1
|
Chandra H, Gupta MK, Lam YW, Yadav JS. Predominantly Orphan Secretome in the Lung Pathogen Mycobacterium abscessus Revealed by a Multipronged Growth-Phase-Driven Strategy. Microorganisms 2024; 12:378. [PMID: 38399782 PMCID: PMC10892769 DOI: 10.3390/microorganisms12020378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The emerging lung pathogen Mycobacterium abscessus is understudied for its virulence determinants and molecular targets for diagnosis and therapeutics. Here, we report a comprehensive secretome (600 proteins) of this species, which was identified using a multipronged strategy based on genetic/genomic, proteomic, and bioinformatic approaches. In-solution digested bottom-up proteomics from various growth phases identified a total of 517 proteins, while 2D-GE proteomics identified 33 proteins. A reporter-gene-fusion-based genomic library that was custom-generated in this study enabled the detection of 23 secretory proteins. A genome-wide survey for N-terminal signal sequences using bioinformatic tools (Psortb 2.0 and SignalP 3.0) combined with a strategy of the subtraction of lipoproteins and proteins containing multiple transmembrane domains yielded 116 secretory proteins. A homology search against the M. tuberculosis database identified nine additional secretory protein homologs that lacked a secretory signal sequence. Considering the little overlap (80 proteins) among the different approaches used, this study emphasized the importance of using a multipronged strategy for a comprehensive understanding of the secretome. Notably, the majority of the secreted proteins identified (over 50%) turned out to be "orphans" (those with no known functional homologs). The revelation of these species-specific orphan proteins offers a hitherto unexplored repertoire of potential targets for diagnostic, therapeutic, and vaccine research in this emerging lung pathogen.
Collapse
Affiliation(s)
- Harish Chandra
- Pulmonary/Microbial Pathogenesis Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (H.C.)
| | - Manish K. Gupta
- Pulmonary/Microbial Pathogenesis Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (H.C.)
| | - Ying-Wai Lam
- Vermont Biomedical Research Network Proteomics Facility, University of Vermont, Burlington, VT 05405, USA
| | - Jagjit S. Yadav
- Pulmonary/Microbial Pathogenesis Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (H.C.)
| |
Collapse
|
2
|
Chandra H, Ahlers B, Lam YW, Yadav JS. Dominant Circulating Cell-free Mycobacterial Proteins in In-use Machining Fluid and their Antigenicity Potential. Curr Protein Pept Sci 2024; 25:613-625. [PMID: 38698749 DOI: 10.2174/0113892037291635240405042554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Occupational exposure to industrial Metalworking Fluid (MWF) colonized by Mycobacterium immunogenum (MI) has been associated with immune lung disease hypersensitivity pneumonitis (HP) in machinists. This warrants regular fluid monitoring for early detection of mycobacterial proteins, especially those with antigenic potential. OBJECTIVE To detect and identify dominant MI proteins and antigens directly from the field-drawn in-use MWF using an integrated immunoproteomic-immunoinformatic approach. METHODS An MI-positive MWF selected by DNA-based screening of several field-drawn MWF samples was cultured to isolate the colonizing strain and profiled for dominant circulating cell-free (ccf) MI proteins, including antigens using an integrated immunoproteomic (1D- and 2Dgel fractionation of seroreactive proteins combined with shotgun proteomic analysis using LC-MS/MS) and immunoinformatic strategy. RESULTS A new MI strain (MJY-27) was identified. The gel fractionated MI protein bands (1Dgel) or spots (2D-gel) seroreactive with anti-MI sera probes (Rabbit and Patient sera) yielded 86 MI proteins, 29 of which showed peptide abundance. T-cell epitope analysis revealed high (90-100%) binding frequency for HLA-I & II alleles for 13 of the 29 proteins. Their antigenicity analysis revealed the presence of 6 to 37 antigenic determinants. Interestingly, one of the identified candidates corresponded to an experimentally validated strong B- and T-cell antigen (AgD) from our laboratory culture-based studies. CONCLUSION This first report on dominant proteins, including putative antigens of M. immunogenum prevalent in field in-use MWF, is a significant step towards the overall goal of developing fluid monitoring for exposure and disease risk assessment for HP development in machining environments.
Collapse
Affiliation(s)
- Harish Chandra
- Pulmonary/Microbial Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH45267-0056, USA
| | - Bethany Ahlers
- Vermont Biomedical Research Network Proteomics Facility, University of Vermont, Burlington, VT05405, USA
| | - Ying Wai Lam
- Vermont Biomedical Research Network Proteomics Facility, University of Vermont, Burlington, VT05405, USA
| | - Jagjit S Yadav
- Pulmonary/Microbial Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH45267-0056, USA
| |
Collapse
|
3
|
Kespohl S, Warfolomeow I, Merget R, Brüning T, Raulf M. Hypersensitivity pneumonitis due to metal working fluids: detection of specific IgG antibodies to microbial antigens. Respir Physiol Neurobiol 2023:104107. [PMID: 37451418 DOI: 10.1016/j.resp.2023.104107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Occupational exposure to microbially contaminated metal working fluids (MWF) can cause hypersensitivity pneumonitis (HP). An important step in the diagnosis of HP is to identify the triggering antigen by detection of corresponding specific IgG antibodies (sIgG). As commercial sIgG tests are currently not available, protein antigens were prepared from MWF-workplace samples and from MWF-typical bacterial isolates. In 57% of suspected HP-cases (n= 30) elevated sIgG concentrations were measured to at least one MWF-relevant antigen, of which Mycobacterium immunogenum was most prominent (88%), followed by Pseudomonas oleovorans and Pseudomonas spec (82% each), MWF-antigen mix and Pseudomonas alcaliphila (65% each). Elevated sIgG concentrations to other microorganisms were measured to Micropolyspora faeni (82%) and Aureobasidium pullulans (77%). Correlation of sIgG values of all tested microbial antigens showed a significant relationship of MWF-antigen mixture to Pseudomonas antigens, but a low correlation to moulds. These newly prepared MWF-antigens are useful tools for the diagnosis of patients with suspected MWF-HP and are available for further investigations.
Collapse
Affiliation(s)
- Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany.
| | - Isabell Warfolomeow
- German Social Accident Insurance Institution for the Woodworking and Metalworking Industries, BGHM, Mainz
| | - Rolf Merget
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| |
Collapse
|
4
|
Barreiro C, Ibáñez AM. Bidimensional Analyses of the Intra- and Extracellular Proteomes of Steroid Producer Mycobacteria. Methods Mol Biol 2023; 2704:115-141. [PMID: 37642841 DOI: 10.1007/978-1-0716-3385-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The importance of the pathogenic mycobacteria has mainly focused the omic analyses on different aspects of their clinical significance. However, those industrially relevant mycobacteria have received less attention, even though the steroid market sales in 2021 were estimated in $56.45 billion.The extracellular proteome, due to its relevance in the sterol processing and uptake, and the intracellular proteome, because of its role in steroids bioconversion, are the core of the present chapter. Both, monodimensional gels, as preparatory analysis, and bidimensional gels as proteome analysis are described. As a proof of concept, the protein extraction methods for both sub-proteomes of Mycobacterium are described. Thus, procedures and relevant key points of these proteome analyses are fully detailed.
Collapse
Affiliation(s)
- Carlos Barreiro
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Facultad de Veterinaria, Universidad de León, León, Spain.
| | - Ana M Ibáñez
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, León, Spain
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), Área de Investigación Agrícola, Valladolid, Spain
| |
Collapse
|
5
|
Cornejo-Granados F, Kohl TA, Sotomayor FV, Andres S, Hernández-Pando R, Hurtado-Ramirez JM, Utpatel C, Niemann S, Maurer FP, Ochoa-Leyva A. Secretome characterization of clinical isolates from the Mycobacterium abscessus complex provides insight into antigenic differences. BMC Genomics 2021; 22:385. [PMID: 34034663 PMCID: PMC8152154 DOI: 10.1186/s12864-021-07670-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mycobacterium abscessus (MAB) is a widely disseminated pathogenic non-tuberculous mycobacterium (NTM). Like with the M. tuberculosis complex (MTBC), excreted / secreted (ES) proteins play an essential role for its virulence and survival inside the host. Here, we used a robust bioinformatics pipeline to predict the secretome of the M. abscessus ATCC 19977 reference strain and 15 clinical isolates belonging to all three MAB subspecies, M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense. RESULTS We found that ~ 18% of the proteins encoded in the MAB genomes were predicted as secreted and that the three MAB subspecies shared > 85% of the predicted secretomes. MAB isolates with a rough (R) colony morphotype showed larger predicted secretomes than isolates with a smooth (S) morphotype. Additionally, proteins exclusive to the secretomes of MAB R variants had higher antigenic densities than those exclusive to S variants, independent of the subspecies. For all investigated isolates, ES proteins had a significantly higher antigenic density than non-ES proteins. We identified 337 MAB ES proteins with homologues in previously investigated M. tuberculosis secretomes. Among these, 222 have previous experimental support of secretion, and some proteins showed homology with protein drug targets reported in the DrugBank database. The predicted MAB secretomes showed a higher abundance of proteins related to quorum-sensing and Mce domains as compared to MTBC indicating the importance of these pathways for MAB pathogenicity and virulence. Comparison of the predicted secretome of M. abscessus ATCC 19977 with the list of essential genes revealed that 99 secreted proteins corresponded to essential proteins required for in vitro growth. CONCLUSIONS This study represents the first systematic prediction and in silico characterization of the MAB secretome. Our study demonstrates that bioinformatics strategies can help to broadly explore mycobacterial secretomes including those of clinical isolates and to tailor subsequent, complex and time-consuming experimental approaches accordingly. This approach can support systematic investigation exploring candidate proteins for new vaccines and diagnostic markers to distinguish between colonization and infection. All predicted secretomes were deposited in the Secret-AAR web-server ( http://microbiomics.ibt.unam.mx/tools/aar/index.php ).
Collapse
Affiliation(s)
- Fernanda Cornejo-Granados
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autonoma de México, Cuernavaca, Morelos, Mexico
| | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany
| | - Flor Vásquez Sotomayor
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Sönke Andres
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Rogelio Hernández-Pando
- Experimental Pathology Section, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| | - Juan Manuel Hurtado-Ramirez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autonoma de México, Cuernavaca, Morelos, Mexico
| | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany
| | - Florian P Maurer
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany.
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.
- Institute of Medical Microbiology, Virology and Hospital Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autonoma de México, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
6
|
Li SH, Guan ZX, Zhang D, Zhang ZM, Huang J, Yang W, Lin H. Recent Advancement in Predicting Subcellular Localization of Mycobacterial Protein with Machine Learning Methods. Med Chem 2019; 16:605-619. [PMID: 31584379 DOI: 10.2174/1573406415666191004101913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/25/2019] [Accepted: 08/23/2019] [Indexed: 01/28/2023]
Abstract
Mycobacterium tuberculosis (MTB) can cause the terrible tuberculosis (TB), which is reported as one of the most dreadful epidemics. Although many biochemical molecular drugs have been developed to cope with this disease, the drug resistance-especially the multidrug-resistant (MDR) and extensively drug-resistance (XDR)-poses a huge threat to the treatment. However, traditional biochemical experimental method to tackle TB is time-consuming and costly. Benefited by the appearance of the enormous genomic and proteomic sequence data, TB can be treated via sequence-based biological computational approach-bioinformatics. Studies on predicting subcellular localization of mycobacterial protein (MBP) with high precision and efficiency may help figure out the biological function of these proteins and then provide useful insights for protein function annotation as well as drug design. In this review, we reported the progress that has been made in computational prediction of subcellular localization of MBP including the following aspects: 1) Construction of benchmark datasets. 2) Methods of feature extraction. 3) Techniques of feature selection. 4) Application of several published prediction algorithms. 5) The published results. 6) The further study on prediction of subcellular localization of MBP.
Collapse
Affiliation(s)
- Shi-Hao Li
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zheng-Xing Guan
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Zhang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zi-Mei Zhang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jian Huang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Wuritu Yang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.,Development and Planning Department, Inner Mongolia University, Hohhot, P.R. China
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Gupta MK, Kaminski R, Mullen B, Gordon J, Burdo TH, Cheung JY, Feldman AM, Madesh M, Khalili K. HIV-1 Nef-induced cardiotoxicity through dysregulation of autophagy. Sci Rep 2017; 7:8572. [PMID: 28819214 PMCID: PMC5561171 DOI: 10.1038/s41598-017-08736-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/13/2017] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular disease is a leading cause of co-morbidity in HIV-1 positive patients, even those in whom plasma virus levels are well-controlled. The pathogenic mechanism of HIV-1-associated cardiomyopathy is unknown, but has been presumed to be mediated indirectly, owing to the absence of productive HIV-1 replication in cardiomyocytes. We sought to investigate the effect of the HIV-1 auxiliary protein, Nef, which is suspected of extracellular release by infected CD4+ T cells on protein quality control and autophagy in cardiomyocytes. After detection of Nef in the serum of HIV-1 positive patients and the accumulation of this protein in human and primate heart tissue from HIV-1/SIV-infected cells we employed cell and molecular biology approaches to investigate the effect of Nef on cardiomyocyte-homeostasis by concentrating on protein quality control (PQC) pathway and autophagy. We found that HIV-1 Nef-mediated inhibition of autophagy flux leads to cytotoxicity and death of cardiomyocytes. Nef compromises autophagy at the maturation stage of autophagosomes by interacting with Beclin 1/Rab7 and dysregulating TFEB localization and cellular lysosome content. These effects were reversed by rapamycin treatment. Our results indicate that HIV-1 Nef-mediated inhibition of cellular PQC is one possible mechanism involved in the development of HIV-associated cardiomyopathy.
Collapse
Affiliation(s)
- Manish K Gupta
- Department of Neuroscience, Center for Neurovirology and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Rafal Kaminski
- Department of Neuroscience, Center for Neurovirology and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Brian Mullen
- Department of Neuroscience, Center for Neurovirology and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Jennifer Gordon
- Department of Neuroscience, Center for Neurovirology and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Tricia H Burdo
- Department of Neuroscience, Center for Neurovirology and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Joseph Y Cheung
- Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.,Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Arthur M Feldman
- Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Muniswamy Madesh
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.,Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Identification of a new diagnostic antigen for glanders using immunoproteome analysis. Comp Immunol Microbiol Infect Dis 2017; 53:26-32. [PMID: 28750864 DOI: 10.1016/j.cimid.2017.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 11/21/2022]
Abstract
Glanders is a disease of horses, donkeys and mules. The causative agent Burkholderia mallei, is a biorisk group 3 pathogen and is also a biothreat agent. Simple and rapid diagnostic tool is essential for control of glanders. Using a proteomic approach and immunoblotting with equine sera, we identified 12 protein antigens that may have diagnostic potential. Various immunoreactive proteins e.g. GroEL, translation elongation factor Tu, elongation factor Ts, arginine deiminase, malate dehydrogenase, DNA directed RNA polymerase subunit alpha were identified on 2-dimentional immunoblots. One of these proteins, GroEL, was cloned and expressed in E. coli and purified using Ni-NTA affinity chromatography. The recombinant GroEL protein was evaluated in ELISA format on a panel of glanders positive (n=49) and negative (n=79) equine serum samples to determine its diagnostic potential. The developed ELISA had a sensitivity and specificity of 96 and 98.7% respectively. The results of this study highlight the potential of GroEL in serodiagnosis of glanders.
Collapse
|
9
|
Johansson E, Boivin GP, Yadav JS. Early immunopathological events in acute model of mycobacterial hypersensitivity pneumonitis in mice. J Immunotoxicol 2017; 14:77-88. [PMID: 28094581 DOI: 10.1080/1547691x.2016.1273284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Prolonged exposure to antigens of non-tuberculous mycobacteria species colonizing industrial metalworking fluid (MWF), particularly Mycobacterium immunogenum (MI), has been implicated in chronic forms of hypersensitivity pneumonitis (HP) in machinists based on epidemiology studies and long-term exposure of mouse models. However, a role of short-term acute exposure to these antigens has not been described in the context of acute forms of HP. This study investigated short-term acute exposure of mice to MI cell lysate (or live cell suspension) via oropharyngeal aspiration. The results showed there was a dose- and time-dependent increase (peaking at 2 h post-instillation) in lung immunological responses in terms of the pro- (TNFα, IL-6, IL-1β) and anti-inflammatory (IL-10) cytokines. Bronchoalveolar lavage and histology showed neutrophils as the predominant infiltrating cell type, with lymphocytes <5% at all timepoints or concentrations. Granulomatous inflammation peaked between 8 and 24 h post-exposure, and resolved by 96 h. Live bacterial challenge, typically encountered in real-world exposures, showed no significant differences from bacterial lysate except for induction of appreciable levels of interferon (IFN)-γ, implying additional immunogenic potential. Collectively, the short-term mycobacterial challenge in mice led to a transient early immunopathologic response, with little adaptive immunity, which is consistent with events associated with human acute forms of HP. Screening of MWF-originated mycobacterial genotypes/variants (six of MI, four of M. chelonae, two of M. abscessus) showed both inter- and intra-species differences, with MI genotype MJY10 being the most immunogenic. In conclusion, this study characterized the first short-term mycobacterial exposure mouse model that mimics acute HP in machinists; this could serve as a potentially useful model for rapid screening of field MWF-associated mycobacteria for routine and timely occupational risk assessment and for investigating early biomarkers and mechanisms of this understudied immune lung disease.
Collapse
Affiliation(s)
- Elisabet Johansson
- a Department of Environmental Health, Microbial Pathogenesis and Immunotoxicology Laboratory, Division of Environmental Genetics and Molecular Toxicology , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Gregory P Boivin
- b Department of Pathology and Orthopedic Surgery , Wright State University , Dayton , OH , USA
| | - Jagjit S Yadav
- a Department of Environmental Health, Microbial Pathogenesis and Immunotoxicology Laboratory, Division of Environmental Genetics and Molecular Toxicology , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| |
Collapse
|
10
|
Barreiro C, Morales A, Vázquez-Iglesias I, Sola-Landa A. Intra- and Extra-cellular Proteome Analyses of Steroid-Producer Mycobacteria. Methods Mol Biol 2017; 1645:73-92. [PMID: 28710622 DOI: 10.1007/978-1-4939-7183-1_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The importance of the pathogenic mycobacteria has mainly focused the omic analyses on different aspects of their clinical significance. In contrast, those industrially relevant mycobacteria have received less attention, even though the steroids market sales in 2011, in example, were estimated in $8 billion.The extra-cellular proteome, due to its relevance in the sterols processing and uptake; as well as the intra-cellular proteome, because of its role in steroids bioconversion, are the core of the present chapter. As a proof of concept, the obtaining methods for both sub-proteomes of Mycobacterium neoaurum NRRL B-3805, a relevant industrial strain involved in steroids production, have been developed. Thus, procedures and relevant key points of these proteomes analyses are fully described.
Collapse
Affiliation(s)
- Carlos Barreiro
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Avda. Real 1, 24006, León, Spain.
- Área de Microbiología, Departamento de Biología Molecular, Campus de Ponferrada, Universidad de León, Avda. Astorga, s/n, 24400, Ponferrada, Spain.
| | - Alejandro Morales
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Avda. Real 1, 24006, León, Spain
| | - Inés Vázquez-Iglesias
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Avda. Real 1, 24006, León, Spain
| | - Alberto Sola-Landa
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Avda. Real 1, 24006, León, Spain
| |
Collapse
|
11
|
Wang L, Wu ZW, Li Y, Dong JG, Zhang LY, Liang PS, Liu YL, Zhao YH, Song CX. Profiling and Identification of Novel Immunogenic Proteins of Staphylococcus hyicus ZC-4 by Immunoproteomic Assay. PLoS One 2016; 11:e0167686. [PMID: 27930728 PMCID: PMC5145190 DOI: 10.1371/journal.pone.0167686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 11/18/2016] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus hyicus has caused great losses in the swine industry by inducing piglet exudative epidermitis (EE), sow mastitis, metritis, and other diseases and is a threat to human health. The pathogenesis of EE, sow mastitis, and metritis involves the interaction between the host and virulent protein factors of S. hyicus, however, the proteins that interact with the host, especially the host immune system, are unclear. In the present study, immunoproteomics was used to screen the immunogenic proteins of S. hyicus strain ZC-4. The cellular and secreted proteins of S. hyicus strain ZC-4 were obtained, separated by 2D gel electrophoresis, and further analyzed by western blot with S. hyicus strain ZC-4-infected swine serum. Finally, 28 specific immunogenic proteins including 15 cellular proteins and 13 secreted proteins, 26 of which were novel immunogenic proteins from S. hyicus, were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. To further verify their immunogenicity, two representative proteins (acetate kinase [cellular] and enolase [secreted]) were chosen for expression, and the resultant recombinant proteins could react with S. hyicus ZC-4-infected swine serum. In mice, both acetate kinase and enolase activated the immune response by increasing G-CSF and MCP-5 expression, and acetate kinase further activated the immune response by increasing IL-12 expression. Enolase can confer better protection against S.hycius than acetate kinase in mice. For the first time to our knowledge, our results provide detailed descriptions of the cellular and secreted proteins of S. hyicus strain ZC-4. These immunogenic proteins may contribute to investigation and elucidation of the pathogenesis of S. hyicus and provide new candidates for subunit vaccines in the future.
Collapse
Affiliation(s)
- Lei Wang
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| | - Zhi-wei Wu
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| | - Yan Li
- Institute of Animal Health, Guangdong Academy of Agriculture Sciences, Guangzhou, China
| | - Jian-guo Dong
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
- Xinyang Animal Disease Prevention and Control Engineering Research Center, Xinyang College of Agriculture and Forestry, Xinyang, China
| | - Le-yi Zhang
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| | - Peng-shuai Liang
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| | - Yan-ling Liu
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| | - Ya-hua Zhao
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
- * E-mail: , (CXS); (YHZ)
| | - Chang-xu Song
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
- Institute of Animal Health, Guangdong Academy of Agriculture Sciences, Guangzhou, China
- * E-mail: , (CXS); (YHZ)
| |
Collapse
|
12
|
Chiu KH, Wang LH, Tsai TT, Lei HY, Liao PC. Secretomic Analysis of Host-Pathogen Interactions Reveals That Elongation Factor-Tu Is a Potential Adherence Factor of Helicobacter pylori during Pathogenesis. J Proteome Res 2016; 16:264-273. [PMID: 27764940 DOI: 10.1021/acs.jproteome.6b00584] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The secreted proteins of bacteria are usually accompanied by virulence factors, which can cause inflammation and damage host cells. Identifying the secretomes arising from the interactions of bacteria and host cells could therefore increase understanding of the mechanisms during initial pathogenesis. The present study used a host-pathogen coculture system of Helicobacter pylori and monocytes (THP-1 cells) to investigate the secreted proteins associated with initial H. pylori pathogenesis. The secreted proteins from the conditioned media from H. pylori, THP-1 cells, and the coculture were collected and analyzed using SDS-PAGE and LC-MS/MS. Results indicated the presence of 15 overexpressed bands in the coculture. Thirty-one proteins were identified-11 were derived from THP-1 cells and 20 were derived from H. pylori. A potential adherence factor from H. pylori, elongation factor-Tu (EF-Tu), was selected for investigation of its biological function. Results from confocal microscopic and flow cytometric analyses indicated the contribution of EF-Tu to the binding ability of H. pylori in THP-1. The data demonstrated that fluorescence of EF-Tu on THP-1 cells increased after the addition of the H. pylori-conditioned medium. This study reports a novel secretory adherence factor in H. pylori, EF-Tu, and further elucidates mechanisms of H. pylori adaptation for host-pathogen interaction during pathogenesis.
Collapse
Affiliation(s)
- Kuo-Hsun Chiu
- Department and Graduate Institute of Aquaculture, National Kaohsiung Marine University , Kaohsiung 81157, Taiwan
| | - Ling-Hui Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University , Tainan 70428, Taiwan
| | - Tsung-Ting Tsai
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University , Tainan 70101, Taiwan
| | - Huan-Yao Lei
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University , Tainan 70101, Taiwan
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University , Tainan 70428, Taiwan
| |
Collapse
|
13
|
Chandra H, Yadav JS. Human leukocyte antigen (HLA)-binding epitopes dataset for the newly identified T-cell antigens of Mycobacterium immunogenum. Data Brief 2016; 8:1069-71. [PMID: 27508266 PMCID: PMC4969084 DOI: 10.1016/j.dib.2016.06.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/17/2016] [Accepted: 06/24/2016] [Indexed: 11/04/2022] Open
Abstract
The dataset described herein is related to our article entitled “T-cell antigens of Mycobacterium immunogenum (MI), an etiological agent of occupational hypersensitivity pneumonitis’’ (Chandra and Yadav, 2016) [1]. The data include in silico-predicted T-cell epitopes of the T-cell antigens AgA and AgD of MI predicted to bind to HLA-I or HLA-II alleles. Data on two reference T-cell antigens ESAT-6 and CFP-10 of Mycobacterium tuberculosis H37Rv are included for comparison. The data for each antigen include the predicted epitope׳s amino acid sequence, its first amino acid position, and its ability to bind HLA-I or HLA-II allele(s).
Collapse
Affiliation(s)
- Harish Chandra
- Microbial Pathogenesis and Toxicogenomics Laboratory, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, United States of America
| | - Jagjit S Yadav
- Microbial Pathogenesis and Toxicogenomics Laboratory, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, United States of America
| |
Collapse
|
14
|
Chandra H, Yadav JS. T-cell antigens of Mycobacterium immunogenum, an etiological agent of occupational hypersensitivity pneumonitis. Mol Immunol 2016; 75:168-77. [PMID: 27294559 DOI: 10.1016/j.molimm.2016.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 11/17/2022]
Abstract
The T lymphocyte-mediated immune lung disease hypersensitivity pneumonitis (HP) in machinists is poorly understood for disease mechanisms and diagnosis due in part to lack of information on causative T-cell antigens of the etiological agent Mycobacterium immunogenum (MI). Therefore, overall objective of the current study was to identify T-cell reactive antigens of this recently recognized pathogen. In this direction, purified recombinant form of five of the seroreactive proteins (reported in our initial study), including three cell wall-associated (arbitrarily designated as antigens A through C) and two secretory (AgD & AgE), were examined for their potential to activate antigen-presenting cells (APCs) viz. alveolar macrophages and human monocyte-derived dendritic cells (DCs) and for T-cell reactivity. All five proteins strongly activated APCs by inducing inflammatory cytokines (TNF-α, IL-6 & IL-1α) and nitric oxide (NO), albeit to a varying extent (AgE≥AgD>AgB≥AgA≥AgC), implying their differential potential for activation of APCs. However, only two of the five proteins (AgA, AgD) showed significant T-cell response (T lymphocyte proliferation and IFN-γ secretion) when tested using sensitized T-cells from MI-induced HP mouse model. These antigens also activated the human naïve CD4(+) T cells in presence of autologous DCs as measured using ELISPOT for IFN-γ. Immuno-informatic analysis predicted that the identified T-cell antigens (AgA and AgD) bind more number of class I and class II HLA alleles as compared with the reference immuno-dominant antigens ESAT-6 and CFP-10 from the tuberculous mycobacterial species M. tuberculosis. Predicted human population coverage for the epitopes of AgA (90.87%) and AgD (88.09%) was also higher as compared to those for the reference antigens ESAT-6 (82.42%) and CFP-10 (80.21%). These two antigens were further predicted to be highly immunogenic for class I peptide MHC (pMHC) complex as compared to the reference antigens. Collectively, our results imply that AgA and AgD are T-cell antigens with a high HLA binding frequency as well as population coverage for HLA alleles. This first report on T-cell antigens and epitopes of M. immunogenum is significant as it is expected to open up avenues for understanding pathogenesis mechanisms and developing T-cell-based immunodiagnostic tools for this poorly investigated occupational lung disease.
Collapse
Affiliation(s)
- Harish Chandra
- Microbial Pathogenesis and Toxicogenomics Laboratory, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, United States of America
| | - Jagjit S Yadav
- Microbial Pathogenesis and Toxicogenomics Laboratory, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, United States of America.
| |
Collapse
|
15
|
Mirzaei R, Saei A, Torkashvand F, Azarian B, Jalili A, Noorbakhsh F, Vaziri B, Hadjati J. Identification of proteins derived from Listeria monocytogenes inducing human dendritic cell maturation. Tumour Biol 2016; 37:10893-907. [PMID: 26886282 DOI: 10.1007/s13277-016-4933-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/28/2016] [Indexed: 01/25/2023] Open
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells (APCs) that can promote antitumor immunity when pulsed with tumor antigens and then matured by stimulatory agents. Despite apparent progress in DC-based cancer immunotherapy, some discrepancies were reported in generating potent DCs. Listeria monocytogenes as an intracellular microorganism is able to effectively activate DCs through engaging pattern-recognition receptors (PRRs). This study aimed to find the most potent components derived from L. monocytogenes inducing DC maturation. The preliminary results demonstrated that the ability of protein components is higher than DNA components to promote DC maturation and activation. Protein lysate fractionation demonstrated that fraction 2 HIC (obtained by hydrophobic interaction chromatography) was able to efficiently mature DCs. F2HIC-matured DCs are able to induce allogeneic CD8(+) T cells proliferation better than LPS-matured DCs and induce IFN-γ producing CD8(+) T cells. Mass spectrometry results showed that F2HIC contains 109 proteins. Based on the bioinformatics analysis for these 109 proteins, elongation factor Tu (EF-Tu) could be considered as a PRR ligand for stimulating DC maturation.
Collapse
Affiliation(s)
- Reza Mirzaei
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Poursina Avenue, Tehran, Iran
| | - Azad Saei
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Poursina Avenue, Tehran, Iran
| | - Fatemeh Torkashvand
- Protein Chemistry Unit, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Bahareh Azarian
- Protein Chemistry Unit, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ahmad Jalili
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Farshid Noorbakhsh
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Poursina Avenue, Tehran, Iran
| | - Behrouz Vaziri
- Protein Chemistry Unit, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Jamshid Hadjati
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Poursina Avenue, Tehran, Iran.
| |
Collapse
|
16
|
Specific Proteins in Nontuberculous Mycobacteria: New Potential Tools. BIOMED RESEARCH INTERNATIONAL 2015; 2015:964178. [PMID: 26106621 PMCID: PMC4463991 DOI: 10.1155/2015/964178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/20/2014] [Accepted: 12/21/2014] [Indexed: 12/19/2022]
Abstract
Nontuberculous mycobacteria (NTM) have been isolated from water, soil, air, food, protozoa, plants, animals, and humans. Although most NTM are saprophytes, approximately one-third of NTM have been associated with human diseases. In this study, we did a comparative proteomic analysis among five NTM strains isolated from several sources. There were different numbers of protein spots from M. gordonae (1,264), M. nonchromogenicum type I (894), M. nonchromogenicum type II (935), M. peregrinum (806), and M. scrofulaceum/Mycobacterium mantenii (1,486) strains, respectively. We identified 141 proteins common to all strains and specific proteins to each NTM strain. A total of 23 proteins were selected for its identification. Two of the common proteins identified (short-chain dehydrogenase/reductase SDR and diguanylate cyclase) did not align with M. tuberculosis complex protein sequences, which suggest that these proteins are found only in the NTM strains. Some of the proteins identified as common to all strains can be used as markers of NTM exposure and for the development of new diagnostic tools. Additionally, the specific proteins to NTM strains identified may represent potential candidates for the diagnosis of diseases caused by these mycobacteria.
Collapse
|
17
|
Chandra H, Lockey J, Yadav JS. Novel antigens of Mycobacterium immunogenum relevant in serodiagnosis of occupational hypersensitivity pneumonitis in machinists. Ann Allergy Asthma Immunol 2015; 114:525-6. [PMID: 25863449 DOI: 10.1016/j.anai.2015.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/24/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Harish Chandra
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - James Lockey
- Division of Occupational and Environmental Medicine, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jagjit S Yadav
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
18
|
Kurokawa S, Kabayama J, Hwang SD, Nho SW, Hikima JI, Jung TS, Kondo H, Hirono I, Takeyama H, Mori T, Aoki T. Whole genome analyses of marine fish pathogenic isolate, Mycobacterium sp. 012931. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:572-579. [PMID: 24879010 DOI: 10.1007/s10126-014-9576-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
Mycobacterium is a genus within the order Actinomycetales that comprises of a large number of well-characterized species, several of which includes pathogens known to cause serious disease in human and animal. Here, we report the whole genome sequence of Mycobacterium sp. strain 012931 isolated from the marine fish, yellowtail (Seriola quinqueradiata). Mycobacterium sp. 012931 is a fish pathogen causing serious damage to aquaculture farms in Japan. DNA dot plot analysis showed that Mycobacterium sp. 012931 was more closely related to Mycobacterium marinum when compared across several Mycobacterium species. However, little conservation of the gene order was observed between Mycobacterium sp. 012931 and M. marinum genome. The annotated 5,464 genes of Mycobacterium sp. 012931 was classified into 26 subsystems. The insertion/deletion gene analysis shows Mycobacterium sp. 012931 had 643 unique genes that were not found in the M. marinum strains. In the virulence, disease, and defense subsystem, both insertion and deletion genes of Mycobacterium sp. 012931 were associated with the PPE gene cluster of Mycobacteria. Of seven plcB genes in Mycobacterium sp. 012931, plcB_2 and plcB_3 showed low identities with those of M. marinum strains. Therefore, Mycobacterium sp. 012931 has differences on genetic and virulence from M. marinum and may induce different interaction mechanisms between host and pathogen.
Collapse
Affiliation(s)
- Satoru Kurokawa
- Agricultural and Veterinary Division, Animal Health Department of Research and Development, Meiji Seika Pharma, 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Immunoproteomic analysis to identify Shiga toxin-producing Escherichia coli outer membrane proteins expressed during human infection. Infect Immun 2014; 82:4767-77. [PMID: 25156722 DOI: 10.1128/iai.02030-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Shiga-toxin producing Escherichia coli (STEC) is the etiologic agent of acute diarrhea, dysentery, and hemolytic-uremic syndrome (HUS). There is no approved vaccine for STEC infection in humans, and antibiotic use is contraindicated, as it promotes Shiga toxin production. In order to identify STEC-associated antigens and immunogenic proteins, outer membrane proteins (OMPs) were extracted from STEC O26:H11, O103, O113:H21, and O157:H7 strains, and commensal E. coli strain HS was used as a control. SDS-PAGE, two-dimensional-PAGE analysis, Western blot assays using sera from pediatric HUS patients and controls, and matrix-assisted laser desorption ionization-tandem time of flight analyses were used to identify 12 immunogenic OMPs, some of which were not reactive with control sera. Importantly, seven of these proteins have not been previously reported to be immunogenic in STEC strains. Among these seven proteins, OmpT and Cah displayed IgG and IgA reactivity with sera from HUS patients. Genes encoding these two proteins were present in a majority of STEC strains. Knowledge of the antigens produced during infection of the host and the immune response to those antigens will be important for future vaccine development.
Collapse
|
20
|
Barrera C, Reboux G, Warfolomeow I, Rognon B, Millon L, Roussel S. External validation of recombinant antigens for serodiagnosis of machine operator's lung. Am J Ind Med 2014; 57:195-201. [PMID: 24136133 DOI: 10.1002/ajim.22270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND Machine operator's lung (MOL) is a hypersensitivity pneumonitis the diagnosis of which is difficult. Our laboratory previously developed an ELISA test using recombinant antigens from Mycobacterium immunogenum isolated in French plant. The objective was to validate the previous ELISA results with ten new suspected cases from Germany. METHODS Two serological analyses were performed: ELISA with the six recombinant antigens, and electrosyneresis with crude antigens of M. immunogenum and three other main species isolated from contaminated metalworking fluids. RESULTS The two recombinant antigens acyl-CoA dehydrogenase and dihydrolipoyl dehydrogenase, combined together, and electrosyneresis are useful in making the diagnosis regardless of the clinical and radiological data. Finally 9 out of the 10 suspected cases were declared as MOL. CONCLUSIONS Despite the geographical distance, the crude and recombinant antigens produced to investigate the clustered French cases also proved to be useful in diagnosing the suspected cases in Germany.
Collapse
Affiliation(s)
- Coralie Barrera
- UMR/CNRS 6249 Chrono-Environnement; University of Franche-Comté; Besançon France
| | - Gabriel Reboux
- UMR/CNRS 6249 Chrono-Environnement; University of Franche-Comté; Besançon France
- Parasitology-Mycology Department; University Hospital of Besançon; Besançon France
| | - Isabel Warfolomeow
- Occupational Health and Safety Department; Berufsgenossenschaft Holz und Metall (BGHM); Mainz Germany
| | - Bénédicte Rognon
- UMR/CNRS 6249 Chrono-Environnement; University of Franche-Comté; Besançon France
- Parasitology-Mycology Department; University Hospital of Besançon; Besançon France
| | - Laurence Millon
- UMR/CNRS 6249 Chrono-Environnement; University of Franche-Comté; Besançon France
- Parasitology-Mycology Department; University Hospital of Besançon; Besançon France
- Clinical Investigation Center (Inserm CIT 808); University Hospital of Besançon; Besançon France
| | - Sandrine Roussel
- UMR/CNRS 6249 Chrono-Environnement; University of Franche-Comté; Besançon France
- Parasitology-Mycology Department; University Hospital of Besançon; Besançon France
| |
Collapse
|
21
|
Wu R, Lu J. Proteomics of Lactic Acid Bacteria. LACTIC ACID BACTERIA 2014:249-301. [DOI: 10.1007/978-94-017-8841-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Kapoor R, Selvaraju SB, Yadav JS. Extended tracking of the microbial community structure and dynamics in an industrial synthetic metalworking fluid system. FEMS Microbiol Ecol 2013; 87:664-77. [PMID: 24256434 DOI: 10.1111/1574-6941.12254] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 11/11/2013] [Accepted: 11/11/2013] [Indexed: 11/29/2022] Open
Abstract
Understanding of the occupational exposure risk scenario and disease etiology associated with industrial metalworking fluids (MWFs) requires knowledge of the development and composition of their microbial diversity in relation to the underlying fluid management factors. In this study, a managed synthetic MWF operation freshly recharged following the dumping, cleaning, and recharge (DCR) process was tracked in real time for microbial community changes over a period of 1.25 years (65 weeks). The recharged fluid developed very high bacterial counts (viable and nonviable) fairly quickly after the DCR process, indicating its inadequacy. Genus-/group-specific real-time qPCR confirmed the prevalence of six potentially pathogenic/immunogenic microbial genera/groups, viz. pseudomonads, enterics, mycobacteria, legionellae, actinomycetes, and fungi. Selective culturing revealed Acinetobacter and Bacillus as the most frequently isolated Gram-negative and Gram-positive genera, respectively, in addition to the presence of fungi and actinomycetes. Endotoxin perturbations (< 1000 to > 100000 EU mL⁻¹) coincided with temporal increases in Gram-negative bacteria and/or periodic biocide additions. PCR-DGGE-sequencing revealed an expanded estimated bacterial richness (up to 23 bands per sample). Of the 16 dominant bacterial phylotypes identified, the majority were detected for the first time in MWF. Interestingly, the study revealed a crucial role for MWF brand, among other fluid factors, in modulating the community structure and dynamics.
Collapse
Affiliation(s)
- Renuka Kapoor
- Environmental Genetics and Molecular Toxicology Division, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | |
Collapse
|
23
|
Armengaud J, Christie-Oleza JA, Clair G, Malard V, Duport C. Exoproteomics: exploring the world around biological systems. Expert Rev Proteomics 2013. [PMID: 23194272 DOI: 10.1586/epr.12.52] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term 'exoproteome' describes the protein content that can be found in the extracellular proximity of a given biological system. These proteins arise from cellular secretion, other protein export mechanisms or cell lysis, but only the most stable proteins in this environment will remain in abundance. It has been shown that these proteins reflect the physiological state of the cells in a given condition and are indicators of how living systems interact with their environments. High-throughput proteomic approaches based on a shotgun strategy, and high-resolution mass spectrometers, have modified the authors' view of exoproteomes. In the present review, the authors describe how these new approaches should be exploited to obtain the maximum useful information from a sample, whatever its origin. The methodologies used for studying secretion from model cell lines derived from eukaryotic, multicellular organisms, virulence determinants of pathogens and environmental bacteria and their relationships with their habitats are illustrated with several examples. The implication of such data, in terms of proteogenomics and the discovery of novel protein functions, is discussed.
Collapse
Affiliation(s)
- Jean Armengaud
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, F-30207, France.
| | | | | | | | | |
Collapse
|
24
|
Zheng J, Ren X, Wei C, Yang J, Hu Y, Liu L, Xu X, Wang J, Jin Q. Analysis of the secretome and identification of novel constituents from culture filtrate of bacillus Calmette-Guerin using high-resolution mass spectrometry. Mol Cell Proteomics 2013; 12:2081-95. [PMID: 23616670 DOI: 10.1074/mcp.m113.027318] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis (TB) is an infectious bacterial disease that causes morbidity and mortality, especially in developing countries. Although its efficacy against TB has displayed a high degree of variability (0%-80%) in different trials, Mycobacterium bovis bacillus Calmette-Guérin (BCG) has been recognized as an important weapon for preventing TB worldwide for over 80 years. Because secreted proteins often play vital roles in the interaction between bacteria and host cells, the secretome of mycobacteria is considered to be an attractive reservoir of potential candidate antigens for the development of novel vaccines and diagnostic reagents. In this study, we performed a proteomic analysis of BCG culture filtrate proteins using SDS-PAGE and high-resolution Fourier transform mass spectrometry. In total, 239 proteins (1555 unique peptides) were identified, including 185 secreted proteins or lipoproteins. Furthermore, 17 novel protein products not annotated in the BCG database were detected and validated by means of RT-PCR at the transcriptional level. Additionally, the translational start sites of 52 proteins were confirmed, and 22 proteins were validated through extension of the translational start sites based on N-terminus-derived peptides. There are 103 secreted proteins that have not been reported in previous studies on BCG [corrected] secretome and are unique to our study. The physicochemical characteristics of the secreted proteins were determined. Major components from the culture supernatant, including low-molecular-weight antigens, lipoproteins, Pro-Glu and Pro-Pro-Glu family proteins, and Mce family proteins, are discussed; some components represent potential predominant antigens in the humoral and cellular immune responses.
Collapse
Affiliation(s)
- Jianhua Zheng
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100176, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Inal JM, Kosgodage U, Azam S, Stratton D, Antwi-Baffour S, Lange S. Blood/plasma secretome and microvesicles. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2317-25. [PMID: 23590876 DOI: 10.1016/j.bbapap.2013.04.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 11/26/2022]
Abstract
A major but hitherto overseen component of the blood/plasma secretome is that of extracellular vesicles (EVs) which are shed from all blood cell types. These EVs are made up of microvesicles (MVs) and exosomes. MVs, 100nm-1μm in diameter, are released from the cell surface, and are a rich source of non-conventionally secreted proteins lacking a conventional signal peptide, and thus not secreted by the classical secretory pathways. Exosomes are smaller vesicles (≤100nm) having an endocytic origin and released upon multivesicular body fusion with the plasma membrane. Both vesicle types play major roles in intercellular cross talk and constitute an important component of the secretome especially in the area of biomarkers for cancer. The release of EVs, which are found in all the bodily fluids, is enhanced in cancer and a major focus of cancer proteomics is therefore targeted at EVs. The blood/plasma secretome is also a source of EVs, potentially diagnostic of infectious disease, whether from EVs released from infected cells or from the pathogens themselves. Despite the great excitement in this field, as is stated here and in other parts of this Special issue entitled: An Updated Secretome, much of the EV research, whether proteomic or functional in nature, urgently needs standardisation both in terms of nomenclature and isolation protocols. This article is part of a Special Issue entitled: An Updated Secretome.
Collapse
Affiliation(s)
- Jameel M Inal
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London, N7 8DB, UK.
| | | | | | | | | | | |
Collapse
|
26
|
Microorganisms in metalworking fluids: current issues in research and management. Int J Occup Med Environ Health 2013; 26:4-15. [PMID: 23526197 DOI: 10.2478/s13382-013-0075-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 07/27/2012] [Indexed: 11/20/2022] Open
Abstract
The microbial contamination of water miscible metalworking fluids (MWFs) is a serious problem in metal industry. A good maintenance of MWF re-circulation systems can extend the lifetime of coolants and ensure the quality of the tools produced. In MWFs, as in the other water-based environments, microorganisms usually live in the form of biofilms, the communities of bacteria and fungi attached to the surface of sumps, metal parts and also to each other. Biofilms exhibit very high resistance to biocides. The effect of biocides that are used as additives to MWFs to control the growth of the bacterial and fungal microbiomes (microorganisms characteristic to the individual coolant system) have become the subject of research only in recent years. There are also only sparse reports on the impact of biocides on microorganisms growing in biofilms in MWF installations. Fast growing mycobacteria are important members of these biofilm communities. Their presence has recently been linked with the occurrence of cases of hypersensitivity pneumonitis, a serious respiratory disorder in the metal industry employees. The new, relatively fast and inexpensive techniques to assess the species diversity within MWF microbiomes and their population size should be developed in order to control the microorganisms' proliferation in MWFs and to diminish the occupational exposure to harmful bioaerosols in metal industry.
Collapse
|
27
|
Peng XX. Proteomics and its applications to aquaculture in China: infection, immunity, and interaction of aquaculture hosts with pathogens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:63-71. [PMID: 22484215 DOI: 10.1016/j.dci.2012.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 03/19/2012] [Accepted: 03/29/2012] [Indexed: 05/31/2023]
Abstract
China is the largest fishery producer worldwide in term of its aquaculture output, and plays leading and decisive roles in international aquaculture development. To improve aquaculture output further and promote aquaculture business development, infectious diseases and immunity of fishes and other aquaculture species must be studied. In this regard, aquaculture proteomics has been widely carried out in China to get a better understanding of aquaculture host immunity and microbial pathogenesis as well as host-pathogen interactions, and to identify novel disease targets and vaccine candidates for therapeutic interventions. These proteomics studies include development of novel methods, assays, and advanced concepts in order to characterize proteomics mechanisms of host innate immune defense and microbial pathogenesis. This review article summarizes some recently published technical approaches and their applications to aquaculture proteomics with an emphasis on the responses of aquaculture animals to bacteria, viruses, and other aqua-environmental stresses, and development of broadly cross-protective vaccine candidates. The reviewed articles are those that have been published in international peer reviewed journals.
Collapse
Affiliation(s)
- Xuan-Xian Peng
- Center for Proteomics, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
28
|
Two-dimensional gel electrophoresis in bacterial proteomics. Protein Cell 2012; 3:346-63. [PMID: 22610887 DOI: 10.1007/s13238-012-2034-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 02/22/2012] [Indexed: 02/01/2023] Open
Abstract
Two-dimensional gel electrophoresis (2-DE) is a gel-based technique widely used for analyzing the protein composition of biological samples. It is capable of resolving complex mixtures containing more than a thousand protein components into individual protein spots through the coupling of two orthogonal biophysical separation techniques: isoelectric focusing (first dimension) and polyacrylamide gel electrophoresis (second dimension). 2-DE is ideally suited for analyzing the entire expressed protein complement of a bacterial cell: its proteome. Its relative simplicity and good reproducibility have led to 2-DE being widely used for exploring proteomics within a wide range of environmental and medically-relevant bacteria. Here we give a broad overview of the basic principles and historical development of gel-based proteomics, and how this powerful approach can be applied for studying bacterial biology and physiology. We highlight specific 2-DE applications that can be used to analyze when, where and how much proteins are expressed. The links between proteomics, genomics and mass spectrometry are discussed. We explore how proteomics involving tandem mass spectrometry can be used to analyze (post-translational) protein modifications or to identify proteins of unknown origin by de novo peptide sequencing. The use of proteome fractionation techniques and non-gel-based proteomic approaches are also discussed. We highlight how the analysis of proteins secreted by bacterial cells (secretomes or exoproteomes) can be used to study infection processes or the immune response. This review is aimed at non-specialists who wish to gain a concise, comprehensive and contemporary overview of the nature and applications of bacterial proteomics.
Collapse
|
29
|
Tang SN, Sun JM, Xiong WW, Cong PS, Li TH. Identification of the subcellular localization of mycobacterial proteins using localization motifs. Biochimie 2012; 94:847-53. [DOI: 10.1016/j.biochi.2011.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 12/02/2011] [Indexed: 01/28/2023]
|
30
|
Rhodes G, Fluri A, Ruefenacht A, Gerber M, Pickup R. Implementation of a quantitative real-time PCR assay for the detection of Mycobacterium immunogenum in metalworking fluids. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2011; 8:478-83. [PMID: 21756137 DOI: 10.1080/15459624.2011.590737] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The bacterium Mycobacterium immunogenum has been implicated in causing the lung condition hypersensitivity pneumonitis (HP) in factory workers exposed to colonized metalworking fluids (MWFs). M. immunogenum-specific, real-time quantitative PCR detection technique (MiRT-qPCR) was implemented on a large scale to 363 MWFs of varying types, originating from the United States and Europe, that had been in use for between 30 days and 1 year. In MWFs that contained between 10(3) and 10(9) culturable general heterotrophs mL(-1) the technique detected between 5 and 2 × 10(6) mL(-1) M. immunogenum cell equivalents (CE) in 12.2% (23 of 189) of U.S. samples and between 8 and 6 × 10(5) mL(-1) CE in 39.1% (68 of 174) of samples from Europe. In contrast, only three cultured presumptive mycobacterial isolates across all samples were confirmed as M. immunogenum. Implementation of the assay demonstrated its practicality and further emphasized the limitations of using cultivation alone. Interestingly, no M. immunogenum were detected in mineral oil-based Bio-Concept MWFs from the United States, while it was more commonly detected in used MWFs based on formaldehyde-releasing biocides than in MWFs free of formaldehyde-depot biocides.
Collapse
Affiliation(s)
- Glenn Rhodes
- Centre for Ecology and Hydrology, Lancaster Environment Centre, Bailrigg, Lancaster, UK.
| | | | | | | | | |
Collapse
|
31
|
A comprehensive analysis of Bordetella pertussis surface proteome and identification of new immunogenic proteins. Vaccine 2011; 29:3583-95. [DOI: 10.1016/j.vaccine.2011.02.086] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 02/23/2011] [Accepted: 02/25/2011] [Indexed: 01/26/2023]
|
32
|
Mycobacterial PE/PPE proteins at the host-pathogen interface. Clin Dev Immunol 2011; 2011:497203. [PMID: 21318182 PMCID: PMC3034920 DOI: 10.1155/2011/497203] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/23/2010] [Indexed: 11/17/2022]
Abstract
The mycobacterial PE/PPE proteins have attracted much interest since their formal identification just over a decade ago. It has been widely speculated that these proteins may play a role in evasion of host immune responses, possibly via antigenic variation. Although a cohesive understanding of their function(s) has yet to be established, emerging data increasingly supports a role for the PE/PPE proteins at multiple levels of the infectious process. This paper will delineate salient features of the families revealed by comparative genomics, bioinformatic analyses and genome-wide screening approaches and will summarise existing knowledge of subcellular localization, secretion pathways, and protein structure. These characteristics will be considered in light of findings on innate and adaptive host responses to PE/PPE proteins, and we will review the increasing body of data on B and T cell recognition of these proteins. Finally, we will consider how current knowledge and future explorations may contribute to a more comprehensive understanding of these intriguing proteins and their involvement in host pathogen interactions. Ultimately this information could underpin future intervention strategies, for example, in the area of new and improved diagnostic tools and vaccine candidates.
Collapse
|
33
|
Nieves W, Heang J, Asakrah S, Höner zu Bentrup K, Roy CJ, Morici LA. Immunospecific responses to bacterial elongation factor Tu during Burkholderia infection and immunization. PLoS One 2010; 5:e14361. [PMID: 21179405 PMCID: PMC3003680 DOI: 10.1371/journal.pone.0014361] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 11/15/2010] [Indexed: 01/18/2023] Open
Abstract
Burkholderia pseudomallei is the etiological agent of melioidosis, a disease endemic in parts of Southeast Asia and Northern Australia. Currently there is no licensed vaccine against infection with this biological threat agent. In this study, we employed an immunoproteomic approach and identified bacterial Elongation factor-Tu (EF-Tu) as a potential vaccine antigen. EF-Tu is membrane-associated, secreted in outer membrane vesicles (OMVs), and immunogenic during Burkholderia infection in the murine model of melioidosis. Active immunization with EF-Tu induced antigen-specific antibody and cell-mediated immune responses in mice. Mucosal immunization with EF-Tu also reduced lung bacterial loads in mice challenged with aerosolized B. thailandensis. Our data support the utility of EF-Tu as a novel vaccine immunogen against bacterial infection.
Collapse
Affiliation(s)
- Wildaliz Nieves
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Julie Heang
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Saja Asakrah
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Kerstin Höner zu Bentrup
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Chad J. Roy
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Lisa A. Morici
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
34
|
Immunoproteomic analysis of human serological antibody responses to vaccination with whole-cell pertussis vaccine (WCV). PLoS One 2010; 5:e13915. [PMID: 21170113 PMCID: PMC2976700 DOI: 10.1371/journal.pone.0013915] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 10/18/2010] [Indexed: 11/29/2022] Open
Abstract
Background Pertussis (whooping cough) caused by Bordetella pertussis
(B.p), continues to be a serious public health threat.
Vaccination is the most economical and effective strategy for preventing and
controlling pertussis. However, few systematic investigations of actual
human immune responses to pertussis vaccines have been performed. Therefore,
we utilized a combination of two-dimensional electrophoresis (2-DE),
immunoblotting, and mass spectrometry to reveal the entire antigenic
proteome of whole-cell pertussis vaccine (WCV) targeted by the human immune
system as a first step toward evaluating the repertoire of human humoral
immune responses against WCV. Methodology/Principal Findings Immunoproteomic profiling of total membrane enriched proteins and
extracellular proteins of Chinese WCV strain 58003 identified a total of 30
immunoreactive proteins. Seven are known pertussis antigens including
Pertactin, Serum resistance protein, chaperonin GroEL and two OMP porins.
Sixteen have been documented to be immunogenic in other pathogens but not in
B.p, and the immunogenicity of the last seven proteins
was found for the first time. Furthermore, by comparison of the human and
murine immunoproteomes of B.p, with the exception of four
human immunoreactive proteins that were also reactive with mouse immune
sera, a unique group of antigens including more than 20 novel immunoreactive
proteins that uniquely reacted with human immune serum was confirmed. Conclusions/Significance This study is the first time that the repertoire of human serum antibody
responses against WCV was comprehensively investigated, and a small number
of previously unidentified antigens of WCV were also found by means of the
classic immunoproteomic strategy. Further research on these newly identified
predominant antigens of B.p exclusively against humans will
not only remarkably accelerate the development of diagnostic biomarkers and
subunit vaccines but also provide detailed insight into human immunity
mechanisms against WCV. In particular, this work highlights the
heterogeneity of the B.p immunoreactivity patterns of the
mouse model and the human host.
Collapse
|
35
|
Windle HJ, Brown PA, Kelleher DP. Proteomics of bacterial pathogenicity: therapeutic implications. Proteomics Clin Appl 2010; 4:215-27. [PMID: 21137045 DOI: 10.1002/prca.200900145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/13/2009] [Accepted: 10/19/2009] [Indexed: 01/04/2023]
Abstract
Identification of the molecular mechanisms of host-pathogen interaction is becoming a key focus of proteomics. Analysis of these interactions holds promise for significant developments in the identification of new therapeutic strategies to combat infectious diseases, a process that will also benefit parallel improvements in molecular diagnostics, biomarker identification and drug discovery. This review highlights recent advances in functional proteomics initiatives in infectious disease with emphasis on studies undertaken within physiologically relevant parameters that enable identification of the infectious proteome rather than that of the vegetative state. Deciphering the molecular details of what constitutes physiologically relevant host-pathogen interactions remains an underdeveloped aspect of research into infectious disease. The magnitude of this deficit will be largely influenced by the ease with which model systems can be established to investigate such interactions. As the selective pressures exerted by the host on an infecting pathogen are numerous, the adequacy of certain model systems should be considered carefully.
Collapse
Affiliation(s)
- Henry J Windle
- Institute of Molecular Medicine, Trinity College, University of Dublin, Dublin, Ireland.
| | | | | |
Collapse
|
36
|
Abstract
The secretome encompasses the complete set of gene products secreted by a cell. Recent studies on secretome analysis reveal that secretory proteins play an important role in pathogen infection and host-pathogen interactions. Excretory/secretory proteins of pathogens change the host cell environment by suppressing the immune system, to aid the proliferation of infection. Identifying secretory proteins involved in pathogen infection will lead to the discovery of potential drug targets and biomarkers for diagnostic applications.
Collapse
Affiliation(s)
- Shoba Ranganathan
- Department of Chemistry and Biomolecular Sciences and ARC Centre of Excellence in Bioinformatics, Macquarie University, Sydney NSW 2109, Australia
| | | |
Collapse
|