1
|
He X, Xia Q, Bryant MS, Fu PP. An efficient enzymatic system for studying structure-carcinogenicity relationships: metabolism of pyrrolizidine alkaloids by human liver microsomes in the presence of calf thymus DNA, resulting in the formation of DNA adducts. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024:1-16. [PMID: 39545694 DOI: 10.1080/26896583.2024.2424091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Pyrrolizidine alkaloids (PAs) form a family of toxic and carcinogenic phytochemicals found in plants worldwide. The metabolism of toxic PAs, both in vivo and in vitro, generates four (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts, namely, DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4, as documented in previous research. We have proposed that these DHP-DNA adducts play a pivotal role in the induction of liver tumor by PAs in rats and mice, serving as potential common biological biomarkers for PA exposure and carcinogenesis. In this study, we found that the metabolism of PAs and PA N-oxides by human liver microsomes, in the presence of calf thymus DNA, results in the formation of DNA adducts. This process serves as a convenient and biologically significant platform for investigating the structure-carcinogenicity relationships of PAs.
Collapse
Affiliation(s)
- Xiaobo He
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Qingsu Xia
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Matthew S Bryant
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Peter P Fu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
2
|
He X, Xia Q, Zhu L, He Y, Bryant MS, Lin G, Fu PP. Formation of DHP-DNA Adducts from Rat Liver Microsomal Metabolism of 1,2-Unsaturated Pyrrolizidine Alkaloid-Containing Plant Extracts and Dietary Supplements. Chem Res Toxicol 2023; 36:243-250. [PMID: 36705520 DOI: 10.1021/acs.chemrestox.2c00321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1,2-Unsaturated pyrrolizidine alkaloids (PAs) are carcinogenic phytochemicals. We previously determined that carcinogenic PAs and PA N-oxides commonly form a set of four (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-DNA adducts, namely, DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4. This set of DHP-DNA adducts has been implicated as a potential biomarker of PA-induced liver tumor initiation from metabolism of individual carcinogenic PAs. To date, it is not known whether this generality occurs from metabolism of PA-containing plant extracts. In this study, we investigate the rat liver microsomal metabolism of nine PA-containing plant extracts and two PA-containing dietary supplements in the presence of calf thymus DNA. The presence of carcinogenic PAs and PA N-oxides in plant extracts was first confirmed by LC-MS/MS analysis with selected reaction monitoring mode. Upon rat liver microsomal metabolism of these PA-containing plant extracts and dietary supplements, the formation of this set of DHP-DNA adducts was confirmed. Thus, these results indicate that metabolism of PA-containing plant extracts and dietary supplements can generate DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4 adducts, thereby potentially initiating liver tumor formation.
Collapse
Affiliation(s)
- Xiaobo He
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Qingsu Xia
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Lin Zhu
- School of Biomedical Science, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, The People's Republic of China
| | - Yisheng He
- School of Biomedical Science, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, The People's Republic of China
| | - Matthew S Bryant
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Ge Lin
- School of Biomedical Science, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, The People's Republic of China
| | - Peter P Fu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| |
Collapse
|
3
|
Kurimoto M, Chang T, Nishiyama Y, Suzuki T, Dohmae N, Tanaka K, Yokoshima S. Anticancer Approach Inspired by the Hepatotoxic Mechanism of Pyrrolizidine Alkaloids with Glycosylated Artificial Metalloenzymes. Angew Chem Int Ed Engl 2022; 61:e202205541. [DOI: 10.1002/anie.202205541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Michitaka Kurimoto
- Graduate School of Pharmaceutical Sciences Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8601 Japan
| | - Tsung‐che Chang
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research RIKEN 2-1 Hirosawa Wako-shi, Saitama 351-0198 Japan
| | - Yoshitake Nishiyama
- Graduate School of Pharmaceutical Sciences Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8601 Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research RIKEN 2-1 Hirosawa Wako-shi, Saitama 351-0198 Japan
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 2-12-1 Ookayama Meguro-ku, Tokyo 152-8552 Japan
| | - Satoshi Yokoshima
- Graduate School of Pharmaceutical Sciences Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8601 Japan
| |
Collapse
|
4
|
Kurimoto M, Chang TC, Nishiyama Y, Suzuki T, Dohmae N, Tanaka K, Yokoshima S. Anticancer Approach Inspired by the Hepatotoxic Mechanism of Pyrrolizidine Alkaloids with Glycosylated Artificial Metalloenzymes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Tsung-che Chang
- Rikagaku Kenkyujo RIKEN Cluster for Pioneering Research JAPAN
| | | | | | - Naoshi Dohmae
- Rikagaku Kenkyujo Biomolecular Characterization Unit JAPAN
| | | | - Satoshi Yokoshima
- Nagoya Daigaku Graduate School of Pharmaceutical Sciences Furo-cho, Chikusa-ku 464-8601 Nagoya JAPAN
| |
Collapse
|
5
|
Zhu L, Zhang C, Zhang W, Xia Q, Ma J, He X, He Y, Fu PP, Jia W, Zhuge Y, Lin G. Developing urinary pyrrole-amino acid adducts as non-invasive biomarkers for identifying pyrrolizidine alkaloids-induced liver injury in human. Arch Toxicol 2021; 95:3191-3204. [PMID: 34390356 PMCID: PMC8364305 DOI: 10.1007/s00204-021-03129-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/29/2021] [Indexed: 01/24/2023]
Abstract
Pyrrolizidine alkaloids (PAs) have been found in over 6000 plants worldwide and represent the most common hepatotoxic phytotoxins. Currently, a definitive diagnostic method for PA-induced liver injury (PA-ILI) is lacking. In the present study, using a newly developed analytical method, we identified four pyrrole-amino acid adducts (PAAAs), namely pyrrole-7-cysteine, pyrrole-9-cysteine, pyrrole-9-histidine, and pyrrole-7-acetylcysteine, which are generated from reactive pyrrolic metabolites of PAs, in the urine of PA-treated male Sprague Dawley rats and PA-ILI patients. The elimination profiles, abundance, and persistence of PAAAs were systematically investigated first in PA-treated rat models via oral administration of retrorsine at a single dose of 40 mg/kg and multiple doses of 5 mg/kg/day for 14 consecutive days, confirming that these urinary excreted PAAAs were derived specifically from PA exposure. Moreover, we determined that these PAAAs were detected in ~ 82% (129/158) of urine samples collected from ~ 91% (58/64) of PA-ILI patients with pyrrole-7-cysteine and pyrrole-9-histidine detectable in urine samples collected at 3 months or longer times after hospital admission, indicating adequate persistence time for use as a clinical test. As direct evidence of PA exposure, we propose that PAAAs can be used as a biomarker of PA exposure and the measurement of urinary PAAAs could be used as a non-invasive test assisting the definitive diagnosis of PA-ILI in patients.
Collapse
Affiliation(s)
- Lin Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chunyuan Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wei Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qingsu Xia
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xin He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Peter P Fu
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuzheng Zhuge
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
6
|
He X, Xia Q, Shi Q, Fu PP. Metabolism of carcinogenic pyrrolizidine alkaloids and pyrrolizidine alkaloid N-oxides by rat primary hepatocytes generate the same characteristic DHP-DNA adducts. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:357-372. [PMID: 35895950 DOI: 10.1080/26896583.2021.1954460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We recently established a genotoxic mechanism mediated by a set of (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-DNA adducts, which lead to pyrrolizidine alkaloid (PA)-induced liver tumor initiation. This mechanism is involved in the metabolism of a series of carcinogenic PAs and PA N-oxides in rats in vivo and in vitro. There is a correlation between the order of liver tumor potency and the level of DHP-DNA adduct formation. Thus, these DHP-DNA adducts can be potential biomarkers of PA and PA N-oxide exposure and liver tumor initiation. To establish the generality of this mechanism, in the present study, we examined the metabolism of 13 potential carcinogenic PAs, 1 non-carcinogenic PA, and 5 PA N-oxides by male rat primary hepatocytes. With the exception of the nontoxic PA and vehicle control, all treated groups produced identical set of DHP-DNA adducts. These results support a general genotoxic mechanism mediated by the formation of characteristic DHP-DNA adducts leading to PA-induced liver tumor initiation.
Collapse
Affiliation(s)
- Xiaobo He
- National Center for Toxicological Research, Jefferson, AR, USA
| | - Qingsu Xia
- National Center for Toxicological Research, Jefferson, AR, USA
| | - Qiang Shi
- National Center for Toxicological Research, Jefferson, AR, USA
| | - Peter P Fu
- National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
7
|
He Y, Zhang W, Ma J, Xia Q, Song Z, Zhu L, Zhang C, Liu J, Ye Y, Fu PP, Zhuge Y, Lin G. Blood Pyrrole–DNA Adducts Define the Early Tumorigenic Risk in Patients with Pyrrolizidine Alkaloid-Induced Liver Injury. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2021; 8:551-557. [DOI: 10.1021/acs.estlett.1c00359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Affiliation(s)
- Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR 999077, China
| | - Wei Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School of Medicine, Nanjing 210008, China
| | - Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR 999077, China
| | - Qingsu Xia
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Zijing Song
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR 999077, China
| | - Lin Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR 999077, China
| | - Chunyuan Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR 999077, China
| | - Jia Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, China Academy of Sciences, Shanghai 201203, China
| | - Yang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, China Academy of Sciences, Shanghai 201203, China
| | - Peter P. Fu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Yuzheng Zhuge
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School of Medicine, Nanjing 210008, China
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR 999077, China
| |
Collapse
|
8
|
He Y, Zhu L, Ma J, Lin G. Metabolism-mediated cytotoxicity and genotoxicity of pyrrolizidine alkaloids. Arch Toxicol 2021; 95:1917-1942. [PMID: 34003343 DOI: 10.1007/s00204-021-03060-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Pyrrolizidine alkaloids (PAs) and PA N-oxides are common phytotoxins produced by over 6000 plant species. Humans are frequently exposed to PAs via ingestion of PA-containing herbal products or PA-contaminated foods. PAs require metabolic activation to form pyrrole-protein adducts and pyrrole-DNA adducts which lead to cytotoxicity and genotoxicity. Individual PAs differ in their metabolic activation patterns, which may cause significant difference in toxic potency of different PAs. This review discusses the current knowledge and recent advances of metabolic pathways of different PAs, especially the metabolic activation and metabolism-mediated cytotoxicity and genotoxicity, and the risk evaluation methods of PA exposure. In addition, this review provides perspectives of precision toxicity assessment strategies and biomarker development for the risk control and translational investigations of human intoxication by PAs.
Collapse
Affiliation(s)
- Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Lin Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
9
|
Geburek I, Schrenk D, These A. In vitro biotransformation of pyrrolizidine alkaloids in different species: part II-identification and quantitative assessment of the metabolite profile of six structurally different pyrrolizidine alkaloids. Arch Toxicol 2020; 94:3759-3774. [PMID: 32880719 PMCID: PMC7603446 DOI: 10.1007/s00204-020-02853-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022]
Abstract
Pyrrolizidine alkaloids (PA) exert their toxic effects only after bioactivation. Although their toxicity has already been studied and metabolic pathways including important metabolites were described, the quantification of the latter revealed a large unknown portion of the metabolized PA. In this study, the qualitative and quantitative metabolite profiles of structurally different PAs in rat and human liver microsomes were investigated. Between five metabolites for europine and up to 48 metabolites for lasiocarpine were detected. Proposals for the chemical structure of each metabolite were derived based on fragmentation patterns using high-resolution mass spectrometry. The metabolite profiles of the diester PAs showed a relatively good agreement between both species. The metabolic reactions were summarized into three groups: dehydrogenation, oxygenation, and shortening of necic acid(s). While dehydrogenation of the necine base is considered as bioactivation, both other routes are considered as detoxification steps. The most abundant changes found for open chained diesters were dealkylations, while the major metabolic pathway for cyclic diesters was oxygenation especially at the nitrogen atom. In addition, all diester PAs formed several dehydrogenation products, via the insertion of a second double bond in the necine base, including the formation of glutathione conjugates. In rat liver microsomes, all investigated PAs formed dehydropyrrolizidine metabolites with the highest amount formed by lasiocarpine, whereas in human liver microsomes, these metabolites could only be detected for diesters. Our findings demonstrate that an extensive analysis of PA metabolism can provide the basis for a better understanding of PA toxicity and support future risk assessment.
Collapse
Affiliation(s)
- Ina Geburek
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.,Food Chemistry and Toxicology, University of Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663, Kaiserslautern, Germany
| | - Dieter Schrenk
- Food Chemistry and Toxicology, University of Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663, Kaiserslautern, Germany
| | - Anja These
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| |
Collapse
|
10
|
He X, Xia Q, Shi Q, Fu PP. Effects of glutathione and cysteine on pyrrolizidine alkaloid-induced hepatotoxicity and DNA adduct formation in rat primary hepatocytes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2020; 38:109-123. [PMID: 32500832 DOI: 10.1080/26896583.2020.1738161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are hepatotoxic, genotoxic, and carcinogenic phytochemicals. Upon metabolic activation, PAs produce dehydropyrrolizidine alkaloids (dehydro-PAs) as reactive primary pyrrolic metabolites. Dehydro-PAs are unstable, facilely hydrolyzed to (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP). Both dehydro-PAs and DHP are capable of binding to cellular DNA and proteins to form DHP-DNA and DHP-protein adducts leading to tumorigenicity and cytotoxicity. We recently determined that the reaction of dehydro-PAs with glutathione and cysteine generated 7-glutathione-DHP (7-GS-DHP) and 7-cysteine-DHP, respectively which can also bind to DNA to produce DHP-DNA adducts. In this study, we determined the effects of glutathione and cysteine on the induction of hepatocytotoxicity and the formation of DHP-DNA adducts in primary hepatocytes cultured with riddelliine and monocrotaline. We found that both glutathione and cysteine can drastically reduce hepatotoxicity while the levels of DHP-DNA adduct formation are slightly affected.
Collapse
Affiliation(s)
- Xiaobo He
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Qingsu Xia
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Qiang Shi
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Peter P Fu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
11
|
Wen B, Gorycki P. Bioactivation of herbal constituents: mechanisms and toxicological relevance. Drug Metab Rev 2019; 51:453-497. [DOI: 10.1080/03602532.2019.1655570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bo Wen
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, PA, USA
| | - Peter Gorycki
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, PA, USA
| |
Collapse
|
12
|
An important mechanism of herb-induced hepatotoxicity: To produce RMs based on active functional groups-containing ingredients from phytomedicine by binding CYP450s. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
13
|
He X, Xia Q, Gamboa da Costa G, Lin G, Fu PP. 1-Formyl-7-hydroxy-6,7-dihydro-5 H-pyrrolizine (1-CHO-DHP): A Potential Proximate Carcinogenic Metabolite of Pyrrolizidine Alkaloids. Chem Res Toxicol 2019; 32:1193-1203. [PMID: 31120748 DOI: 10.1021/acs.chemrestox.9b00038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are phytochemicals present in more than 6000 plant species worldwide; about half of the PAs are hepatotoxic, genotoxic, and carcinogenic. Because of their wide exposure and carcinogenicity, the International Programme on Chemical Safety (IPCS) concluded that PAs are a threat to human health and safety. We recently determined that PA-induced liver tumor initiation is mediated by a set of four (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5 H-pyrrolizine (DHP)-DNA adducts and proposed that these DHP-DNA adducts are biomarkers of PA exposure and liver tumor initiation. To validate the generality of this metabolic activation pathway and DHP-DNA adducts as biomarkers, it is significant to identify reactive metabolites associated with this metabolic activation pathway. Segall et al. ( Segall et al. ( 1984 ) Drug Metab. Dispos. 12 , 68 - 71 ) previously reported that 1-formyl-7-hydroxy-6,7-dihydro-5 H-pyrrolizine (1-CHO-DHP) is generated from the metabolism of senecionine by mouse liver microsomes. In the present study, we examined the metabolism of seven hepatocarcinogenic PAs (senecionine, intermedine, retrorsine, riddelliine, DHR, heliotrine, and senkirkine) and one noncarcinogenic PA (platyphylline) by human, rat, and mouse liver microsomes. 1-CHO-DHP was identified as a common metabolite from the metabolism of these hepatotoxic PAs, but not from platyphylline. Incubation of 1-CHO-DHP with HepG2 and A549 cells produced the same set of DHP-DNA adducts, which were identified by both LC/MS MRM mode and selected ion monitoring analyses through comparison to synthetic standards. In the incubation medium of 1-CHO-DHP treated HepG2 cells, both DHP and 7-cysteine-DHP were formed, which were capable of binding to cellular DNA to produce DHP-DNA adducts. These results suggest that 1-CHO-DHP is a proximate DNA metabolite of genotoxic and carcinogenic PAs.
Collapse
Affiliation(s)
- Xiaobo He
- National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , Arkansas 72079 , United States
| | - Qingsu Xia
- National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , Arkansas 72079 , United States
| | - Gonçalo Gamboa da Costa
- National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , Arkansas 72079 , United States
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong
| | - Peter P Fu
- National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , Arkansas 72079 , United States
| |
Collapse
|
14
|
Lester C, Troutman J, Obringer C, Wehmeyer K, Stoffolano P, Karb M, Xu Y, Roe A, Carr G, Blackburn K, Mahony C. Intrinsic relative potency of a series of pyrrolizidine alkaloids characterized by rate and extent of metabolism. Food Chem Toxicol 2019; 131:110523. [PMID: 31129256 DOI: 10.1016/j.fct.2019.05.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 11/24/2022]
Abstract
1,2-Unsaturated pyrrolizidine alkaloids (PAs) are sometimes present in foods or herbal supplements/medicines as impurities and pose potential concerns for liver genotoxicity/carcinogenicity. PAs display a strong structure toxicity relationship, however, current regulatory approaches to risk assessment take the precautionary approach of assuming all PAs display the same potency as the most toxic congeners lasiocarpine (LAS) and riddelliine (RID). Here we explore the relative potencies of a series of structurally diverse PAs by measuring DNA adduct formation in vitro in a rat sandwich culture hepatocyte (SCH) cell system. The adducts generated are consistent with those identified in vivo as biomarkers of PA exposure and potential liver-tumor formation. DNA reactive PAs require metabolic activation to form intermediates that bind DNA, therefore, adduct formation is a direct reflection of reactive metabolite formation. Since the area under the concentration versus time curve (AUC) for the depletion of parent PA from the extracellular media is a measure of PA exposure, the ratio of adducts/AUC provides a measure of hepatocyte exposure to DNA-binding metabolites corresponding to an intrinsic potency for DNA adduct formation. Intrinsic potencies relative to potencies for LAS compare well with existing relative potency data further affirming that PA toxicity varies considerably with chemical structure.
Collapse
Affiliation(s)
- Cathy Lester
- Procter & Gamble, Mason Business Center, 8700 Mason - Montgomery Rd, Mason, OH, 45040, USA.
| | - John Troutman
- Procter & Gamble, Mason Business Center, 8700 Mason - Montgomery Rd, Mason, OH, 45040, USA
| | - Cindy Obringer
- Procter & Gamble, Mason Business Center, 8700 Mason - Montgomery Rd, Mason, OH, 45040, USA
| | - Kenneth Wehmeyer
- Procter & Gamble, Mason Business Center, 8700 Mason - Montgomery Rd, Mason, OH, 45040, USA
| | - Peter Stoffolano
- Procter & Gamble, Mason Business Center, 8700 Mason - Montgomery Rd, Mason, OH, 45040, USA
| | - Michael Karb
- Procter & Gamble, Mason Business Center, 8700 Mason - Montgomery Rd, Mason, OH, 45040, USA
| | - Yan Xu
- Procter & Gamble, Mason Business Center, 8700 Mason - Montgomery Rd, Mason, OH, 45040, USA
| | - Amy Roe
- Procter & Gamble, Mason Business Center, 8700 Mason - Montgomery Rd, Mason, OH, 45040, USA
| | - Greg Carr
- Procter & Gamble, Mason Business Center, 8700 Mason - Montgomery Rd, Mason, OH, 45040, USA
| | - Karen Blackburn
- Procter & Gamble, Mason Business Center, 8700 Mason - Montgomery Rd, Mason, OH, 45040, USA
| | - Catherine Mahony
- Procter & Gamble Technical Centre, Whitehall Lane, Egham, Surrey, TW20 9AW, UK
| |
Collapse
|
15
|
Ma J, Ruan J, Chen X, Li D, Yao S, Fu PP, Ye Y, Gao H, Wang J, Lin G. Pyrrole-Hemoglobin Adducts, a More Feasible Potential Biomarker of Pyrrolizidine Alkaloid Exposure. Chem Res Toxicol 2019; 32:1027-1039. [PMID: 31012303 DOI: 10.1021/acs.chemrestox.8b00369] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are naturally occurring phytotoxins widely distributed in about 3% of flowering plants. The formation of PA-derived pyrrole-protein adducts is considered as a primary trigger initiating PA-induced hepatotoxicity. The present study aims to (i) further validate our previous established derivatization method using acidified ethanolic AgNO3 for the analysis of pyrrole-protein adducts and (ii) apply this method to characterize the binding tendency, dose-response, and elimination kinetics of pyrrole-protein adducts in blood samples. Two pyrrole-amino acid conjugates, (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5 H-pyrrolizine (DHP)-cysteine (7-cysteine-DHP) and 9-histidine-DHP, were synthesized and used to demonstrate that acidified ethanolic AgNO3 derivatization can cleave both S-linkage and N-linkage of pyrrole-protein adducts. Subsequently, using precolumn AgNO3 derivatization followed by ultra-high-pressure liquid chromatography/mass spectrometry analysis, we quantified pyrrole-protein adducts in monocrotaline-treated rat blood protein fractions, including hemoglobin (Hb), plasma, albumin, and plasma residual protein fractions, and found that the amount of pyrrole-Hb adducts was significantly higher than that in all plasma fractions. Moreover, elimination half-life of pyrrole-Hb adducts was also significantly longer than pyrrole-protein adducts in plasma fractions (12.08 vs 2.54-2.93 days). In addition, we also tested blood samples obtained from five PA-induced liver injury patients and found that the amount of pyrrole-protein adducts in blood cells was also remarkably higher than that in plasma. In conclusion, our findings for the first time confirmed that the AgNO3 derivatization method could be used to measure both S- and N-linked pyrrole-protein adducts and also suggested that pyrrole-Hb adducts with remarkably higher level and longer life span could be a better biomarker of PA exposure.
Collapse
Affiliation(s)
- Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong.,Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between The Chinese University of Hong Kong and Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Jianqing Ruan
- School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong.,Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between The Chinese University of Hong Kong and Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Xinmeng Chen
- School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong.,Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between The Chinese University of Hong Kong and Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Dongping Li
- Division of Gastroenterology, ZhongShan Hospital , Fudan University , Shanghai 200000 , China
| | - Sheng Yao
- Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between The Chinese University of Hong Kong and Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China.,State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Peter P Fu
- National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , Arkansas 72079-9502 , United States
| | - Yang Ye
- Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between The Chinese University of Hong Kong and Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China.,State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Hong Gao
- Division of Gastroenterology, ZhongShan Hospital , Fudan University , Shanghai 200000 , China
| | - Jiyao Wang
- Division of Gastroenterology, ZhongShan Hospital , Fudan University , Shanghai 200000 , China
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong.,Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between The Chinese University of Hong Kong and Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| |
Collapse
|
16
|
Lu Y, Ma J, Lin G. Development of a two-layer transwell co-culture model for the in vitro investigation of pyrrolizidine alkaloid-induced hepatic sinusoidal damage. Food Chem Toxicol 2019; 129:391-398. [PMID: 31054999 DOI: 10.1016/j.fct.2019.04.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/01/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are hepatotoxic and specifically damage hepatic sinusoidal endothelial cells (HSECs) via cytochrome P450 enzymes (CYPs)-mediated metabolic activation. Due to the lack of CYPs in HSECs, currently there is no suitable cell model for investigating PA-induced HSEC injury. This study aimed to establish a two-layer transwell co-culture model that mimics hepatic environment by including HepaRG hepatocytes and HSECs to evaluate cytotoxicity of PAs on their major target HSECs. In this model, PAs were metabolically activated by CYPs in HepaRG hepatocytes to generate reactive pyrrolic metabolites, which react with co-cultured HSECs leading to HSEC damage. Three representative PAs, namely retrorsine, monocrotaline, and clivorine, induced significant concentration-dependent cytotoxicity in HSECs in the co-culture model, but did no cause obvious cytotoxicity directly in HSECs. Using the developed co-cultured model, further mechanism studies of retrorsine-induced HSEC damage demonstrated that the reactive pyrrolic metabolite generated by CYP-mediated bioactivation in HepaRG hepatocytes caused formation of pyrrole-protein adducts, reduction of GSH content, and generation of reactive oxygen species in HSECs, leading to cell apoptosis. The established co-culture model is reliable and applicable for cytotoxic assessment of PA-induced HSEC damage and offers a novel platform for screening toxicity of different PAs on their target cells.
Collapse
Affiliation(s)
- Yao Lu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
17
|
Ning J, Chen L, Strikwold M, Louisse J, Wesseling S, Rietjens IMCM. Use of an in vitro–in silico testing strategy to predict inter-species and inter-ethnic human differences in liver toxicity of the pyrrolizidine alkaloids lasiocarpine and riddelliine. Arch Toxicol 2019; 93:801-818. [DOI: 10.1007/s00204-019-02397-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022]
|
18
|
Alizadeh A, Roosta A, Halvagar M. Four-Component Regio- and Diastereoselective Synthesis of Pyrrolizidines Incorporating Spiro-Oxindole/Indanedione via 1,3-Dipolar Cycloaddition Reaction of Azomethine Ylides. ChemistrySelect 2019. [DOI: 10.1002/slct.201803418] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Abdolali Alizadeh
- Department of Chemistry; Tarbiat Modares University, P.O. Box; 14115-175 Tehran Iran
| | - Atefeh Roosta
- Department of Chemistry; Tarbiat Modares University, P.O. Box; 14115-175 Tehran Iran
| | - Mohammadreza Halvagar
- Chemistry & Chemical Engineering Research Center of Iran (CCERCI), Pajohesh Blvd, 17th Km of Tehran-Karaj Highway; 1496813151 Tehran Iran
| |
Collapse
|
19
|
He X, Xia Q, Wu Q, Tolleson WH, Lin G, Fu PP. Primary and secondary pyrrolic metabolites of pyrrolizidine alkaloids form DNA adducts in human A549 cells. Toxicol In Vitro 2018; 54:286-294. [PMID: 30366057 DOI: 10.1016/j.tiv.2018.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/14/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022]
Abstract
Humans and animals can be exposed to carcinogenic pyrrolizidine alkaloids (PAs) through consumption of plants commonly found in many parts of the world. Although the liver is the primary target organ for carcinogenic PAs, they have also induced lung tumors in rodents. Hepatic cytochrome P450 activity converts PAs into dehydro-PAs that can be hydrolyzed to dehydropyrrolizidine (DHP); these reactive pyrrolic metabolites can produce four characteristic DNA adducts associated with PA-induced liver tumor initiation in laboratory animals. We reported recently that these four DNA adducts are also formed when 7-glutathione-DHP (7-GS-DHP) or 7-cysteine-DHP is incubated with calf thymus DNA. Here we showed that the four characteristic DNA adducts were formed when human A549 brochoalveolar carcinoma cells were treated with three dehydro-PAs (dehydroriddelliine, dehydromonocrotaline, or dehydroretronecine) or with 7-GS-DHP or 7-cysteine-DHP. For comparison, two parent PAs (riddelliine and monocrotaline) and 7,9-di-glutathionine-DHP were studied. No DHP-DNA adducts were detected with these incubations, confirming that A549 lung carcinoma cells do not express cytochrome P450 enzymes required for metabolic activation of PAs. Our results show that primary and secondary pyrrolic metabolites of carcinogenic PAs produce characteristic DHP-containing DNA adducts in A549 lung cancer cells, suggesting that they are DNA reactive metabolites.
Collapse
Affiliation(s)
- Xiaobo He
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Qingsu Xia
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Qiangen Wu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - William H Tolleson
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Peter P Fu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|
20
|
Schöning V, Hammann F, Peinl M, Drewe J. Editor's Highlight: Identification of Any Structure-Specific Hepatotoxic Potential of Different Pyrrolizidine Alkaloids Using Random Forests and Artificial Neural Networks. Toxicol Sci 2018; 160:361-370. [PMID: 28973379 DOI: 10.1093/toxsci/kfx187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are characteristic metabolites of some plant families and form a powerful defense mechanism against herbivores. More than 600 different PAs are known. PAs are ester alkaloids composed of a necine base and a necic acid, which can be used to divide PAs in different structural subcategories. The main target organs for PA metabolism and toxicity are liver and lungs. Additionally, PAs are potentially genotoxic, carcinogenic and exhibit developmental toxicity. Only for very few PAs, in vitro and in vivo investigations have characterized their toxic potential. However, these investigations suggest that structural differences have an influence on the toxicity of single PAs. To investigate this structural relationship for a large number of PAs, a quantitative structural-activity relationship (QSAR) analysis for hepatotoxicity of over 600 different PAs was performed, using Random Forest- and artificial Neural Networks-algorithms. These models were trained with a recently established dataset specific for acute hepatotoxicity in humans. Using this dataset, a set of molecular predictors was identified to predict the hepatotoxic potential of each compound in validated QSAR models. Based on these models, the hepatotoxic potential of the 602 PAs was predicted and the following hepatotoxic rank order in 3 main categories defined (1) for necine base: otonecine > retronecine > platynecine; (2) for necine base modification: dehydropyrrolizidine ≫ tertiary PA = N-oxide; and (3) for necic acid: macrocyclic diester ≥ open-ring diester > monoester. A further analysis with combined structural features revealed that necic acid has a higher influence on the acute hepatotoxicity than the necine base.
Collapse
Affiliation(s)
| | - Felix Hammann
- Department of Clinical Pharmacology, University Hospital Basel, CH 4031 Basel, Switzerland
| | - Mark Peinl
- rt-mp Softwaredevelopment, D-63694 Limeshain, Germany
| | - Jürgen Drewe
- Max Zeller Söhne AG, CH 8590 Romanshorn, Switzerland.,Department of Clinical Pharmacology, University Hospital Basel, CH 4031 Basel, Switzerland
| |
Collapse
|
21
|
Ma J, Xia Q, Fu PP, Lin G. Pyrrole-protein adducts - A biomarker of pyrrolizidine alkaloid-induced hepatotoxicity. J Food Drug Anal 2018; 26:965-972. [PMID: 29976414 PMCID: PMC9303027 DOI: 10.1016/j.jfda.2018.05.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are phytotoxins identified in over 6000 plant species worldwide. Approximately 600 toxic PAs and PA N-oxides have been identified in about 3% flowering plants. PAs can cause toxicities in different organs particularly in the liver. The metabolic activation of PAs is catalyzed by hepatic cytochrome P450 and generates reactive pyrrolic metabolites that bind to cellular proteins to form pyrrole-protein adducts leading to PA-induced hepatotoxicity. The mechanisms that pyrrole-protein adducts induce toxicities have not been fully characterized. Methods for qualitative and quantitative detection of pyrrole-protein adducts have been developed and applied for the clinical diagnosis of PA exposure and PA-induced liver injury. This mini-review addresses the mechanisms of PA-induced hepatotoxicity mediated by pyrrole-protein adducts, the analytical methods for the detection of pyrrole-protein adducts, and the development of pyrrole-protein adducts as the mechanism-based biomarker of PA exposure and PA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines Between the Chinese University of Hong Kong and Shanghai Institute of Materia Medica, China Academy of Sciences, China
| | - Qingsu Xia
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Peter P Fu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines Between the Chinese University of Hong Kong and Shanghai Institute of Materia Medica, China Academy of Sciences, China.
| |
Collapse
|
22
|
Xia Q, He X, Ma L, Chen S, Fu PP. Pyrrolizidine Alkaloid Secondary Pyrrolic Metabolites Construct Multiple Activation Pathways Leading to DNA Adduct Formation and Potential Liver Tumor Initiation. Chem Res Toxicol 2018; 31:619-628. [PMID: 29855181 DOI: 10.1021/acs.chemrestox.8b00096] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Pyrrolizidine alkaloids (PAs) and their N-oxide derivatives are hepatotoxic, genotoxic, and carcinogenic phytochemicals. PAs induce liver tumors through a general genotoxic mechanism mediated by a set of four (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5 H-pyrrolizine (DHP)-derived DNA adducts. To date, the primary pyrrolic metabolites dehydro-PAs, their hydrolyzed metabolite DHP, and two secondary pyrrolic metabolites 7-glutathione-DHP (7-GS-DHP) and 7-cysteine-DHP are the known metabolites that can generate these DHP-DNA adducts in vivo and/or in PA-treated cells. Secondary pyrrolic metabolites are formed from the reaction of dehydro-PAs with glutathione, amino acids, and proteins. In this investigation, we determined whether or not more secondary pyrrolic metabolites can bind to calf thymus DNA and to cellular DNA in HepG2 cells resulting in the formation of DHP-DNA adducts using a series of secondary pyrrolic metabolites (including 7-methoxy-DHP, 9-ethoxy-DHP, 9-valine-DHP, 7-GS-DHP, 7-cysteine-DHP, and 7,9-diglutathione-DHP) and synthetic pyrroles for study. We found that (i) many secondary pyrrolic metabolites are DNA reactive and can form DHP-DNA adducts and (ii) multiple activation pathways are involved in producing DHP-DNA adducts associated with PA-induced liver tumor initiation. These results suggest that secondary pyrrolic metabolites play a vital role in the initiation of PA-induced liver tumors.
Collapse
Affiliation(s)
- Qingsu Xia
- National Center for Toxicological Research , Food and Drug Administration , Jefferson , Arkansas 72079 , United States
| | - Xiaobo He
- National Center for Toxicological Research , Food and Drug Administration , Jefferson , Arkansas 72079 , United States
| | - Liang Ma
- National Center for Toxicological Research , Food and Drug Administration , Jefferson , Arkansas 72079 , United States
| | - Shoujun Chen
- National Center for Toxicological Research , Food and Drug Administration , Jefferson , Arkansas 72079 , United States
| | - Peter P Fu
- National Center for Toxicological Research , Food and Drug Administration , Jefferson , Arkansas 72079 , United States
| |
Collapse
|
23
|
Forsch K, Schöning V, Disch L, Siewert B, Unger M, Drewe J. Development of an in vitro screening method of acute cytotoxicity of the pyrrolizidine alkaloid lasiocarpine in human and rodent hepatic cell lines by increasing susceptibility. JOURNAL OF ETHNOPHARMACOLOGY 2018; 217:134-139. [PMID: 29454024 DOI: 10.1016/j.jep.2018.02.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pyrrolizidine alkaloids (PAs) are secondary plant ingredients formed in many plant species to protect against predators. PAs are generally considered acutely hepatotoxic, genotoxic and carcinogenic. Up to now, only few in vitro and in vivo investigations were performed to evaluate their relative toxic potential. AIM OF THE STUDY The aim was to develop an in vitro screening method of their cytotoxicity. MATERIALS AND METHODS Human and rodent hepatocyte cell lines (HepG2 and H-4-II-E) were used to assess cytotoxicity of the PA lasiocarpine. At concentrations of 25 µM up to even 2400 µM, no toxic effects in neither cell line was observed with standard cell culture media. Therefore, different approaches were investigated to enhance the susceptibility of cells to PA toxicity (using high-glucose or galactose-based media, induction of toxifying cytochromes, inhibition of metabolic carboxylesterases, and inhibition of glutathione-mediated detoxification). RESULTS Galactose-based culture medium (11.1 mM) increased cell susceptibility in both cell-lines. Cytochrome P450-induction by rifampicin showed no effect. Inhibition of carboxylesterase-mediated PA detoxification by specific carboxylesterase 2 inhibitor loperamide (2.5 µM) enhanced lasiocarpine toxicity, whereas the unspecific carboxylesterase inhibitor bis(4-nitrophenyl)phosphate (BNPP, 100 µM)) had a weaker effect. Finally, the inhibition of glutathione-mediated detoxification by buthionine sulphoximine (BSO, 100 µM) strongly enhanced lasiocarpine toxicity in H-4-II-E cells in low and medium, but not in high concentrations. CONCLUSIONS If no toxicity is observed under standard conditions, susceptibility enhancement by using galactose-based media, loperamide, and BSO may be useful to assess relative acute cytotoxicity of PAs in different cell lines.
Collapse
Affiliation(s)
| | | | - Lucia Disch
- Max Zeller Söhne AG, CH-8590 Romanshorn, Switzerland
| | - Beate Siewert
- Max Zeller Söhne AG, CH-8590 Romanshorn, Switzerland
| | | | - Jürgen Drewe
- Max Zeller Söhne AG, CH-8590 Romanshorn, Switzerland; Department of Clinical Pharmacology, University Hospital Basel, CH-4031 Basel, Switzerland.
| |
Collapse
|
24
|
|
25
|
Kolrep F, Numata J, Kneuer C, Preiss-Weigert A, Lahrssen-Wiederholt M, Schrenk D, These A. In vitro biotransformation of pyrrolizidine alkaloids in different species. Part I: Microsomal degradation. Arch Toxicol 2017; 92:1089-1097. [PMID: 29143854 PMCID: PMC5866832 DOI: 10.1007/s00204-017-2114-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/08/2017] [Indexed: 11/29/2022]
Abstract
Pyrrolizidine alkaloids (PA) are secondary metabolites of certain flowering plants. The ingestion of PAs may result in acute and chronic effects in man and livestock with hepatotoxicity, mutagenicity, and carcinogenicity being identified as predominant effects. Several hundred PAs sharing the diol pyrrolizidine as a core structure are formed by plants. Although many congeners may cause adverse effects, differences in the toxic potency have been detected in animal tests. It is generally accepted that PAs themselves are biologically and toxicologically inactive and require metabolic activation. Consequently, a strong relationship between activating metabolism and toxicity can be expected. Concerning PA susceptibility, marked differences between species were reported with a comparatively high susceptibility in horses, while goat and sheep seem to be almost resistant. Therefore, we investigated the in vitro degradation rate of four frequently occurring PAs by liver enzymes present in S9 fractions from human, pig, cow, horse, rat, rabbit, goat, and sheep liver. Unexpectedly, almost no metabolic degradation of any PA was observed for susceptible species such as human, pig, horse, or cow. If the formation of toxic metabolites represents a crucial bioactivation step, the found inverse conversion rates of PAs compared to the known susceptibility require further investigation.
Collapse
Affiliation(s)
- Franziska Kolrep
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Jorge Numata
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Carsten Kneuer
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | | | | | - Dieter Schrenk
- University of Kaiserslautern, Food Chemistry and Toxicology, Erwin-Schrödinger-Straße 52, 67663, Kaiserslautern, Germany
| | - Anja These
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| |
Collapse
|
26
|
He X, Xia Q, Woodling K, Lin G, Fu PP. Pyrrolizidine alkaloid-derived DNA adducts are common toxicological biomarkers of pyrrolizidine alkaloid N-oxides. J Food Drug Anal 2017; 25:984-991. [PMID: 28987376 PMCID: PMC9328871 DOI: 10.1016/j.jfda.2017.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
There are 660 pyrrolizidine alkaloids (PAs) and PA N-oxides present in the plants, with approximately half being possible carcinogens. We previously reported that a set of four PA-derived DNA adducts is formed in the liver of rats administered a series of hepatocarcinogenic PAs and a PA N-oxide. Based on our findings, we hypothesized that this set of DNA adducts is a common biological biomarker of PA-induced liver tumor formation. In this study, we determined that rat liver microsomal metabolism of five hepatocarcinogenic PAs (lasiocarpine, retrorsine, riddelliine, monocrotaline, and heliotrine) and their corresponding PA N-oxides produced the same set of DNA adducts. Among these compounds, lasiocarpine N-oxide, retrorsine N-oxide, monocrotaline N-oxide, and heliotrine N-oxide are for first time shown to be able to produce these DNA adducts. These results further support the role of these DNA adducts as potential common biomarkers of PA-induced liver tumor initiation.
Collapse
Affiliation(s)
- Xiaobo He
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079,
United States
| | - Qingsu Xia
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079,
United States
| | - Kellie Woodling
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079,
United States
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong,
Hong Kong
| | - Peter P. Fu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079,
United States
- Corresponding author. Fax: +1 870 543 7136. E-mail address: (P.P. Fu)
| |
Collapse
|
27
|
He X, Xia Q, Fu PP. 7-Glutathione-pyrrole and 7-cysteine-pyrrole are potential carcinogenic metabolites of pyrrolizidine alkaloids. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2017; 35:69-83. [PMID: 28418776 DOI: 10.1080/10590501.2017.1298358] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Many pyrrolizidine alkaloids (PAs) are hepatotoxic, genotoxic, and carcinogenic phytochemicals. Metabolism of PAs in vivo generates four (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-DNA adducts that have been proposed to be responsible for PA-induced liver tumor formation in rats. In this present study, we determined that the same set of DHP-DNA adducts was formed upon the incubation of 7-glutathione-DHP and 7-cysteine-DHP with cultured human hepatocarcinoma HepG2 cells. These results suggest that 7-glutathione-DHP and 7-cysteine-DHP are reactive metabolites of PAs that can bind to cellular DNA to form DHP-DNA adducts in HepG2 cells, and can potentially initiate liver tumor formation.
Collapse
Affiliation(s)
- Xiaobo He
- a National Center for Toxicological Research , US Food and Drug Administration , Jefferson , Arkansas , USA
| | - Qingsu Xia
- a National Center for Toxicological Research , US Food and Drug Administration , Jefferson , Arkansas , USA
| | - Peter P Fu
- a National Center for Toxicological Research , US Food and Drug Administration , Jefferson , Arkansas , USA
| |
Collapse
|
28
|
Fu PP, Xia Q, He X, Barel S, Edery N, Beland FA, Shimshoni JA. Detection of Pyrrolizidine Alkaloid DNA Adducts in Livers of Cattle Poisoned with Heliotropium europaeum. Chem Res Toxicol 2017; 30:851-858. [DOI: 10.1021/acs.chemrestox.6b00456] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter P. Fu
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Qingsu Xia
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Xiaobo He
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Shimon Barel
- Department
of Toxicology, Kimron Veterinary Institute, 50250 Bet Dagan, Israel
| | - Nir Edery
- Department
of Pathology, Kimron Veterinary Institute, 50250 Bet Dagan, Israel
| | - Frederick A. Beland
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Jakob A. Shimshoni
- Department
of Toxicology, Kimron Veterinary Institute, 50250 Bet Dagan, Israel
| |
Collapse
|
29
|
Stegelmeier BL, Colegate SM, Brown AW. Dehydropyrrolizidine Alkaloid Toxicity, Cytotoxicity, and Carcinogenicity. Toxins (Basel) 2016; 8:E356. [PMID: 27916846 PMCID: PMC5198550 DOI: 10.3390/toxins8120356] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 11/17/2022] Open
Abstract
Dehydropyrrolizidine alkaloid (DHPA)-producing plants have a worldwide distribution amongst flowering plants and commonly cause poisoning of livestock, wildlife, and humans. Previous work has produced considerable understanding of DHPA metabolism, toxicity, species susceptibility, conditions, and routes of exposure, and pathogenesis of acute poisoning. Intoxication is generally caused by contaminated grains, feed, flour, and breads that result in acute, high-dose, short-duration poisoning. Acute poisoning produces hepatic necrosis that is usually confirmed histologically, epidemiologically, and chemically. Less is known about chronic poisoning that may result when plant populations are sporadic, used as tisanes or herbal preparations, or when DHPAs contaminate milk, honey, pollen, or other animal-derived products. Such subclinical exposures may contribute to the development of chronic disease in humans or may be cumulative and probably slowly progress until liver failure. Recent work using rodent models suggest increased neoplastic incidence even with very low DHPA doses of short durations. These concerns have moved some governments to prohibit or limit human exposure to DHPAs. The purpose of this review is to summarize some recent DHPA research, including in vitro and in vivo DHPA toxicity and carcinogenicity reports, and the implications of these findings with respect to diagnosis and prognosis for human and animal health.
Collapse
Affiliation(s)
- Bryan L Stegelmeier
- United States Department of Agriculture, Agriculture Research Service, Poisonous Plant Research Laboratory, 1150 East 1400 North, Logan, UT 84341, USA.
| | - Steven M Colegate
- United States Department of Agriculture, Agriculture Research Service, Poisonous Plant Research Laboratory, 1150 East 1400 North, Logan, UT 84341, USA.
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA.
| | - Ammon W Brown
- United States Army Institute of Surgical Research, Ft Sam Houston, TX 78234, USA.
| |
Collapse
|
30
|
Fu PP. Pyrrolizidine Alkaloids: Metabolic Activation Pathways Leading to Liver Tumor Initiation. Chem Res Toxicol 2016; 30:81-93. [DOI: 10.1021/acs.chemrestox.6b00297] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peter P. Fu
- National Center for Toxicological
Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| |
Collapse
|
31
|
7-N-Acetylcysteine-pyrrole conjugate-A potent DNA reactive metabolite of pyrrolizidine alkaloids. J Food Drug Anal 2016; 24:682-694. [PMID: 28911605 PMCID: PMC9337289 DOI: 10.1016/j.jfda.2016.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Indexed: 11/23/2022] Open
Abstract
Plants containing pyrrolizidine alkaloids (PAs) are widespread throughout the world and are the most common poisonous plants affecting livestock, wildlife, and humans. PAs require metabolic activation to form reactive dehydropyrrolizidine alkaloids (dehydro-PAs) that are capable of alkylating cellular DNA and proteins, form (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-DNA and DHP-protein adducts, and lead to cytotoxicity, genotoxicity, and tumorigenicity. In this study, we determined that the metabolism of riddelliine and monocrotaline by human and rat liver microsomes in the presence of N-acetylcysteine both produced 7-N-acetylcysteine-DHP (7-NAC-DHP) and DHP. Reactions of 7-NAC-DHP with 2'-deoxyguanosine (dG), 2'-deoxyadenosine (dA), and calf thymus DNA in aqueous solution followed by enzymatic hydrolysis yielded DHP-dG and/or DHP-dA adducts. These results indicate that 7-NAC-DHP is a reactive metabolite that can lead to DNA adduct formation.
Collapse
|
32
|
Xia Q, Zhao Y, Lin G, Beland FA, Cai L, Fu PP. Pyrrolizidine Alkaloid-Protein Adducts: Potential Non-invasive Biomarkers of Pyrrolizidine Alkaloid-Induced Liver Toxicity and Exposure. Chem Res Toxicol 2016; 29:1282-92. [DOI: 10.1021/acs.chemrestox.6b00120] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Qingsu Xia
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Yuewei Zhao
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Ge Lin
- School
of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Frederick A. Beland
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Lining Cai
- Biotranex LLC, Monmouth Junction, New Jersey 08852, United States
| | - Peter P. Fu
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| |
Collapse
|
33
|
Hemeryck LY, Vanhaecke L. Diet-related DNA adduct formation in relation to carcinogenesis. Nutr Rev 2016; 74:475-89. [PMID: 27330144 DOI: 10.1093/nutrit/nuw017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The human diet contributes significantly to the initiation and promotion of carcinogenesis. It has become clear that the human diet contains several groups of natural foodborne chemicals that are at least in part responsible for the genotoxic, mutagenic, and carcinogenic potential of certain foodstuffs. Electrophilic chemicals are prone to attack nucleophilic sites in DNA, resulting in the formation of altered nucleobases, also known as DNA adducts. Since DNA adduct formation is believed to signal the onset of chemically induced carcinogenesis, the DNA adduct-inducing potential of certain foodstuffs has been investigated to gain more insight into diet-related pathways of carcinogenesis. Many studies have investigated diet-related DNA adduct formation. This review summarizes work on known or suspected dietary carcinogens and the role of DNA adduct formation in hypothesized carcinogenesis pathways.
Collapse
Affiliation(s)
- Lieselot Y Hemeryck
- L.Y. Hemeryck and L. Vanhaecke are with the Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Lynn Vanhaecke
- L.Y. Hemeryck and L. Vanhaecke are with the Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
34
|
The long persistence of pyrrolizidine alkaloid-derived DNA adducts in vivo: kinetic study following single and multiple exposures in male ICR mice. Arch Toxicol 2016; 91:949-965. [PMID: 27125825 DOI: 10.1007/s00204-016-1713-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
Pyrrolizidine alkaloid (PA)-containing plants are widespread in the world and the most common poisonous plants affecting livestock, wildlife, and humans. Our previous studies demonstrated that PA-derived DNA adducts can potentially be a common biological biomarker of PA-induced liver tumor formation. In order to validate the use of these PA-derived DNA adducts as a biomarker, it is necessary to understand the basic kinetics of the PA-derived DNA adducts formed in vivo. In this study, we studied the dose-dependent response and kinetics of PA-derived DNA adduct formation and removal in male ICR mice orally administered with a single dose (40 mg/kg) or multiple doses (10 mg/kg/day) of retrorsine, a representative carcinogenic PA. In the single-dose exposure, the PA-derived DNA adducts exhibited dose-dependent linearity and persisted for up to 4 weeks. The removal of the adducts following a single-dose exposure to retrorsine was biphasic with half-lives of 9 h (t 1/2α) and 301 h (~12.5 days, t 1/2β). In the 8-week multiple exposure study, a marked accumulation of PA-derived DNA adducts without attaining a steady state was observed. The removal of adducts after the multiple exposure also demonstrated a biphasic pattern but with much extended half-lives of 176 h (~7.33 days, t 1/2α) and 1736 h (~72.3 days, t 1/2β). The lifetime of PA-derived DNA adducts was more than 8 weeks following the multiple-dose treatment. The significant persistence of PA-derived DNA adducts in vivo supports their role in serving as a biomarker of PA exposure.
Collapse
|
35
|
Li W, Wang K, Lin G, Peng Y, Zheng J. Lysine Adduction by Reactive Metabolite(s) of Monocrotaline. Chem Res Toxicol 2016; 29:333-41. [DOI: 10.1021/acs.chemrestox.5b00488] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
| | | | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, Hong Kong
| | | | - Jiang Zheng
- Center for Developmental Therapeutics,
Seattle Children’s Research Institute, Division of Gastroenterology
and Hepatology, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington 98102, United States
| |
Collapse
|
36
|
Chen M, Li L, Zhong D, Shen S, Zheng J, Chen X. 9-Glutathionyl-6,7-dihydro-1-hydroxymethyl-5H-pyrrolizine Is the Major Pyrrolic Glutathione Conjugate of Retronecine-Type Pyrrolizidine Alkaloids in Liver Microsomes and in Rats. Chem Res Toxicol 2016; 29:180-9. [DOI: 10.1021/acs.chemrestox.5b00427] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Meixia Chen
- Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike
Road, Shanghai, China
| | - Liang Li
- Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike
Road, Shanghai, China
| | - Dafang Zhong
- Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike
Road, Shanghai, China
| | - Shuijie Shen
- Center
for Developmental Therapeutics, Seattle Children’s Research
Institute, Division of Gastroenterology and Hepatology, Department
of Pediatrics, University of Washington, Seattle, Washington 98195, United States
| | - Jiang Zheng
- Center
for Developmental Therapeutics, Seattle Children’s Research
Institute, Division of Gastroenterology and Hepatology, Department
of Pediatrics, University of Washington, Seattle, Washington 98195, United States
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoyan Chen
- Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike
Road, Shanghai, China
| |
Collapse
|
37
|
He X, Xia Q, Ma L, Fu PP. 7-cysteine-pyrrole conjugate: A new potential DNA reactive metabolite of pyrrolizidine alkaloids. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2016; 34:57-76. [PMID: 26761716 DOI: 10.1080/10590501.2015.1135593] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Pyrrolizidine alkaloids (PAs) require metabolic activation to exert cytotoxicity, genotoxicity, and tumorigenicity. We previously reported that (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts are responsible for PA-induced liver tumor formation in rats. In this study, we determined that metabolism of riddelliine and monocrotaline by human or rat liver microsomes produced 7-cysteine-DHP and DHP. The metabolism of 7-glutathionyl-DHP by human and rat liver microsomes also generated 7-cysteine-DHP. Further, reaction of 7-cysteine-DHP with calf thymus DNA in aqueous solution yielded the described DHP-derived DNA adducts. This study represents the first report that 7-cysteine-DHP is a new PA metabolite that can lead to DNA adduct formation.
Collapse
Affiliation(s)
- Xiaobo He
- a National Center for Toxicological Research, US Food and Drug Administration , Jefferson , Arkansas , USA
| | - Qingsu Xia
- a National Center for Toxicological Research, US Food and Drug Administration , Jefferson , Arkansas , USA
| | - Liang Ma
- a National Center for Toxicological Research, US Food and Drug Administration , Jefferson , Arkansas , USA
| | - Peter P Fu
- a National Center for Toxicological Research, US Food and Drug Administration , Jefferson , Arkansas , USA
| |
Collapse
|
38
|
Huybrechts B, Callebaut A. Pyrrolizidine alkaloids in food and feed on the Belgian market. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:1939-51. [DOI: 10.1080/19440049.2015.1086821] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Ma L, Zhao H, Xia Q, Cai L, Fu PP. Synthesis and phototoxicity of isomeric 7,9-diglutathione pyrrole adducts: Formation of reactive oxygen species and induction of lipid peroxidation. J Food Drug Anal 2015; 23:577-586. [PMID: 28911718 PMCID: PMC9351797 DOI: 10.1016/j.jfda.2015.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are hepatotoxic, genotoxic, and carcinogenic in experimental animals. Because of their widespread distribution in the world, PA-containing plants are probably the most common poisonous plants affecting livestock, wildlife, and humans. Upon metabolism, PAs generate reactive dehydro-PAs and other pyrrolic metabolites that lead to toxicity. Dehydro-PAs are known to react with glutathione (GSH) to form 7-GSH-(+/−)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (7-GS-DHP) in vivo and in vitro and 7,9-diGS-DHP in vitro. To date, the phototoxicity of GS-DHP adducts has not been well studied. In this study, we synthesized 7-GS-DHP, a tentatively assigned 9-GS-DHP, and two enantiomeric 7,9-diGS-DHP adducts by reaction of dehydromonocrotaline with GSH. The two 7,9-diGS-DHPs were separated by high performance liquid chromatography (HPLC) and their structures were characterized by 1H nuclear magnetic resonance (NMR) and 1H–1H correlation spectroscopy (COSY) NMR spectral analysis. Photoirradiation of 7-GS-DHP, 9-GS-DHP, and the two 7,9-diGS-DHPs as well as dehydromonocrotaline, dehydroheliotrine, and the 7-R enantiomer of DHP (DHR), by UVA light at 0 J/cm2, 14 J/cm2, and 35 J/cm2 in the presence of a lipid, methyl linoleate, all resulted in lipid peroxidation in a light dose-responsive manner. The levels of lipid peroxidation induced by the two isomeric 7,9-diGS-DHPs were significantly higher than that by 7-GS-DHP and 9-GS-DHP. When 7,9-diGS-DHP was irradiated in the presence of sodium azide (NaN3), the level of lipid peroxidation decreased; lipid peroxidation was enhanced when methanol was replaced by deuterated methanol. These results suggest that singlet oxygen is a product induced by the irradiation of 7,9-diGS-DHP. When irradiated in the presence of superoxide dismutase (SOD), the level of lipid peroxidation decreased, indicating that lipid peroxidation is also mediated by superoxide. These results indicate that lipid peroxidation is mediated by reactive oxygen species (ROS). These results suggest that 7,9-diGS-DHPs are phototoxic, generating lipid peroxidation mediated by ROS.
Collapse
|
40
|
Absolute configuration, stability, and interconversion of 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine valine adducts and their phenylthiohydantoin derivatives. J Food Drug Anal 2015; 23:318-326. [PMID: 28911388 PMCID: PMC9351779 DOI: 10.1016/j.jfda.2015.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/23/2015] [Indexed: 11/26/2022] Open
Abstract
Pyrrolizidine alkaloid-containing plants are widespread in the world and probably the most common poisonous plants affecting livestock, wildlife, and humans. Pyrrolizidine alkaloids require metabolic activation to form dehydropyrrolizidine alkaloids that bind to cellular proteins and DNA leading to hepatotoxicity, genotoxicity, and tumorigenicity. At present, it is not clear how dehydropyrrolizidine alkaloids bind to cellular amino acids and proteins to induced toxicity. We previously reported that reaction of dehydromonocrotaline with valine generated four highly unstable 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived valine (DHP-valine) adducts that upon reaction with phenyl isothiocyanate (PITC) formed four DHP-valine-PITC adduct isomers. In this study, we report the absolute configuration and stability of DHP-valine and DHP-valine-PITC adducts, and the mechanism of interconversion between DHP-valine-PITC adducts.
Collapse
|
41
|
Xia Q, Ma L, He X, Cai L, Fu PP. 7-glutathione pyrrole adduct: a potential DNA reactive metabolite of pyrrolizidine alkaloids. Chem Res Toxicol 2015; 28:615-20. [PMID: 25768656 DOI: 10.1021/tx500417q] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pyrrolizidine alkaloid (PA)-containing plants are the most common poisonous plants affecting livestock, wildlife, and humans. PAs require metabolic activation to form pyrrolic metabolites to exert cytotoxicity and tumorigenicity. We previously determined that metabolism of tumorigenic PAs produced four DNA adducts, designated as DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4, that are responsible for liver tumor initiation. 7-Glutathione-(±)-6,7-dihydro-1-hydroxymethyl-5H-pyrrolizine (7-GS-DHP), formed in vivo and in vitro, and 7,9-di-GS-DHP, formed in vitro, are both considered detoxified metabolites. However, in this study we determined that incubation of 7-GS-DHP with 2'-deoxyguanosine (dG) and 2'-deoxyadenosine (dA) yields DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4 adducts as well as the reactive metabolite DHP. Furthermore, reaction of 7-GS-DHP with calf thymus DNA in aqueous solution at 37 °C for 4, 8, 16, 24, 48, or 72 h, followed by enzymatic hydrolysis yielded DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4 adducts. Under our current experimental conditions, DHP-dA-3 and DHP-dA-4 adducts were formed in a trace amount from the reaction of 7,9-di-GS-DHP with dA. No DHP-dG-3 or DHP-dG-4 adducts were detected from the reaction of 7,9-di-GS-DHP with dG. This study represents the first report that the 7-GS-DHP adduct can be a potential reactive metabolite of PAs leading to DNA adduct formation.
Collapse
Affiliation(s)
- Qingsu Xia
- †National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Liang Ma
- †National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Xiaobo He
- †National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Lining Cai
- ‡Biotranex LLC, Monmouth Junction, New Jersey 08852, United States
| | - Peter P Fu
- †National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| |
Collapse
|
42
|
Fashe MM, Juvonen RO, Petsalo A, Rahnasto-Rilla M, Auriola S, Soininen P, Vepsäläinen J, Pasanen M. Identification of a New Reactive Metabolite of Pyrrolizidine Alkaloid Retrorsine: (3H-Pyrrolizin-7-yl)methanol. Chem Res Toxicol 2014; 27:1950-7. [DOI: 10.1021/tx5002964] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Muluneh M. Fashe
- School
of Pharmacy, Faculty
of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Risto O. Juvonen
- School
of Pharmacy, Faculty
of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Aleksanteri Petsalo
- School
of Pharmacy, Faculty
of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Minna Rahnasto-Rilla
- School
of Pharmacy, Faculty
of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Seppo Auriola
- School
of Pharmacy, Faculty
of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Pasi Soininen
- School
of Pharmacy, Faculty
of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jouko Vepsäläinen
- School
of Pharmacy, Faculty
of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Markku Pasanen
- School
of Pharmacy, Faculty
of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
43
|
Zhao Y, Wang S, Xia Q, Gamboa da Costa G, Doerge DR, Cai L, Fu PP. Reaction of Dehydropyrrolizidine Alkaloids with Valine and Hemoglobin. Chem Res Toxicol 2014; 27:1720-31. [DOI: 10.1021/tx5002139] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuewei Zhao
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Shuguang Wang
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Qingsu Xia
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | | | - Daniel R. Doerge
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Lining Cai
- Biotranex LLC, Monmouth Junction, New Jersey 08852, United States
| | - Peter P. Fu
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| |
Collapse
|
44
|
Abstract
This review covers pyrrolizidine alkaloids isolated from natural sources. Topics include: aspects of structure, isolation, and biological/pharmacological studies; total syntheses of necic acids, necine bases and closely-related non-natural analogues.
Collapse
Affiliation(s)
- Jeremy Robertson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| | | |
Collapse
|
45
|
Xiong A, Yang F, Fang L, Yang L, He Y, Wan YJY, Wan YYJ, Xu Y, Qi M, Wang X, Yu K, Tsim KWK, Wang Z. Metabolomic and genomic evidence for compromised bile acid homeostasis by senecionine, a hepatotoxic pyrrolizidine alkaloid. Chem Res Toxicol 2014; 27:775-86. [PMID: 24641316 DOI: 10.1021/tx400451q] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are among the most hepatotoxic natural products that produce irreversible injury to humans via the consumption of herbal medicine and honey, and through tea preparation. Toxicity and death caused by PA exposure have been reported worldwide. Metabolomics and genomics provide scientific and systematic views of a living organism and have become powerful techniques for toxicology research. In this study, senecionine hepatotoxicity on rats was determined via a combination of metabolomic and genomic analyses. From the global analysis generated from two omics data, the compromised bile acid homeostasis in vivo was innovatively demonstrated and confirmed. Serum profiling of bile acids was altered with significantly elevated conjugated bile acids after senecionine exposure, which was in accordance with toxicity. Similarly, the hepatic mRNA levels of several key genes associated with bile acid metabolism were significantly changed. This process included cholesterol 7-α hydroxylase, bile acid CoA-amino acid N-acetyltransferase, sodium taurocholate cotransporting polypeptide, organic anion-transporting polypeptides, and multidrug-resistance-associated protein 3. In conclusion, a cross-omics study provides a comprehensive analysis method for studying the toxicity caused by senecionine, which is a hepatotoxic PA. Moreover, the change in bile acid metabolism and the respective transporters may provide a new PA toxicity mechanism.
Collapse
Affiliation(s)
- Aizhen Xiong
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine , 1200 Cailun Road, Shanghai 201203, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang CC, Xia Q, Li M, Wang S, Zhao Y, Tolleson WH, Yin JJ, Fu PP. Metabolic activation of pyrrolizidine alkaloids leading to phototoxicity and photogenotoxicity in human HaCaT keratinocytes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2014; 32:362-384. [PMID: 25436474 DOI: 10.1080/10590501.2014.969980] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pyrrolizidine alkaloids, produced by a large number of poisonous plants with wide global distribution, are associated with genotoxicity, tumorigenicity, and hepatotoxicity in animals and humans. Mammalian metabolism converts pyrrolizidine alkaloids to reactive pyrrolic metabolites (dehydropyrrolizidine alkaloids) that form covalent protein and DNA adducts. Although a mechanistic understanding is currently unclear, pyrrolizidine alkaloids can cause secondary (hepatogenous) photosensitization and induce skin cancer. In this study, the phototoxicity of monocrotaline, riddelliine, dehydromonocrotaline, dehydroriddelliine, and dehydroretronecine (DHR) in human HaCaT keratinocytes under ultraviolet A (UVA) irradiation was determined. UVA irradiation of HaCaT cells treated with dehydromonocrotaline, dehydroriddelline, and DHR resulted in increased release of lactate dehydrogenase and enhanced photocytotoxicity proportional to the UVA doses. UVA-induced photochemical DNA damage also increased proportionally with dehydromonocrotaline and dehydroriddelline. UVA treatment potentiated the formation of 8-hydroxy-2'-deoxyguanosine DNA adducts induced by dehydromonocrotaline in HaCaT skin keratinocytes. Using electron spin resistance trapping, we found that UVA irradiation of dehydromonocrotaline and dehydroriddelliine generates reactive oxygen species (ROS), including hydroxyl radical, singlet oxygen, and superoxide, and electron transfer reactions, indicating that cytotoxicity and genotoxicity of these compounds could be mediated by ROS. Our results suggest that dehydropyrrolizidine alkaloids formed or delivered to the skin cause pyrrolizidine alkaloid-induced secondary photosensitization and possible skin cancer.
Collapse
Affiliation(s)
- Chia-Chi Wang
- a National Center for Toxicological Research , US Food and Drug Administration , Jefferson , Arkansas , USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Xia Q, Zhao Y, Von Tungeln LS, Doerge DR, Lin G, Cai L, Fu PP. Pyrrolizidine Alkaloid-Derived DNA Adducts as a Common Biological Biomarker of Pyrrolizidine Alkaloid-Induced Tumorigenicity. Chem Res Toxicol 2013; 26:1384-96. [DOI: 10.1021/tx400241c] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qingsu Xia
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Yuewei Zhao
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Linda S. Von Tungeln
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Daniel R. Doerge
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| | - Ge Lin
- School
of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Lining Cai
- Biotranex LLC, Monmouth Junction, New Jersey 08852, United States
| | - Peter P. Fu
- National Center for Toxicological Research, Jefferson, Arkansas 72079, United States
| |
Collapse
|
48
|
Puerto Galvis CE, Kouznetsov VV. Regio- and stereoselective synthesis of spirooxindole 1′-nitro pyrrolizidines with five concurrent stereocenters under aqueous medium and their bioprospection using the zebrafish (Danio rerio) embryo model. Org Biomol Chem 2013; 11:7372-86. [DOI: 10.1039/c3ob41302k] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
49
|
Fu PP, Xia Q, Zhao Y, Wang S, Yu H, Chiang HM. Phototoxicity of herbal plants and herbal products. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2013; 31:213-255. [PMID: 24024520 DOI: 10.1080/10590501.2013.824206] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Plants are used by humans in daily life in many different ways, including as food, herbal medicines, and cosmetics. Unfortunately, many natural plants and their chemical constituents are photocytotoxic and photogenotoxic, and these phototoxic phytochemicals are widely present in many different plant families. To date, information concerning the phototoxicity and photogenotoxicity of many plants and their chemical constituents is limited. In this review, we discuss phototoxic plants and their major phototoxic constituents; routes of human exposure; phototoxicity of these plants and their constituents; general mechanisms of phototoxicity of plants and phototoxic components; and several representative phototoxic plants and their photoactive chemical constituents.
Collapse
Affiliation(s)
- Peter P Fu
- a National Center for Toxicological Research , Jefferson , Arkansas , USA
| | | | | | | | | | | |
Collapse
|