Biol Cell 2017; 28:2676-2685. [PMID: 28814506 PMCID: PMC5620375 DOI: 10.1091/mbc.e16-10-0742] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 07/13/2017] [Accepted: 08/07/2017] [Indexed: 11/11/2022] Open
Abstract
The dense core vesicles (DCVs) of neuroendocrine cells are a rich source of bioactive molecules such as peptides, hormones, and neurotransmitters, but relatively little is known about how they are formed. Using fractionation profiling, a method that combines subcellular fractionation with mass spectrometry, we identified ∼1200 proteins in PC12 cell vesicle-enriched fractions, with DCV-associated proteins showing distinct profiles from proteins associated with other types of vesicles. To investigate the role of clathrin in DCV biogenesis, we stably transduced PC12 cells with an inducible short hairpin RNA targeting clathrin heavy chain, resulting in ∼85% protein loss. DCVs could still be observed in the cells by electron microscopy, but mature profiles were approximately fourfold less abundant than in mock-treated cells. By quantitative mass spectrometry, DCV-associated proteins were found to be reduced approximately twofold in clathrin-depleted cells as a whole and approximately fivefold in vesicle-enriched fractions. Our combined data sets enabled us to identify new candidate DCV components. Secretion assays revealed that clathrin depletion causes a near-complete block in secretagogue-induced exocytosis. Taken together, our data indicate that clathrin has a function in DCV biogenesis beyond its established role in removing unwanted proteins from the immature vesicle.
Collapse
Affiliation(s)
- Bhavani S Sahu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Paul T Manna
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Sushil K Mahata
- Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161.,Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455
| | - Georg H H Borner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
27
|
Witkowska A, Jahn R. Rapid SNARE-Mediated Fusion of Liposomes and Chromaffin Granules with Giant Unilamellar Vesicles. Biophys J 2017; 113:1251-1259. [PMID: 28400045 PMCID: PMC5607038 DOI: 10.1016/j.bpj.2017.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 11/03/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) proteins are the main catalysts for membrane fusion in the secretory pathway of eukaryotic cells. In vitro, SNAREs are sufficient to mediate effective fusion of both native and artificial membranes. Here we have established, to our knowledge, a new platform for monitoring SNARE-mediated docking and fusion between giant unilamellar vesicles (GUVs) and smaller liposomes or purified secretory granules with high temporal and spatial resolution. Analysis of fusion is restricted to the free-standing part of the GUV-membrane exhibiting low curvature and a lack of surface contact, thus avoiding adhesion-mediated interference with the fusion reaction as in fusion with supported bilayers or surface-immobilized small vesicles. Our results show that liposomes and chromaffin granules fuse with GUVs containing activated SNAREs with only few milliseconds delay between docking and fusion. We conclude that after initial contact in trans, SNAREs alone can complete fusion at a rate close to fast neuronal exocytosis.
Collapse
Affiliation(s)
- Agata Witkowska
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; International Max Planck Research School for Molecular Biology at the University of Göttingen, Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
28
|
Albrethsen J, Goetze JP, Johnsen AH. Mining the granule proteome: a potential source of endocrine biomarkers. Biomark Med 2015; 9:259-65. [PMID: 25731211 DOI: 10.2217/bmm.14.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Proteomics of secretory granules is an emerging strategy for identifying secreted proteins, including potentially novel candidate biomarkers and peptide hormones. In addition, proteomics can provide information about the abundance, localization and structure (post-translational modification) of granule proteins and peptides. Analytical strategies within this research line include so-called 'subtractive proteomics', 'peptidomics' and granule purification by the use of multiple gradient centrifugations. Here we review the literature, and describe the challenges and opportunities in proteomics of secretory granules.
Collapse
Affiliation(s)
- Jakob Albrethsen
- Department of Clinical Biochemistry (KB3014), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | | | | |
Collapse
|
29
|
Podvin S, Bundey R, Toneff T, Ziegler M, Hook V. Profiles of secreted neuropeptides and catecholamines illustrate similarities and differences in response to stimulation by distinct secretagogues. Mol Cell Neurosci 2015; 68:177-85. [PMID: 26092702 DOI: 10.1016/j.mcn.2015.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/12/2015] [Accepted: 06/01/2015] [Indexed: 12/20/2022] Open
Abstract
The goal of this study was to define profiles of secreted neuropeptide and catecholamine neurotransmitters that undergo co-release from sympathoadrenal chromaffin cells upon stimulation by distinct secretagogues. Chromaffin cells of the adrenal medulla participate in the dynamic responses to stress, especially that of 'fight and flight', and, thus, analyses of the co-release of multiple neurotransmitters is necessary to gain knowledge of how the stress response regulates cell-cell communication among physiological systems. Results of this study demonstrated that six different secretagogues stimulated the co-release of the neuropeptides Met-enkephalin, galanin, NPY, and VIP with the catecholamines dopamine, norepinephrine, and epinephrine. Importantly, the quantitative profiles of the secreted neurotransmitters showed similarities and differences upon stimulation by the different secretagogues evaluated, composed of KCl depolarization, nicotine, carbachol, PACAP, bradykinin, and histamine. The rank-orders of the secreted profiles of the neurotransmitters were generally similar among these secretagogues, but differences in the secreted amounts of each neurotransmitter occurred with different secretagogues. Epinephrine among the catecholamines showed the highest level of secretion. (Met)enkephalin showed the largest levels of secretion compared to the other neuropeptides examined. Levels of secreted catecholamines were greater than that of the neuropeptides. These data support the hypothesis that profiles of secreted neuropeptide and catecholamine neurotransmitters show similarities and differences upon stimulation by distinct secretagogues. These results illustrate the co-release of concerted neurotransmitter profiles that participate in the stress response of the sympathoadrenal nervous system.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Univ. of Calif.-San Diego, La Jolla, CA 92093, United States
| | - Richard Bundey
- Dept. of Medicine, Univ. of Calif.-San Diego, La Jolla, CA 92093, United States
| | - Thomas Toneff
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Univ. of Calif.-San Diego, La Jolla, CA 92093, United States
| | - Michael Ziegler
- Dept. of Medicine, Univ. of Calif.-San Diego, La Jolla, CA 92093, United States
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Univ. of Calif.-San Diego, La Jolla, CA 92093, United States; Dept. of Neuroscience and Dept. of Pharmacology, School of Medicine, Univ. of Calif.-San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
30
|
Cynis H, Funkelstein L, Toneff T, Mosier C, Ziegler M, Koch B, Demuth HU, Hook V. Pyroglutamate-amyloid-β and glutaminyl cyclase are colocalized with amyloid-β in secretory vesicles and undergo activity-dependent, regulated secretion. NEURODEGENER DIS 2014; 14:85-97. [PMID: 24943989 DOI: 10.1159/000358430] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 01/07/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND AIMS N-truncated pyroglutamate (pGlu)-amyloid-β [Aβ(3-40/42)] peptides are key components that promote Aβ peptide accumulation, leading to neurodegeneration and memory loss in Alzheimer's disease. Because Aβ deposition in the brain occurs in an activity-dependent manner, it is important to define the subcellular organelle for pGlu-Aβ(3-40/42) production by glutaminyl cyclase (QC) and their colocalization with full-length Aβ(1-40/42) peptides for activity-dependent, regulated secretion. Therefore, the objective of this study was to investigate the hypothesis that pGlu-Aβ and QC are colocalized with Aβ in dense-core secretory vesicles (DCSV) for activity-dependent secretion with neurotransmitters. METHODS Purified DCSV were assessed for pGlu-Aβ(3-40/42), Aβ(1-40/42), QC, and neurotransmitter secretion. Neuron-like chromaffin cells were analyzed for cosecretion of pGlu-Aβ, QC, Aβ, and neuropeptides. The cells were treated with a QC inhibitor, and pGlu-Aβ production was measured. Human neuroblastoma cells were also examined for pGlu-Aβ and QC secretion. RESULTS Isolated DCSV contain pGlu-Aβ(3-40/42), QC, and Aβ(1-40/42) with neuropeptide and catecholamine neurotransmitters. Cellular pGlu-Aβ and QC undergo activity-dependent cosecretion with Aβ and enkephalin and galanin neurotransmitters. The QC inhibitor decreased the level of secreted pGlu-Aβ. The human neuroblastoma cells displayed regulated secretion of pGlu-Aβ that was colocalized with QC. CONCLUSIONS pGlu-Aβ and QC are present with Aβ in DCSV and undergo activity-dependent, regulated cosecretion with neurotransmitters.
Collapse
|
31
|
Zhang K, Biswas N, Gayen JR, Miramontes-Gonzalez JP, Hightower CM, Mustapic M, Mahata M, Huang CT, Hook VY, Mahata SK, Vaingankar S, O'Connor DT. Chromogranin B: intra- and extra-cellular mechanisms to regulate catecholamine storage and release, in catecholaminergic cells and organisms. J Neurochem 2013; 129:48-59. [PMID: 24266713 DOI: 10.1111/jnc.12527] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/05/2013] [Accepted: 11/03/2013] [Indexed: 11/26/2022]
Abstract
Chromogranin B (CHGB) is the major matrix protein in human catecholamine storage vesicles. CHGB genetic variation alters catecholamine secretion and blood pressure. Here, effective Chgb protein under-expression was achieved by siRNA in PC12 cells, resulting in ~ 48% fewer secretory granules on electron microscopy, diminished capacity for catecholamine uptake (by ~ 79%), and a ~ 73% decline in stores available for nicotinic cholinergic-stimulated secretion. In vivo, loss of Chgb in knockout mice resulted in a ~ 35% decline in chromaffin granule abundance and ~ 44% decline in granule diameter, accompanied by unregulated catecholamine release into plasma. Over-expression of CHGB was achieved by transduction of a CHGB-expressing lentivirus, resulting in ~ 127% elevation in CHGB protein, with ~ 122% greater abundance of secretory granules, but only ~ 14% increased uptake of catecholamines, and no effect on nicotinic-triggered secretion. Human CHGB protein and its proteolytic fragments inhibited nicotinic-stimulated catecholamine release by ~ 72%. One conserved-region CHGB peptide inhibited nicotinic-triggered secretion by up to ~ 41%, with partial blockade of cationic signal transduction. We conclude that bi-directional quantitative derangements in CHGB abundance result in profound changes in vesicular storage and release of catecholamines. When processed and released extra-cellularly, CHGB proteolytic fragments exert a feedback effect to inhibit catecholamine secretion, especially during nicotinic cholinergic stimulation.
Collapse
Affiliation(s)
- Kuixing Zhang
- Departments of Medicine and Pharmacology, and Institute for Genomic Medicine (IGM), University of California at San Diego, La Jolla, California, USA; VA San Diego Healthcare System, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Moghadam PK, Jackson MB. The functional significance of synaptotagmin diversity in neuroendocrine secretion. Front Endocrinol (Lausanne) 2013; 4:124. [PMID: 24065953 PMCID: PMC3776153 DOI: 10.3389/fendo.2013.00124] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 08/31/2013] [Indexed: 11/25/2022] Open
Abstract
Synaptotagmins (syts) are abundant, evolutionarily conserved integral membrane proteins that play essential roles in regulated exocytosis in nervous and endocrine systems. There are at least 17 syt isoforms in mammals, all with tandem C-terminal C2 domains with highly variable capacities for Ca(2+) binding. Many syts play roles in neurotransmitter release or hormone secretion or both, and a growing body of work supports a role for some syts as Ca(2+) sensors of exocytosis. Work in many types of endocrine cells has documented the presence of a number of syt isoforms on dense-core vesicles containing various hormones. Syts can influence the kinetics of exocytotic fusion pores and the choice of release mode between kiss-and-run and full-fusion. Vesicles harboring different syt isoforms can preferentially undergo distinct modes of exocytosis with different forms of stimulation. The diverse properties of syt isoforms enable these proteins to shape Ca(2+) sensing in endocrine cells, thus contributing to the regulation of hormone release and the organization of complex endocrine functions.
Collapse
Affiliation(s)
| | - Meyer B. Jackson
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
- *Correspondence: Meyer B. Jackson, Department of Neuroscience, University of Wisconsin, 1300 University Avenue, Madison, WI 53706-1510, USA e-mail:
| |
Collapse
|
33
|
Toneff T, Funkelstein L, Mosier C, Abagyan A, Ziegler M, Hook V. Beta-amyloid peptides undergo regulated co-secretion with neuropeptide and catecholamine neurotransmitters. Peptides 2013; 46:126-35. [PMID: 23747840 PMCID: PMC3842158 DOI: 10.1016/j.peptides.2013.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 04/25/2013] [Accepted: 04/27/2013] [Indexed: 01/03/2023]
Abstract
Beta-amyloid (Aβ) peptides are secreted from neurons, resulting in extracellular accumulation of Aβ and neurodegeneration of Alzheimer's disease. Because neuronal secretion is fundamental for the release of neurotransmitters, this study assessed the hypothesis that Aβ undergoes co-release with neurotransmitters. Model neuronal-like chromaffin cells were investigated, and results illustrate regulated, co-secretion of Aβ(1-40) and Aβ(1-42) with peptide neurotransmitters (galanin, enkephalin, and NPY) and catecholamine neurotransmitters (dopamine, norepinephrine, and epinephrine). Regulated secretion from chromaffin cells was stimulated by KCl depolarization and nicotine. Forskolin, stimulating cAMP, also induced co-secretion of Aβ peptides with peptide and catecholamine neurotransmitters. These data suggested the co-localization of Aβ with neurotransmitters in dense core secretory vesicles (DCSV) that store and secrete such chemical messengers. Indeed, Aβ was demonstrated to be present in DCSV with neuropeptide and catecholamine transmitters. Furthermore, the DCSV organelle contains APP and its processing proteases, β- and γ-secretases, that are necessary for production of Aβ. Thus, Aβ can be generated in neurotransmitter-containing DCSV. Human IMR32 neuroblastoma cells also displayed regulated secretion of Aβ(1-40) and Aβ(1-42) with the galanin neurotransmitter. These findings illustrate that Aβ peptides are present in neurotransmitter-containing DCSV, and undergo co-secretion with neuropeptide and catecholamine neurotransmitters that regulate brain functions.
Collapse
Affiliation(s)
- Thomas Toneff
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, United States
- Department and Pharmacology, University of California, San Diego, La Jolla, CA 92093, United States
| | - Lydiane Funkelstein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, United States
- Department and Pharmacology, University of California, San Diego, La Jolla, CA 92093, United States
| | - Charles Mosier
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, United States
- Department and Pharmacology, University of California, San Diego, La Jolla, CA 92093, United States
| | - Armen Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| | - Michael Ziegler
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, United States
- Department and Pharmacology, University of California, San Diego, La Jolla, CA 92093, United States
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
- Corresponding author at: Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive MC0744, La Jolla, CA 92093-0744, United States. Tel.: +1 858 822 6682; fax: +1 858 822 6681. (V. Hook)
| |
Collapse
|
34
|
Craft GE, Chen A, Nairn AC. Recent advances in quantitative neuroproteomics. Methods 2013; 61:186-218. [PMID: 23623823 PMCID: PMC3891841 DOI: 10.1016/j.ymeth.2013.04.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 03/29/2013] [Accepted: 04/13/2013] [Indexed: 01/07/2023] Open
Abstract
The field of proteomics is undergoing rapid development in a number of different areas including improvements in mass spectrometric platforms, peptide identification algorithms and bioinformatics. In particular, new and/or improved approaches have established robust methods that not only allow for in-depth and accurate peptide and protein identification and modification, but also allow for sensitive measurement of relative or absolute quantitation. These methods are beginning to be applied to the area of neuroproteomics, but the central nervous system poses many specific challenges in terms of quantitative proteomics, given the large number of different neuronal cell types that are intermixed and that exhibit distinct patterns of gene and protein expression. This review highlights the recent advances that have been made in quantitative neuroproteomics, with a focus on work published over the last five years that applies emerging methods to normal brain function as well as to various neuropsychiatric disorders including schizophrenia and drug addiction as well as of neurodegenerative diseases including Parkinson's disease and Alzheimer's disease. While older methods such as two-dimensional polyacrylamide electrophoresis continued to be used, a variety of more in-depth MS-based approaches including both label (ICAT, iTRAQ, TMT, SILAC, SILAM), label-free (label-free, MRM, SWATH) and absolute quantification methods, are rapidly being applied to neurobiological investigations of normal and diseased brain tissue as well as of cerebrospinal fluid (CSF). While the biological implications of many of these studies remain to be clearly established, that there is a clear need for standardization of experimental design and data analysis, and that the analysis of protein changes in specific neuronal cell types in the central nervous system remains a serious challenge, it appears that the quality and depth of the more recent quantitative proteomics studies is beginning to shed light on a number of aspects of neuroscience that relates to normal brain function as well as of the changes in protein expression and regulation that occurs in neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- George E Craft
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06508
| | - Anshu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06508
| | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06508
- Yale/NIDA Neuroproteomics Center, Yale University School of Medicine, New Haven, CT, 06508
| |
Collapse
|
35
|
Fitch-Tewfik JL, Flaumenhaft R. Platelet granule exocytosis: a comparison with chromaffin cells. Front Endocrinol (Lausanne) 2013; 4:77. [PMID: 23805129 PMCID: PMC3693082 DOI: 10.3389/fendo.2013.00077] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/11/2013] [Indexed: 11/13/2022] Open
Abstract
The rapid secretion of bioactive amines from chromaffin cells constitutes an important component of the fight or flight response of mammals to stress. Platelets respond to stresses within the vasculature by rapidly secreting cargo at sites of injury, inflammation, or infection. Although chromaffin cells derive from the neural crest and platelets from bone marrow megakaryocytes, both have evolved a heterogeneous assemblage of granule types and a mechanism for efficient release. This article will provide an overview of granule formation and exocytosis in platelets with an emphasis on areas in which the study of chromaffin cells has influenced that of platelets and on similarities between the two secretory systems. Commonalities include the use of transporters to concentrate bioactive amines and other cargos into granules, the role of cytoskeletal remodeling in granule exocytosis, and the use of granules to provide membrane for cytoplasmic projections. The SNAREs and SNARE accessory proteins used by each cell type will also be considered. Finally, we will discuss the newly appreciated role of dynamin family proteins in regulated fusion pore formation. This evaluation of the comparative cell biology of regulated exocytosis in platelets and chromaffin cells demonstrates a convergence of mechanisms between two disparate cell types both tasked with responding rapidly to physiological stimuli.
Collapse
Affiliation(s)
- Jennifer L. Fitch-Tewfik
- Division of Hemostasis and Thrombosis, Department of Medicine, BIDMC, Harvard Medical School, Boston, MA, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, BIDMC, Harvard Medical School, Boston, MA, USA
- *Correspondence: Robert Flaumenhaft, Center for Life Science, Beth Israel Deaconess Medical Center, Room 939, 3 Blackfan Circle, Boston, MA 02215, USA e-mail:
| |
Collapse
|
36
|
Bonnemaison ML, Eipper BA, Mains RE. Role of adaptor proteins in secretory granule biogenesis and maturation. Front Endocrinol (Lausanne) 2013; 4:101. [PMID: 23966980 PMCID: PMC3743005 DOI: 10.3389/fendo.2013.00101] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/31/2013] [Indexed: 12/29/2022] Open
Abstract
In the regulated secretory pathway, secretory granules (SGs) store peptide hormones that are released on demand. SGs are formed at the trans-Golgi network and must undergo a maturation process to become responsive to secretagogues. The production of mature SGs requires concentrating newly synthesized soluble content proteins in granules whose membranes contain the appropriate integral membrane proteins. The mechanisms underlying the sorting of soluble and integral membrane proteins destined for SGs from other proteins are not yet well understood. For soluble proteins, luminal pH and divalent metals can affect aggregation and interaction with surrounding membranes. The trafficking of granule membrane proteins can be controlled by both luminal and cytosolic factors. Cytosolic adaptor proteins (APs), which recognize the cytosolic domains of proteins that span the SG membrane, have been shown to play essential roles in the assembly of functional SGs. Adaptor protein 1A (AP-1A) is known to interact with specific motifs in its cargo proteins and with the clathrin heavy chain, contributing to the formation of a clathrin coat. AP-1A is present in patches on immature SG membranes, where it removes cargo and facilitates SG maturation. AP-1A recruitment to membranes can be modulated by Phosphofurin Acidic Cluster Sorting protein 1 (PACS-1), a cytosolic protein which interacts with both AP-1A and cargo that has been phosphorylated by casein kinase II. A cargo/PACS-1/AP-1A complex is necessary to drive the appropriate transport of several cargo proteins within the regulated secretory pathway. The Golgi-localized, γ-ear containing, ADP-ribosylation factor binding (GGA) family of APs serve a similar role. We review the functions of AP-1A, PACS-1, and GGAs in facilitating the retrieval of proteins from immature SGs and review examples of cargo proteins whose trafficking within the regulated secretory pathway is governed by APs.
Collapse
Affiliation(s)
- Mathilde L. Bonnemaison
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Betty A. Eipper
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Richard E. Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
- *Correspondence: Richard E. Mains, Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3401, USA e-mail:
| |
Collapse
|
37
|
Mao S, Zhang J, Li H, Lin JM. Strategy for Signaling Molecule Detection by Using an Integrated Microfluidic Device Coupled with Mass Spectrometry to Study Cell-to-Cell Communication. Anal Chem 2012; 85:868-76. [DOI: 10.1021/ac303164b] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Sifeng Mao
- Beijing Key Laboratory of Microanalytical
Methods and
Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jie Zhang
- Beijing Key Laboratory of Microanalytical
Methods and
Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Haifang Li
- Beijing Key Laboratory of Microanalytical
Methods and
Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical
Methods and
Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
38
|
Lu K, Knutson CG, Wishnok JS, Fox JG, Tannenbaum SR. Serum metabolomics in a Helicobacter hepaticus mouse model of inflammatory bowel disease reveal important changes in the microbiome, serum peptides, and intermediary metabolism. J Proteome Res 2012; 11:4916-26. [PMID: 22957933 DOI: 10.1021/pr300429x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disorder of the bowel. The etiology remains unknown, but IBD is immune-driven and multiple factors including genetic, environmental, and microbiological components play a role. Recombinase-activating gene-2-deficient (Rag2(-/-)) mice infected with Helicobacter hepaticus (H. hepaticus) have been developed as an animal model to imitate naturally occurring inflammatory events and associated key features of chronic inflammatory responses in humans. In this study, we have combined mass spectrometry-based metabolomics and peptidomics to analyze serum samples of Rag2(-/-) mice infected with H. hepaticus. Metabolomics profiling revealed that H. hepaticus infection dramatically changed numerous metabolite pathways, including tryptophan metabolism, glycerophospholipids, methionine-homocysteine cycle, citrate cycle, fatty acid metabolism and purine metabolism, with the majority of metabolites being down-regulated. In particular, there were notable effects of gut microflora on the blood metabolites in infected animals. In addition, the peptidomics approach identified a number of peptides, originating from proteins, including fibrinogen, complement C4, and alpha-2-macroglobulin, with diverse biological functions with potentially important implications for the progress of IBD. In summary, the strategy of integrating a relevant animal model and sensitive mass spectrometry-based profiling may offer a new perspective to explore biomarkers and provide mechanistic insights into IBD.
Collapse
Affiliation(s)
- Kun Lu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | | | | | | | |
Collapse
|
39
|
Elias S, Delestre C, Ory S, Marais S, Courel M, Vazquez-Martinez R, Bernard S, Coquet L, Malagon MM, Driouich A, Chan P, Gasman S, Anouar Y, Montero-Hadjadje M. Chromogranin A induces the biogenesis of granules with calcium- and actin-dependent dynamics and exocytosis in constitutively secreting cells. Endocrinology 2012; 153:4444-56. [PMID: 22851679 DOI: 10.1210/en.2012-1436] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chromogranins are a family of acidic glycoproteins that play an active role in hormone and neuropeptide secretion through their crucial role in secretory granule biogenesis in neuroendocrine cells. However, the molecular mechanisms underlying their granulogenic activity are still not fully understood. Because we previously demonstrated that the expression of the major component of secretory granules, chromogranin A (CgA), is able to induce the formation of secretory granules in nonendocrine COS-7 cells, we decided to use this model to dissect the mechanisms triggered by CgA leading to the biogenesis and trafficking of such granules. Using quantitative live cell imaging, we first show that CgA-induced organelles exhibit a Ca(2+)-dependent trafficking, in contrast to native vesicle stomatitis virus G protein-containing constitutive vesicles. To identify the proteins that confer such properties to the newly formed granules, we developed CgA-stably-expressing COS-7 cells, purified their CgA-containing granules by subcellular fractionation, and analyzed the granule proteome by liquid chromatography-tandem mass spectrometry. This analysis revealed the association of several cytosolic proteins to the granule membrane, including GTPases, cytoskeleton-based molecular motors, and other proteins with actin- and/or Ca(2+)-binding properties. Furthermore, disruption of cytoskeleton affects not only the distribution and the transport but also the Ca(2+)-evoked exocytosis of the CgA-containing granules, indicating that these granules interact with microtubules and cortical actin for the regulated release of their content. These data demonstrate for the first time that the neuroendocrine factor CgA induces the recruitment of cytoskeleton-, GTP-, and Ca(2+)-binding proteins in constitutively secreting COS-7 cells to generate vesicles endowed with typical dynamics and exocytotic properties of neuroendocrine secretory granules.
Collapse
Affiliation(s)
- Salah Elias
- Institut National de la Santé et de la Recherche Médicale (Inserm) U982, University of Rouen, Mont-Saint-Aignan 76821, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bark SJ, Wegrzyn J, Taupenot L, Ziegler M, O'Connor DT, Ma Q, Smoot M, Ideker T, Hook V. The protein architecture of human secretory vesicles reveals differential regulation of signaling molecule secretion by protein kinases. PLoS One 2012; 7:e41134. [PMID: 22916103 PMCID: PMC3420874 DOI: 10.1371/journal.pone.0041134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/17/2012] [Indexed: 12/25/2022] Open
Abstract
Secretory vesicles are required for release of chemical messengers to mediate intercellular signaling among human biological systems. It is necessary to define the organization of the protein architecture of the ‘human’ dense core secretory vesicles (DCSV) to understand mechanisms for secretion of signaling molecules essential for cellular regulatory processes. This study, therefore, conducted extensive quantitative proteomics and systems biology analyses of human DCSV purified from human pheochromocytoma. Over 600 human DCSV proteins were identified with quantitative evaluation of over 300 proteins, revealing that most proteins participate in producing peptide hormones and neurotransmitters, enzymes, and the secretory machinery. Systems biology analyses provided a model of interacting DCSV proteins, generating hypotheses for differential intracellular protein kinases A and C signaling pathways. Activation of cellular PKA and PKC pathways resulted in differential secretion of neuropeptides, catecholamines, and β-amyloid of Alzheimer's disease for mediating cell-cell communication. This is the first study to define a model of the protein architecture of human DCSV for human disease and health.
Collapse
Affiliation(s)
- Steven J. Bark
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (SJB) ; or (VH)
| | - Jill Wegrzyn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Laurent Taupenot
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Michael Ziegler
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Daniel T. O'Connor
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Qi Ma
- Graduate Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, California, United States of America
| | - Michael Smoot
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- Departments of Neurosciences and Pharmacology, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (SJB) ; or (VH)
| |
Collapse
|
41
|
Lu WD, Funkelstein L, Toneff T, Reinheckel T, Peters C, Hook V. Cathepsin H functions as an aminopeptidase in secretory vesicles for production of enkephalin and galanin peptide neurotransmitters. J Neurochem 2012; 122:512-22. [PMID: 22582844 PMCID: PMC3417130 DOI: 10.1111/j.1471-4159.2012.07788.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peptide neurotransmitters function as key intercellular signaling molecules in the nervous system. These peptides are generated in secretory vesicles from proneuropeptides by proteolytic processing at dibasic residues, followed by removal of N- and/or C-terminal basic residues to form active peptides. Enkephalin biosynthesis from proenkephalin utilizes the cysteine protease cathepsin L and the subtilisin-like prohormone convertase 2 (PC2). Cathepsin L generates peptide intermediates with N-terminal basic residue extensions, which must be removed by an aminopeptidase. In this study, we identified cathepsin H as an aminopeptidase in secretory vesicles that produces (Met)enkephalin (ME) by sequential removal of basic residues from KR-ME and KK-ME, supported by in vivo knockout of the cathepsin H gene. Localization of cathepsin H in secretory vesicles was demonstrated by immunoelectron microscopy and immunofluorescence deconvolution microscopy. Purified human cathepsin H sequentially removes N-terminal basic residues to generate ME, with peptide products characterized by nano-LC-MS/MS tandem mass spectrometry. Cathepsin H shows highest activities for cleaving N-terminal basic residues (Arg and Lys) among amino acid fluorogenic substrates. Notably, knockout of the cathepsin H gene results in reduction of ME in mouse brain. Cathepsin H deficient mice also show a substantial decrease in galanin peptide neurotransmitter levels in brain. These results illustrate a role for cathepsin H as an aminopeptidase for enkephalin and galanin peptide neurotransmitter production.
Collapse
Affiliation(s)
- Weiya Douglas Lu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | | | | | | | | | | |
Collapse
|
42
|
Minogue S, Waugh MG. Lipid rafts, microdomain heterogeneity and inter-organelle contacts: impacts on membrane preparation for proteomic studies. Biol Cell 2012; 104:618-27. [PMID: 22694059 DOI: 10.1111/boc.201200020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/08/2012] [Indexed: 12/20/2022]
Abstract
In recent years, there has been considerable interest in mapping the protein content of isolated organelles using mass spectrometry. However, many subcellular compartments are highly dynamic with diverse and intricate architectures that are not always preserved during membrane isolation procedures. Furthermore, lateral heterogeneities in intra-membrane lipid and protein concentrations underlie the formation of membrane microdomains, trafficking vesicles and inter-membrane contacts. These complexities in membrane organisation have important consequences for the design of membrane preparation strategies and test the very concept of organelle purity. We illustrate how some of these biological considerations are relevant to membrane preparation and assess the numerous potential pitfalls in attempting to purify organelles from mammalian cells.
Collapse
Affiliation(s)
- Shane Minogue
- Centre for Molecular Cell Biology, UCL, Institute of Liver and Digestive Health, Royal Free Campus, UCL, London NW3 2PF, United Kingdom
| | | |
Collapse
|
43
|
Funkelstein L, Lu WD, Koch B, Mosier C, Toneff T, Taupenot L, O'Connor DT, Reinheckel T, Peters C, Hook V. Human cathepsin V protease participates in production of enkephalin and NPY neuropeptide neurotransmitters. J Biol Chem 2012; 287:15232-41. [PMID: 22393040 PMCID: PMC3346103 DOI: 10.1074/jbc.m111.310607] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 02/23/2012] [Indexed: 12/11/2022] Open
Abstract
Proteases are required for processing precursors into active neuropeptides that function as neurotransmitters for cell-cell communication. This study demonstrates the novel function of human cathepsin V protease for producing the neuropeptides enkephalin and neuropeptide Y (NPY). Cathepsin V is a human-specific cysteine protease gene. Findings here show that expression of cathepsin V in neuroendocrine PC12 cells and human neuronal SK-N-MC cells results in production of (Met)enkephalin from proenkephalin. Gene silencing of cathepsin V by siRNA in human SK-N-MC cells results in reduction of (Met)enkephalin by more than 80%, illustrating the prominent role of cathepsin V for neuropeptide production. In vitro processing of proenkephalin by cathepsin V occurs at dibasic residue sites to generate enkephalin-containing peptides and an ∼24-kDa intermediate present in human brain. Cathepsin V is present in human brain cortex and hippocampus where enkephalin and NPY are produced and is present in purified human neuropeptide secretory vesicles. Colocalization of cathepsin V with enkephalin and NPY in secretory vesicles of human neuroblastoma cells was illustrated by confocal microscopy. Furthermore, expression of cathepsin V with proNPY results in NPY production. These findings indicate the unique function of human cathepsin V for producing enkephalin and NPY neuropeptides required for neurotransmission in health and neurological diseases.
Collapse
Affiliation(s)
- Lydiane Funkelstein
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California 92093
| | - W. Douglas Lu
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California 92093
| | - Britta Koch
- the Institut für Molekulare Medizin und Zellforschung, Albert-Ludwigs Universitat, Freiburg, Germany D-79104 Freiburg
| | - Charles Mosier
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California 92093
| | - Thomas Toneff
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California 92093
| | - Laurent Taupenot
- the Department of Medicine, University of California, San Diego, California 92093
| | - Daniel T. O'Connor
- the Department of Medicine, University of California, San Diego, California 92093
| | - Thomas Reinheckel
- the Institut für Molekulare Medizin und Zellforschung, Albert-Ludwigs Universitat, Freiburg, Germany D-79104 Freiburg
- BIOSS Centre for Biological Signaling Studies, D-79104 Freiburg, Germany, and
| | - Christoph Peters
- the Institut für Molekulare Medizin und Zellforschung, Albert-Ludwigs Universitat, Freiburg, Germany D-79104 Freiburg
- BIOSS Centre for Biological Signaling Studies, D-79104 Freiburg, Germany, and
| | - Vivian Hook
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California 92093
- the Department of Medicine, University of California, San Diego, California 92093
- the Departments of of Neurosciences, Pharmacology, and Medicine, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
44
|
Álvarez J. Calcium dynamics in the secretory granules of neuroendocrine cells. Cell Calcium 2012; 51:331-7. [DOI: 10.1016/j.ceca.2011.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/22/2011] [Accepted: 12/04/2011] [Indexed: 01/29/2023]
|
45
|
Hook V, Funkelstein L, Wegrzyn J, Bark S, Kindy M, Hook G. Cysteine Cathepsins in the secretory vesicle produce active peptides: Cathepsin L generates peptide neurotransmitters and cathepsin B produces beta-amyloid of Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:89-104. [PMID: 21925292 DOI: 10.1016/j.bbapap.2011.08.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 08/26/2011] [Accepted: 08/29/2011] [Indexed: 12/01/2022]
Abstract
Recent new findings indicate significant biological roles of cysteine cathepsin proteases in secretory vesicles for production of biologically active peptides. Notably, cathepsin L in secretory vesicles functions as a key protease for proteolytic processing of proneuropeptides (and prohormones) into active neuropeptides that are released to mediate cell-cell communication in the nervous system for neurotransmission. Moreover, cathepsin B in secretory vesicles has been recently identified as a β-secretase for production of neurotoxic β- amyloid (Aβ) peptides that accumulate in Alzheimer's disease (AD), participating as a notable factor in the severe memory loss in AD. These secretory vesicle functions of cathepsins L and B for production of biologically active peptides contrast with the well-known role of cathepsin proteases in lysosomes for the degradation of proteins to result in their inactivation. The unique secretory vesicle proteome indicates proteins of distinct functional categories that provide the intravesicular environment for support of cysteine cathepsin functions. Features of the secretory vesicle protein systems insure optimized intravesicular conditions that support the proteolytic activity of cathepsins. These new findings of recently discovered biological roles of cathepsins L and B indicate their significance in human health and disease. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Dept. of Neurosciences, Univ. of Calif., San Diego, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Hook V, Bark S, Gupta N, Lortie M, Lu WD, Bandeira N, Funkelstein L, Wegrzyn J, O'Connor DT, Pevzner P. Neuropeptidomic components generated by proteomic functions in secretory vesicles for cell-cell communication. AAPS JOURNAL 2010; 12:635-45. [PMID: 20734175 PMCID: PMC2976990 DOI: 10.1208/s12248-010-9223-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 07/12/2010] [Indexed: 01/13/2023]
Abstract
Diverse neuropeptides participate in cell-cell communication to coordinate neuronal and endocrine regulation of physiological processes in health and disease. Neuropeptides are short peptides ranging in length from ~3 to 40 amino acid residues that are involved in biological functions of pain, stress, obesity, hypertension, mental disorders, cancer, and numerous health conditions. The unique neuropeptide sequences define their specific biological actions. Significantly, this review article discusses how the neuropeptide field is at the crest of expanding knowledge gained from mass-spectrometry-based neuropeptidomic studies, combined with proteomic analyses for understanding the biosynthesis of neuropeptidomes. The ongoing expansion in neuropeptide diversity lies in the unbiased and global mass-spectrometry-based approaches for identification and quantitation of peptides. Current mass spectrometry technology allows definition of neuropeptide amino acid sequence structures, profiling of multiple neuropeptides in normal and disease conditions, and quantitative peptide measures in biomarker applications to monitor therapeutic drug efficacies. Complementary proteomic studies of neuropeptide secretory vesicles provide valuable insight into the protein processes utilized for neuropeptide production, storage, and secretion. Furthermore, ongoing research in developing new computational tools will facilitate advancements in mass-spectrometry-based identification of small peptides. Knowledge of the entire repertoire of neuropeptides that regulate physiological systems will provide novel insight into regulatory mechanisms in health, disease, and therapeutics.
Collapse
Affiliation(s)
- Vivian Hook
- University of California, San Diego, La Jolla, 92093-0744, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|