1
|
Dehne S, Kirschner L, Strowitzki MJ, Kilian S, Kummer LC, Schneider MA, Michalski CW, Büchler MW, Weigand MA, Larmann J. Response to letter to the editor regarding "low intraoperative end-tidal carbon dioxide levels are associated with improved recurrence-free survival after elective colorectal cancer surgery". J Clin Anesth 2024; 99:111591. [PMID: 39276525 DOI: 10.1016/j.jclinane.2024.111591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/17/2024]
Affiliation(s)
- Sarah Dehne
- Heidelberg University, Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg, Germany
| | - Lina Kirschner
- Heidelberg University, Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg, Germany
| | - Moritz J Strowitzki
- Heidelberg University, Medical Faculty Heidelberg, Department of General, Visceral, and Transplantation Surgery, Heidelberg, Germany
| | - Samuel Kilian
- Heidelberg University, Medical Faculty Heidelberg, Institute of Medical Biometry, Heidelberg, Germany
| | - Laura C Kummer
- Heidelberg University, Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg, Germany
| | - Martin A Schneider
- Heidelberg University, Medical Faculty Heidelberg, Department of General, Visceral, and Transplantation Surgery, Heidelberg, Germany
| | - Christoph W Michalski
- Heidelberg University, Medical Faculty Heidelberg, Department of General, Visceral, and Transplantation Surgery, Heidelberg, Germany
| | - Markus W Büchler
- Heidelberg University, Medical Faculty Heidelberg, Department of General, Visceral, and Transplantation Surgery, Heidelberg, Germany
| | - Markus A Weigand
- Heidelberg University, Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg, Germany
| | - Jan Larmann
- Heidelberg University, Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg, Germany..
| |
Collapse
|
2
|
Settimo G, Indinnimeo L, Inglessis M, De Felice M, Morlino R, di Coste A, Carriera F, Di Fiore C, Avino P. CO2 Levels in Classrooms: What Actions to Take to Improve the Quality of Environments and Spaces. SUSTAINABILITY 2024; 16:8619. [DOI: 10.3390/su16198619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Indoor air quality (IAQ) is a crucial priority, especially since people spend most of their time indoors. Indoor air can be more polluted than outdoor air due to sources such as building materials, cleaning products, and heating systems. This condition can affect health and productivity, especially in schools and work environments. Students spend about a third of their day in classrooms, and studies have shown that poor IAQ can cause respiratory and allergic problems, especially among children, who are more vulnerable. Poor ventilation and excessive CO2 concentration are indicators of suboptimal indoor air quality, which can lead to symptoms such as headaches, fatigue, and worsening asthma. In Italy, the lack of specific legislation on indoor air quality in schools is a problem, but improved ventilation, both natural and mechanical, and monitoring of CO2 levels are recommended to prevent negative health consequences. This paper aims to describe a methodology to improve IAQ in schools. The paper discusses the results of a study conducted on CO2 and PM10 levels measured in real time in cold season (Nov–Mar) in different classrooms of primary and secondary schools present in a large Italian urban area in order to understand the IAQ state and identify possible improvement actions.
Collapse
Affiliation(s)
- Gaetano Settimo
- Environment and Health Department, Italian National Institute of Health, Viale Regina Elena 299, IT-00185 Rome, Italy
| | - Luciana Indinnimeo
- Department of Pediatrics and Child Neuropsychiatry, Policlinico Umberto I, University of Rome La Sapienza, Viale Regina Elena 324, IT-00161 Rome, Italy
| | - Marco Inglessis
- Environment and Health Department, Italian National Institute of Health, Viale Regina Elena 299, IT-00185 Rome, Italy
| | - Marco De Felice
- Environment and Health Department, Italian National Institute of Health, Viale Regina Elena 299, IT-00185 Rome, Italy
| | - Roberta Morlino
- Environment and Health Department, Italian National Institute of Health, Viale Regina Elena 299, IT-00185 Rome, Italy
| | - Annalisa di Coste
- Department of Pediatrics and Child Neuropsychiatry, Policlinico Umberto I, University of Rome La Sapienza, Viale Regina Elena 324, IT-00161 Rome, Italy
| | - Fabiana Carriera
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via F. De Sanctis, IT-86100 Campobasso, Italy
| | - Cristina Di Fiore
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via F. De Sanctis, IT-86100 Campobasso, Italy
| | - Pasquale Avino
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via F. De Sanctis, IT-86100 Campobasso, Italy
- Institute of Atmospheric Pollution Research, Division of Rome, c/o Ministry of Environment and Energy Security, IT-00147 Rome, Italy
| |
Collapse
|
3
|
Boada LD, Simbaña-Rivera K, Rodríguez-Pérez C, Fuentes-Ferrer M, Henríquez-Hernández LA, López-Villarrubia E, Alvarez-León EE. Assessing the hidden dangers of volcanic CO 2 exposure: a critical review of health impacts. Front Public Health 2024; 12:1465837. [PMID: 39430713 PMCID: PMC11487599 DOI: 10.3389/fpubh.2024.1465837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
Volcanic eruptions pose significant health risks to inhabitants of affected regions, with volcanic gases, including carbon dioxide (CO2), being a notable concern. This review examines the implications of long-term exposure to volcanic CO2 emissions on public health, highlighting the shift in understanding from acute to chronic health effects. Recent studies have underscored the need to reevaluate the adverse health impacts of CO2 beyond acute toxicity symptoms. While previous guidelines deemed an indoor (residential) acceptable long-term exposure range (ALTER) of ≤3,000 parts per million (ppm) in residential housing areas, emerging evidence suggests that even concentrations within the range of 3,000 to 1,000 ppm may induce deleterious health effects. International agencies now advocate for lower safe indoor CO2 levels (600-1,000 ppm), necessitating a reassessment of public health strategies in volcanic areas. This review argues for increased awareness among local and public health authorities about the chronic toxicity of CO2 exposure and emphasizes the importance of safeguarding populations from the adverse health effects induced by CO2 exposure.
Collapse
Affiliation(s)
- Luis D. Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Katherine Simbaña-Rivera
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
- Centro de Investigación para la Salud en América Latina (CISeAL), Facultad de Medicina, Pontificia Universidad Católica del Ecuador (PUCE), Quito, Ecuador
| | - C. Rodríguez-Pérez
- Canary Health Service, University Hospital Nuestra Señora de Candelaria and Primary Care Authority of Tenerife, Santa Cruz de Tenerife, Spain
| | - M. Fuentes-Ferrer
- Canary Health Service, University Hospital Nuestra Señora de Candelaria and Primary Care Authority of Tenerife, Santa Cruz de Tenerife, Spain
| | - Luis Alberto Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - E. López-Villarrubia
- General Public Health Directorate, Canarian Health Service, Las Palmas de Gran Canaria, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - E. E. Alvarez-León
- Preventive Medicine Service, Complejo Hospitalario Universitario Insular Materno Infantil, Canary Health Service, Las Palmas de Gran Canaria, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
4
|
Dehne S, Kirschner L, Klotz R, Kilian S, Michalski CW, Hackert T, Büchler MW, Weigand MA, Larmann J. Intraoperative end-tidal carbon dioxide levels are not associated with recurrence-free survival after elective pancreatic cancer surgery: a retrospective cohort study. Front Med (Lausanne) 2024; 11:1442283. [PMID: 39323469 PMCID: PMC11422119 DOI: 10.3389/fmed.2024.1442283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024] Open
Abstract
Background Intraoperative end-tidal carbon dioxide concentrations (EtCO2) values are associated with recurrence-free survival after colorectal cancer surgery. However, it is unknown if similar effects can be observed after other surgical procedures. There is now evidence available for target EtCO2 and its relation to surgical outcomes following pancreatic cancer surgery. Methods In this single-center, retrospective cohort study, we analyzed 652 patients undergoing elective resection of pancreatic cancer at Heidelberg University Hospital between 2009 and 2016. The entire patient cohort was sorted in ascending order based on mean intraoperative EtCO2 values and then divided into two groups: the high-EtCO2 group and the low-EtCO2 group. The pre-specified primary endpoint was the assessment of recurrence-free survival up to the last known follow-up. Cardiovascular events, surgical site infections, sepsis, and reoperations during the hospital stay, as well as overall survival were pre-specified secondary outcomes. Results Mean EtCO2 was 33.8 mmHg ±1.1 in the low-EtCO2 group vs. 36.8 mmHg ±1.9 in the high-EtCO2 group. Median follow-up was 2.6 (Q1:1.4; Q3:4.4) years. Recurrence-free survival did not differ among the high and low-EtCO2 groups [HR = 1.043 (95% CI: 0.875-1.243), log rank test: p = 0.909]. Factors affecting the primary endpoint were studied via Cox analysis, which indicated no correlation between mean EtCO2 levels and recurrence-free survival [Coefficient -0.004, HR = 0.996 (95% CI:0.95-1.04); p = 0.871]. We did not identify any differences in the secondary endpoints, either. Conclusions During elective pancreatic cancer surgery, anesthesiologists should set EtCO2 targets for reasons other than oncological outcome until conclusive evidence from prospective, multicenter randomized controlled trials is available.
Collapse
Affiliation(s)
- Sarah Dehne
- Heidelberg University, Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg, Germany
| | - Lina Kirschner
- Heidelberg University, Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg, Germany
| | - Rosa Klotz
- Heidelberg University, Medical Faculty Heidelberg, Department of General, Visceral, and Transplantation Surgery, Heidelberg, Germany
| | - Samuel Kilian
- Heidelberg University, Medical Faculty Heidelberg, Institute of Medical Biometry, Heidelberg, Germany
| | - Christoph W. Michalski
- Heidelberg University, Medical Faculty Heidelberg, Department of General, Visceral, and Transplantation Surgery, Heidelberg, Germany
| | - Thilo Hackert
- Heidelberg University, Medical Faculty Heidelberg, Department of General, Visceral, and Transplantation Surgery, Heidelberg, Germany
| | - Markus W. Büchler
- Heidelberg University, Medical Faculty Heidelberg, Department of General, Visceral, and Transplantation Surgery, Heidelberg, Germany
| | - Markus A. Weigand
- Heidelberg University, Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg, Germany
| | - Jan Larmann
- Heidelberg University, Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg, Germany
| |
Collapse
|
5
|
Dehne S, Kirschner L, Strowitzki MJ, Kilian S, Kummer LC, Schneider MA, Michalski CW, Büchler MW, Weigand MA, Larmann J. Low intraoperative end-tidal carbon dioxide levels are associated with improved recurrence-free survival after elective colorectal cancer surgery. J Clin Anesth 2024; 96:111495. [PMID: 38733708 DOI: 10.1016/j.jclinane.2024.111495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/24/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
STUDY OBJECTIVE Higher levels of carbon dioxide (CO2) increase the invasive abilities of colon cancer cells in vitro. Studies assessing target values for end-tidal CO2 concentrations (EtCO2) to improve surgical outcome after colorectal cancer surgery are lacking. Therefore, we evaluated whether intraoperative EtCO2 was associated with differences in recurrence-free survival after elective colorectal cancer (CRC) surgery. DESIGN Single center, retrospective analysis. SETTING Anesthesia records, surgical databases and hospital information system of a tertiary university hospital. PATIENTS We analyzed 528 patients undergoing elective resection of colorectal cancer at Heidelberg University Hospital between 2009 and 2018. INTERVENTIONS None. MEASUREMENTS Intraoperative mean EtCO2 values were calculated. The study cohort was equally stratified into low-and high-EtCO2 groups. The primary endpoint measure was recurrence-free survival until last known follow-up. Groups were compared using Kaplan-Meier analysis. Cox-regression analysis was used to control for covariates. Sepsis, reoperations, surgical site infections and cardiovascular events during hospital stay, and overall survival were secondary outcomes. MAIN RESULTS Mean EtCO2 was 33.8 mmHg ±1.2 in the low- EtCO2 group vs. 37.3 mmHg ±1.6 in the high-EtCO2 group. Median follow-up was 3.8 (Q1-Q3, 2.5-5.1) years. Recurrence-free survival was higher in the low-EtCO2 group (log-rank-test: p = .024). After correction for confounding factors, lower EtCO2 was associated with increased recurrence-free survival (HR = 1.138, 95%-CI:1.015-1.276, p = .027); the hazard for the primary outcome decreased by 12.1% per 1 mmHg decrease in mean EtCO2. 1-year and 5-year survival was also higher in the low-EtCO2 group. We did not find differences in the other secondary endpoints. CONCLUSIONS Lower intraoperative EtCO2 target values in CRC surgery might benefit oncological outcome and should be evaluated in confirmative studies.
Collapse
Affiliation(s)
- Sarah Dehne
- Heidelberg University, Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg, Germany
| | - Lina Kirschner
- Heidelberg University, Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg, Germany
| | - Moritz J Strowitzki
- Heidelberg University, Medical Faculty Heidelberg, Department of General, Visceral, and Transplantation Surgery, Heidelberg, Germany
| | - Samuel Kilian
- Heidelberg University, Medical Faculty Heidelberg, Institute of Medical Biometry, Heidelberg, Germany
| | - Laura Christine Kummer
- Heidelberg University, Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg, Germany
| | - Martin A Schneider
- Heidelberg University, Medical Faculty Heidelberg, Department of General, Visceral, and Transplantation Surgery, Heidelberg, Germany
| | - Christoph W Michalski
- Heidelberg University, Medical Faculty Heidelberg, Department of General, Visceral, and Transplantation Surgery, Heidelberg, Germany
| | - Markus W Büchler
- Heidelberg University, Medical Faculty Heidelberg, Department of General, Visceral, and Transplantation Surgery, Heidelberg, Germany
| | - Markus A Weigand
- Heidelberg University, Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg, Germany
| | - Jan Larmann
- Heidelberg University, Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg, Germany.
| |
Collapse
|
6
|
Peterson LA, Stanfill SB, Hecht SS. An update on the formation in tobacco, toxicity and carcinogenicity of N'-nitrosonornicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Carcinogenesis 2024; 45:275-287. [PMID: 38437625 PMCID: PMC11102769 DOI: 10.1093/carcin/bgae018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024] Open
Abstract
The tobacco-specific nitrosamines N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are considered 'carcinogenic to humans' by the International Agency for Research on Cancer (IARC) and are believed to be important in the carcinogenic effects of both smokeless tobacco and combusted tobacco products. This short review focuses on the results of recent studies on the formation of NNN and NNK in tobacco, and their carcinogenicity and toxicity in laboratory animals. New mechanistic insights are presented regarding the role of dissimilatory nitrate reductases in certain microorganisms involved in the conversion of nitrate to nitrite that leads to the formation of NNN and NNK during curing and processing of tobacco. Carcinogenicity studies of the enantiomers of the major NNK metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and the enantiomers of NNN are reviewed. Recent toxicity studies of inhaled NNK and co-administration studies of NNK with formaldehyde, acetaldehyde, acrolein and CO2, all of which occur in high concentrations in cigarette smoke, are discussed.
Collapse
Affiliation(s)
- Lisa A Peterson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Stephen B Stanfill
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
7
|
Cao Y, Taghvaie Nakhjiri A, Ghadiri M. Breakthrough applications of porous organic materials for membrane-based CO 2 separation: a review. Front Chem 2024; 12:1381898. [PMID: 38576848 PMCID: PMC10991746 DOI: 10.3389/fchem.2024.1381898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Over the last decades, porous organic materials (POMs) have been extensively employed in various industrial approaches including gas separation, catalysis and energy production due to possessing indisputable advantages like great surface area, high permeability, controllable pore size, appropriate functionalization and excellent processability compared to traditional substances like zeolites, Alumina and polymers. This review presents the recent breakthroughs in the multifunctional POMs for potential use in the membrane-based CO2 separation. Some examples of highly-selective membranes using multifunctional POMs are described. Moreover, various classifications of POMs following with their advantages and disadvantages in CO2 separation processes are explained. Apart from reviewing the state-of-the-art POMs in CO2 separation, the challenges/limitations of POMs with tailored structures for reasonable application are discussed.
Collapse
Affiliation(s)
- Yan Cao
- School of Computer Science and Engineering, Xi’an Technological University, Xi’an, China
| | - Ali Taghvaie Nakhjiri
- Department of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Ghadiri
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- The Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
8
|
Bărbulescu A. Modeling the Greenhouse Gases Data Series in Europe during 1990-2021. TOXICS 2023; 11:726. [PMID: 37755737 PMCID: PMC10535878 DOI: 10.3390/toxics11090726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023]
Abstract
Nowadays, climate change and atmospheric pollution are two of humanity's most significant challenges. Greenhouse gases (GHGs) are responsible for climate change, and they create effects that are mostly irreversible. Therefore, monitoring and reducing such emissions are compulsory for the preservation of the environment for future generations. The European Union took action in this direction. The article presents the evolution of the total GHGs trend, from 1990 to 2021, in the EU countries and their associates. Trend analysis and grouping of the countries using different clustering techniques are performed. The analysis of the existence of greenhouse gases (GHGs) series' trend, in 30 countries from Europe, showed that the GHG emissions decreased from 1990 to 2021 in only 17 countries. The annual series, built using the data reported by each country each year, does not present a specific trend. After grouping the countries in clusters by k-means and hierarchical clustering, the representative series for the annual recorded values in the 30 studied countries, called Regional series (RegS), is built using series selected from the cluster with the highest number of elements. The same algorithm provides the Representative Temporal series (TempS), which selects specific years after clustering the annual GHG series.
Collapse
Affiliation(s)
- Alina Bărbulescu
- Department of Civil Engineering, Transilvania University of Brașov, 5 Turnului Str., 900152 Brasov, Romania
| |
Collapse
|
9
|
Kisielinski K, Hirsch O, Wagner S, Wojtasik B, Funken S, Klosterhalfen B, Kanti Manna S, Prescher A, Sukul P, Sönnichsen A. Physio-metabolic and clinical consequences of wearing face masks-Systematic review with meta-analysis and comprehensive evaluation. Front Public Health 2023; 11:1125150. [PMID: 37089476 PMCID: PMC10116418 DOI: 10.3389/fpubh.2023.1125150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/17/2023] [Indexed: 04/08/2023] Open
Abstract
Background As face masks became mandatory in most countries during the COVID-19 pandemic, adverse effects require substantiated investigation. Methods A systematic review of 2,168 studies on adverse medical mask effects yielded 54 publications for synthesis and 37 studies for meta-analysis (on n = 8,641, m = 2,482, f = 6,159, age = 34.8 ± 12.5). The median trial duration was only 18 min (IQR = 50) for our comprehensive evaluation of mask induced physio-metabolic and clinical outcomes. Results We found significant effects in both medical surgical and N95 masks, with a greater impact of the second. These effects included decreased SpO2 (overall Standard Mean Difference, SMD = -0.24, 95% CI = -0.38 to -0.11, p < 0.001) and minute ventilation (SMD = -0.72, 95% CI = -0.99 to -0.46, p < 0.001), simultaneous increased in blood-CO2 (SMD = +0.64, 95% CI = 0.31-0.96, p < 0.001), heart rate (N95: SMD = +0.22, 95% CI = 0.03-0.41, p = 0.02), systolic blood pressure (surgical: SMD = +0.21, 95% CI = 0.03-0.39, p = 0.02), skin temperature (overall SMD = +0.80 95% CI = 0.23-1.38, p = 0.006) and humidity (SMD +2.24, 95% CI = 1.32-3.17, p < 0.001). Effects on exertion (overall SMD = +0.9, surgical = +0.63, N95 = +1.19), discomfort (SMD = +1.16), dyspnoea (SMD = +1.46), heat (SMD = +0.70), and humidity (SMD = +0.9) were significant in n = 373 with a robust relationship to mask wearing (p < 0.006 to p < 0.001). Pooled symptom prevalence (n = 8,128) was significant for: headache (62%, p < 0.001), acne (38%, p < 0.001), skin irritation (36%, p < 0.001), dyspnoea (33%, p < 0.001), heat (26%, p < 0.001), itching (26%, p < 0.001), voice disorder (23%, p < 0.03), and dizziness (5%, p = 0.01). Discussion Masks interfered with O2-uptake and CO2-release and compromised respiratory compensation. Though evaluated wearing durations are shorter than daily/prolonged use, outcomes independently validate mask-induced exhaustion-syndrome (MIES) and down-stream physio-metabolic disfunctions. MIES can have long-term clinical consequences, especially for vulnerable groups. So far, several mask related symptoms may have been misinterpreted as long COVID-19 symptoms. In any case, the possible MIES contrasts with the WHO definition of health. Conclusion Face mask side-effects must be assessed (risk-benefit) against the available evidence of their effectiveness against viral transmissions. In the absence of strong empirical evidence of effectiveness, mask wearing should not be mandated let alone enforced by law. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021256694, identifier: PROSPERO 2021 CRD42021256694.
Collapse
Affiliation(s)
- Kai Kisielinski
- Orthopaedic and Trauma Surgery, Clinical Medicine, Private Practice, Düsseldorf, Germany
| | - Oliver Hirsch
- Department of Psychology, Fachhochschule für Oekonomie und Management (FOM) University of Applied Sciences, Siegen, Germany
| | - Susanne Wagner
- Veterinary Medicine, Wagner Medical Science Liason (MSL) Management, Blankenfelde-Mahlow, Germany
| | - Barbara Wojtasik
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdańsk, Gdansk, Poland
| | - Stefan Funken
- Internal Medicine, Clinical Medicine, Private Practice, Moers, Germany
| | | | - Soumen Kanti Manna
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Andreas Prescher
- Institute of Molecular and Cellular Anatomy (MOCA), Rhine-Westphalia Technical University of Aachen, Aachen, Germany
| | - Pritam Sukul
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anesthesiology and Intensive Care, University Medicine Rostock, Rostock, Germany
| | - Andreas Sönnichsen
- Internal Medicine, Clinical Medicine, Private Practice, Gesundheit für Österreich e.V. (Health for Austria), Vienna, Austria
| |
Collapse
|
10
|
Kisielinski K, Wagner S, Hirsch O, Klosterhalfen B, Prescher A. Possible toxicity of chronic carbon dioxide exposure associated with face mask use, particularly in pregnant women, children and adolescents - A scoping review. Heliyon 2023; 9:e14117. [PMID: 37057051 PMCID: PMC9981272 DOI: 10.1016/j.heliyon.2023.e14117] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction During the SARS-CoV-2-pandemic, face masks have become one of the most important ubiquitous factors affecting human breathing. It increases the resistance and dead space volume leading to a re-breathing of CO2. So far, this phenomenon and possible implications on early life has not been evaluated in depth. Method As part of a scoping review, literature was systematically reviewed regarding CO2 exposure and facemask use. Results Fresh air has around 0.04% CO2, while wearing masks more than 5 min bears a possible chronic exposure to carbon dioxide of 1.41% to 3.2% of the inhaled air. Although the buildup is usually within the short-term exposure limits, long-term exceedances and consequences must be considered due to experimental data. US Navy toxicity experts set the exposure limits for submarines carrying a female crew to 0.8% CO2 based on animal studies which indicated an increased risk for stillbirths. Additionally, mammals who were chronically exposed to 0.3% CO2 the experimental data demonstrate a teratogenicity with irreversible neuron damage in the offspring, reduced spatial learning caused by brainstem neuron apoptosis and reduced circulating levels of the insulin-like growth factor-1. With significant impact on three readout parameters (morphological, functional, marker) this chronic 0.3% CO2 exposure has to be defined as being toxic. Additional data exists on the exposure of chronic 0.3% CO2 in adolescent mammals causing neuron destruction, which includes less activity, increased anxiety and impaired learning and memory. There is also data indicating testicular toxicity in adolescents at CO2 inhalation concentrations above 0.5%. Discussion There is a possible negative impact risk by imposing extended mask mandates especially for vulnerable subgroups. Circumstantial evidence exists that extended mask use may be related to current observations of stillbirths and to reduced verbal motor and overall cognitive performance in children born during the pandemic. A need exists to reconsider mask mandates.
Collapse
Affiliation(s)
- Kai Kisielinski
- Independent Researcher, Surgeon, Private Practice, 40212 Düsseldorf, Germany
| | - Susanne Wagner
- Non Clinical Expert, Veterinarian, Wagner MSL Management, 15831 Mahlow, Germany
| | - Oliver Hirsch
- Department of Psychology, FOM University of Applied Sciences, 57078 Siegen, Germany
| | | | - Andreas Prescher
- Institute of Molecular and Cellular Anatomy (MOCA), 52074 Aachen, Germany
| |
Collapse
|
11
|
López LR, Dessì P, Cabrera-Codony A, Rocha-Melogno L, Kraakman B, Naddeo V, Balaguer MD, Puig S. CO 2 in indoor environments: From environmental and health risk to potential renewable carbon source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159088. [PMID: 36181799 DOI: 10.1016/j.scitotenv.2022.159088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
In the developed world, individuals spend most of their time indoors. Poor Indoor Air Quality (IAQ) has a wide range of effects on human health. The burden of disease associated with indoor air accounts for millions of premature deaths related to exposure to Indoor Air Pollutants (IAPs). Among them, CO2 is the most common one, and is commonly used as a metric of IAQ. Indoor CO2 concentrations can be significantly higher than outdoors due to human metabolism and activities. Even in presence of ventilation, controlling the CO2 concentration below the Indoor Air Guideline Values (IAGVs) is a challenge, and many indoor environments including schools, offices and transportation exceed the recommended value of 1000 ppmv. This is often accompanied by high concentration of other pollutants, including bio-effluents such as viruses, and the importance of mitigating the transmission of airborne diseases has been highlighted by the COVID-19 pandemic. On the other hand, the relatively high CO2 concentration of indoor environments presents a thermodynamic advantage for direct air capture (DAC) in comparison to atmospheric CO2 concentration. This review aims to describe the issues associated with poor IAQ, and to demonstrate the potential of indoor CO2 DAC to purify indoor air while generating a renewable carbon stream that can replace conventional carbon sources as a building block for chemical production, contributing to the circular economy.
Collapse
Affiliation(s)
- L R López
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain.
| | - P Dessì
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - A Cabrera-Codony
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - L Rocha-Melogno
- ICF, 2635 Meridian Parkway Suite 200, Durham, NC 27713, United States
| | - B Kraakman
- Jacobs Engineering, Templey Quay 1, Bristol BAS1 6DG, UK; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., 47011 Valladolid, Spain
| | - V Naddeo
- Sanitary Environmental Engineering Division, Department of Civil Engineering, University of Salerno, 84084 Fisciano, SA, Italy
| | - M D Balaguer
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - S Puig
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| |
Collapse
|
12
|
Effect of Wearing Surgical Face Masks on Gas Detection from Respiration Using Photoacoustic Spectroscopy. Molecules 2022; 27:molecules27113618. [PMID: 35684554 PMCID: PMC9182023 DOI: 10.3390/molecules27113618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
Wearing surgical face masks is among the measures taken to mitigate coronavirus disease (COVID-19) transmission and deaths. Lately, concern was expressed about the possibility that gases from respiration could build up in the mask over time, causing medical issues related to the respiratory system. In this research study, the carbon dioxide concentration and ethylene in the breathing zone were measured before and immediately after wearing surgical face masks using the photoacoustic spectroscopy method. From the determinations of this study, the C2H4 was established to be increased by 1.5% after one hour of wearing the surgical face mask, while CO2 was established to be at a higher concentration of 1.2% after one hour of wearing the surgical face mask, when the values were correlated with the baseline (control).
Collapse
|
13
|
Jin RN, Inada H, Négyesi J, Ito D, Nagatomi R. Carbon dioxide effects on daytime sleepiness and EEG signal: A combinational approach using classical frequentist and Bayesian analyses. INDOOR AIR 2022; 32:e13055. [PMID: 35762237 PMCID: PMC9327715 DOI: 10.1111/ina.13055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Environmental carbon dioxide (CO2 ) could affect various mental and physiological activities in humans, but its effect on daytime sleepiness is still controversial. In a randomized and counterbalanced crossover study with twelve healthy volunteers, we applied a combinational approach using classical frequentist and Bayesian statistics to analyze the CO2 exposure effect on daytime sleepiness and electroencephalogram (EEG) signals. Subjective sleepiness was measured by the Japanese Karolinska Sleepiness Scale (KSS-J) by recording EEG during CO2 exposure at different concentrations: Normal (C), 4000 ppm (Moderately High: MH), and 40 000 ppm (high: H). The daytime sleepiness was significantly affected by the exposure time but not the CO2 condition in the classical statistics. On the other hand, the Bayesian paired t-test revealed that the CO2 exposure at the MH condition might induce daytime sleepiness at the 40-min point compared with the C condition. By contrast, EEG was significantly affected by a short exposure to the H condition but not exposure time. The Bayesian analysis of EEG was primarily consistent with results by the classical statistics but showed different credible levels in the Bayes' factor. Our result suggested that the EEG may not be suitable to detect objective sleepiness induced by CO2 exposure because the EEG signal was highly sensitive to environmental CO2 concentration. Our study would be helpful for researchers to revisit whether EEG is applicable as a judgment indicator of objective sleepiness.
Collapse
Affiliation(s)
- Rui Nian Jin
- Division of Biomedical Engineering for Health & WelfareTohoku University Graduate School of Biomedical EngineeringSendaiMiyagiJapan
| | - Hitoshi Inada
- Division of Biomedical Engineering for Health & WelfareTohoku University Graduate School of Biomedical EngineeringSendaiMiyagiJapan
| | - János Négyesi
- Division of Biomedical Engineering for Health & WelfareTohoku University Graduate School of Biomedical EngineeringSendaiMiyagiJapan
| | - Daisuke Ito
- Division of Biomedical Engineering for Health & WelfareTohoku University Graduate School of Biomedical EngineeringSendaiMiyagiJapan
| | - Ryoichi Nagatomi
- Division of Biomedical Engineering for Health & WelfareTohoku University Graduate School of Biomedical EngineeringSendaiMiyagiJapan
- Department of Medicine and Science in Sports and ExerciseTohoku University Graduate School of MedicineSendaiMiyagiJapan
| |
Collapse
|
14
|
Friedman-Jimenez G, Kato I, Factor-Litvak P, Shore R. Mortality of Enlisted Men Who Served on Nuclear-Powered Submarines in the United States Navy. J Occup Environ Med 2022; 64:131-139. [PMID: 34412099 DOI: 10.1097/jom.0000000000002364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To describe the long-term mortality experience of a cohort of enlisted men who served on nuclear-powered submarines in the United States Navy and breathed recirculated filtered air for extended periods of time. METHODS In this historical cohort study we estimated standardized mortality ratios (SMRs) and used within-cohort Poisson regression analyses to address healthy worker biases. RESULTS Three thousand two hundred sixty three deaths occurred among 85,498 men during 1,926,875 person-years of follow-up from 1969 to 1995. SMRs were reduced for most cause-of-death categories, prostate cancer had a twofold elevation. In within-cohort comparisons, prostate cancer mortality did not increase with duration of submarine service, but ischemic heart disease mortality increased 26% per 5 years of submarine service. CONCLUSIONS Long periods of submarine service do not increase mortality in most cause-of-death categories. Increased mortality from ischemic heart disease likely reflects the effects of tobacco smoke.
Collapse
Affiliation(s)
- George Friedman-Jimenez
- Bellevue/NYU Occupational Environmental Medicine Clinic (Dr Friedman-Jimenez); New York University Grossman School of Medicine (Dr Friedman-Jimenez, Dr Shore); Karmanos Cancer Institute, Wayne State University, Detroit, Michigan (Dr Kato); Mailman School of Public Health, Columbia University (Dr Factor-Litvak), New York, New York
| | | | | | | |
Collapse
|
15
|
Szary MJ, Florjan DM, Bąbelek JA. Selective Detection of Carbon Monoxide on P-Block Doped Monolayers of MoTe 2. ACS Sens 2022; 7:272-285. [PMID: 35044171 PMCID: PMC8805155 DOI: 10.1021/acssensors.1c02246] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022]
Abstract
CO and CO2 are among the most commonly monitored gases. However, the currently available semiconductor sensors require heating to ∼400 °C in order to operate effectively. This increases the power demand and shortens their lifespan. Consequently, new material prospects are being investigated. The adoption of novel two-dimensional layered materials is one of the pursued solutions. MoS2 and MoTe2 sheets have already been shown sensitive to NO2 and NH3 even at room temperature. However, their response to other compounds is limited. Hence, this work investigates, by employing density functional theory (DFT) calculations, the doping of Al, Si, P, S, and Cl atoms into the Te vacancy of MoTe2, and its impact on the sensing characteristics for CO and CO2. The computations predict that P doping significantly enhances the molecule-sheet charge transfer (up to +436%) while having only a little effect on the adsorption energy (molecular dynamics show that the molecule can effectively diffuse at 300 K). On the other hand, the doping has a limited impact on the adsorption of CO2. The relative (CO/CO2) response of P-doped MoTe2 is 5.6 compared to the 1.5 predicted for the pristine sheet. Thus, the doping should allow for more selective detection of CO in CO/CO2 mixtures.
Collapse
Affiliation(s)
- Maciej J. Szary
- Institute of Physics, Poznan University of Technology, ul. Piotrowo 3, 61-138 Poznan, Poland
| | - Dominik M. Florjan
- Institute of Physics, Poznan University of Technology, ul. Piotrowo 3, 61-138 Poznan, Poland
| | - Jakub A. Bąbelek
- Institute of Physics, Poznan University of Technology, ul. Piotrowo 3, 61-138 Poznan, Poland
| |
Collapse
|
16
|
Kuga K, Ito K, Wargocki P. The effects of warmth and CO 2 concentration, with and without bioeffluents, on the emission of CO 2 by occupants and physiological responses. INDOOR AIR 2021; 31:2176-2187. [PMID: 33913564 DOI: 10.1111/ina.12852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
The emission rate of carbon dioxide (CO2 ) depends on many factors but mainly on the activity level (metabolic rate) of occupants. In this study, we examined two other factors that may influence the CO2 emission rate, namely the background CO2 concentration and the indoor temperature. Six male volunteers sat one by one in a 1.7 m3 chamber for 2.5 h and performed light office-type work under five different conditions with two temperature levels (23 vs. 28°C) and three background concentrations of CO2 (800 vs. 1400 vs. 3000 ppm). Background CO2 levels were increased either by dosing CO2 from a cylinder or by reducing the outdoor air supply rate. Physiological responses to warmth, added CO2 , and bioeffluents were monitored. The rate of CO2 emission was estimated using a mass-balance equation. The results indicate a higher CO2 emission rate at the higher temperature, at which the subjects were warm, and a lower emission rate in all conditions in which the background CO2 concentration increased. Physiological measurements partially explained the present results but more measurements are needed.
Collapse
Affiliation(s)
- Kazuki Kuga
- Faculty of Engineering Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhide Ito
- Faculty of Engineering Sciences, Kyushu University, Fukuoka, Japan
| | - Pawel Wargocki
- International Centre for Indoor Environment and Energy, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
17
|
Moradian M, Alam MN, van de Ven TGM. Influence of Carboxyl Charge Density on Properties of Extruded Cellulose Films. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Mohammadhadi Moradian
- Department of Chemistry, Quebec Centre for Advanced Materials, Pulp & Paper Research Centre, McGill University, 3420 University Street, Montreal, Quebec H3A 2A7, Canada
| | - Md Nur Alam
- Biorefining Research Institute, Lakehead University, 1294 Balmoral Street, Thunder Bay, Ontario P7B5Z5, Canada
| | - Theo G. M. van de Ven
- Department of Chemistry, Quebec Centre for Advanced Materials, Pulp & Paper Research Centre, McGill University, 3420 University Street, Montreal, Quebec H3A 2A7, Canada
| |
Collapse
|
18
|
Zhang X, Li D, Xie J, Liu J. Environmental perceptions, mental performance, and physiological responses of people with respiratory allergies exposed to reduced Indoor Air Quality. INDOOR AIR 2021; 31:1458-1472. [PMID: 33432603 DOI: 10.1111/ina.12793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
To investigate the need of allergic population for indoor environment quality, exposure effects of poor air quality on subjects with respiratory allergies were compared with those on healthy people, including perceptual responses, health symptoms, mental performance, and physiological responses. The experimental intervention was with and without ventilation at thermally neutral rooms, creating two exposure conditions indicated by CO2 concentration ranges of 502 to 3297 ppm (2438 ± 1527 ppm) and 517 to 5687 ppm (3615 ± 1527 ppm). 63 subjects (32 allergic subjects and 31 non-allergic subjects) were exposed to both conditions for 3 hours. The main results suggested that, compared with healthy people, people with respiratory allergy seem to be more sensitive or less acceptable to reduced air quality polluted by occupants during instantaneous exposure. Besides, the allergic group performed worse in cognitive tests than non-allergic group. After 3 hours of continuous exposure, people with respiratory allergy reported stronger intensity of respiratory irritations and seemed to suffer more inflammation indicated by a higher level of interleukin 1L-1β.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Dandan Li
- Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Jingchao Xie
- Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Jiaping Liu
- Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| |
Collapse
|
19
|
Gui X, Yang Z, Li MD. Effect of Cigarette Smoke on Gut Microbiota: State of Knowledge. Front Physiol 2021; 12:673341. [PMID: 34220536 PMCID: PMC8245763 DOI: 10.3389/fphys.2021.673341] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Cigarette smoke is a representative source of toxic chemical exposures to humans, and the adverse consequences of cigarette smoking are mediated by its effect on both neuronal and immune-inflammatory systems. Cigarette smoking also is a major risk factor for intestinal disorders, such as Crohn's disease and peptic ulcer. On the other hand, cigarette smoking is protective against developing ulcerative colitis. The effects of cigarette smoking on intestinal disorders include changes in intestinal irrigation and microbiome, increases in permeability of the mucosa, and impaired mucosal immune responses. However, the underlying mechanism linking cigarette smoking with intestinal microbiota dysbiosis is largely unknown. In this communication, we first review the current knowledge about the mechanistic interaction between cigarette smoke and intestinal microbiota dysbiosis, which include the likely actions of nicotine, aldehydes, polycyclic aromatic hydrocarbons, heavy metals, volatile organic compounds and toxic gases, and then reveal the potential mechanisms of the lung-gut cross talk and skin-gut cross talk in regulating the balance of intestinal microbiota and the interrelation of intestinal microbiota dysbiosis and systemic disorders.
Collapse
Affiliation(s)
- Xiaohua Gui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Peterson LA, Oram MK, Flavin M, Seabloom D, Smith WE, O’Sullivan MG, Vevang KR, Upadhyaya P, Stornetta A, Floeder AC, Ho YY, Zhang L, Hecht SS, Balbo S, Wiedmann TS. Coexposure to Inhaled Aldehydes or Carbon Dioxide Enhances the Carcinogenic Properties of the Tobacco-Specific Nitrosamine 4-Methylnitrosamino-1-(3-pyridyl)-1-butanone in the A/J Mouse Lung. Chem Res Toxicol 2021; 34:723-732. [PMID: 33629582 PMCID: PMC10901071 DOI: 10.1021/acs.chemrestox.0c00350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Tobacco smoke is a complex mixture of chemicals, many of which are toxic and carcinogenic. Hazard assessments of tobacco smoke exposure have predominantly focused on either single chemical exposures or the more complex mixtures of tobacco smoke or its fractions. There are fewer studies exploring interactions between specific tobacco smoke chemicals. Aldehydes such as formaldehyde and acetaldehyde were hypothesized to enhance the carcinogenic properties of the human carcinogen, 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) through a variety of mechanisms. This hypothesis was tested in the established NNK-induced A/J mouse lung tumor model. A/J mice were exposed to NNK (intraperitoneal injection, 0, 2.5, or 7.5 μmol in saline) in the presence or absence of acetaldehyde (0 or 360 ppmv) or formaldehyde (0 or 17 ppmv) for 3 h in a nose-only inhalation chamber, and lung tumors were counted 16 weeks later. Neither aldehyde by itself induced lung tumors. However, mice receiving both NNK and acetaldehyde or formaldehyde had more adenomas with dysplasia or progression than those receiving only NNK, suggesting that aldehydes may increase the severity of NNK-induced lung adenomas. The aldehyde coexposure did not affect the levels of NNK-derived DNA adduct levels. Similar studies tested the ability of a 3 h nose-only carbon dioxide (0, 5, 10, or 15%) coexposure to influence lung adenoma formation by NNK. While carbon dioxide alone was not carcinogenic, it significantly increased the number of NNK-derived lung adenomas without affecting NNK-derived DNA damage. These studies indicate that the chemicals in tobacco smoke work together to form a potent lung carcinogenic mixture.
Collapse
Affiliation(s)
- Lisa A. Peterson
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Marissa K. Oram
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Monica Flavin
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Donna Seabloom
- AeroCore Testing Service, Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota, USA
| | - William E. Smith
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - M. Gerard O’Sullivan
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, USA
- Comparative Pathology Shared Resource, Masonic Cancer Center, University of Minnesota, St. Paul, Minnesota, USA
| | - Karin R. Vevang
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Alessia Stornetta
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Andrew C. Floeder
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Yen-Yi Ho
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Lin Zhang
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Silvia Balbo
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Timothy S. Wiedmann
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
21
|
Park TJ, Smith ESJ, Reznick J, Bennett NC, Applegate DT, Larson J, Lewin GR. African Naked Mole-Rats Demonstrate Extreme Tolerance to Hypoxia and Hypercapnia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:255-269. [PMID: 34424519 DOI: 10.1007/978-3-030-65943-1_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Naked mole-rats are extremely tolerant to low concentrations of oxygen (hypoxia) and high concentrations of carbon dioxide (hypercapnia), which is consistent with the environment that they inhabit. Naked mole-rats combine subterranean living with living in very densely populated colonies where oxygen becomes depleted and carbon dioxide accumulates. In the laboratory, naked mole-rats fully recover from 5 h exposure to 5% O2 and 5 h exposure to 80% CO2, whereas both conditions are rapidly lethal to similarly sized laboratory mice. During anoxia (0% O2) naked mole-rats enter a suspended animation-like state and switch from aerobic metabolism of glucose to anaerobic metabolism of fructose. Additional fascinating characteristics include that naked mole-rats show intrinsic brain tolerance to anoxia; a complete lack of hypoxia-induced and CO2-induced pulmonary edema; and reduced aversion to high concentrations of CO2 and acidic fumes. Here we outline a constellation of physiological and molecular adaptations that correlate with the naked mole-rat's hypoxic/hypercapnic tolerance and which offer potential targets for ameliorating pathological conditions in humans, such as the damage caused during cerebral ischemia.
Collapse
Affiliation(s)
- Thomas J Park
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Ewan St J Smith
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Jane Reznick
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - N C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Daniel T Applegate
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - John Larson
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Gary R Lewin
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
22
|
El-Betany AMM, Behiry EM, Gumbleton M, Harding KG. Humidified Warmed CO 2 Treatment Therapy Strategies Can Save Lives With Mitigation and Suppression of SARS-CoV-2 Infection: An Evidence Review. Front Med (Lausanne) 2020; 7:594295. [PMID: 33425942 PMCID: PMC7793941 DOI: 10.3389/fmed.2020.594295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/25/2020] [Indexed: 01/17/2023] Open
Abstract
The coronavirus disease (COVID-19) outbreak has presented enormous challenges for healthcare, societal, and economic systems worldwide. There is an urgent global need for a universal vaccine to cover all SARS-CoV-2 mutant strains to stop the current COVID-19 pandemic and the threat of an inevitable second wave of coronavirus. Carbon dioxide is safe and superior antimicrobial, which suggests it should be effective against coronaviruses and mutants thereof. Depending on the therapeutic regime, CO2 could also ameliorate other COVID-19 symptoms as it has also been reported to have antioxidant, anti-inflammation, anti-cytokine effects, and to stimulate the human immune system. Moreover, CO2 has beneficial effects on respiratory physiology, cardiovascular health, and human nervous systems. This article reviews the rationale of early treatment by inhaling safe doses of warmed humidified CO2 gas, either alone or as a carrier gas to deliver other inhaled drugs may help save lives by suppressing SARS-CoV-2 infections and excessive inflammatory responses. We suggest testing this somewhat counter-intuitive, but low tech and safe intervention for its suitability as a preventive measure and treatment against COVID-19. Overall, development and evaluation of this therapy now may provide a safe and economical tool for use not only during the current pandemic but also for any future outbreaks of respiratory diseases and related conditions.
Collapse
Affiliation(s)
- Alaa M. M. El-Betany
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Enas M. Behiry
- School of Medicine, Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Mark Gumbleton
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Keith G. Harding
- Wound Healing Research Unit, Welsh Wound Innovation Centre, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
23
|
Atangana E, Atangana A. Facemasks simple but powerful weapons to protect against COVID-19 spread: Can they have sides effects? RESULTS IN PHYSICS 2020; 19:103425. [PMID: 33014697 PMCID: PMC7525365 DOI: 10.1016/j.rinp.2020.103425] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 05/18/2023]
Abstract
In the last few months, the spread of COVID-19 among humans has caused serious damages around the globe letting many countries economically unstable. Results obtained from conducted research by epidemiologists and virologists showed that, COVID-19 is mainly spread from symptomatic individuals to others who are in close contact via respiratory droplets, mouth and nose, which are the primary mode of transmission. World health organization regulations to help stop the spread of this deadly virus, indicated that, it is compulsory to utilize respiratory protective devices such as facemasks in the public. Indeed, the use of these facemasks around the globe has helped reduce the spread of COVID-19. The primary aim of facemasks, is to avoid inhaling air that could contain droplets with COVID-19. We should note that, respiration process is the movement of oxygen from external atmosphere to the cells within tissue and the transport of carbon dioxide outside. However, the rebreathing of carbon dioxide using a facemask has not been taken into consideration. The hypercapnia (excess inhaled content of CO2) has been recognized to be related to symptoms of fatigue, discomfort, muscular weakness, headaches as well as drowsiness. Rebreathing of CO2 has been a key to concern regarding the use of a facemask. Rebreathing usually occur when an expired air that is rich in CO2 stays long than normal in the breathing space of the respirator after a breath. The increase of the arterial CO2 concentration leads to symptoms that are aforementioned. Studies have been conducted on facemask shortages and on the appropriate facemask required to reduce the spread of COVID-19; however no study has been conducted to assess the possible relationship between CO2 inhalation due to facemask, to determine and recommend which mask is appropriate in the reduction of the spread of the coronavirus while simultaneously avoid CO2 inhalation by the facemask users. In the current paper, we provided a literature review on the use of facemasks with the aim to determine which facemasks could be used to avoid re-inhaling rejected CO2. Additionally, we presented mathematical models depicting the transport of COVID-19 spread through wind with high speed. We considered first mathematical models for which the effect air-heterogeneity is neglected, such that air flow follows Markovian process with a retardation factor, these models considered two different scenarios, the speed of wind is constant and time-space dependent. Secondly, we assumed that the wind movement could follow different processes, including the power law process, fading memory process and a two-stage processes, these lead us to use differential operators with power law, exponential decay and the generalized Mittag-Leffler function with the aim to capture these processes. A numerical technique based on the Lagrange polynomial interpolation was used to solve some of these models numerically. The numerical solutions were coded in MATLAB software for simulations. The results obtained from the mathematical simulation showed that a wind with speed of 100 km/h could transport droplets as far as 300 m. The results obtained from these simulations together with those presented by other researchers lead us to conclude that, the wind could have helped spread COVID-19 in some places around the world, especially in coastal areas. Therefore, appropriate facemasks that could help avoid re-inhaling enough CO2 should be used every time one is in open air even when alone especially in windy environment.
Collapse
Affiliation(s)
- Ernestine Atangana
- Centre for Environmental Management, Faculty of Natural and Agricultural Science, University of the Free State Bloemfontein, 9301, South Africa
| | - Abdon Atangana
- Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences, University of the Free State, 9301 Bloemfontein, South Africa
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
24
|
Wu H, Salles F, Zajac J. A Critical Review of Solid Materials for Low-Temperature Thermochemical Storage of Solar Energy Based on Solid-Vapour Adsorption in View of Space Heating Uses. Molecules 2019; 24:E945. [PMID: 30866556 PMCID: PMC6429295 DOI: 10.3390/molecules24050945] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 02/04/2023] Open
Abstract
The present report deals with low-temperature thermochemical storage for space heating, which is based on the principles of vapour adsorption onto solid adsorbents. With the aim of obtaining comprehensive information on the rationalized selection of adsorbents for heat storage in open sorption systems operating in the moist-air flow mode, various materials reported up to now in the literature are reviewed by referring strictly to the possible mechanisms of water vapour adsorption, as well as practical aspects of their preparation or their application under particular operating conditions. It seems reasonable to suggest that, on the basis of the current state-of-the-art, the adsorption phenomenon may be rather exploited in the auxiliary heating systems, which provide additional heat during winter's coldest days.
Collapse
Affiliation(s)
- Hao Wu
- Institut Charles Gerhardt Montpellier ⁻ UMR CNRS 5253, UM, ENSCM, Place E. Bataillon, CEDEX 05, 34095 Montpellier, France.
| | - Fabrice Salles
- Institut Charles Gerhardt Montpellier ⁻ UMR CNRS 5253, UM, ENSCM, Place E. Bataillon, CEDEX 05, 34095 Montpellier, France.
| | - Jerzy Zajac
- Institut Charles Gerhardt Montpellier ⁻ UMR CNRS 5253, UM, ENSCM, Place E. Bataillon, CEDEX 05, 34095 Montpellier, France.
| |
Collapse
|
25
|
Azuma K, Kagi N, Yanagi U, Osawa H. Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance. ENVIRONMENT INTERNATIONAL 2018; 121:51-56. [PMID: 30172928 DOI: 10.1016/j.envint.2018.08.059] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/25/2018] [Accepted: 08/25/2018] [Indexed: 05/28/2023]
Abstract
Scientific literature and documents pertaining to the effects of inhalation exposure to carbon dioxide (CO2) on human health and psychomotor performance were reviewed. Linear physiological changes in circulatory, cardiovascular, and autonomic systems on exposure to CO2 at concentrations ranging from 500 to 5000 ppm were evident. Human experimental studies have suggested that short-term CO2 exposure beginning at 1000 ppm affects cognitive performances including decision making and problem resolution. Changes in autonomic systems due to low-level exposure to CO2 may involve these effects. Further research on the long-term effects of low-level CO2 exposure on the autonomic system is required. Numerous epidemiological studies indicate an association between low-level exposure to CO2 beginning at 700 ppm and building-related symptoms. Respiratory symptoms have been indicated in children exposed to indoor CO2 concentrations higher than 1000 ppm. However, other indoor comorbid pollutants are possibly involved in such effects. In the context of significant linear increase of globally ambient CO2 concentration caused by anthropogenic activities and sources, reducing indoor CO2 levels by ventilation with ambient air represents an increase in energy consumption in an air-conditioned building. For the efficient energy control of CO2 intruding a building from ambient air, the rise of atmospheric CO2 concentration needs to be urgently suppressed.
Collapse
Affiliation(s)
- Kenichi Azuma
- Department of Environmental Medicine and Behavioral Science, Kindai University Faculty of Medicine, Osakasayama 589-8511, Japan; Department of Environmental Health, National Institute of Public Health, Wako 351-0197, Japan.
| | - Naoki Kagi
- Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan; Department of Environmental Health, National Institute of Public Health, Wako 351-0197, Japan.
| | - U Yanagi
- Department of Architecture, School of Architecture, Kogakuin University, Tokyo 163-8677, Japan; Department of Environmental Health, National Institute of Public Health, Wako 351-0197, Japan.
| | - Haruki Osawa
- Department of Environmental Health, National Institute of Public Health, Wako 351-0197, Japan.
| |
Collapse
|
26
|
Mastrodicasa A, Cuenoud A, Pasquier M, Carron PN. Intoxication aiguë au dioxyde de carbone. ANNALES FRANCAISES DE MEDECINE D URGENCE 2018. [DOI: 10.3166/afmu-2018-0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Fan Y, Xing C, Yuan H, Chai R, Zhao L, Zhan Y. Conjugated Polyelectrolyte-Based New Strategy for in Situ Detection of Carbon Dioxide. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20313-20317. [PMID: 28594165 DOI: 10.1021/acsami.7b05410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A conjugated polymer centered on fluorene and 2,1,3-benzothia-diazole (PFBT) is prepared for sensing CO2 in situ with high sensitivity and low background. Upon introducing CO2, the weaker electrostatic repulsion and stronger hydrophobic interactions between neighboring PFBT molecules enhance the interchain contacts compared to that without CO2, leading to the energy transfer from fluorene to 2,1,3-benzothia-diazole sites and the emission color shift from blue to green, which is sensitive to sensing CO2 in atmospheric air with a content of ∼400 ppm. Importantly, PFBT is employed to monitor photosynthesis and respiration upon cycling day and night in situ.
Collapse
Affiliation(s)
- Yibing Fan
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology , Tianjin 300401, P.R. China
| | - Chengfen Xing
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology , Tianjin 300401, P.R. China
- School of Materials Science and Engineering, Hebei University of Technology , Tianjin 300130, P.R. China
| | - Hongbo Yuan
- School of Materials Science and Engineering, Hebei University of Technology , Tianjin 300130, P.R. China
| | - Ran Chai
- School of Materials Science and Engineering, Hebei University of Technology , Tianjin 300130, P.R. China
| | - Linfei Zhao
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology , Tianjin 300401, P.R. China
| | - Yong Zhan
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology , Tianjin 300401, P.R. China
| |
Collapse
|
28
|
Tod durch Trockeneis. Rechtsmedizin (Berl) 2017. [DOI: 10.1007/s00194-017-0171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Martrette JM, Egloff C, Clément C, Yasukawa K, Thornton SN, Trabalon M. Effects of prolonged exposure to CO 2 on behaviour, hormone secretion and respiratory muscles in young female rats. Physiol Behav 2017; 177:257-262. [PMID: 28501558 DOI: 10.1016/j.physbeh.2017.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/07/2017] [Accepted: 05/04/2017] [Indexed: 11/28/2022]
Abstract
Atmospheric CO2 concentrations increased significantly over the last century and continuing increases are expected to have significant effects on current ecosystems. This study evaluated the behavioural and physiological (hormone status, muscle structure) effects of prolonged CO2 exposure in young female Wistar rats exposed at 700ppm of CO2 during 6h a day for 15days. Prolonged CO2 exposure, though not continuous, produced significant disturbances in behaviour with an increase in drinking, grooming and resting, and a reduction in rearing, jumping-play and locomotor activity. Furthermore, CO2 exposure was accompanied by increased plasma levels of corticosterone, suggesting that prolonged exposure to CO2 was stressful. The muscular structure can also be modified also when respiratory working conditions change. The expression of myosin heavy chain was significantly affected in the diaphragm and oral respiratory muscles: Masseter Superficialis and Anterior Digastric. Modified behaviour and hormonal changes both appear to be at the origin of the observed muscular adaptation.
Collapse
Affiliation(s)
- J M Martrette
- EA 3450 DevAH, Université de Lorraine, 54505 Vandœuvre-lès-Nancy, France
| | - C Egloff
- UMR 7039 CNRS, Université de Lorraine, 54505 Vandœuvre-lès-Nancy, France.
| | - C Clément
- EA 3450 DevAH, Université de Lorraine, 54505 Vandœuvre-lès-Nancy, France
| | - K Yasukawa
- EA 3450 DevAH, Université de Lorraine, 54505 Vandœuvre-lès-Nancy, France
| | - S N Thornton
- INSERM U_1116, Université de Lorraine, 54505 Vandœuvre-lès-Nancy, France
| | - M Trabalon
- UMR 6552 CNRS, Université de Rennes 1, 35042 Rennes, France
| |
Collapse
|
30
|
Yuan H, Xing C, Fan Y, Chai R, Niu R, Zhan Y, Peng F, Qi J. Carbon Dioxide-Controlled Assembly of Water-Soluble Conjugated Polymers Catalyzed by Carbonic Anhydrase. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201600726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Hongbo Yuan
- School of Materials Science and Engineering; Hebei University of Technology; Tianjin 300401 P. R. China
| | - Chengfen Xing
- School of Materials Science and Engineering; Hebei University of Technology; Tianjin 300401 P. R. China
- Key Laboratory of Hebei Province for Molecular Biophysics; Institute of Biophysics; Hebei University of Technology; Tianjin 300401 P. R. China
| | - Yibing Fan
- Key Laboratory of Hebei Province for Molecular Biophysics; Institute of Biophysics; Hebei University of Technology; Tianjin 300401 P. R. China
| | - Ran Chai
- School of Materials Science and Engineering; Hebei University of Technology; Tianjin 300401 P. R. China
| | - Ruimin Niu
- Key Laboratory of Hebei Province for Molecular Biophysics; Institute of Biophysics; Hebei University of Technology; Tianjin 300401 P. R. China
| | - Yong Zhan
- School of Materials Science and Engineering; Hebei University of Technology; Tianjin 300401 P. R. China
| | - Fei Peng
- Key Laboratory of Hebei Province for Molecular Biophysics; Institute of Biophysics; Hebei University of Technology; Tianjin 300401 P. R. China
| | - Junjie Qi
- Key Laboratory of Hebei Province for Molecular Biophysics; Institute of Biophysics; Hebei University of Technology; Tianjin 300401 P. R. China
| |
Collapse
|
31
|
|
32
|
Yuan H, Fan Y, Xing C, Niu R, Chai R, Zhan Y, Qi J, An H, Xu J. Conjugated Polymer-Based Hybrid Materials for Turn-On Detection of CO2 in Plant Photosynthesis. Anal Chem 2016; 88:6593-7. [DOI: 10.1021/acs.analchem.6b01489] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hongbo Yuan
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, P.R. China
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Yibing Fan
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Chengfen Xing
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Ruimin Niu
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Ran Chai
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Yong Zhan
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Junjie Qi
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Hailong An
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Jialiang Xu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
33
|
McEwen BJ. Nondrowning Asphyxia in Veterinary Forensic Pathology: Suffocation, Strangulation, and Mechanical Asphyxia. Vet Pathol 2016; 53:1037-48. [PMID: 27084399 DOI: 10.1177/0300985816643370] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Asphyxia in a forensic context refers to death by rapid cerebral anoxia or hypoxia due to accidental or nonaccidental injury. Death due to nondrowning asphyxia can occur with strangulation, suffocation, and mechanical asphyxia, each of which is categorized based on the mechanism of injury. Individuals dying due to various types of asphyxia may or may not have lesions, and even those lesions that are present may be due to other causes. The interpretation or opinion that death was due to asphyxia requires definitive and compelling evidence from the postmortem examination, death scene, and/or history. Beyond the postmortem examination, pathologists may be faced with questions of forensic importance that revolve around the behavioral and physiological responses in animals subjected to strangulation, suffocation, or mechanical asphyxia to determine if the animal suffered. While there is no prescriptive answer to these questions, it is apparent that, because of physiological and anatomical differences between humans and animals, for some mechanisms of asphyxia, consciousness is maintained for longer periods and the onset of death is later in animals than that described for people. Veterinary pathologists must be cognizant that direct extrapolation from the medical forensic literature to animals may be incorrect. This article reviews the terminology, classification, mechanisms, and lesions associated with asphyxial deaths in companion animals and highlights significant comparative differences of the response to various types of asphyxia in animals and people.
Collapse
Affiliation(s)
- B J McEwen
- Animal Health Laboratory, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
34
|
Simons TJ, Verheyen T, Izgorodina EI, Vijayaraghavan R, Young S, Pearson AK, Pas SJ, MacFarlane DR. Mechanisms of low temperature capture and regeneration of CO2 using diamino protic ionic liquids. Phys Chem Chem Phys 2016; 18:1140-9. [DOI: 10.1039/c5cp05200a] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon dioxide chemical absorption and regeneration was investigated in two protic ionic liquids using novel calorimetric techniques.
Collapse
Affiliation(s)
- Tristan J. Simons
- School of Chemistry
- Monash University
- Clayton 3800
- Australia
- Maritime Division
| | | | | | | | - Scott Young
- School of Chemistry
- Monash University
- Clayton 3800
- Australia
| | - Andrew K. Pearson
- School of Chemistry
- Monash University
- Clayton 3800
- Australia
- Maritime Division
| | - Steven J. Pas
- School of Chemistry
- Monash University
- Clayton 3800
- Australia
- Maritime Division
| | | |
Collapse
|
35
|
Sultana S, Chandra Sahoo P, Martha S, Parida K. A review of harvesting clean fuels from enzymatic CO2 reduction. RSC Adv 2016. [DOI: 10.1039/c6ra05472b] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This review has summarised single enzyme, multi enzymatic and semiconducting nanomaterial integrated enzymatic systems for CO2 conversion to clean fuels.
Collapse
Affiliation(s)
- Sabiha Sultana
- Centre for Nano Science and Nano Technology
- ITER
- Siksha ‘O’ Anusandhan University
- Bhubaneswar – 751030
- India
| | - Prakash Chandra Sahoo
- Centre for Nano Science and Nano Technology
- ITER
- Siksha ‘O’ Anusandhan University
- Bhubaneswar – 751030
- India
| | - Satyabadi Martha
- Centre for Nano Science and Nano Technology
- ITER
- Siksha ‘O’ Anusandhan University
- Bhubaneswar – 751030
- India
| | - Kulamani Parida
- Centre for Nano Science and Nano Technology
- ITER
- Siksha ‘O’ Anusandhan University
- Bhubaneswar – 751030
- India
| |
Collapse
|
36
|
Liu G, Liu X, Qin Z, Gu Z, Wang G, Shi W, Wen D, Yu L, Luo Y, Xiao H. Cardiovascular System Response to Carbon Dioxide and Exercise in Oxygen-Enriched Environment at 3800 m. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:11781-96. [PMID: 26393634 PMCID: PMC4586707 DOI: 10.3390/ijerph120911781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 11/22/2022]
Abstract
Background: This study explores the responses of the cardiovascular system as humans exercise in an oxygen-enriched room at high altitude under various concentrations of CO2. Methods: The study utilized a hypobaric chamber set to the following specifications: 3800 m altitude with 25% O2 and different CO2 concentrations of 0.5% (C1), 3.0% (C2) and 5.0% (C3). Subjects exercised for 3 min three times, separated by 30 min resting periods in the above-mentioned conditions, at sea level (SL) and at 3800 m altitude (HA). The changes of heart rate variability, heart rate and blood pressure were analyzed. Results: Total power (TP) and high frequency power (HF) decreased notably during post-exercise at HA. HF increased prominently earlier the post-exercise period at 3800 m altitude with 25% O2 and 5.0% CO2 (C3), while low frequency power (LF) changed barely in all tests. The ratios of LF/HF were significantly higher during post-exercise in HA, and lower after high intensity exercise in C3. Heart rate and systolic blood pressure increased significantly in HA and C3. Conclusions: Parasympathetic activity dominated in cardiac autonomic modulation, and heart rate and blood pressure increased significantly after high intensity exercise in C3.
Collapse
Affiliation(s)
- Guohui Liu
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China.
| | - Xiaopeng Liu
- High Altitude Physiology Laboratory, Institute of Aviation Medicine, Air Force, Beijing 100142, China.
| | - Zhifeng Qin
- High Altitude Physiology Laboratory, Institute of Aviation Medicine, Air Force, Beijing 100142, China.
| | - Zhao Gu
- High Altitude Physiology Laboratory, Institute of Aviation Medicine, Air Force, Beijing 100142, China.
| | - Guiyou Wang
- High Altitude Physiology Laboratory, Institute of Aviation Medicine, Air Force, Beijing 100142, China.
| | - Weiru Shi
- High Altitude Physiology Laboratory, Institute of Aviation Medicine, Air Force, Beijing 100142, China.
| | - Dongqing Wen
- High Altitude Physiology Laboratory, Institute of Aviation Medicine, Air Force, Beijing 100142, China.
| | - Lihua Yu
- High Altitude Physiology Laboratory, Institute of Aviation Medicine, Air Force, Beijing 100142, China.
| | - Yongchang Luo
- High Altitude Physiology Laboratory, Institute of Aviation Medicine, Air Force, Beijing 100142, China.
| | - Huajun Xiao
- High Altitude Physiology Laboratory, Institute of Aviation Medicine, Air Force, Beijing 100142, China.
| |
Collapse
|
37
|
Expression of mRNA in the frontal cortex and hypothalamus in a rat model of acute carbon dioxide poisoning. Leg Med (Tokyo) 2015; 19:101-6. [PMID: 26257316 DOI: 10.1016/j.legalmed.2015.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/24/2015] [Accepted: 07/25/2015] [Indexed: 11/20/2022]
Abstract
Acute carbon dioxide (CO2) poisoning causes no specific features that are revealed upon autopsy, and the pathophysiological mechanism of this syndrome is unclear. To address this issue, in the present study, we exposed rats to CO2 concentrations ranging from 10% to 60% and determined the effects on mRNA expression. According to the results of Gene Ontology (GO) and cluster analyses of microarrays data, we selected the following genes for further analysis: alkylglycerone phosphate synthase (Agps), hypocretin (Hcrt), tyrosine hydroxylase (Th), heat shock protein beta 2 (Hspb2), and opioid receptor delta 1 (Oprd1) expressed in the frontal cortex and renin (Ren), pancreatic polypeptide (Ppy), corticotropin releasing hormone receptor 2 (Crhr2), carbonic anhydrase 1 (Car1), and hypocretin receptor 1 (Hcrtr1) expressed in the hypothalamus. We found significant differences between the expression levels of Agps and Hspb2 mRNAs in the frontal cortex and that of Ppy, Crhr2 mRNAs in the hypothalamus in the presence of high concentrations of CO2. Further investigation of these genes may clarify the pathophysiology of acute CO2 poisoning and facilitate the development of novel forensic tests that can diagnose the cause of death.
Collapse
|
38
|
Environmental CO2 inhibits Caenorhabditis elegans egg-laying by modulating olfactory neurons and evokes widespread changes in neural activity. Proc Natl Acad Sci U S A 2015; 112:E3525-34. [PMID: 26100886 DOI: 10.1073/pnas.1423808112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Carbon dioxide (CO2) gradients are ubiquitous and provide animals with information about their environment, such as the potential presence of prey or predators. The nematode Caenorhabditis elegans avoids elevated CO2, and previous work identified three neuron pairs called "BAG," "AFD," and "ASE" that respond to CO2 stimuli. Using in vivo Ca(2+) imaging and behavioral analysis, we show that C. elegans can detect CO2 independently of these sensory pathways. Many of the C. elegans sensory neurons we examined, including the AWC olfactory neurons, the ASJ and ASK gustatory neurons, and the ASH and ADL nociceptors, respond to a rise in CO2 with a rise in Ca(2+). In contrast, glial sheath cells harboring the sensory endings of C. elegans' major chemosensory neurons exhibit strong and sustained decreases in Ca(2+) in response to high CO2. Some of these CO2 responses appear to be cell intrinsic. Worms therefore may couple detection of CO2 to that of other cues at the earliest stages of sensory processing. We show that C. elegans persistently suppresses oviposition at high CO2. Hermaphrodite-specific neurons (HSNs), the executive neurons driving egg-laying, are tonically inhibited when CO2 is elevated. CO2 modulates the egg-laying system partly through the AWC olfactory neurons: High CO2 tonically activates AWC by a cGMP-dependent mechanism, and AWC output inhibits the HSNs. Our work shows that CO2 is a more complex sensory cue for C. elegans than previously thought, both in terms of behavior and neural circuitry.
Collapse
|
39
|
Repetto M, Babcock E, Blümler P, Heil W, Karpuk S, Tullney K. Systematic T1 improvement for hyperpolarized 129xenon. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 252:163-169. [PMID: 25702572 DOI: 10.1016/j.jmr.2015.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 06/04/2023]
Abstract
The spin-lattice relaxation time T1 of hyperpolarized (HP)-(129)Xe was improved at typical storage conditions (i.e. low and homogeneous magnetic fields). Very long wall relaxation times T(1)(wall) of about 18 h were observed in uncoated, spherical GE180 glass cells of ∅=10 cm which were free of rubidium and not permanently sealed but attached to a standard glass stopcock. An "aging" process of the wall relaxation was identified by repeating measurements on the same cell. This effect could be easily removed by repeating the initial cleaning procedure. In this way, a constant wall relaxation was ensured. The Xe nuclear spin-relaxation rate 1/T1(Xe-Xe) due to van der Waals molecules was investigated too, by admixing three different buffer gases (N(2), SF(6) and CO(2)). Especially CO(2) exhibited an unexpected high efficiency (r) in shortening the lifetime of the Xe-Xe dimers and hence prolonging the total T1 relaxation even further. These measurements also yielded an improved accuracy for the van der Waals relaxation for pure Xe (with 85% (129)Xe) of T(1)(Xe-Xe)=(4.6±0.1)h. Repeating the measurements with HP (129)Xe in natural abundance in mixtures with SF6, a strong dependence of T(1)(Xe-Xe) and r on the isotopic enrichment was observed, uncovering a shorter T(1)(Xe-Xe) relaxation for the (129)Xe in natural composition as compared to the 85% isotopically enriched gas.
Collapse
Affiliation(s)
- Maricel Repetto
- Institute of Physics, Johannes Gutenberg University, Staudingerweg 7, 55128 Mainz, Germany
| | - Earl Babcock
- Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, Outstation at MLZ, Lichtenbergstrasse 1, 85747 Garching, Germany
| | - Peter Blümler
- Institute of Physics, Johannes Gutenberg University, Staudingerweg 7, 55128 Mainz, Germany.
| | - Werner Heil
- Institute of Physics, Johannes Gutenberg University, Staudingerweg 7, 55128 Mainz, Germany
| | - Sergei Karpuk
- Institute of Physics, Johannes Gutenberg University, Staudingerweg 7, 55128 Mainz, Germany
| | - Kathlynne Tullney
- Institute of Physics, Johannes Gutenberg University, Staudingerweg 7, 55128 Mainz, Germany
| |
Collapse
|
40
|
Moody CM, Chua B, Weary DM. The effect of carbon dioxide flow rate on the euthanasia of laboratory mice. Lab Anim 2014; 48:298-304. [PMID: 25097256 DOI: 10.1177/0023677214546509] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Laboratory rodents are commonly euthanized by exposure to gradually increasing concentrations of carbon dioxide (CO2). Current recommended flow rates range between 10 and 30% chamber vol/min and result in insensibility before exposure to painful concentrations (<40%). However, this method causes dyspnea, indicated by deep, rapid breathing. In humans dyspnea is associated with a negative affective experience. Sensations of dyspnea may explain why rodents find CO2 concentrations >3% aversive. This study aimed to assess the effect of CO2 flow rates on time between the onset of dyspnea and various measures of insensibility (recumbency, loss of the righting reflex and loss of the pedal withdrawal reflex) to identify flow rates that minimize the potential experience of dyspnea. The results of this study indicate that a flow rate of 50% chamber vol/min, while holding the CO2 cage concentration just below 40%, minimizes the interval between the onset of labored breathing and recumbency. Using a 50% flow rate this interval averaged (± SE) 30.3 ± 2.9 s versus 49.7 ± 2.9 s at 20% chamber vol/min (F3,22 = 7.83, P = 0.0013). Similarly, the interval between the onset of labored breathing and loss of the righting reflex averaged 38.2 ± 2.4 s at a flow rate of 50% versus 59.2 ± 2.4 s at 20% chamber vol/min of CO2 (F3,22 = 13.62, P < 0.0001). We conclude that higher flow rates reduce the duration of dyspnea, but even at the highest flow rate mice experience more than 30 s between the onset of dyspnea and the most conservative estimate of insensibility.
Collapse
Affiliation(s)
- C M Moody
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada
| | - B Chua
- Centre for Comparative Medicine, University of British Columbia, Vancouver, Canada
| | - D M Weary
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada
| |
Collapse
|
41
|
Acute toxicity of high concentrations of carbon dioxide in rats. Regul Toxicol Pharmacol 2014; 69:201-6. [DOI: 10.1016/j.yrtph.2014.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/11/2014] [Accepted: 03/31/2014] [Indexed: 11/21/2022]
|
42
|
EGL-13/SoxD specifies distinct O2 and CO2 sensory neuron fates in Caenorhabditis elegans. PLoS Genet 2013; 9:e1003511. [PMID: 23671427 PMCID: PMC3650002 DOI: 10.1371/journal.pgen.1003511] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 04/03/2013] [Indexed: 11/19/2022] Open
Abstract
Animals harbor specialized neuronal systems that are used for sensing and coordinating responses to changes in oxygen (O2) and carbon dioxide (CO2). In Caenorhabditis elegans, the O2/CO2 sensory system comprises functionally and morphologically distinct sensory neurons that mediate rapid behavioral responses to exquisite changes in O2 or CO2 levels via different sensory receptors. How the diversification of the O2- and CO2-sensing neurons is established is poorly understood. We show here that the molecular identity of both the BAG (O2/CO2-sensing) and the URX (O2-sensing) neurons is controlled by the phylogenetically conserved SoxD transcription factor homolog EGL-13. egl-13 mutant animals fail to fully express the distinct terminal gene batteries of the BAG and URX neurons and, as such, are unable to mount behavioral responses to changes in O2 and CO2. We found that the expression of egl-13 is regulated in the BAG and URX neurons by two conserved transcription factors-ETS-5(Ets factor) in the BAG neurons and AHR-1(bHLH factor) in the URX neurons. In addition, we found that EGL-13 acts in partially parallel pathways with both ETS-5 and AHR-1 to direct BAG and URX neuronal fate respectively. Finally, we found that EGL-13 is sufficient to induce O2- and CO2-sensing cell fates in some cellular contexts. Thus, the same core regulatory factor, egl-13, is required and sufficient to specify the distinct fates of O2- and CO2-sensing neurons in C. elegans. These findings extend our understanding of mechanisms of neuronal diversification and the regulation of molecular factors that may be conserved in higher organisms.
Collapse
|
43
|
Queliconi BB, Marazzi TBM, Vaz SM, Brookes PS, Nehrke K, Augusto O, Kowaltowski AJ. Bicarbonate modulates oxidative and functional damage in ischemia-reperfusion. Free Radic Biol Med 2013; 55:46-53. [PMID: 23195687 PMCID: PMC3995138 DOI: 10.1016/j.freeradbiomed.2012.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 11/01/2012] [Accepted: 11/13/2012] [Indexed: 11/25/2022]
Abstract
The carbon dioxide/bicarbonate (CO(2)/HCO(3)(-)) pair is the main biological pH buffer. However, its influence on biological processes, and in particular redox processes, is still poorly explored. Here we study the effect of CO(2)/HCO(3)(-) on ischemic injury in three distinct models (cardiac HL-1 cells, perfused rat heart, and Caenorhabditis elegans). We found that, although various concentrations of CO(2)/HCO(3)(-) do not affect function under basal conditions, ischemia-reperfusion or similar insults in the presence of higher CO(2)/HCO(3)(-) resulted in greater functional loss associated with higher oxidative damage in all models. Because the effect of CO(2)/HCO(3)(-) was observed in all models tested, we believe this buffer is an important determinant of oxidative damage after ischemia-reperfusion.
Collapse
Affiliation(s)
- Bruno B. Queliconi
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Thire B. M. Marazzi
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Sandra M. Vaz
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Keith Nehrke
- University of Rochester Medical Center, Rochester, NY, USA
| | - Ohara Augusto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alicia J. Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|