1
|
Tominaga FK, Brito RS, Oliveira do Nascimento J, Giannocco G, Monteiro de Barros Maciel R, Kummrow F, Pereira BF. Pyriproxyfen toxicity to fish and crustaceans: A literature review. ENVIRONMENTAL RESEARCH 2025; 274:121295. [PMID: 40049357 DOI: 10.1016/j.envres.2025.121295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Pyriproxyfen (PPF) is an insect growth regulator (IGR) that acts as a juvenile hormone agonist (JHA). It is widely used as a larvicide to control insect vectors, as antiparasitic medicines, and for pest control in domestic and agricultural environments. Reports in the literature show that PPF is toxic to fish and non-target crustaceans. Therefore, this review aimed to compile and analyze the state of the art on PPF toxicity to fish and crustaceans. We conducted a comprehensive and critical review by searching combinations of English keywords on the main scientific databases. The articles were selected based on inclusion and exclusion criteria. The findings demonstrated that exposure to different concentrations of PPF can have toxic effects on fish and crustaceans, resulting in histopathological damage to vital organs, reproductive dysfunction, and genetic changes. In crustaceans, PPF caused changes in fecundity, increased male production, and induced changes in offspring. In fish, histopathological changes were identified in organs such as the heart, liver, kidneys, brain, and gonads. Regarding reproduction, an increase in spermatogonial cysts in the testicles was reported, as well as the occurrence of atresia of oocytes in the female gonads. Furthermore, changes in the activity of antioxidant enzymes, the presence of reactive oxygen species indicating oxidative stress and alterations in the expression of genes related to thyroid and growth hormones were induced by exposure of fish to PPF.
Collapse
Affiliation(s)
- Flavio Kiyoshi Tominaga
- Laboratory of Molecular and Translational Endocrinology, Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Rafaella Silva Brito
- Laboratory of Molecular and Translational Endocrinology, Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Gisele Giannocco
- Laboratory of Molecular and Translational Endocrinology, Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil; Department of Biological Sciences, Universidade Federal de São Paulo - Campus Diadema, Diadema, São Paulo, Brazil
| | - Rui Monteiro de Barros Maciel
- Laboratory of Molecular and Translational Endocrinology, Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Fábio Kummrow
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo - Campus Diadema, Diadema, São Paulo, Brazil.
| | - Bruno Fiorelini Pereira
- Laboratory of Molecular and Translational Endocrinology, Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil; Department of Biological Sciences, Universidade Federal de São Paulo - Campus Diadema, Diadema, São Paulo, Brazil
| |
Collapse
|
2
|
Botelho MT, Umbuzeiro GDA. Designing and applying a methodology to assess sperm cell viability and DNA damage in a model amphipod. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175318. [PMID: 39111426 DOI: 10.1016/j.scitotenv.2024.175318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Sperm quality is defined as the sperm cell ability to successfully fertilize eggs and allow normal embryo development. Few studies explore sperm quality using aquatic invertebrates. Parhyale hawaiensis is a marine amphipod with a circumtropical distribution and considered a model for evolution, development, and ecotoxicological studies. We aimed to develop a methodology to collect sperm cells of P. hawaiensis and evaluate their viability and DNA damage (comet assay). We directly exposed the sperm cells to different mutagenic agents to optimize/develop the protocols. Then, as a proof of concept, we exposed the males to mutagenic compounds (EMS, benzo[a]pyrene (BaP), azo and anthraquinone dyes) at non-lethal concentrations verified by the proposed viability test and analyzed their sperm cells for DNA damage (comet assay). Organisms exposed to EMS presented a clear concentration response in the DNA damage response. We also showed that BaP was able to induce a statistically significant increase in DNA damage of the sperm cells. For the two dyes, although DNA damage increased, statistically differences were not observed. We believe we successfully developed a test to detect genotoxicity of chemicals in sperm cells using an invertebrate model. The protocol for sperm cell viability needs to be further explored with different chemicals to verify its utility as a toxicity endpoint. The developed genotoxicity test has the advantages to employ organisms that are easily cultivated in reduced space, use simple laboratory resources and reduced amount of material and reagents. Positive responses with this model could be used to disclose new germ cell mutagen candidates which could be further confirmed in vertebrates' systems.
Collapse
|
3
|
Rodríguez EM. Endocrine disruption in crustaceans: New findings and perspectives. Mol Cell Endocrinol 2024; 585:112189. [PMID: 38365065 DOI: 10.1016/j.mce.2024.112189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
A significant advance has been made, especially during the last two decades, in the knowledge of the effects on crustacean species of pollutants proven to be endocrine disruptors in vertebrates. Such effects have been also interpreted in the light of recent studies on crustacean endocrinology. Year after year, the increased number of reports refer to the effects of endocrine disruptors on several processes hormonally controlled. This review is aimed at summarizing and discussing the effects of several kinds of endocrine disruptors on the hormonal control of reproduction (including gonadal growth, sexual differentiation, and offspring development), molting, and intermediate metabolism of crustaceans. A final discussion about the state of the art, as well as the perspective of this toxicological research line is given.
Collapse
Affiliation(s)
- Enrique M Rodríguez
- Universidad de Buenos Aires. CONICET. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA). Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Calabrese V, Brunet TA, Degli-Esposti D, Chaumot A, Geffard O, Salvador A, Clément Y, Ayciriex S. Electron-activated dissociation (EAD) for the complementary annotation of metabolites and lipids through data-dependent acquisition analysis and feature-based molecular networking, applied to the sentinel amphipod Gammarus fossarum. Anal Bioanal Chem 2024:10.1007/s00216-024-05232-w. [PMID: 38492024 DOI: 10.1007/s00216-024-05232-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024]
Abstract
The past decades have marked the rise of metabolomics and lipidomics as the -omics sciences which reflect the most phenotypes in living systems. Mass spectrometry-based approaches are acknowledged for both quantification and identification of molecular signatures, the latter relying primarily on fragmentation spectra interpretation. However, the high structural diversity of biological small molecules poses a considerable challenge in compound annotation. Feature-based molecular networking (FBMN) combined with database searches currently sets the gold standard for annotation of large datasets. Nevertheless, FBMN is usually based on collision-induced dissociation (CID) data, which may lead to unsatisfying information. The use of alternative fragmentation methods, such as electron-activated dissociation (EAD), is undergoing a re-evaluation for the annotation of small molecules, as it gives access to additional fragmentation routes. In this study, we apply the performances of data-dependent acquisition mass spectrometry (DDA-MS) under CID and EAD fragmentation along with FBMN construction, to perform extensive compound annotation in the crude extracts of the freshwater sentinel organism Gammarus fossarum. We discuss the analytical aspects of the use of the two fragmentation modes, perform a general comparison of the information delivered, and compare the CID and EAD fragmentation pathways for specific classes of compounds, including previously unstudied species. In addition, we discuss the potential use of FBMN constructed with EAD fragmentation spectra to improve lipid annotation, compared to the classic CID-based networks. Our approach has enabled higher confidence annotations and finer structure characterization of 823 features, including both metabolites and lipids detected in G. fossarum extracts.
Collapse
Affiliation(s)
- Valentina Calabrese
- Universite Claude Bernard Lyon1, ISA, UMR 5280, CNRS, 5 Rue de La Doua, 69100, Villeurbanne, France.
| | - Thomas Alexandre Brunet
- Universite Claude Bernard Lyon1, ISA, UMR 5280, CNRS, 5 Rue de La Doua, 69100, Villeurbanne, France
| | | | - Arnaud Chaumot
- Laboratoire d'écotoxicologie, INRAE, UR RiverLy, 69625, Villeurbanne, France
| | - Olivier Geffard
- Laboratoire d'écotoxicologie, INRAE, UR RiverLy, 69625, Villeurbanne, France
| | - Arnaud Salvador
- Universite Claude Bernard Lyon1, ISA, UMR 5280, CNRS, 5 Rue de La Doua, 69100, Villeurbanne, France
| | - Yohann Clément
- Universite Claude Bernard Lyon1, ISA, UMR 5280, CNRS, 5 Rue de La Doua, 69100, Villeurbanne, France
| | - Sophie Ayciriex
- Universite Claude Bernard Lyon1, ISA, UMR 5280, CNRS, 5 Rue de La Doua, 69100, Villeurbanne, France.
| |
Collapse
|
5
|
Rosner A, Ballarin L, Barnay-Verdier S, Borisenko I, Drago L, Drobne D, Concetta Eliso M, Harbuzov Z, Grimaldi A, Guy-Haim T, Karahan A, Lynch I, Giulia Lionetto M, Martinez P, Mehennaoui K, Oruc Ozcan E, Pinsino A, Paz G, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. A broad-taxa approach as an important concept in ecotoxicological studies and pollution monitoring. Biol Rev Camb Philos Soc 2024; 99:131-176. [PMID: 37698089 DOI: 10.1111/brv.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, 28 avenue Valombrose, Nice, F-06107, France
| | - Ilya Borisenko
- Faculty of Biology, Department of Embryology, Saint Petersburg State University, Universitetskaya embankment 7/9, Saint Petersburg, 199034, Russia
| | - Laura Drago
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1111, Slovenia
| | - Maria Concetta Eliso
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zoya Harbuzov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
- Leon H. Charney School of Marine Sciences, Department of Marine Biology, University of Haifa, 199 Aba Koushy Ave., Haifa, 3498838, Israel
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, Varese, 3-21100, Italy
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli-Mersin, PO 28, 33731, Turkey
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via prov. le Lecce -Monteroni, Lecce, I-73100, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina, 61, Palermo, I-90133, Italy
| | - Pedro Martinez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, Barcelona, 08010, Spain
| | - Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Elif Oruc Ozcan
- Faculty of Arts and Science, Department of Biology, Cukurova University, Balcali, Saricam, Adana, 01330, Turkey
| | - Annalisa Pinsino
- National Research Council, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo, 90146, Italy
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, Milan, 20133, Italy
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| |
Collapse
|
6
|
Green-Ojo B, Botelho MT, Umbuzeiro GDA, Gomes V, Parker MO, Grinsted L, Ford AT. Evaluation of precopulatory pairing behaviour and male fertility in a marine amphipod exposed to plastic additives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122946. [PMID: 37977364 DOI: 10.1016/j.envpol.2023.122946] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Plastics contain a mixture of chemical additives that can leach into the environment and potentially cause harmful effects on reproduction and the endocrine system. Two of these chemicals, N-butyl benzenesulfonamide (NBBS) and triphenyl phosphate (TPHP), are among the top 30 organic chemicals detected in surface and groundwater and are currently placed on international watchlist for evaluation. Although bans have been placed on legacy pollutants such as diethylhexyl phthalate (DEHP) and dibutyl phthalate (DBP), their persistence remains a concern. This study aimed to examine the impact of plastic additives, including NBBS, TPHP, DBP, and DEHP, on the reproductive behaviour and male fertility of the marine amphipod Echinogammarus marinus. Twenty precopulatory pairs of E. marinus were exposed to varying concentrations of the four test chemicals to assess their pairing behaviour. A high-throughput methodology was developed and optimised to record the contact time and re-pair time within 15 min and additional point observations for 96 h. The study found that low levels of NBBS, TPHP, and DEHP prolonged the contact and re-pairing time of amphipods and the proportion of pairs reduced drastically with re-pairing success ranging from 75% to 100% in the control group and 0%-85% in the exposed groups at 96 h. Sperm count declined by 40% and 60% in the 50 μg/l and 500 μg/l DBP groups, respectively, whereas TPHP resulted in significantly lower sperms in 50 μg/l exposed group. Animals exposed to NBBS and DEHP showed high interindividual variability in all exposed groups. Overall, this study provides evidence that plastic additives can disrupt the reproductive mechanisms and sperm counts of amphipods at environmentally relevant concentrations. Our research also demonstrated the usefulness of the precopulatory pairing mechanism as a sensitive endpoint in ecotoxicity assessments to proactively mitigate population-level effects in the aquatic environment.
Collapse
Affiliation(s)
- Bidemi Green-Ojo
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, UK
| | - Marina Tenório Botelho
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, UK; Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191, 05508-120, São Paulo, Brazil
| | | | - Vicente Gomes
- Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191, 05508-120, São Paulo, Brazil
| | - Mathew O Parker
- School of Pharmacy & Biomedical Science, White Swan Road, St. Michael's Building, Portsmouth, UK; Surrey Sleep Research Centre, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Lena Grinsted
- School of Biological Sciences, University of Portsmouth, King Henry Building, King Henry 1 Street, Portsmouth, UK
| | - Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, UK.
| |
Collapse
|
7
|
Dumas T, Gomez E, Boccard J, Ramirez G, Armengaud J, Escande A, Mathieu O, Fenet H, Courant F. Mixture effects of pharmaceuticals carbamazepine, diclofenac and venlafaxine on Mytilus galloprovincialis mussel probed by metabolomics and proteogenomics combined approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168015. [PMID: 37879482 DOI: 10.1016/j.scitotenv.2023.168015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Exposure to single molecules under laboratory conditions has led to a better understanding of the mechanisms of action (MeOAs) and effects of pharmaceutical active compounds (PhACs) on non-target organisms. However, not taking the co-occurrence of contaminants in the environment and their possible interactions into account may lead to underestimation of their impacts. In this study, we combined untargeted metabolomics and proteogenomics approaches to assess the mixture effects of diclofenac, carbamazepine and venlafaxine on marine mussels (Mytilus galloprovincialis). Our multi-omics approach and data fusion strategy highlighted how such xenobiotic cocktails induce important cellular changes that can be harmful to marine bivalves. This response is mainly characterized by energy metabolism disruption, fatty acid degradation, protein synthesis and degradation, and the induction of endoplasmic reticulum stress and oxidative stress. The known MeOAs and molecular signatures of PhACs were taken into consideration to gain insight into the mixture effects, thereby revealing a potential additive effect. Multi-omics approaches on mussels as sentinels offer a comprehensive overview of molecular and cellular responses triggered by exposure to contaminant mixtures, even at environmental concentrations.
Collapse
Affiliation(s)
- Thibaut Dumas
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Elena Gomez
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Julien Boccard
- School of Pharmaceutical Sciences, University of Geneva, Geneva 1211, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva 1211, Switzerland
| | - Gaëlle Ramirez
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | - Aurélie Escande
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Olivier Mathieu
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France; Laboratoire de Pharmacologie-Toxicologie, CHU de Montpellier, Montpellier, France
| | - Hélène Fenet
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Frédérique Courant
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
8
|
Erni-Cassola G, Ebner JN, Blattner LA, Burkhardt-Holm P. Microplastics in river sediment: Chronic exposure of the amphipod Gammarus fossarum to polyethylene terephthalate in a microcosm. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132874. [PMID: 39491984 DOI: 10.1016/j.jhazmat.2023.132874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Microplastics constitute a form of particulate matter in aquatic environments, where they are a widespread pollutant. The broad range of particle sizes facilitates interactions with diverse species assemblages. Exposure to microplastics can negatively impact organisms, but similar effects also arise from exposure to naturally occurring particles, such as increased oxidative stress. It therefore remains uncertain, what effects are specific to microplastic particles, and how these effects manifest as a consequence of chronic exposure. Here we show in microcosm experiments that long-term exposure (111 days) to irregularly shaped polyethylene terephthalate (PET) fragments (10-400 µm) added to riverine sediments did not negatively impact the amphipod Gammarus fossarum's group size, and oxygen consumption, and minimally affected proteome composition. We found that these results were consistent for male and female specimens when exposed to an environmentally relevant concentration (0.004% of sediment dry weight; dw) and an environmentally less realistic one (4% dw). In female specimens' whole proteomes, we identified two highly differentially abundant proteins, which have been associated with an organism's response to xenobiotics. We conclude that in this sentinel species exposure to PET microplastic fragments mixed into the sediment does not elicit significant stress, even at concentrations exceeding current exposure levels in the environment.
Collapse
Affiliation(s)
- Gabriel Erni-Cassola
- Man-Society-Environment (Programme MGU), Department of Environmental Sciences, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland.
| | - Joshua Niklas Ebner
- Geoecology Research Group, Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, CH-4056 Basel, Switzerland
| | - Lucas André Blattner
- Geoecology Research Group, Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, CH-4056 Basel, Switzerland
| | - Patricia Burkhardt-Holm
- Man-Society-Environment (Programme MGU), Department of Environmental Sciences, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland.
| |
Collapse
|
9
|
Machuca-Sepúlveda J, Miranda J, Lefin N, Pedroso A, Beltrán JF, Farias JG. Current Status of Omics in Biological Quality Elements for Freshwater Biomonitoring. BIOLOGY 2023; 12:923. [PMID: 37508354 PMCID: PMC10376755 DOI: 10.3390/biology12070923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 07/30/2023]
Abstract
Freshwater ecosystems have been experiencing various forms of threats, mainly since the last century. The severity of this adverse scenario presents unprecedented challenges to human health, water supply, agriculture, forestry, ecological systems, and biodiversity, among other areas. Despite the progress made in various biomonitoring techniques tailored to specific countries and biotic communities, significant constraints exist, particularly in assessing and quantifying biodiversity and its interplay with detrimental factors. Incorporating modern techniques into biomonitoring methodologies presents a challenging topic with multiple perspectives and assertions. This review aims to present a comprehensive overview of the contemporary advancements in freshwater biomonitoring, specifically by utilizing omics methodologies such as genomics, metagenomics, transcriptomics, proteomics, metabolomics, and multi-omics. The present study aims to elucidate the rationale behind the imperative need for modernization in this field. This will be achieved by presenting case studies, examining the diverse range of organisms that have been studied, and evaluating the potential benefits and drawbacks associated with the utilization of these methodologies. The utilization of advanced high-throughput bioinformatics techniques represents a sophisticated approach that necessitates a significant departure from the conventional practices of contemporary freshwater biomonitoring. The significant contributions of omics techniques in the context of biological quality elements (BQEs) and their interpretations in ecological problems are crucial for biomonitoring programs. Such contributions are primarily attributed to the previously overlooked identification of interactions between different levels of biological organization and their responses, isolated and combined, to specific critical conditions.
Collapse
Affiliation(s)
- Jorge Machuca-Sepúlveda
- Doctoral Program on Natural Resources Sciences, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4780000, Chile
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Javiera Miranda
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Nicolás Lefin
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Alejandro Pedroso
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Jorge F Beltrán
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Jorge G Farias
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
10
|
Faugere J, Brunet TA, Clément Y, Espeyte A, Geffard O, Lemoine J, Chaumot A, Degli-Esposti D, Ayciriex S, Salvador A. Development of a multi-omics extraction method for ecotoxicology: investigation of the reproductive cycle of Gammarus fossarum. Talanta 2023; 253:123806. [PMID: 36113334 DOI: 10.1016/j.talanta.2022.123806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/24/2022] [Accepted: 07/29/2022] [Indexed: 12/13/2022]
Abstract
Omics study exemplified by proteomics, lipidomics or metabolomics, provides the opportunity to get insight of the molecular modifications occurring in living organisms in response to contaminants or in different physiological conditions. However, individual omics discloses only a single layer of information leading to a partial image of the biological complexity. Multiplication of samples preparation and processing can generate analytical variations resulting from several extractions and instrumental runs. To get all the -omics information at the proteins, metabolites and lipids level coming from a unique sample, a specific sample preparation must be optimized. In this study, we streamlined a biphasic extraction procedure based on a MTBE/Methanol mixture to provide the simultaneous extraction of polar (proteins, metabolites) and apolar compounds (lipids) for multi-omics analyses from a unique biological sample by a liquid chromatography (LC)/mass spectrometry (MS)/MS-based targeted approach. We applied the methodology for the study of female amphipod Gammarus fossarum during the reproductive cycle. Multivariate data analyses including Partial Least Squares Discriminant Analysis and multiple factor analysis were applied for the integration of the multi-omics data sets and highlighted molecular signatures, specific to the different stages.
Collapse
Affiliation(s)
- Julien Faugere
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, 5 Rue de La Doua, F-69100, Villeurbanne, France
| | - Thomas Alexandre Brunet
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, 5 Rue de La Doua, F-69100, Villeurbanne, France
| | - Yohann Clément
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, 5 Rue de La Doua, F-69100, Villeurbanne, France
| | - Anabelle Espeyte
- INRAE, UR RiverLy, Laboratoire D'écotoxicologie, F-69625, Villeurbanne, France
| | - Olivier Geffard
- INRAE, UR RiverLy, Laboratoire D'écotoxicologie, F-69625, Villeurbanne, France
| | - Jérôme Lemoine
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, 5 Rue de La Doua, F-69100, Villeurbanne, France
| | - Arnaud Chaumot
- INRAE, UR RiverLy, Laboratoire D'écotoxicologie, F-69625, Villeurbanne, France
| | | | - Sophie Ayciriex
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, 5 Rue de La Doua, F-69100, Villeurbanne, France
| | - Arnaud Salvador
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, 5 Rue de La Doua, F-69100, Villeurbanne, France.
| |
Collapse
|
11
|
Leprêtre M, Geffard O, Espeyte A, Faugere J, Ayciriex S, Salvador A, Delorme N, Chaumot A, Degli-Esposti D. Multiple reaction monitoring mass spectrometry for the discovery of environmentally modulated proteins in an aquatic invertebrate sentinel species, Gammarus fossarum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120393. [PMID: 36223854 DOI: 10.1016/j.envpol.2022.120393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Multiple reaction monitoring (MRM) mass spectrometry is emerging as a relevant tool for measuring customized molecular markers in freshwater sentinel species. While this technique is typically used for the validation of protein molecular markers preselected from shotgun experiments, recent gains of MRM multiplexing capacity offer new possibilities to conduct large-scale screening of animal proteomes. By combining the strength of active biomonitoring strategies and MRM technologies, this study aims to propose a new strategy for the discovery of candidate proteins that respond to environmental variability. For this purpose, 249 peptides derived from 147 proteins were monitored by MRM in 273 male gammarids caged in 56 environmental sites, representative of the diversity of French water bodies. A methodology is here proposed to identify a set of customized housekeeping peptides (HKPs) used to correct analytical batch effects and allow proper comparison of peptide levels in gammarids. A comparative analysis performed on HKPs-normalized data resulted in the identification of peptides highly modulated in the environment and derived from proteins likely involved in the environmental stress response. Overall, this study proposes a breakthrough approach to screen and identify potential proteins responding to relevant environmental conditions in sentinel species.
Collapse
Affiliation(s)
- Maxime Leprêtre
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625, Villeurbanne, France
| | - Olivier Geffard
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625, Villeurbanne, France
| | - Anabelle Espeyte
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625, Villeurbanne, France
| | - Julien Faugere
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Sophie Ayciriex
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Arnaud Salvador
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Nicolas Delorme
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625, Villeurbanne, France
| | - Arnaud Chaumot
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625, Villeurbanne, France
| | | |
Collapse
|
12
|
Dumas T, Courant F, Almunia C, Boccard J, Rosain D, Duporté G, Armengaud J, Fenet H, Gomez E. An integrated metabolomics and proteogenomics approach reveals molecular alterations following carbamazepine exposure in the male mussel Mytilus galloprovincialis. CHEMOSPHERE 2022; 286:131793. [PMID: 34364230 DOI: 10.1016/j.chemosphere.2021.131793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/05/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Carbamazepine is one of the most abundant pharmaceutical active compounds detected in aquatic systems. Based on laboratory exposures, carbamazepine has been proven to adversely affect aquatic organisms. However, the underlying molecular events remain poorly understood. This study aims to investigate the molecular mechanisms potentially associated with toxicological effects of carbamazepine on the mussel Mytilus galloprovincialis exposed for 3 days at realistic concentrations encountered in coastal environments (80 ng/L and 8 μg/L). An integrated metabolomics and proteogenomics approach, including data fusion strategy, was applied to gain more insight in molecular events and cellular processes triggered by carbamazepine exposure. Consistent metabolic and protein signatures revealed a metabolic rewiring and cellular stress at both concentrations (e.g. intensification of protein synthesis, transport and catabolism processes, disruption of lipid and amino acid metabolisms). These highlighted molecular signatures point to the induction of autophagy, closely related with carbamazepine mechanism of action, as well as a destabilization of the lysosomal membranes and an enzymatic overactivity of the peroxisomes. Induction of programmed cell death was highlighted by the modulation of apoptotic cognate proteins. The proposed integrative omics data analysis was shown to be highly relevant to identify the modulations of the two molecular levels, i.e. metabolites and proteins. Multi-omics approach is able to explain the resulting complex biological system, and document stronger toxicological pieces of evidence on pharmaceutical active compounds at environmental concentrations in sentinel organisms.
Collapse
Affiliation(s)
- Thibaut Dumas
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Frédérique Courant
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France.
| | - Christine Almunia
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200, Bagnols-sur-Cèze, France
| | - Julien Boccard
- School of Pharmaceutical Sciences, University of Geneva, Geneva, 1211, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland
| | - David Rosain
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Geoffroy Duporté
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200, Bagnols-sur-Cèze, France
| | - Hélène Fenet
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Elena Gomez
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| |
Collapse
|
13
|
Rosner A, Armengaud J, Ballarin L, Barnay-Verdier S, Cima F, Coelho AV, Domart-Coulon I, Drobne D, Genevière AM, Jemec Kokalj A, Kotlarska E, Lyons DM, Mass T, Paz G, Pazdro K, Perić L, Ramšak A, Rakers S, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. Stem cells of aquatic invertebrates as an advanced tool for assessing ecotoxicological impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144565. [PMID: 33736145 DOI: 10.1016/j.scitotenv.2020.144565] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Environmental stressors are assessed through methods that quantify their impacts on a wide range of metrics including species density, growth rates, reproduction, behaviour and physiology, as on host-pathogen interactions and immunocompetence. Environmental stress may induce additional sublethal effects, like mutations and epigenetic signatures affecting offspring via germline mediated transgenerational inheritance, shaping phenotypic plasticity, increasing disease susceptibility, tissue pathologies, changes in social behaviour and biological invasions. The growing diversity of pollutants released into aquatic environments requires the development of a reliable, standardised and 3R (replacement, reduction and refinement of animals in research) compliant in vitro toolbox. The tools have to be in line with REACH regulation 1907/2006/EC, aiming to improve strategies for potential ecotoxicological risks assessment and monitoring of chemicals threatening human health and aquatic environments. Aquatic invertebrates' adult stem cells (ASCs) are numerous and can be pluripotent, as illustrated by high regeneration ability documented in many of these taxa. This is of further importance as in many aquatic invertebrate taxa, ASCs are able to differentiate into germ cells. Here we propose that ASCs from key aquatic invertebrates may be harnessed for applicable and standardised new tests in ecotoxicology. As part of this approach, a battery of modern techniques and endpoints are proposed to be tested for their ability to correctly identify environmental stresses posed by emerging contaminants in aquatic environments. Consequently, we briefly describe the current status of the available toxicity testing and biota-based monitoring strategies in aquatic environmental ecotoxicology and highlight some of the associated open issues such as replicability, consistency and reliability in the outcomes, for understanding and assessing the impacts of various chemicals on organisms and on the entire aquatic environment. Following this, we describe the benefits of aquatic invertebrate ASC-based tools for better addressing ecotoxicological questions, along with the current obstacles and possible overhaul approaches.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200 Bagnols-sur-Cèze, France.
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, F-06107 Nice, France.
| | - Francesca Cima
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Isabelle Domart-Coulon
- Muséum National d'Histoire Naturelle, CNRS, Microorganism Communication and Adaptation Molecules MCAM, Paris F-75005, France.
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111,D, 1000 Ljubljana, Slovenia.
| | - Anne-Marie Genevière
- Sorbonne Université, CNRS, Integrative Biology of Marine Organisms, BIOM, F-6650 Banyuls-sur-mer, France.
| | - Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111,D, 1000 Ljubljana, Slovenia.
| | - Ewa Kotlarska
- Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland.
| | - Daniel Mark Lyons
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, HR-52210 Rovinj, Croatia.
| | - Tali Mass
- Marine Biology Department, Leon H. Charney School of Marine Sciences, 199 Aba Khoushy Ave, University of Haifa, 3498838, Israel.
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Ksenia Pazdro
- Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Lorena Perić
- Rudjer Boskovic Institute, Laboratory for Aquaculture and Pathology of Aquaculture Organisms, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, 6330 Piran, Slovenia.
| | | | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133 Milano, Italy.
| | - Sébastien Cambier
- Luxembourg Institute of Science and Technology, 5, avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
14
|
Koenig N, Almunia C, Bonnal-Conduzorgues A, Armengaud J, Chaumot A, Geffard O, Esposti DD. Co-expression network analysis identifies novel molecular pathways associated with cadmium and pyriproxyfen testicular toxicity in Gammarus fossarum. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 235:105816. [PMID: 33838495 DOI: 10.1016/j.aquatox.2021.105816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Omics approaches are continuously providing new clues on the mechanisms of action of contaminants in species of environmental relevance, contributing to the emergence of molecular ecotoxicology. Co-expression network approaches represent a suitable methodological framework for studying the rich content of omics datasets. This study aimed to find evidence of key pathways and proteins related to the testicular toxicity in the sentinel crustacean species Gammarus fossarum exposed to endocrine disruptors using a weighted protein co-expression network analysis. From a shotgun proteomics dataset of male gonads of G. fossarum organisms exposed to cadmium (Cd), pyriproxyfen (Pyr) and methoxyfenozide (Met) in laboratory conditions, four distinct modules were identified as significantly correlated to contaminants' exposure. Protein set enrichment analysis identified modules involved in cytoskeleton organization and oxidative stress response associated with the Cd exposure. The module associated with Pyr exposure was associated with endoplasmic reticulum stress (ER) response, and the module correlated with Met exposure was characterized by a significant proportion of amphipod-restricted proteins whose functions are still not characterized. Our results show that co-expression networks are efficient and adapted tools to identify new potential mode of actions from environmental sentinel species, such as G. fossarum, using a proteogenomic approach, even without an annotated genome.
Collapse
Affiliation(s)
- Natacha Koenig
- INRAE, UR RiverLy, Ecotoxicology Team. Centre de Lyon-Grenoble Auvergne Rhône-Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Christine Almunia
- Université Paris-Saclay, Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI-Li2D, F-30207 Bagnols-sur-Cèze, France
| | - Aurore Bonnal-Conduzorgues
- INRAE, UR RiverLy, Ecotoxicology Team. Centre de Lyon-Grenoble Auvergne Rhône-Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Jean Armengaud
- Université Paris-Saclay, Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI-Li2D, F-30207 Bagnols-sur-Cèze, France
| | - Arnaud Chaumot
- INRAE, UR RiverLy, Ecotoxicology Team. Centre de Lyon-Grenoble Auvergne Rhône-Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Olivier Geffard
- INRAE, UR RiverLy, Ecotoxicology Team. Centre de Lyon-Grenoble Auvergne Rhône-Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Davide Degli Esposti
- INRAE, UR RiverLy, Ecotoxicology Team. Centre de Lyon-Grenoble Auvergne Rhône-Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France.
| |
Collapse
|
15
|
Botelho MT, Fuller N, Vannuci-Silva M, Yang G, Richardson K, Ford AT. Unusual male size vs sperm count relationships in a coastal marine amphipod indicate reproductive impairment by unknown toxicants. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 233:105793. [PMID: 33667916 DOI: 10.1016/j.aquatox.2021.105793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/12/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Sperm quantity/quality are significant reproductive endpoints with clear links to population level dynamics. Amphipods are important model organisms in environmental toxicology. Despite this, field monitoring of male fertility in invertebrates has rarely been used in monitoring programs. The aim of this study was to compare sperm quality/quantity in an amphipod collected at six UK locations with differing water quality. Due to low sperm counts and an observed lack of relationship between sperm count and weight in amphipods collected from a nationally protected conservation area (Langstone Harbour, England), we also compared datasets from this site over a decade to determine the temporal significance of this finding. One collection to evaluate a female reproductive endpoint was also performed at this site. Interestingly, this harbour consistently presented some of the lowest sperm counts comparable to highly industrial sites and low eggs number from females. Amphipods collected from all the sites, except from Langstone Harbour, presented strong positive correlations between sperm count and weight. Given Langstone Harbour has several international and national protected statutes primarily for marine life and birds, our results indicate that E. marinus, one important food component for wading birds, might be impacted by unknown reproductive stressors. These unknown stressors maybe related to agricultural runoff, leachate from historical landfills and effluent from storm water overflows. This study highlights the importance of exploring new reproductive endpoints such as sperm quantity/quality in marine monitoring programs.
Collapse
Affiliation(s)
- Marina Tenório Botelho
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, PO4 9LY, United Kingdom; Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, 05508-120, São Paulo, Brazil
| | - Neil Fuller
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, PO4 9LY, United Kingdom
| | - Monizze Vannuci-Silva
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, PO4 9LY, United Kingdom; Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Gongda Yang
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, PO4 9LY, United Kingdom
| | - Kara Richardson
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, PO4 9LY, United Kingdom
| | - Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, PO4 9LY, United Kingdom.
| |
Collapse
|
16
|
Pinto TJDS, Freitas JS, Moreira RA, Silva LCMD, Yoshii MPC, Lopes LFDP, Goulart BV, Vanderlei MR, Athayde DB, Fraga PD, Ogura AP, Schiesari L, Montagner CC, Daam MA, Espindola ELG. Functional responses of Hyalella meinerti after exposure to environmentally realistic concentrations of 2,4-D, fipronil, and vinasse (individually and in mixture). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 231:105712. [PMID: 33340833 DOI: 10.1016/j.aquatox.2020.105712] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/24/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Sugarcane crops management in Brazil includes the use of pesticides, as well as alternative organic fertilizers such as vinasse obtained from waste of the ethanol industry. In order to assess the effects of the environmental contamination generated by such sugarcane practices, this study was aimed to investigate the effects of the pesticides 2,4-Dichlorophenoxyacetic acid (2,4-D) and fipronil, as well as vinasse, on the survival, behavior, and reproduction of the native epibenthic macroinvertebrate Hyalella meinerti through in situ and laboratory experiments. In situ assays were conducted in mesocosms with six treatments, i.e. untreated control, 2,4-D, fipronil, and vinasse, the mixture of the two pesticides, and both pesticides mixed with vinasse. Survival, swimming behavior, and reproduction were evaluated over time post contamination, from 0-96 h (T1) and 7-14 days (T2) through in situ experiments and 30-44 days (T3) and 75-89 days (T4) post contamination by laboratory bioassays with mesocosm water. In the T1 period, survival of H. meinerti was registered only in controls and mesocosms treated with 2,4-D. In the T2 period, treatments containing fipronil and vinasse (isolated or in both mixture treatments) still caused 100 % of mortality. Survival was recorded only in 2,4-D and control treatments, whereas reproduction only occurred in the control. In the T3 period, no survival occurred to fipronil and both mixture treatments. Vinasse and 2,4-D decreased total reproduction in comparison to control. In the T4 period, amphipods survival was detected when exposed to fipronil and its mixture with 2,4-D. However, these same treatments decreased the amplexus rates and total reproduction, with synergism denoted for the pesticide mixture. The swimming activity of males, females, and couples was decreased in surviving organisms exposed to 2,4-D, fipronil, vinasse, and the mixture of pesticides along all experimental periods. Our study showed that the application of fipronil, 2,4-D, and vinasse isolated or mixed at realistic concentrations of actual sugarcane management practices may negatively impact functional responses of indigenous amphipods in natural aquatic systems.
Collapse
Affiliation(s)
- Thandy Junio da Silva Pinto
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil.
| | - Juliane Silberschmidt Freitas
- Department of Biological Sciences, Minas Gerais State University (UEMG), R. Ver. Geraldo Moisés da Silva, s/n - Universitário, 38302-192, Ituiutaba, MG, Brazil
| | - Raquel Aparecida Moreira
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Laís Conceição Menezes da Silva
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Maria Paula Cardoso Yoshii
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Laís Fernanda de Palma Lopes
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Bianca Veloso Goulart
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Marina Reghini Vanderlei
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Danillo Badolato Athayde
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Priscille Dreux Fraga
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Allan Pretti Ogura
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Luis Schiesari
- EACH, USP - School of Arts, Sciences and Humanities, University of São Paulo, Av. Arlindo Bétio 1000, São Paulo, SP, 03828-000, Brazil
| | - Cassiana Carolina Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Michiel Adriaan Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516, Caparica, Portugal
| | - Evaldo Luiz Gaeta Espindola
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| |
Collapse
|
17
|
Fu T, Knittelfelder O, Geffard O, Clément Y, Testet E, Elie N, Touboul D, Abbaci K, Shevchenko A, Lemoine J, Chaumot A, Salvador A, Degli-Esposti D, Ayciriex S. Shotgun lipidomics and mass spectrometry imaging unveil diversity and dynamics in Gammarus fossarum lipid composition. iScience 2021; 24:102115. [PMID: 33615205 PMCID: PMC7881238 DOI: 10.1016/j.isci.2021.102115] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 01/14/2023] Open
Abstract
Sentinel species are playing an indispensable role in monitoring environmental pollution in aquatic ecosystems. Many pollutants found in water prove to be endocrine disrupting chemicals that could cause disruptions in lipid homeostasis in aquatic species. A comprehensive profiling of the lipidome of these species is thus an essential step toward understanding the mechanism of toxicity induced by pollutants. Both the composition and spatial distribution of lipids in freshwater crustacean Gammarus fossarum were extensively examined herein. The baseline lipidome of gammarids of different sex and reproductive stages was established by high throughput shotgun lipidomics. Spatial lipid mapping by high resolution mass spectrometry imaging led to the discovery of sulfate-based lipids in hepatopancreas and their accumulation in mature oocytes. A diverse and dynamic lipid composition in G. fossarum was uncovered, which deepens our understanding of the biochemical changes during development and which could serve as a reference for future ecotoxicological studies. Baseline lipidome profiling of G. fossarum of different sex and reproductive stages Spatial localization of lipids in gammarid tissue by mass spectrometry imaging SIMS imaging guided discovery of sulfate-based lipids in hepatopancreas epithelium Disclosure of a dynamic lipid composition in maturing female oocytes
Collapse
Affiliation(s)
- Tingting Fu
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Oskar Knittelfelder
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Olivier Geffard
- INRAE, UR RiverLy, Ecotoxicology Team, F-69625 Villeurbanne, France
| | - Yohann Clément
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Eric Testet
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Nicolas Elie
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - David Touboul
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Khedidja Abbaci
- INRAE, UR RiverLy, Ecotoxicology Team, F-69625 Villeurbanne, France
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Jerome Lemoine
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Arnaud Chaumot
- INRAE, UR RiverLy, Ecotoxicology Team, F-69625 Villeurbanne, France
| | - Arnaud Salvador
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | | | - Sophie Ayciriex
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
- Corresponding author
| |
Collapse
|
18
|
High-multiplexed monitoring of protein biomarkers in the sentinel Gammarus fossarum by targeted scout-MRM assay, a new vision for ecotoxicoproteomics. J Proteomics 2020; 226:103901. [PMID: 32668291 DOI: 10.1016/j.jprot.2020.103901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/02/2020] [Accepted: 07/08/2020] [Indexed: 11/23/2022]
Abstract
Ecotoxicoproteomics employs mass spectrometry-based approaches centered on proteins of sentinel organisms to assess for instance, chemical toxicity in fresh water. In this study, we combined proteogenomics experiments and a novel targeted proteomics approach free from retention time scheduling called Scout-MRM. This methodology will enable the measurement of simultaneously changes in the relative abundance of multiple proteins involved in key physiological processes and potentially impacted by contaminants in the freshwater sentinel Gammarus fossarum. The development and validation of the assay were performed to target 157 protein biomarkers of this non-model organism. We carefully chose and validated the transitions to monitor using conventional parameters (linearity, repeatability, LOD, LOQ). Finally, the potential of the methodology is illustrated by measuring 277-peptide-plex assay (831 transitions) in sentinel animals exposed in natura to different agricultural sites potentially exposed to pesticide contamination. Multivariate data analyses highlighted the modulation of several key proteins involved in feeding and molting. This multiplex-targeted proteomics assay paves the way for the discovery and the use of a large panel of novel protein biomarkers in emergent ecotoxicological models for environmental monitoring in the future. BIOLOGICAL SIGNIFICANCE: The study contributed to the development of Scout-MRM for the high-throughput quantitation of a large panel of proteins in the Gammarus fossarum freshwater sentinel. Increasing the number of markers in ecotoxicoproteomics is of most interest to assess the impact of pollutants in freshwater organisms. The development and validation of the assay enabled the monitoring of a large panel of reporter peptides of exposed gammarids. To illustrate the applicability of the methodology, animals from different agricultural sites were analysed. The application of the assay highlighted the modulation of some biomarker proteins involved in key physiological pathways, such as molting, feeding and general stress response. Increasing multiplexing capabilities and field test will provide the development of diagnostic protein biomarkers for emergent ecotoxicological models in future environmental biomonitoring programs.
Collapse
|
19
|
Leprêtre M, Palos-Ladeiro M, Faugere J, Almunia C, Lemoine J, Armengaud J, Geffard A, Salvador A. From shotgun to targeted proteomics: rapid Scout-MRM assay development for monitoring potential immunomarkers in Dreissena polymorpha. Anal Bioanal Chem 2020; 412:7333-7347. [DOI: 10.1007/s00216-020-02868-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/27/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
|
20
|
A "Population Dynamics" Perspective on the Delayed Life-History Effects of Environmental Contaminations: An Illustration with a Preliminary Study of Cadmium Transgenerational Effects over Three Generations in the Crustacean Gammarus. Int J Mol Sci 2020; 21:ijms21134704. [PMID: 32630258 PMCID: PMC7370439 DOI: 10.3390/ijms21134704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 11/17/2022] Open
Abstract
We explore the delayed consequences of parental exposure to environmentally relevant cadmium concentrations on the life-history traits throughout generations of the freshwater crustacean Gammarus fossarum. We report the preliminary results obtained during a challenging one-year laboratory experiment in this environmental species and propose the use of population modeling to interpret the changes in offspring life-history traits regarding their potential demographic impacts. The main outcome of this first long-term transgenerational assay is that the exposure of spawners during a single gametogenesis cycle (3 weeks) could result in severe cascading effects on the life-history traits along three unexposed offspring generations (one year). Indeed, we observed a decrease in F1 reproductive success, an early onset of F2 offspring puberty with reduced investment in egg yolk reserves, and finally a decrease in the growth rate of F3 juveniles. However, the analysis of these major transgenerational effects by means of a Lefkovitch matrix population model revealed only weak demographic impacts. Population compensatory processes mitigating the demographic consequences of parental exposure seem to drive the modification of life-history traits in offspring generations. This exploratory study sheds light on the role of population mechanisms involved in the demographic regulation of the delayed effects of environmental toxicity in wild populations.
Collapse
|
21
|
Moura JAS, Souza-Santos LP. Environmental risk assessment (ERA) of pyriproxyfen in non-target aquatic organisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 222:105448. [PMID: 32197184 DOI: 10.1016/j.aquatox.2020.105448] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Pyriproxyfen (PPF) is a synthetic substance and an insect juvenile hormone agonist with growth regulating effect. It is used worldwide as a pesticide in agriculture and public health campaigns, including the control of Aedes aegypti proliferation. It has low volatility, high Kow value and high lability in aerobic aquatic systems but is considered persistent in anaerobic systems, with a half-life of 288.9 days. The objective of this study is to survey the environmental contamination by pyriproxyfen in aquatic environmental matrices, to review the acute and chronic toxicity in non-target aquatic organisms and to make a risk assessment for the organisms addressed in the bibliographic survey. Pyriproxyfen quantification studies in aquatic environmental matrices are quite scarce and punctual-not representative of regional and global contamination. The water of the River Júcar (Spain) presented the highest concentration of PPF (99.59 ng L-1) among the matrices analysed, which is equivalent to 1% of the maximum dose allowed by the World Health Organization for use in drinking water. Acute and chronic aquatic toxicity studies with LC50, EC50, LOEC and NOEC values of PPF were compiled and interpreted to evaluate possible risks to non-target aquatic organisms. Pyriproxyfen caused a high risk at concentrations detected in aquatic environments for Daphnia magna, with probable reproductive effects and occasional survival risk. This species was the most sensitive to the pesticide, with the lowest estimated concentration of 50 % of effect values, followed by a freshwater fish (Xiphophorus maculatus) and estuarine crustaceans (Eurytemora affinis and Leander tenuicornis). The most resistant organisms to PPF within the endpoints addressed in this review were Danio rerio (zebrafish) and Capitella sp. (polychaete). Through the species sensitivity distribution (SSD), it was possible to estimate HC5 at 0.214 μg L-1 and that 2.3 % of the species present high sensitivity to pyriproxyfen in the environmental concentration detected in river water and 25.82 % of the species are affected in the concentration allowed for lavicidal use. In order to obtain more accurate risk estimates, we suggest ecotoxicological assessments in other species, covering various taxa, with emphasis on microcrustaceans due to their fundamental role in the aquatic food web and taxonomic proximity to pesticide target organisms. Furthermore, additional studies of contamination in aquatic environmental matrices are required, with particular attention to freshwater and estuarine environments due to the proximity to the sources of pyriproxyfen and environmental characteristics suggesting high accumulation. Thus, it will be possible to estimate realistic exposure levels and risks in different environments, contributing to effective and safe decision making, integrating development, public health and environmental policy.
Collapse
Affiliation(s)
- Jéssica A S Moura
- Laboratório de Cultivo e Ecotoxicologia, Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura s/n, Cidade Universitária, Recife, CEP 50740-550, Pernambuco, Brazil.
| | - Lília P Souza-Santos
- Laboratório de Cultivo e Ecotoxicologia, Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura s/n, Cidade Universitária, Recife, CEP 50740-550, Pernambuco, Brazil
| |
Collapse
|
22
|
Devillers J. Fate and ecotoxicological effects of pyriproxyfen in aquatic ecosystems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:16052-16068. [PMID: 32180143 DOI: 10.1007/s11356-020-08345-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Pyriproxyfen is an insect growth regulator acting as larvicide against a large spectrum of public health insect pests, especially dipterans. It is also widely used in agriculture and horticulture for the control of many insect species. Disrupting the endocrine system by mimicking the activity of the juvenile hormone, pyriproxyfen interferes with metamorphosis in insects and prevents them from reaching maturity and reproducing. Because the aquatic ecosystems can be directly or indirectly contaminated by pyriproxyfen, the goal of this study was to establish the aquatic ecotoxicological profile of pyriproxyfen and to identify the gaps that need to be filled. Pyriproxyfen is photodegraded quickly in water. In the absence of organic matter, its persistence in aerobic water media is also limited especially with high temperature and sunlight. Analysis of the laboratory and in situ results for more than 60 aquatic algae, plants, invertebrates, and vertebrates shows that the toxicity of pyriproxyfen is highly variable including within a same taxonomical group. Abiotic and biotic factors can highly influence the toxicity of the molecule. Pyriproxyfen disrupts the development of numerous species and adversely impacts various physiological events. It can also disturb the behavior of the organisms such as their predatory and swimming performances. Although some experimental studies focus on the environmental fate of pyriproxyfen metabolites, those dealing with their aquatic ecotoxicity assessment are scarce. In the same way, the limited number of studies dealing with the search of pyriproxyfen residues in lake, river, and other natural aquatic media does not include the identification of the metabolites.
Collapse
|
23
|
Jiaxin S, Shengchen W, Yirong C, Shuting W, Shu L. Cadmium exposure induces apoptosis, inflammation and immunosuppression through CYPs activation and antioxidant dysfunction in common carp neutrophils. FISH & SHELLFISH IMMUNOLOGY 2020; 99:284-290. [PMID: 32058096 DOI: 10.1016/j.fsi.2020.02.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/02/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is a bioaccumulative toxic heavy metal element that has been shown to cause irreversible damage to the immune system once contaminated with water, thereby jeopardizing the health of fish and other aquatic organisms. Neutrophils react against multiple invading pathogens through different mechanisms. The effect of Cd immunotoxicity in carp neutrophils has not been thoroughly studied. Here, common carp peripheral blood neutrophils were exposed to 10 μmol/L Cd for 2 h or then stimulated with 20 nmol/L PMA under laboratory conditions to study the effect and potential mechanism of Cd on neutrophils. The results showed that Cd induced mRNA expression of Cytochrome P450s (CYPs) enzymes including CYP1A1, CYP1B1, CYP1C and CYP3A138, increased reactive oxygen species (ROS) levels, and enhanced the expression of antioxidant genes. In addition, Cd activated cysteinyl aspartate specific proteinases (caspase-3) and induced apoptosis by altering the expression of major genes including mitochondrial pathway factors such as B-cell lymphoma-2 (Bcl-2), pro-apoptosis factors Bcl-2-Associated X (BAX), and caspase-9 and death receptor pathways such as Fas/Fas ligand (Fas/FasL), tumour necrosis factor alpha/tumor necrosis factor receptor 1 (TNF-α/TNFR1) and caspase-8. Meanwhile, we found that the accumulation of ROS caused not only oxidative stress but also high expression levels of related inflammatory factors to mediate the immune response including interleukin (IL-6, IL-10, IL-11b, IL-1β) and interferon (IFNg1, IFNph1). Furthermore, Cd also inhibited phorbol myristate acetate (PMA)-induced release of neutrophil extracellular traps (NETs) and respiratory burst. This information will be helpful for the elucidation of how Cd impacts the neutrophils of carp. The associated risk assessment is valuable for effective aquatic environmental management.
Collapse
Affiliation(s)
- Sun Jiaxin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wang Shengchen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Cao Yirong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wang Shuting
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Li Shu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
24
|
Caputo DR, Robson SC, Werner I, Ford AT. Complete transcriptome assembly and annotation of a critically important amphipod species in freshwater ecotoxicological risk assessment: Gammarus fossarum. ENVIRONMENT INTERNATIONAL 2020; 137:105319. [PMID: 32028177 DOI: 10.1016/j.envint.2019.105319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Because of their crucial role in ecotoxicological risk assessment, amphipods (Crustacea) are commonly employed as model species in a wide range of studies. However, despite their ecological importance, their genome has not yet been completely annotated and molecular mechanisms underlying key pathways, such as the serotonin pathway, in development of ecotoxicological biomarkers of exposure to neuroactive pharmaceuticals are still poorly understood. Furthermore, genetic similarities and discrepancies with other model arthropods (e.g., Drosophila melanogaster) have not been completely clarified. In this report, we present a new transcriptome assembly of Gammarus fossarum, an important amphipod species, widespread in Central Europe. RNA-Seq with Illumina HiSeq technology was used to analyse samples extracted from total internal tissues. We used the Trinity and Trinotate software suites for transcriptome assembly and annotation, respectively. The quality of this assembly and the affiliated targeted homology searches greatly enrich the molecular knowledge on this species. Because of the lack of publicly available molecular information on the serotonin pathway, we also highlighted sequence homologies and divergences of the genes encoding the serotonin pathway components of the well-annotated arthropod D. melanogaster, and Crustacea with the corresponding genes of our assembly. An inferior number of hits was found when running a BLAST analysis of both D. melanogaster and Crustacea mRNA sequences encoding serotonin receptors available in GenBank against the total assembly, compared to other serotonin pathway components. A lack of information on important components for serotonin biosynthesis and vesicle endocytosis (i.e., tryptophan hydroxylase and vesicular monoamine transporter) in Crustacea was also brought to light. Our results will provide an extensive transcriptional resource for this important species in ecotoxicological risk assessment and highlight the need for a more detailed categorization of neuronal pathways components in invertebrates.
Collapse
Affiliation(s)
- Domenico R Caputo
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth PO4 9LY, UK
| | - Samuel C Robson
- Centre for Enzyme Innovation, St. Michael's Building, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK
| | - Inge Werner
- Swiss Centre for Applied Ecotoxicology, Eawag - EPFL, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth PO4 9LY, UK.
| |
Collapse
|
25
|
Fuller N, Smith JT, Ford AT. Impacts of ionising radiation on sperm quality, DNA integrity and post-fertilisation development in marine and freshwater crustaceans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109764. [PMID: 31610356 DOI: 10.1016/j.ecoenv.2019.109764] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/27/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Crustaceans have been designated as internationally important model organisms in the development of environmental radioprotection measures. Despite the known sensitivity of sperm to ionizing radiation, the impacts of chronic radiation exposure on male fertility in crustaceans have not been studied. For the first time, the present study aimed to assess the impacts of chronic radiation exposure on male fertility, sperm DNA damage and concomitant impacts on breeding in two amphipod crustaceans. Echinogammarus marinus and Gammarus pulex (male fertility only) were exposed to phosphorus-32 at dose rates of 0, 0.1, 1 and 10 mGy/d and sperm parameters, DNA damage and knock-on impacts on breeding were assessed. Sperm quality parameters and DNA damage were assessed using a fluorescent staining method and single cell gel electrophoresis respectively. Concomitant effects of male exposure to radiation on fecundity were determined by pairing phosphorus-32 exposed males to unexposed sexually mature females. In E. marinus, a statistically significant reduction of 9 and 11% in the quality of sperm was recorded at dose rates of 1 and 10 mGy/d respectively, with no significant effects recorded on sperm counts. Conversely in the freshwater G. pulex, no significant impact of radiation on sperm quantity or quality was recorded. For E. marinus, a statistically significant increase in DNA damage was recorded at doses of 10 mGy/d. Reduced fecundity and an increase in the frequency of abnormal embryos was recorded in female E. marinus breeding with males exposed to radiation. These findings suggest sperm quality may be a sensitive indicator of radiation exposure in invertebrates with potential impacts on the unexposed embryo, though unclear dose-response and differences between two closely related species necessitate further study before robust conclusions can be drawn.
Collapse
Affiliation(s)
- Neil Fuller
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire, PO4 9LY, UK.
| | - Jim T Smith
- School of Earth & Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, Hampshire, PO1 3QL, UK
| | - Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire, PO4 9LY, UK.
| |
Collapse
|
26
|
Cogne Y, Degli-Esposti D, Pible O, Gouveia D, François A, Bouchez O, Eché C, Ford A, Geffard O, Armengaud J, Chaumot A, Almunia C. De novo transcriptomes of 14 gammarid individuals for proteogenomic analysis of seven taxonomic groups. Sci Data 2019; 6:184. [PMID: 31562330 PMCID: PMC6764967 DOI: 10.1038/s41597-019-0192-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/13/2019] [Indexed: 11/17/2022] Open
Abstract
Gammarids are amphipods found worldwide distributed in fresh and marine waters. They play an important role in aquatic ecosystems and are well established sentinel species in ecotoxicology. In this study, we sequenced the transcriptomes of a male individual and a female individual for seven different taxonomic groups belonging to the two genera Gammarus and Echinogammarus: Gammarus fossarum A, G. fossarum B, G. fossarum C, Gammarus wautieri, Gammarus pulex, Echinogammarus berilloni, and Echinogammarus marinus. These taxa were chosen to explore the molecular diversity of transcribed genes of genotyped individuals from these groups. Transcriptomes were de novo assembled and annotated. High-quality assembly was confirmed by BUSCO comparison against the Arthropod dataset. The 14 RNA-Seq-derived protein sequence databases proposed here will be a significant resource for proteogenomics studies of these ecotoxicologically relevant non-model organisms. These transcriptomes represent reliable reference sequences for whole-transcriptome and proteome studies on other gammarids, for primer design to clone specific genes or monitor their specific expression, and for analyses of molecular differences between gammarid species. Measurement(s) | transcription profiling assay | Technology Type(s) | RNA sequencing | Factor Type(s) | sex • species | Sample Characteristic - Organism | Gammarus • Echinogammarus | Sample Characteristic - Environment | habitat |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.9777905
Collapse
Affiliation(s)
- Yannick Cogne
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols-sur-Cèze, France
| | - Davide Degli-Esposti
- Irstea, UR MALY Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, F-69625, Villeurbanne, France
| | - Olivier Pible
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols-sur-Cèze, France
| | - Duarte Gouveia
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols-sur-Cèze, France
| | - Adeline François
- Irstea, UR MALY Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, F-69625, Villeurbanne, France
| | - Olivier Bouchez
- GeT-PlaGe, Genotoul, INRA Auzeville, F-31320, Castanet-Tolosan, France
| | - Camille Eché
- GeT-PlaGe, Genotoul, INRA Auzeville, F-31320, Castanet-Tolosan, France
| | - Alex Ford
- School of Biological Sciences, Institute of Marine Sciences Laboratories, P04 9LY, Portsmouth, United Kingdom
| | - Olivier Geffard
- Irstea, UR MALY Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, F-69625, Villeurbanne, France
| | - Jean Armengaud
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols-sur-Cèze, France.
| | - Arnaud Chaumot
- Irstea, UR MALY Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, F-69625, Villeurbanne, France
| | - Christine Almunia
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols-sur-Cèze, France
| |
Collapse
|
27
|
Cogne Y, Almunia C, Gouveia D, Pible O, François A, Degli-Esposti D, Geffard O, Armengaud J, Chaumot A. Comparative proteomics in the wild: Accounting for intrapopulation variability improves describing proteome response in a Gammarus pulex field population exposed to cadmium. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105244. [PMID: 31352074 DOI: 10.1016/j.aquatox.2019.105244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/14/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
High-throughput proteomics can be performed on animal sentinels for discovering key molecular biomarkers signing the physiological response and adaptation of organisms. Ecotoxicoproteomics is today amenable by means of proteogenomics to small arthropods such as Gammarids which are well known sentinels of aquatic environments. Here, we analysed two regional Gammarus pulex populations to characterize the potential proteome divergence induced in one site by natural bioavailable mono-metallic contamination (cadmium) compared to a non-contaminated site. Two RNAseq-derived protein sequence databases were established previously on male and female individuals sampled from the reference site. Here, individual proteomes were acquired on 10 male and 10 female paired organisms sampled from each site. Proteins involved in protein lipidation, carbohydrate metabolism, proteolysis, innate immunity, oxidative stress response and lipid transport were found more abundant in animals exposed to cadmium, while hemocyanins were found in lower abundance. The intrapopulation proteome variability of long-term exposed G. pulex was inflated relatively to the non-contaminated population. These results show that, while remaining a challenge for such organisms with not yet sequenced genomes, taking into account intrapopulation variability is important to better define the molecular players induced by toxic stress in a comparative field proteomics approach.
Collapse
Affiliation(s)
- Yannick Cogne
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols-sur-Cèze, France
| | - Christine Almunia
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols-sur-Cèze, France
| | - Duarte Gouveia
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols-sur-Cèze, France
| | - Olivier Pible
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols-sur-Cèze, France
| | - Adeline François
- Irstea, UR RiverLy, Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, F-69625, Villeurbanne, France
| | - Davide Degli-Esposti
- Irstea, UR RiverLy, Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, F-69625, Villeurbanne, France
| | - Olivier Geffard
- Irstea, UR RiverLy, Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, F-69625, Villeurbanne, France
| | - Jean Armengaud
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols-sur-Cèze, France.
| | - Arnaud Chaumot
- Irstea, UR RiverLy, Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, F-69625, Villeurbanne, France
| |
Collapse
|
28
|
Wang Y, Li H, Zhu Q, Li X, Lin Z, Ge RS. The cross talk of adrenal and Leydig cell steroids in Leydig cells. J Steroid Biochem Mol Biol 2019; 192:105386. [PMID: 31152782 DOI: 10.1016/j.jsbmb.2019.105386] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
Glucocorticoid is secreted by adrenal cortex, which binds to intracellular glucocorticoid and mineralocorticoid receptors to regulate steroidogenesis-related gene expression and testosterone production in Leydig cells. Glucocorticoid receptor activity shows inhibitory action on Leydig cell steroidogenesis, while mineralocorticoid receptor activity shows the stimulatory action. Leydig cells contain two important glucocorticoid-metabolizing enzymes, 11β-hydroxysteroid dehydrogenase type 1 and type 2, regulating the intracellular levels of glucocorticoids by a pre-receptor mechanism. 11β-Hydroxysteroid dehydrogenase type 1 is a bidirectional enzyme, and its direction is regulated by intracellular NADP+/NADPH redox potential. Leydig cells contain many steroidogenic enzymes, possibly regulating NADP+/NADPH redox potential by coupling with 11β-hydroxysteroid dehydrogenase type 1. Here, we review the 11β-hydroxysteroid dehydrogenase regulation and possible consequences in Leydig cell biology and pathology.
Collapse
Affiliation(s)
- Yiyan Wang
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huitao Li
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiqi Zhu
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoheng Li
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenkun Lin
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
29
|
Gouveia D, Almunia C, Cogne Y, Pible O, Degli-Esposti D, Salvador A, Cristobal S, Sheehan D, Chaumot A, Geffard O, Armengaud J. Ecotoxicoproteomics: A decade of progress in our understanding of anthropogenic impact on the environment. J Proteomics 2019; 198:66-77. [DOI: 10.1016/j.jprot.2018.12.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/19/2018] [Accepted: 12/05/2018] [Indexed: 12/18/2022]
|
30
|
Liu Y, Tie B, Li Y, Lei M, Wei X, Liu X, Du H. Inoculation of soil with cadmium-resistant bacterium Delftia sp. B9 reduces cadmium accumulation in rice (Oryza sativa L.) grains. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:223-229. [PMID: 30055387 DOI: 10.1016/j.ecoenv.2018.07.081] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Bioremediation of heavy metal polluted soil using metal-resistant bacteria has received increasing attentions. In the present study, we isolated a heavy metal-resistant bacterial strain from a Cd-contaminated soil, and conducted pot experiments to evaluate the effect of bacterial inoculation in soil on soil Cd speciation, rice grain biomass and Cd accumulation. We find that the isolated bacterial strain is a Gram-negative bacterium, and named as Delftia sp. B9 based on the 16S rDNA gene sequence analysis. TEM-EDS manifests that Cd can be bioaccumulated inside cell, resulting in intracellular dissolution. The Cd contents of rice grain in the two rice cultivars (early and late rice) are all below the standard limit for Food Safety of People's Republic of China (0.2 mg/kg) after the treatment of both living and non-living cells. Non-living cells are more applicable than the use of living cells for the short time bioremediation. The average content of soil exchangeable fraction of Cd decreases whereas the residual fraction increases with bacterial inoculation. All our results suggest Delftia sp. B9 is able to the stabilization of Cd in soil and reduce Cd accumulation in rice grain, therefore, this strain is potentially suitable for the bioremediation of Cd-contaminated paddy soils.
Collapse
Affiliation(s)
- Yuling Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, People's Republic of China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, People's Republic of China
| | - Boqing Tie
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, People's Republic of China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, People's Republic of China.
| | - Yuanxinglu Li
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, People's Republic of China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, People's Republic of China
| | - Ming Lei
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, People's Republic of China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, People's Republic of China
| | - Xiangdong Wei
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, People's Republic of China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, People's Republic of China
| | - Xiaoli Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, People's Republic of China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, People's Republic of China
| | - Huihui Du
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, People's Republic of China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, People's Republic of China.
| |
Collapse
|
31
|
Identification of reference genes for RT-qPCR data normalization in Gammarus fossarum (Crustacea Amphipoda). Sci Rep 2018; 8:15225. [PMID: 30323236 PMCID: PMC6189083 DOI: 10.1038/s41598-018-33561-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 09/07/2018] [Indexed: 11/08/2022] Open
Abstract
Gene expression profiling via RT-qPCR is a robust technique increasingly used in ecotoxicology. Determination and validation of optimal reference genes is a requirement for initiating RT-qPCR experiments. To our best knowledge, this study is the first attempt of identifying a set of reference genes for the freshwater crustacean Gammarus fossarum. Six candidate genes (Actin, TUB, UB, SDH, Clathrin and GAPDH) were tested in order to determine the most stable ones in different stress conditions and to increase the robustness of RT-qPCR data. SDH and Clathrin appeared as the most stable ones. A validation was performed using G. fossarum samples exposed for 15 days to AgNO3, silver nanoparticles (AgNPs) 40 nm and gold nanoparticles (AuNPs) 40 nm. Effects on HSP90 were evaluated and data normalized using Clathrin and SDH. A down-regulation of HSP90 was observed when G. fossarum were exposed to AuNPs 40 nm whereas no effects were observed when G. fossarum were exposed to AgNPs 40 nm. This study highlights the importance of the preliminary determination of suitable reference genes for RT-qPCR experiments. Additionally, this study allowed, for the first time, the determination of a set of valuable genes that can be used in other RT-qPCR studies using G. fossarum as model organism.
Collapse
|
32
|
Solagaistua L, de Guzmán I, Barrado M, Mijangos L, Etxebarria N, García-Baquero G, Larrañaga A, von Schiller D, Elosegi A. Testing wastewater treatment plant effluent effects on microbial and detritivore performance: A combined field and laboratory experiment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 203:159-171. [PMID: 30138800 DOI: 10.1016/j.aquatox.2018.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
The amount of pollutants and nutrients entering rivers via point sources is increasing along with human population and activity. Although wastewater treatment plants (WWTPs) greatly reduce pollutant loads into the environment, excess nutrient loading is a problem in many streams. Using a Community and Ecosystem Function (CEF) approach, we quantified the effects of WWTP effluent on the performance of microbes and detritivores associated to organic matter decomposition, a key ecosystem process. We measured organic matter breakdown rates, respiration rates and exo-enzymatic activities of aquatic microbes. We also measured food consumption and growth rates and RNA to body-mass ratios (RNA:BM) of a dominant amphipod Echinogammarus berilloni. We predicted responses to follow a subsidy-stress pattern and differences between treatments to increase over time. To examine temporal effects of effluent, we performed a laboratory microcosm experiment under a range of effluent concentrations (0, 20, 40, 60, 80 and 100%), taking samples over time (days 8, 15 and 30; 4 and 10 replicates to assess microbe and detritivore performance respectively, per treatment and day). This experiment was combined with a field in situ Before-After Control-Impact Paired (BACIP) experiment whereby we added WWTP effluent poured (10 L s-1 during 20-40 min every 2 h) into a stream and collected microbial and detritivore samples at days 8 and 15 (5 and 15 replicates to assess the microbe and detritivore performance respectively, per period, reach and sampling day). Responses were clearer in the laboratory experiment, where the effluent caused a general subsidy response. Field measures did not show any significant response, probably because of the high dilution of the effluent in stream water (average of 1.6%). None of the measured variables in any of the experiments followed the predicted subsidy-stress response. Microbial breakdown, respiration rates, exo-enzymatic activities and invertebrate RNA:BM increased with effluent concentrations. Differences in microbial respiration and exo-enzymatic activities among effluent treatments increased with incubation time, whereas microbial breakdown rates and RNA:BM were consistent over time. At the end of the laboratory experiment, microbial respiration rates increased 156% and RN:BM 115% at 100% effluent concentration. Detritivore consumption and growth rates increased asymptotically, and both responses increased with by incubation time. Our results indicate that WWTP effluent stimulates microbial activities and alters detritivore performance, and stream water dilution may mitigate these effects.
Collapse
Affiliation(s)
- Libe Solagaistua
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain.
| | - Ioar de Guzmán
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Miren Barrado
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Leire Mijangos
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Nestor Etxebarria
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza 48620 Plentzia, Spain
| | - Gonzalo García-Baquero
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Aitor Larrañaga
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Daniel von Schiller
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Arturo Elosegi
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| |
Collapse
|
33
|
Boulangé-Lecomte C, Xuereb B, Trémolet G, Duflot A, Giusti N, Olivier S, Legrand E, Forget-Leray J. Controversial use of vitellogenin as a biomarker of endocrine disruption in crustaceans: New adverse pieces of evidence in the copepod Eurytemora affinis. Comp Biochem Physiol C Toxicol Pharmacol 2017; 201:66-75. [PMID: 28974407 DOI: 10.1016/j.cbpc.2017.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 12/16/2022]
Abstract
In recent years, the interest in the use of vitellogenin (VTG) as a biomarker of endocrine disruption in fish has led to VTG being considered as a potential tool in invertebrates. Among aquatic invertebrate models in ecotoxicology, the copepods are considered as reference species in marine, estuarine and freshwater ecosystems. In this context, we identified a VTG cDNA in Eurytemora affinis. The Ea-VTG2 cDNA is 5416bp in length with an open reading frame (ORF) of 5310bp that encodes a putative protein of 1769 amino acids residues. Phylogenetic analysis confirmed the hypothesis of a VTG duplication event before the emergence of the copepod species. The analysis of the Ea-VTG2 expression by qPCR in males and females according to their reproductive stages allowed transcript basal levels to be determined. The expression pattern revealed a gradual increase of transcript levels during maturation in females. Important inter-sex differences were observed with a VTG level in males ranging from about 1900- to 6800-fold lower than in females depending on their stage. Moreover, the protein was only detected in ovigerous females. The inducibility of Ea-VTG2 by chemicals was studied in males exposed to either a model of endocrine disruptor in vertebrates i.e. 4-nonylphenol (4-NP) or a crustacean hormone i.e. Methyl Farnesoate (MF), and in males sampled from a multi-contaminated estuary. No induction was highlighted. The VTG should not be considered as an appropriate biomarker in E. affinis as previously suggested for other crustaceans.
Collapse
Affiliation(s)
| | - Benoit Xuereb
- Normandie Univ, ULHN, UMR-I 02 SEBIO, FR CNRS 3730 SCALE BP 1123, F-76063 Le Havre, France
| | - Gauthier Trémolet
- Normandie Univ, ULHN, UMR-I 02 SEBIO, FR CNRS 3730 SCALE BP 1123, F-76063 Le Havre, France
| | - Aurélie Duflot
- Normandie Univ, ULHN, UMR-I 02 SEBIO, FR CNRS 3730 SCALE BP 1123, F-76063 Le Havre, France
| | - Nathalie Giusti
- Normandie Univ, ULHN, UMR-I 02 SEBIO, FR CNRS 3730 SCALE BP 1123, F-76063 Le Havre, France
| | - Stéphanie Olivier
- Normandie Univ, ULHN, UMR-I 02 SEBIO, FR CNRS 3730 SCALE BP 1123, F-76063 Le Havre, France
| | - Elena Legrand
- Normandie Univ, ULHN, UMR-I 02 SEBIO, FR CNRS 3730 SCALE BP 1123, F-76063 Le Havre, France
| | - Joëlle Forget-Leray
- Normandie Univ, ULHN, UMR-I 02 SEBIO, FR CNRS 3730 SCALE BP 1123, F-76063 Le Havre, France
| |
Collapse
|
34
|
Gismondi E, Fivet A, Joaquim-Justo C. Effects of cyproterone acetate and vertically transmitted microsporidia parasite on Gammarus pulex sperm production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:23417-23421. [PMID: 28905182 DOI: 10.1007/s11356-017-0162-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Endocrine disruption compounds (EDCs) and parasitism can both interfere with the reproduction process of organisms. The amphipod Gammarus pulex is the host of the vertically transmitted microsporidia Dictyocoela duebenum, and this work was devoted to the investigation of the effect of an exposure to the anti-androgen compound, cyproterone acetate (CPA), and/or of the presence of D. duebenum on the spermatozoa production and length. Significant reduction of the spermatozoa production was observed when G. pulex males were uninfected and exposed to CPA. There also appeared a lower number of spermatozoa when D. duebenum infects G. pulex, whatever the exposure condition. Moreover, we highlighted that CPA has no effect on spermatozoa production when males are infected by D. duebenum, and no treatment has impacted the spermatozoa length. Our results suggest CPA and D. duebenum could impact the endocrine system of G. pulex and especially processes close to the spermatozoa production (e.g., androgenic gland, androgen gland hormone released, gonad-inhibiting hormone synthesized by X-organ). However, as no mechanism of action was highlighted, further testing need to be performed to improve the understanding of their impacts. Finally, results confirm that vertically transmitted microsporidia could be a confounding factor in the endocrine disruption assessments in Gammaridae.
Collapse
Affiliation(s)
- Eric Gismondi
- Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, University of Liège, Bât. B6C, 11 allée du 6 Août, B-4000, Sart-Tilman, Belgium.
| | - Adeline Fivet
- Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, University of Liège, Bât. B6C, 11 allée du 6 Août, B-4000, Sart-Tilman, Belgium
| | - Célia Joaquim-Justo
- Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, University of Liège, Bât. B6C, 11 allée du 6 Août, B-4000, Sart-Tilman, Belgium
| |
Collapse
|
35
|
Gouveia D, Chaumot A, Charnot A, Queau H, Armengaud J, Almunia C, Salvador A, Geffard O. Assessing the relevance of a multiplexed methodology for proteomic biomarker measurement in the invertebrate species Gammarus fossarum: A physiological and ecotoxicological study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 190:199-209. [PMID: 28750222 DOI: 10.1016/j.aquatox.2017.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/07/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
Recently, a protein sequence database was built specifically for the sentinel non-model species Gammarus fossarum using a proteogenomics approach. A quantitative multiplexed targeted proteomics assay (using Selected Reaction Monitoring mass spectrometry) was then developed for a fast and simultaneous quantification of dozens of biomarker peptides specific of this freshwater sentinel crustacean species. In order to assess the relevance of this breakthrough methodology in ecotoxicology, the response patterns of a panel of 26 peptides reporting for 20 proteins from the Gammarus fossarum proteome with putative key functional roles (homeostasis, osmoregulation, nutrition, reproduction, molting,…) were recorded through male and female reproductive cycles and after exposure to environmental concentrations of cadmium and lead in laboratory-controlled conditions. Based on these results, we validated the implication of annotated vtg-like peptides in the oogenesis process, and the implication of Na+/K+ ATPase proteins in the molt cycle of organisms. Upon metal (cadmium and lead) contamination, peptides belonging to proteins annotated as involved in antioxidant and detoxification functions, immunity and molting were significantly down-regulated. Overall, this multiplex assay allowed gaining relevant insights upon disruption of different main functions in the sentinel species Gammarus fossarum. This breakthrough methodology in ecotoxicology offers a valid and high throughput alternative to currently used protocols, paving the way for future practical applications of proteogenomics-derived protein biomarkers in chemical risk assessment and environmental monitoring.
Collapse
Affiliation(s)
- D Gouveia
- IRSTEA, UR MALY, Laboratoire d'ecotoxicologie, centre de Lyon-Villeurbanne, F-69616 Villeurbanne, France; CEA-Marcoule, DRF/Joliot/DMTS/SPI/Li2D, Laboratory-Innovative Technologies for Detection and Diagnostics, Bagnols-sur-Ceze, F-30207, France
| | - A Chaumot
- IRSTEA, UR MALY, Laboratoire d'ecotoxicologie, centre de Lyon-Villeurbanne, F-69616 Villeurbanne, France
| | - A Charnot
- UMR 5180, Institut des Sciences Analytiques, Université de Lyon 1, F-69100 Villeurbanne, France
| | - H Queau
- IRSTEA, UR MALY, Laboratoire d'ecotoxicologie, centre de Lyon-Villeurbanne, F-69616 Villeurbanne, France
| | - J Armengaud
- CEA-Marcoule, DRF/Joliot/DMTS/SPI/Li2D, Laboratory-Innovative Technologies for Detection and Diagnostics, Bagnols-sur-Ceze, F-30207, France
| | - C Almunia
- CEA-Marcoule, DRF/Joliot/DMTS/SPI/Li2D, Laboratory-Innovative Technologies for Detection and Diagnostics, Bagnols-sur-Ceze, F-30207, France
| | - A Salvador
- UMR 5180, Institut des Sciences Analytiques, Université de Lyon 1, F-69100 Villeurbanne, France
| | - O Geffard
- IRSTEA, UR MALY, Laboratoire d'ecotoxicologie, centre de Lyon-Villeurbanne, F-69616 Villeurbanne, France.
| |
Collapse
|
36
|
Lafontaine A, Baiwir D, Joaquim-Justo C, De Pauw E, Lemoine S, Boulangé-Lecomte C, Forget-Leray J, Thomé JP, Gismondi E. Proteomic response of Macrobrachium rosenbergii hepatopancreas exposed to chlordecone: Identification of endocrine disruption biomarkers? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 141:306-314. [PMID: 28371731 DOI: 10.1016/j.ecoenv.2017.03.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
The present work is the first study investigating the impacts of chlordecone, an organochlorine insecticide, on the proteome of the decapod crustacean Macrobrachium rosenbergii, by gel-free proteomic analysis. The hepatopancreas protein expression variations were analysed in organisms exposed to three environmental relevant concentrations of chlordecone (i.e. 0.2, 2 and 20µg/L). Results revealed that 62 proteins were significantly up- or down-regulated in exposed prawns compared to controls. Most of these proteins are involved in important physiological processes such as ion transport, defense mechanisms and immune system, cytoskeleton dynamics, or protein synthesis and degradation. Moreover, it appears that 6% of the deregulated protein are involved in the endocrine system and in the hormonal control of reproduction or development processes of M. rosenbergii (e.g. vitellogenin, farnesoic acid o-methyltransferase). These results indicate that chlordecone is potentially an endocrine disruptor compound for decapods, as already observed in vertebrates. These protein modifications could lead to disruptions of M. rosenbergii growth and reproduction, and therefore of the fitness population on the long-term. Besides, these disrupted proteins could be suggested as biomarkers of exposure for endocrine disruptions in invertebrates. However, further investigations are needed to complete understanding of action mechanisms of chlordecone on proteome and endocrine system of crustaceans.
Collapse
Affiliation(s)
- Anne Lafontaine
- University of Liège, Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, Bât. B6C, 11 allée du 6 Août, B-4000 Sart-Tilman, Belgium.
| | - Dominique Baiwir
- Laboratory of Mass Spectrometry, University of Liège, Liège, Belgium; GIGA Proteomics Facility, University of Liège, Liège, Belgium
| | - Célia Joaquim-Justo
- University of Liège, Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, Bât. B6C, 11 allée du 6 Août, B-4000 Sart-Tilman, Belgium
| | - Edwin De Pauw
- Laboratory of Mass Spectrometry, University of Liège, Liège, Belgium; GIGA Proteomics Facility, University of Liège, Liège, Belgium
| | - Soazig Lemoine
- DYNECAR-UMR BOREA (MNHN/CNRS 7208/IRD207/UPMC/UA), University of the French West Indies, Campus de Fouillole, F-97110 Pointe-à-Pitre, Guadeloupe, France
| | - Céline Boulangé-Lecomte
- Normandie University, ULH, UMR I-02, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO) - FR CNRS 3730 SCALE, F-76600 Le Havre, France
| | - Joëlle Forget-Leray
- Normandie University, ULH, UMR I-02, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO) - FR CNRS 3730 SCALE, F-76600 Le Havre, France
| | - Jean-Pierre Thomé
- University of Liège, Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, Bât. B6C, 11 allée du 6 Août, B-4000 Sart-Tilman, Belgium
| | - Eric Gismondi
- University of Liège, Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, Bât. B6C, 11 allée du 6 Août, B-4000 Sart-Tilman, Belgium
| |
Collapse
|
37
|
Comparative proteome analysis of the hepatopancreas from the Pacific white shrimp Litopenaeus vannamei under long-term low salinity stress. J Proteomics 2017; 162:1-10. [DOI: 10.1016/j.jprot.2017.04.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/09/2016] [Accepted: 04/04/2017] [Indexed: 01/12/2023]
|
38
|
Yu SY, Paul S, Hwang SY. Application of the emerging technologies in toxicogenomics: An overview. BIOCHIP JOURNAL 2016. [DOI: 10.1007/s13206-016-0405-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Klein G, Mathé C, Biola-Clier M, Devineau S, Drouineau E, Hatem E, Marichal L, Alonso B, Gaillard JC, Lagniel G, Armengaud J, Carrière M, Chédin S, Boulard Y, Pin S, Renault JP, Aude JC, Labarre J. RNA-binding proteins are a major target of silica nanoparticles in cell extracts. Nanotoxicology 2016; 10:1555-1564. [PMID: 27705051 DOI: 10.1080/17435390.2016.1244299] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Upon contact with biological fluids, nanoparticles (NPs) are readily coated by cellular compounds, particularly proteins, which are determining factors for the localization and toxicity of NPs in the organism. Here, we improved a methodological approach to identify proteins that adsorb on silica NPs with high affinity. Using large-scale proteomics and mixtures of soluble proteins prepared either from yeast cells or from alveolar human cells, we observed that proteins with large unstructured region(s) are more prone to bind on silica NPs. These disordered regions provide flexibility to proteins, a property that promotes their adsorption. The statistical analyses also pointed to a marked overrepresentation of RNA-binding proteins (RBPs) and of translation initiation factors among the adsorbed proteins. We propose that silica surfaces, which are mainly composed of Si-O- and Si-OH groups, mimic ribose-phosphate molecules (rich in -O- and -OH) and trap the proteins able to interact with ribose-phosphate containing molecules. Finally, using an in vitro assay, we showed that the sequestration of translation initiation factors by silica NPs results in an inhibition of the in vitro translational activity. This result demonstrates that characterizing the protein corona of various NPs would be a relevant approach to predict their potential toxicological effects.
Collapse
Affiliation(s)
- Géraldine Klein
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France.,b LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay , Gif-sur-Yvette , France
| | - Christelle Mathé
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France.,b LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay , Gif-sur-Yvette , France
| | - Mathilde Biola-Clier
- c Univ. Grenoble Alpes, CEA, INAC-SyMMES, Laboratoire Lésions des Acides Nucléiques , Grenoble , France , and
| | - Stéphanie Devineau
- b LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay , Gif-sur-Yvette , France
| | - Emilie Drouineau
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France
| | - Elie Hatem
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France
| | - Laurent Marichal
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France.,b LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay , Gif-sur-Yvette , France
| | - Béatrice Alonso
- d CEA-Marcoule, DRF/IBITEC-S/SPI/Li2D, Laboratory 'Innovative technologies for Detection and Diagnostics', BP 17171 , Bagnols-sur-Cèze , France
| | - Jean-Charles Gaillard
- d CEA-Marcoule, DRF/IBITEC-S/SPI/Li2D, Laboratory 'Innovative technologies for Detection and Diagnostics', BP 17171 , Bagnols-sur-Cèze , France
| | - Gilles Lagniel
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France
| | - Jean Armengaud
- d CEA-Marcoule, DRF/IBITEC-S/SPI/Li2D, Laboratory 'Innovative technologies for Detection and Diagnostics', BP 17171 , Bagnols-sur-Cèze , France
| | - Marie Carrière
- c Univ. Grenoble Alpes, CEA, INAC-SyMMES, Laboratoire Lésions des Acides Nucléiques , Grenoble , France , and
| | - Stéphane Chédin
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France
| | - Yves Boulard
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France
| | - Serge Pin
- b LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay , Gif-sur-Yvette , France
| | - Jean-Philippe Renault
- b LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay , Gif-sur-Yvette , France
| | - Jean-Christophe Aude
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France
| | - Jean Labarre
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France
| |
Collapse
|
40
|
High-throughput proteome dynamics for discovery of key proteins in sentinel species: Unsuspected vitellogenins diversity in the crustacean Gammarus fossarum. J Proteomics 2016; 146:207-14. [DOI: 10.1016/j.jprot.2016.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 01/10/2023]
|
41
|
Legrand E, Forget-Leray J, Duflot A, Olivier S, Thomé JP, Danger JM, Boulangé-Lecomte C. Transcriptome analysis of the copepod Eurytemora affinis upon exposure to endocrine disruptor pesticides: Focus on reproduction and development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 176:64-75. [PMID: 27111276 DOI: 10.1016/j.aquatox.2016.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 03/19/2016] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
Copepods-which include freshwater and marine species-represent the most abundant group of aquatic invertebrates. Among them, the calanoid copepod Eurytemora affinis is widely represented in the northern hemisphere estuaries and has become a species of interest in ecotoxicology. Like other non-target organisms, E. affinis may be exposed to a wide range of chemicals such as endocrine disruptors (EDs). This study investigated the gene expression variation in E. affinis after exposure to ED pesticides-chosen as model EDs-in order to (i) improve the knowledge on their effects in crustaceans, and (ii) highlight relevant transcripts for further development of potential biomarkers of ED exposure/effect. The study focused on the reproduction function in response to ED. Copepods were exposed to sublethal concentrations of pyriproxyfen (PXF) and chlordecone (CLD) separately. After 48h, males and females (400 individuals each) were sorted for RNA extraction. Their transcriptome was pyrosequenced using the Illumina(®) technology. Contigs were blasted and functionally annotated using Blast2GO(®). The differential expression analysis between ED- and acetone-exposed organisms was performed according to sexes and contaminants. Half of the 19,721 contigs provided by pyrosequencing were annotated, mostly (80%) from arthropod sequences. Overall, 2,566 different genes were differentially expressed after ED exposures in comparison with controls. As many genes were differentially expressed after PXF exposure as after CLD exposure. In contrast, more genes were differentially expressed in males than in females after both exposures. Ninety-seven genes overlapped in all conditions. Finally, 31 transcripts involved in reproduction, growth and development, and changed in both chemical exposures were selected as potential candidates for future development of biomarkers.
Collapse
Affiliation(s)
- Eléna Legrand
- Normandy University, ULH, UMR-I 02 INERIS, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO)-SFR SCALE 4116, F-76600 Le Havre, France.
| | - Joëlle Forget-Leray
- Normandy University, ULH, UMR-I 02 INERIS, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO)-SFR SCALE 4116, F-76600 Le Havre, France.
| | - Aurélie Duflot
- Normandy University, ULH, UMR-I 02 INERIS, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO)-SFR SCALE 4116, F-76600 Le Havre, France.
| | - Stéphanie Olivier
- Normandy University, ULH, UMR-I 02 INERIS, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO)-SFR SCALE 4116, F-76600 Le Havre, France.
| | - Jean-Pierre Thomé
- University of Liège, Laboratory of Animal Ecology and Ecotoxicology (LEAE), Centre for Analytical Research and Technology (CART), 4000 SART-Tilman, Belgium.
| | - Jean-Michel Danger
- Normandy University, ULH, UMR-I 02 INERIS, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO)-SFR SCALE 4116, F-76600 Le Havre, France.
| | - Céline Boulangé-Lecomte
- Normandy University, ULH, UMR-I 02 INERIS, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO)-SFR SCALE 4116, F-76600 Le Havre, France.
| |
Collapse
|
42
|
Boulangé-Lecomte C, Rocher B, Cailleaud K, Cosette P, Legrand E, Devreker D, Budzinski H, Souissi S, Forget-Leray J. Differential protein expression in the estuarine copepod Eurytemora affinis after diuron and alkylphenol exposures. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:1860-1871. [PMID: 26677818 DOI: 10.1002/etc.3343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/06/2015] [Accepted: 12/13/2015] [Indexed: 06/05/2023]
Abstract
Proteomics was used in the calanoid copepod Eurytemora affinis for screening of protein expression modifications induced by organic contaminants. The copepods were exposed in a continuous flow-through system for 86 h to environmentally relevant concentrations of contaminants representative of the pollution in the Seine Estuary (Haute-Normandie, France; diuron, 500 ng L(-1) ; alkylphenol mixture, 1000 ng L(-1) ). Proteome analysis of whole-body copepod extracts by 2-dimensional gel electrophoresis revealed that the contaminants induced modifications in protein expression, with the highest quantitative variations occurring after diuron exposure. Specifically, 88 and 41 proteins were differentially expressed after diuron and alkylphenol treatments, respectively. After mass spectrometry analysis, 51 (diuron exposure) and 15 (alkylphenol exposure) proteins were identified. The identified proteins were potentially related to energy metabolism, cell growth, nervous signal conductivity, excitotoxicity, oxidative stress response, and antioxidant defense. The data suggest a massive general disturbance of physiological functions of E. affinis after diuron exposure, whereas alkylphenols induced an alteration of a few targeted physiological functions. The protein expression signatures identified after contaminant exposure deserve further investigation in terms of the development of novel potential biomarkers for water quality assessment. Environ Toxicol Chem 2016;35:1860-1871. © 2015 SETAC.
Collapse
Affiliation(s)
- Céline Boulangé-Lecomte
- UMR-I 02 Laboratoire Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO), FR CNRS 3730 SCALE, University of Le Havre, Normandy University, Le Havre, France
| | - Béatrice Rocher
- UMR-I 02 Laboratoire Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO), FR CNRS 3730 SCALE, University of Le Havre, Normandy University, Le Havre, France
| | - Kévin Cailleaud
- UMR-I 02 Laboratoire Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO), FR CNRS 3730 SCALE, University of Le Havre, Normandy University, Le Havre, France
- UMR CNRS 5805, Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), Laboratoire de Physico- et Toxico-Chimie de l'environnement (LPTC), Bordeaux University, Talence, France
- UMR CNRS 8187 Laboratoire d'Océanologie et de Géosciences (LOG), Wimereux Marine Station, Lille 1 University, Wimereux, France
| | - Pascal Cosette
- UMR CNRS 6270, Laboratoire Polymères-Biopolymères-Surfaces (LPBS), University of Rouen, Normandy University, Mont-Saint-Aignan, France
| | - Eléna Legrand
- UMR-I 02 Laboratoire Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO), FR CNRS 3730 SCALE, University of Le Havre, Normandy University, Le Havre, France
| | - David Devreker
- UMR CNRS 8187 Laboratoire d'Océanologie et de Géosciences (LOG), Wimereux Marine Station, Lille 1 University, Wimereux, France
| | - Hélène Budzinski
- UMR CNRS 5805, Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), Laboratoire de Physico- et Toxico-Chimie de l'environnement (LPTC), Bordeaux University, Talence, France
| | - Sami Souissi
- UMR CNRS 8187 Laboratoire d'Océanologie et de Géosciences (LOG), Wimereux Marine Station, Lille 1 University, Wimereux, France
| | - Joëlle Forget-Leray
- UMR-I 02 Laboratoire Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO), FR CNRS 3730 SCALE, University of Le Havre, Normandy University, Le Havre, France
| |
Collapse
|
43
|
Vigneron A, Geffard O, Quéau H, Chaumot A. Mothers and not genes determine inherited differences in cadmium sensitivities within unexposed populations of the freshwater crustacean Gammarus fossarum. Evol Appl 2016; 9:355-66. [PMID: 26834827 PMCID: PMC4721071 DOI: 10.1111/eva.12327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/03/2015] [Indexed: 11/29/2022] Open
Abstract
Deciphering evolutionary processes occurring within contaminated populations is important for the ecological risk assessment of toxic chemicals. Whereas increased tolerance to contaminants is well documented in aquatic animal populations, whether such phenotypic changes occur through genetic adaptation is still debated. In that sense, several studies with the freshwater crustacean Gammarus concluded in a weak potential for genetic adaptation to cadmium (Cd), while others reported inheritable increased tolerance in Cd‐contaminated populations. Using quantitative genetics and selection experiments, this study sought to further assess the potential of Gammarus populations to genetically adapt to Cd. By combining the control of the reproductive cycle of this species in the laboratory and protocols of individual Cd exposure, we conducted half‐sib analyses to establish the genetic and environmental sources of variance in Cd sensitivity of neonates. Prior to experiments, computations allowed optimizing the experimental design in order to increase the power to detect additive genetic variance. The main findings are the existence of strong between‐brood variability along with weak heritability of Cd sensitivity within Gammarus populations. This study also revealed a significant maternal effect on individual Cd sensitivity. This sheds new light on the importance of maternal influence in microevolutionary processes occurring in contaminated environments.
Collapse
Affiliation(s)
- Amandine Vigneron
- Irstea UR MALY Milieux aquatiques, écologie et pollutions, centre de Lyon-Villeurbanne Villeurbanne France
| | - Olivier Geffard
- Irstea UR MALY Milieux aquatiques, écologie et pollutions, centre de Lyon-Villeurbanne Villeurbanne France
| | - Hervé Quéau
- Irstea UR MALY Milieux aquatiques, écologie et pollutions, centre de Lyon-Villeurbanne Villeurbanne France
| | - Arnaud Chaumot
- Irstea UR MALY Milieux aquatiques, écologie et pollutions, centre de Lyon-Villeurbanne Villeurbanne France
| |
Collapse
|
44
|
Fuller N, Lerebours A, Smith JT, Ford AT. The biological effects of ionising radiation on Crustaceans: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 167:55-67. [PMID: 26261880 DOI: 10.1016/j.aquatox.2015.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/15/2015] [Accepted: 07/23/2015] [Indexed: 06/04/2023]
Abstract
Historic approaches to radiation protection are founded on the conjecture that measures to safeguard humans are adequate to protect non-human organisms. This view is disparate with other toxicants wherein well-developed frameworks exist to minimise exposure of biota. Significant data gaps for many organisms, coupled with high profile nuclear incidents such as Chernobyl and Fukushima, have prompted the re-evaluation of our approach toward environmental radioprotection. Elucidating the impacts of radiation on biota has been identified as priority area for future research within both scientific and regulatory communities. The crustaceans are ubiquitous in aquatic ecosystems, comprising greater than 66,000 species of ecological and commercial importance. This paper aims to assess the available literature of radiation-induced effects within this subphylum and identify knowledge gaps. A literature search was conducted pertaining to radiation effects on four endpoints as stipulated by a number of regulatory bodies: mortality, morbidity, reproduction and mutation. A major finding of this review was the paucity of data regarding the effects of environmentally relevant radiation doses on crustacean biology. Extremely few studies utilising chronic exposure durations or wild populations were found across all four endpoints. The dose levels at which effects occur was found to vary by orders of magnitude thus presenting difficulties in developing phyla-specific benchmark values and reference levels for radioprotection. Based on the limited data, mutation was found to be the most sensitive endpoint of radiation exposure, with mortality the least sensitive. Current phyla-specific dose levels and limits proposed by major regulatory bodies were found to be inadequate to protect species across a range of endpoints including morbidity, mutation and reproduction and examples are discussed within. These findings serve to prioritise areas for future research that will significantly advance understanding of radiation-induced effects in aquatic invertebrates and consequently enhance ability to predict the impacts of radioactive releases on the environment.
Collapse
Affiliation(s)
- Neil Fuller
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire PO4 9LY, UK
| | - Adélaïde Lerebours
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire PO4 9LY, UK
| | - Jim T Smith
- School of Earth & Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, Hampshire PO1 3QL, UK
| | - Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire PO4 9LY, UK.
| |
Collapse
|
45
|
Trapp J, Almunia C, Gaillard JC, Pible O, Chaumot A, Geffard O, Armengaud J. Proteogenomic insights into the core-proteome of female reproductive tissues from crustacean amphipods. J Proteomics 2015; 135:51-61. [PMID: 26170043 DOI: 10.1016/j.jprot.2015.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/11/2015] [Accepted: 06/29/2015] [Indexed: 11/27/2022]
Abstract
As a result of the poor genome sequence coverage of crustacean amphipods, characterization of their evolutionary biology relies mostly on phenotypic traits. Here, we analyzed the proteome of ovaries from five amphipods, all from the Senticaudata suborder, with the objective to obtain insights into the core-proteome of female reproductive systems. These amphipods were from either the Gammarida infraorder: Gammarus fossarum, Gammarus pulex, Gammarus roeseli, or the Talitrida infraorder: Parhyale hawaiensis and Hyalella azteca. Ovaries from animals sampled at the end of their reproductive cycle were dissected. Their whole protein contents were extracted and their proteomes were recorded by high-throughput nanoLC-MS/MS with a high-resolution mass spectrometer. We interpreted tandem mass spectrometry data with the protein sequence resource from G. fossarum and P. hawaiensis, both recently established by RNA sequencing. The large molecular biodiversity within amphipods was assessed by the ratio of MS/MS spectra assigned for each sample, which tends to diverge rapidly along the taxonomic level considered. The core-proteome was defined as the proteins conserved along all samples, thus detectable by the homology-based proteomic assignment procedure. This specific subproteome may be further enriched in the future with the analysis of new species and update of the protein sequence resource.
Collapse
Affiliation(s)
- Judith Trapp
- Irstea, Unité de Recherche MALY, Laboratoire d'écotoxicologie, CS70077, F-69626 Villeurbanne, France; CEA-Marcoule, DSV/IBICTEC-S/SPI/Li2D, Laboratory "Innovative Technologies for Detection and Diagnostic", BP 17171, F-30200 Bagnols-sur-Cèze, France
| | - Christine Almunia
- CEA-Marcoule, DSV/IBICTEC-S/SPI/Li2D, Laboratory "Innovative Technologies for Detection and Diagnostic", BP 17171, F-30200 Bagnols-sur-Cèze, France
| | - Jean-Charles Gaillard
- CEA-Marcoule, DSV/IBICTEC-S/SPI/Li2D, Laboratory "Innovative Technologies for Detection and Diagnostic", BP 17171, F-30200 Bagnols-sur-Cèze, France
| | - Olivier Pible
- CEA-Marcoule, DSV/IBICTEC-S/SPI/Li2D, Laboratory "Innovative Technologies for Detection and Diagnostic", BP 17171, F-30200 Bagnols-sur-Cèze, France
| | - Arnaud Chaumot
- Irstea, Unité de Recherche MALY, Laboratoire d'écotoxicologie, CS70077, F-69626 Villeurbanne, France
| | - Olivier Geffard
- Irstea, Unité de Recherche MALY, Laboratoire d'écotoxicologie, CS70077, F-69626 Villeurbanne, France.
| | - Jean Armengaud
- CEA-Marcoule, DSV/IBICTEC-S/SPI/Li2D, Laboratory "Innovative Technologies for Detection and Diagnostic", BP 17171, F-30200 Bagnols-sur-Cèze, France.
| |
Collapse
|
46
|
Halden RU, Hartmann EM, Denslow ND, Haynes PA, LaBaer J. Recent advances in proteomics applied to elucidate the role of environmental impacts on human health and organismal function. J Proteome Res 2015; 14:1-4. [PMID: 25751307 DOI: 10.1021/pr501224f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Rolf U Halden
- Center for Environmental Security, Biodesign Institute, Arizona State University , 781 East Terrace Mall, Tempe, Arizona 85287, United States
| | | | | | | | | |
Collapse
|