1
|
Maeo K, Nakaya Y, Mitsuda N, Ishiguro S. ACRE, a class of AP2/ERF transcription factors, activates the expression of sweet potato ß-amylase and sporamin genes through the sugar-responsible element CMSRE-1. PLANT MOLECULAR BIOLOGY 2024; 114:54. [PMID: 38714535 PMCID: PMC11076338 DOI: 10.1007/s11103-024-01450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/04/2024] [Indexed: 05/10/2024]
Abstract
Sugars, synthesized by photosynthesis in source organs, are loaded and utilized as an energy source and carbon skeleton in sink organs, and also known to be important signal molecules regulating gene expression in higher plants. The expression of genes coding for sporamin and β-amylase, the two most abundant proteins in storage roots of sweet potato, is coordinately induced by sugars. We previously reported on the identification of the carbohydrate metabolic signal-responsible element-1 (CMSRE-1) essential for the sugar-responsible expression of two genes. However, transcription factors that bind to this sequence have not been identified. In this study, we performed yeast one-hybrid screening using the sugar-responsible minimal promoter region of the ß-amylase gene as bait and a library composed only transcription factor cDNAs of Arabidopsis. Two clones, named Activator protein binding to CMSRE-1 (ACRE), encoding AP2/ERF transcription factors were isolated. ACRE showed transactivation activity of the sugar-responsible minimal promoter in a CMSRE-1-dependent manner in Arabidopsis protoplasts. Electric mobility shift assay (EMSA) using recombinant proteins and transient co-expression assay in Arabidopsis protoplasts revealed that ACRE could actually act to the CMSRE-1. Among the DEHYDRATION -RESPONSIVE ELEMENT BINDING FACTOR (DREB) subfamily, almost all homologs including ACRE, could act on the DRE, while only three ACREs could act to the CMSRE-1. Moreover, ACRE-homologs of Japanese morning glory also have the same property of DNA-binding preference and transactivation activity through the CMSRE-1. These findings suggested that ACRE plays an important role in the mechanism regulating the sugar-responsible gene expression through the CMSRE-1 conserved across plant species.
Collapse
Affiliation(s)
- Kenichiro Maeo
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan.
| | - Yuki Nakaya
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan
| | - Sumie Ishiguro
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan
| |
Collapse
|
2
|
Li C, Kou M, Song W, Arisha MH, Gao R, Tang W, Yan H, Wang X, Zhang Y, Li Q. Comparative Analysis of Saccharification Characteristics of Different Type Sweetpotato Cultivars. Foods 2023; 12:3785. [PMID: 37893678 PMCID: PMC10606501 DOI: 10.3390/foods12203785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
As an important characteristic crop in China, sweetpotato plays an important role in the intake and supplement of nutrients. The saccharification characteristics of sweetpotato determine the edible quality and processing type. Exploring the saccharification characteristics of sweetpotato is of great significance to the selection of processing materials and the formation mechanism of service quality, but there are few relevant studies. A comparison study of two high saccharification varieties (Y25 and Z13) and one low saccharification variety (X27) was conducted to analyze their storage roots physical and chemical properties. The results show that the dry matter content, starch, and amylose content of Y25 and Z13 were significantly different from those of X27. Furthermore, the total amylase activity was significantly higher than that of X27. On the other hand, the starch gelatinization temperature was significantly lower than that of X27. The starch reduction in Y25 and Z13 is four times more than that in X27, and the maltose content of Y25 and Z13 is more than two times that of X27. Finally, the scores of sensory evaluation and physiological sweetness were significantly higher than those of X27. The results provide a theoretical basis for understanding the saccharification characteristics of sweetpotato varieties and are of guiding significance for the selection of sweetpotato parents.
Collapse
Affiliation(s)
- Chen Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, China; (C.L.); (M.K.); (W.S.); (R.G.); (W.T.); (H.Y.); (X.W.); (Y.Z.)
| | - Meng Kou
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, China; (C.L.); (M.K.); (W.S.); (R.G.); (W.T.); (H.Y.); (X.W.); (Y.Z.)
| | - Weihan Song
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, China; (C.L.); (M.K.); (W.S.); (R.G.); (W.T.); (H.Y.); (X.W.); (Y.Z.)
| | - Mohamed Hamed Arisha
- Department of Horticulture, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Runfei Gao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, China; (C.L.); (M.K.); (W.S.); (R.G.); (W.T.); (H.Y.); (X.W.); (Y.Z.)
| | - Wei Tang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, China; (C.L.); (M.K.); (W.S.); (R.G.); (W.T.); (H.Y.); (X.W.); (Y.Z.)
| | - Hui Yan
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, China; (C.L.); (M.K.); (W.S.); (R.G.); (W.T.); (H.Y.); (X.W.); (Y.Z.)
| | - Xin Wang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, China; (C.L.); (M.K.); (W.S.); (R.G.); (W.T.); (H.Y.); (X.W.); (Y.Z.)
| | - Yungang Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, China; (C.L.); (M.K.); (W.S.); (R.G.); (W.T.); (H.Y.); (X.W.); (Y.Z.)
| | - Qiang Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, China; (C.L.); (M.K.); (W.S.); (R.G.); (W.T.); (H.Y.); (X.W.); (Y.Z.)
| |
Collapse
|
3
|
Lu H, Fan Y, Yuan Y, Niu X, Zhao B, Liu Y, Xiao F. Tomato SlSTK is involved in glucose response and regulated by the ubiquitin ligase SlSINA4. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111672. [PMID: 36921631 DOI: 10.1016/j.plantsci.2023.111672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Glucose signaling plays an essential role in plant growth, development and stress response. Previous studies have shown that STOREKEEPER (STK) is a new class of DNA binding protein that regulates patatin expression in potato tubers and confers elevated sensitivity to glucose response in Arabidopsis thaliana. However, the biological functions of STK gene in tomato (Solanum lycopersicum) have not been studied. Here, we characterized the tomato SlSTK and determined its role in glucose signaling. The SlSTK protein was localized in the nucleus and the expression of the SlSTK gene was induced by the glucose treatment. Overexpression of SlSTK in tomato enhanced glucose sensitivity, as manifested by reduced seed germination rate and arrested growth at the early seedling stage. In contrast, the SlSTK-knockout plants generated via the clustered regularly interspaced short palindromic repeats (CRISPR) - CRISPR-associated protein 9 (CRISPR-Cas9) technique attenuated the sensitivity to glucose. In addition, SlSTK was ubiquitinated in plant cells and interacted with the tomato ubiquitin ligase SEVEN IN ABSENTIA4 (SlSINA4) that degrades SlSTK in a ligase-dependent manner. Taken together, these results suggest that SlSTK is involved in glucose signaling and its stability is regulated by the ubiquitin ligase SlSINA4.
Collapse
Affiliation(s)
- Han Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Department of Plant Sciences, University of Idaho, Moscow, ID 83844-2339, USA
| | - Youhong Fan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Department of Plant Sciences, University of Idaho, Moscow, ID 83844-2339, USA
| | - Yulin Yuan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xiangli Niu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Department of Plant Sciences, University of Idaho, Moscow, ID 83844-2339, USA
| | - Bingyu Zhao
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Yongsheng Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; School of Horticulture, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Fangming Xiao
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844-2339, USA.
| |
Collapse
|
4
|
Singha DL, Das D, Sarki YN, Chowdhury N, Sharma M, Maharana J, Chikkaputtaiah C. Harnessing tissue-specific genome editing in plants through CRISPR/Cas system: current state and future prospects. PLANTA 2021; 255:28. [PMID: 34962611 DOI: 10.1007/s00425-021-03811-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement. CRISPR/Cas is a powerful genome-editing tool with a wide range of applications for the genetic improvement of crops. However, the constitutive genome editing of vital genes is often associated with pleiotropic effects on other genes, needless metabolic burden, or interference in the cellular machinery. Tissue-specific genome editing (TSGE), on the other hand, enables researchers to study those genes in specific cells, tissues, or organs without disturbing neighboring groups of cells. Until recently, there was only limited proof of the TSGE concept, where the CRISPR-TSKO tool was successfully used in Arabidopsis, tomato, and cotton, laying a solid foundation for crop improvement. In this review, we have laid out valuable insights into the concept and application of TSGE on relatively unexplored areas such as grain trait improvement under favorable or unfavorable conditions. We also enlisted some of the prominent tissue-specific promoters and described the procedure of their isolation with several TSGE promoter expression systems in detail. Moreover, we highlighted potential negative regulatory genes that could be targeted through TSGE using tissue-specific promoters. In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement.
Collapse
Affiliation(s)
- Dhanawantari L Singha
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India.
| | - Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Yogita N Sarki
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Naimisha Chowdhury
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Monica Sharma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Jitendra Maharana
- Distributed Information Centre (DIC), Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Regulation of β-amylase synthesis: a brief overview. Mol Biol Rep 2021; 48:6503-6511. [PMID: 34379288 DOI: 10.1007/s11033-021-06613-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The major activity of β-amylase (BMY) is the production of maltose by the hydrolytic degradation of starch. BMY is found to be produced by some plants and few microorganisms only. The industrial importance of the enzyme warrants its application in a larger scale with the help of genetic engineering, for which the regulatory mechanism is to be clearly understood. RESULTS AND CONCLUSION In plants, the activities of BMY are regulated by various environmental stimuli including stress of drought, cold and heat. In vascular plant, Arabidopsis sp. the enzyme is coded by nine BAM genes, whereas in most bacteria, BMY enzymes are coded by the spoII gene family. The activities of these genes are in turn controlled by various compounds. Production and inhibition of the microbial BMY is regulated by the activation and inactivation of various BAM genes. Various types of transcriptional regulators associated with the plant- BMYs regulate the production of BMY enzyme. The enhancement in the expression of such genes reflects evolutionary significance. Bacterial genes, on the other hand, as exemplified by Bacillus sp and Clostridium sp, clearly depict the importance of a single regulatory gene, the absence or mutation of which totally abolishes the BMY activity.
Collapse
|
6
|
Engineering cereal crops for enhanced abiotic stress tolerance. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2021. [DOI: 10.1007/s43538-021-00006-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Comparison and Characterization of a Cell Wall Invertase Promoter from Cu-Tolerant and Non-Tolerant Populations of Elsholtzia haichowensis. Int J Mol Sci 2021; 22:ijms22105299. [PMID: 34069912 PMCID: PMC8157609 DOI: 10.3390/ijms22105299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/04/2022] Open
Abstract
Cell wall invertase (CWIN) activity and the expression of the corresponding gene were previously observed to be significantly elevated in a Cu-tolerant population of Elsholtzia haichowensis relative to a non-tolerant population under copper stress. To understand the differences in CWIN gene regulation between the two populations, their CWIN promoter β-glucuronidase (GUS) reporter vectors were constructed. GUS activity was measured in transgenic Arabidopsis in response to copper, sugar, and phytohormone treatments. Under the copper treatment, only the activity of the CWIN promoter from the Cu-tolerant population was slightly increased. Glucose and fructose significantly induced the activity of CWIN promoters from both populations. Among the phytohormone treatments, only salicylic acid induced significantly higher (p < 0.05) activity of the Cu-tolerant CWIN promoter relative to the non-tolerant promoters. Analysis of 5′-deletion constructs revealed that a 270-bp promoter fragment was required for SA induction of the promoter from the Cu-tolerant population. Comparison of this region in the two CWIN promoters revealed that it had 10 mutation sites and contained CAAT-box and W-box cis-elements in the Cu-tolerant promoter only. This work provides insights into the regulatory role of SA in CWIN gene expression and offers an explanation for differences in CWIN expression between E. haichowensis populations.
Collapse
|
8
|
Kumari M, Thakur S, Kumar A, Joshi R, Kumar P, Shankar R, Kumar R. Regulation of color transition in purple tea (Camellia sinensis). PLANTA 2019; 251:35. [PMID: 31853722 DOI: 10.1007/s00425-019-03328-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Comparative proteomics and metabolomics study of juvenile green, light purple and dark purple leaf to identify key proteins and metabolites that putatively govern color transition in Camellia sinensis. Color transition from juvenile green to dark purple leaf in Camellia sinensis is a complex process and thought to be regulated by an intricate balance of genes, proteins and metabolites expression. A molecular-level understanding of proteins and metabolites expression is needed to define metabolic process underpinning color transition in C. sinensis. Here, purple leaf growth of C. sinensis cultivar was divided into three developmental stages viz. juvenile green (JG), light purple (LP) and dark purple (DP) leaf. Scanning electron microscope (SEM) analysis revealed a clear morphological variation such as cell size, shape and texture as tea leaf undergoing color transition. Proteomic and metabolomic analyses displayed the temporal changes in proteins and metabolites that occur in color transition process. In total, 211 differentially expressed proteins (DEPs) were identified presumably involved in secondary metabolic processes particularly, flavonoids/anthocyanin biosynthesis, phytohormone regulation, carbon and nitrogen assimilation and photosynthesis, among others. Subcellular localization of three candidate proteins was further evaluated by their transient expression in planta. Interactome study revealed that proteins involved in primary metabolism, precursor metabolite, photosynthesis, phytohormones, transcription factor and anthocyanin biosynthesis were found to be interact directly or indirectly and thus, regulate color transition from JG to DP leaf. The present study not only corroborated earlier findings but also identified novel proteins and metabolites that putatively govern color transition in C. sinensis. These findings provide a platform for future studies that may be utilized for metabolic engineering/molecular breeding in an effort to develop more desirable traits.
Collapse
Affiliation(s)
- Manglesh Kumari
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Shweta Thakur
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Ajay Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
| | - Robin Joshi
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
| | - Prakash Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Ravi Shankar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
| | - Rajiv Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India.
| |
Collapse
|
9
|
Wang MQ, Zeng QH, Huang QX, Lin P, Li Y, Liu QL, Zhang L. Transcriptomic Analysis of Verbena bonariensis Leaves Under Low-Temperature Stress. DNA Cell Biol 2019; 38:1233-1248. [PMID: 31532241 DOI: 10.1089/dna.2019.4707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Verbena bonariensis is a valuable plant for both ornament and flower border. As a major constraint, low temperature affects the growing development and survival of V. bonariensis. However, there are few systematic studies in terms of molecular mechanism on the tolerance of low temperature in V. bonariensis. In this study, Illumina sequencing technology was applied to analyze the cold resistance mechanism of plants. Six cDNA libraries were obtained from two samples of two groups, the cold-treated group and the control group. A total of 271,920 unigenes were produced from 406,641 assembled transcripts. Among these, 19,003 differentially expressed genes (DEGs) (corrected p-value <0.01, |log2(fold change) | >3) were obtained, including 9852 upregulated and 9151 downregulated genes. The antioxidant enzyme system, photosynthesis, plant hormone signal transduction, fatty acid metabolism, starch and sucrose metabolism pathway, and transcription factors were analyzed. Based on these results, series of candidate genes related to cold stress were screened out and discussed. The physiological indexes related to response mechanism of low temperature were tested. Eleven upregulated DEGs were validated by Quantitative Real-time PCR. In this study, we provided the transcriptome sequence resource of V. bonariensis and used these data to realize its molecular mechanism under cold stress. The results contributed to valuable clues for genetic studies and helped to screen candidate genes for cold-resistance breeding.
Collapse
Affiliation(s)
- Meng-Qi Wang
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qin-Han Zeng
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qiu-Xiang Huang
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ping Lin
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yan Li
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, China
| | - Qing-Lin Liu
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lei Zhang
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
10
|
Zhang H, Gao X, Zhi Y, Li X, Zhang Q, Niu J, Wang J, Zhai H, Zhao N, Li J, Liu Q, He S. A non-tandem CCCH-type zinc-finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato. THE NEW PHYTOLOGIST 2019; 223:1918-1936. [PMID: 31091337 DOI: 10.1111/nph.15925] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/08/2019] [Indexed: 05/21/2023]
Abstract
CCCH-type zinc-finger proteins play essential roles in regulating plant development and stress responses. However, the molecular and functional properties of non-tandem CCCH-type zinc-finger (non-TZF) proteins have been rarely characterized in plants. Here, we report the biological and molecular characterization of a sweet potato non-TZF gene, IbC3H18. We show that IbC3H18 exhibits tissue- and abiotic stress-specific expression, and could be effectively induced by abiotic stresses, including NaCl, polyethylene glycol (PEG) 6000, H2 O2 and abscisic acid (ABA) in sweet potato. Accordingly, overexpression of IbC3H18 led to increased, whereas knock-down of IbC3H18 resulted in decreased tolerance of sweet potato to salt, drought and oxidation stresses. In addition, IbC3H18 functions as a nuclear transcriptional activator and regulates the expression of a range of abiotic stress-responsive genes involved in reactive oxygen species (ROS) scavenging, ABA signaling, photosynthesis and ion transport pathways. Moreover, our data demonstrate that IbC3H18 physically interacts with IbPR5, and that overexpression of IbPR5 enhances salt and drought tolerance in transgenic tobacco plants. Collectively, our data indicate that IbC3H18 functions in enhancing abiotic stress tolerance in sweet potato, which may serve as a candidate gene for use in improving abiotic stress resistance in crops.
Collapse
Affiliation(s)
- Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoru Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yuhai Zhi
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xu Li
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qian Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jinbiao Niu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jun Wang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
11
|
Zhao L, Gong X, Gao J, Dong H, Zhang S, Tao S, Huang X. Transcriptomic and evolutionary analyses of white pear (Pyrus bretschneideri) β-amylase genes reveals their importance for cold and drought stress responses. Gene 2018; 689:102-113. [PMID: 30576803 DOI: 10.1016/j.gene.2018.11.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/17/2018] [Accepted: 11/25/2018] [Indexed: 12/24/2022]
Abstract
β-amylase (BAM) genes play essential roles in plant abiotic stress responses. Although the genome of Chinese white pear (Pyrus bretschneideri) has recently been made available, knowledge regarding the BAM family in pear, including gene function, evolutionary history and patterns of gene expression remains limited. In this study, we identified 17 PbBAMs in the pear genome. Of these, 12 PbBAM members were mapped onto 9 chromosomes and 5 PbBAM genes were located on scaffold contigs. Based on gene structure, protein motif analysis, and the topology of the phylogenetic tree of the PbBAM family, we classified member genes into 4 groups. All PbBAM genes were found to contain typical glycosyl hydrolysis 14 domain motifs. Interfamilial comparisons revealed that the phylogenetic relationships of BAM genes in other Rosaceae species were similar those found in pear. We also found that whole-genome duplication (WGD)/segmental duplication events played critical roles in the expansion of the BAM family. Next, we used transcriptomic data to study gene expression during the response of drought and low temperate responses, and found that genes in Group B were related to drought and cold stress. We identified four PbBAM genes associated with abiotic stress in Pear. Finally, by analyzing co-expression networks and co-regulatory genes, we found that PbBAM1a and PbBAM1b were associated with the pear abiotic stress response.
Collapse
Affiliation(s)
- Liangyi Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China, 210095.
| | - Xin Gong
- College of Horticulture, Nanjing Agricultural University, Nanjing, China, 210095.
| | - Junzhi Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China, 210095.
| | - Huizhen Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing, China, 210095.
| | - Shaoling Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China, 210095.
| | - Shutian Tao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China, 210095.
| | - Xiaosan Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China, 210095.
| |
Collapse
|
12
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 19:ijms19092506. [PMID: 30149541 PMCID: PMC6165531 DOI: 10.3390/ijms19092506] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/07/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
13
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 57:2367-2379. [PMID: 30149541 DOI: 10.1093/pcp/pcw157] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/07/2018] [Accepted: 09/05/2016] [Indexed: 05/25/2023] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
14
|
Wang Y, Li Y, Zhang H, Zhai H, Liu Q, He S. A soluble starch synthase I gene, IbSSI, alters the content, composition, granule size and structure of starch in transgenic sweet potato. Sci Rep 2017; 7:2315. [PMID: 28539660 PMCID: PMC5443758 DOI: 10.1038/s41598-017-02481-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/11/2017] [Indexed: 11/09/2022] Open
Abstract
Soluble starch synthase I (SSI) is a key enzyme in the biosynthesis of plant amylopectin. In this study, the gene named IbSSI, was cloned from sweet potato, an important starch crop. A high expression level of IbSSI was detected in the leaves and storage roots of the sweet potato. Its overexpression significantly increased the content and granule size of starch and the proportion of amylopectin by up-regulating starch biosynthetic genes in the transgenic plants compared with wild-type plants (WT) and RNA interference plants. The frequency of chains with degree of polymerization (DP) 5-8 decreased in the amylopectin fraction of starch, whereas the proportion of chains with DP 9-25 increased in the IbSSI-overexpressing plants compared with WT plants. Further analysis demonstrated that IbSSI was responsible for the synthesis of chains with DP ranging from 9 to 17, which represents a different chain length spectrum in vivo from its counterparts in rice and wheat. These findings suggest that the IbSSI gene plays important roles in determining the content, composition, granule size and structure of starch in sweet potato. This gene may be utilized to improve the content and quality of starch in sweet potato and other plants.
Collapse
Affiliation(s)
- Yannan Wang
- Key Laboratory of Sweet potato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Yan Li
- Key Laboratory of Sweet potato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Huan Zhang
- Key Laboratory of Sweet potato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet potato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Qingchang Liu
- Key Laboratory of Sweet potato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China.
| | - Shaozhen He
- Key Laboratory of Sweet potato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
15
|
Hwang SH, Kwon SI, Jang JY, Fang IL, Lee H, Choi C, Park S, Ahn I, Bae SC, Hwang DJ. OsWRKY51, a rice transcription factor, functions as a positive regulator in defense response against Xanthomonas oryzae pv. oryzae. PLANT CELL REPORTS 2016; 35:1975-85. [PMID: 27300023 DOI: 10.1007/s00299-016-2012-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 06/04/2016] [Indexed: 05/05/2023]
Abstract
OsWRKY51 functions as a positive transcriptional regulator in defense signaling against Xanthomonas oryzae pv. oryzae by direct DNA binding to the promoter of defense related gene, OsPR10a. OsWRKY51 in rice (Oryza sativa L.) is induced by exogenous salicylic acid (SA) and inoculation with Xanthomonas oryzae pv. oryzae (Xoo). To examine the role of OsWRKY51 in the defense response of rice, we generated OsWRKY51 overexpressing and underexpressing transgenic rice plants. OsWRKY51-overexpressing transgenic rice lines were more resistant to Xoo and showed greater expression of defense-related genes than wild-type (WT) plants, while OsWRKY51-underexpressing lines were more susceptible to Xoo and showed less expression of defense-associated genes than WT plants. Transgenic lines overexpressing OsWRKY51 showed growth retardation compared to WT plants. In contrast, transgenic lines underexpressing OsWRKY51 by RNA interference showed similar plant height with WT plants. Transient expression of OsWRKY51-green fluorescent protein fusion protein in rice protoplasts revealed that OsWRKY51 was localized in the nucleus. OsWRKY51 bound to the W-box and WLE1 elements of the OsPR10a promoter. Based on these results, we suggest that OsWRKY51 is a positive transcriptional regulator of defense signaling and has direct DNA binding ability to the promoter of OsPR10a, although it is reported to be a negative regulator in GA signaling.
Collapse
Affiliation(s)
- Seon-Hee Hwang
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, 560-500, Korea
| | - Soon Il Kwon
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, 560-500, Korea
- Convergence Research Center for Functional Plant Products, Advanced Institutes of Convergence Technology (AICT), Suwon, 443-270, Korea
| | - Ji-Young Jang
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, 560-500, Korea
| | - Il Lan Fang
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, 560-500, Korea
| | - Heyoung Lee
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, 560-500, Korea
| | - Changhyun Choi
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, 560-500, Korea
| | - Sangryeol Park
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, 560-500, Korea
| | - Ilpyung Ahn
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, 560-500, Korea
| | - Shin-Chul Bae
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, 560-500, Korea
| | - Duk-Ju Hwang
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, 560-500, Korea.
| |
Collapse
|
16
|
Intronic Sequence Regulates Sugar-Dependent Expression of Arabidopsis thaliana Production of Anthocyanin Pigment-1/MYB75. PLoS One 2016; 11:e0156673. [PMID: 27248141 PMCID: PMC4889055 DOI: 10.1371/journal.pone.0156673] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/18/2016] [Indexed: 01/12/2023] Open
Abstract
Sucrose-specific regulation of gene expression is recognized as an important signaling response, distinct from glucose, which serves to modulate plant growth, metabolism, and physiology. The Arabidopsis MYB transcription factor Production of Anthocyanin Pigment-1 (PAP1) plays a key role in anthocyanin biosynthesis and expression of PAP1 is known to be regulated by sucrose. Sucrose treatment of Arabidopsis seedlings led to a 20-fold induction of PAP1 transcript, which represented a 6-fold increase over levels in glucose-treated seedlings. The PAP1 promoter was not sufficient for conferring a sucrose response to a reporter gene and did not correctly report expression of PAP1 in plants. Although we identified 3 putative sucrose response elements in the PAP1 gene, none were found to be necessary for this response. Using deletion analysis, we identified a 90 bp sequence within intron 1 of PAP1 that is necessary for the sucrose response. This sequence was sufficient for conferring a sucrose response to a minimal promoter: luciferase reporter when present in multiple copies upstream of the promoter. This work lays the foundation for dissecting the sucrose signaling pathway of PAP1 and contributes to understanding the interplay between sucrose signaling, anthocyanin biosynthesis, and stress responses.
Collapse
|
17
|
Maria T, Tsaniklidis G, Delis C, Nikolopoulou AE, Nikoloudakis N, Karapanos I, Aivalakis G. Gene transcript accumulation and enzyme activity of β-amylases suggest involvement in the starch depletion during the ripening of cherry tomatoes. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.plgene.2015.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Zheng X, Li Q, Liu D, Zang L, Zhang K, Deng K, Yang S, Xie Z, Tang X, Qi Y, Zhang Y. Promoter analysis of the sweet potato ADP-glucose pyrophosphorylase gene IbAGP1 in Nicotiana tabacum. PLANT CELL REPORTS 2015; 34:1873-84. [PMID: 26183951 DOI: 10.1007/s00299-015-1834-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/23/2015] [Accepted: 06/29/2015] [Indexed: 06/04/2023]
Abstract
KEY MESSAGE The IbAGP1 gene of sweet potato ( Ipomoea batatas ) encodes the sucrose-inducible small subunit of ADP-glucose pyrophosphorylase. Through expression analysis of 5'-truncations and synthetic forms of the IbAGP1 promoter in transgenic tobacco, we show that SURE-Like elements and W-box elements of the promoter contribute to the sucrose inducibility of this gene. Sweet potato (Ipomoea batatas) contains two genes (IbAGP1 and IbAGP2) encoding the catalytically active small subunits of ADP-glucose pyrophosphorylase, an enzyme with an important role in regulating starch synthesis in higher plants. Previous studies have shown that IbAGP1 is expressed in the storage roots, leaves, and stem tissues of sweet potato, and its transcript is strongly induced by applying sucrose exogenously to detached leaves. To investigate the tissue-specific expression of the IbAGP1 promoter, a series of 5'-truncated promoters extending from bases -1913, -1598, -1298, -1053, -716, and -286 to base +75 were used to drive the expression of the β-glucuronidase reporter gene (GUS) in tobacco plants (Nicotiana tabacum). Histochemical and fluorometric GUS assays showed that (1) GUS expression driven by the longest fragment (1989 bp) of the IbAGP1 promoter was detected in vegetative tissues (roots, stems, leaves), (2) fragments extending to -1053 or beyond retained strong GUS expression in roots, stems, and leaves, whereas further 5'-deletions resulted in considerable reduction in GUS activity, and (3) the series of 5'-truncated promoters responded differently to exogenously applied sucrose. The 1989-bp IbAGP1 promoter contains five sequences (two AATAAAA, one AATAAAAAA, and two AATAAATAAA) that are similar to sucrose-responsive elements (SURE). These SURE-Like sequences are found at nucleotide positions -1273, -1239, -681, -610, and -189. Moreover, putative W-box elements are found at positions -1985, -1434, -750, and -578. Synthetic promoters containing tandem repeats of the 4X SURE-Like or 4X W-box upstream from a minimal CaMV35S promoter-GUS fusion showed significant expression in transgenic tobacco in response to exogenous sucrose. These results show that SURE-Like elements and W-box elements of the IbAGP1 promoter contribute to the sucrose inducibility of this gene.
Collapse
Affiliation(s)
- Xuelian Zheng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Qian Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Dongqing Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Lili Zang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Kaiyue Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Kejun Deng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Shixin Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhengyang Xie
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xu Tang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yiping Qi
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| | - Yong Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
19
|
Prasch CM, Ott KV, Bauer H, Ache P, Hedrich R, Sonnewald U. ß-amylase1 mutant Arabidopsis plants show improved drought tolerance due to reduced starch breakdown in guard cells. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6059-67. [PMID: 26139825 PMCID: PMC4566991 DOI: 10.1093/jxb/erv323] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In plants, drought stress is a major growth limiting factor causing cell water loss through open stomata. In this study, guard cell-specific transcripts from drought-stressed Arabidopsis plants were analysed and a down-regulation of β-amylase 1 (BAM1) was found. In previous studies, BAM1 was shown to be involved in stomatal starch degradation under ambient conditions. Impaired starch breakdown of bam1 mutant plants was accompanied by decreased stomatal opening. Here, it is shown that drought tolerance of bam1 mutant plants is improved as compared with wild-type controls. Microarray analysis of stomata-specific transcripts from bam1 mutant plants revealed a significant down-regulation of genes encoding aquaporins, auxin- and ethylene-responsive factors, and cell-wall modifying enzymes. This expression pattern suggests that reduced water uptake and limited cell wall extension are associated with the closed state of stomata of bam1 mutant plants. Together these data suggest that regulation of stomata-specific starch turnover is important for adapting stomata opening to environmental needs and its breeding manipulation may result in drought tolerant crop plants.
Collapse
Affiliation(s)
- Christian Maximilian Prasch
- Biochemistry Division, Department of Biology, Friedrich-Alexander-University Erlangen-Nuernberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Kirsten Verena Ott
- Biochemistry Division, Department of Biology, Friedrich-Alexander-University Erlangen-Nuernberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Hubert Bauer
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany
| | - Peter Ache
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany
| | - Uwe Sonnewald
- Biochemistry Division, Department of Biology, Friedrich-Alexander-University Erlangen-Nuernberg, Staudtstrasse 5, 91058 Erlangen, Germany
| |
Collapse
|
20
|
Noma S, Kawaura K, Hayakawa K, Abe C, Tsuge N, Ogihara Y. Comprehensive molecular characterization of the α/β-gliadin multigene family in hexaploid wheat. Mol Genet Genomics 2015; 291:65-77. [DOI: 10.1007/s00438-015-1086-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
|
21
|
Hernandez-Garcia CM, Finer JJ. Identification and validation of promoters and cis-acting regulatory elements. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 217-218:109-19. [PMID: 24467902 DOI: 10.1016/j.plantsci.2013.12.007] [Citation(s) in RCA: 340] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 05/18/2023]
Abstract
Studies of promoters that largely regulate gene expression at the transcriptional level are crucial for improving our basic understanding of gene regulation and will expand the toolbox of available promoters for use in plant biotechnology. In this review, we present a comprehensive analysis of promoters and their underlying mechanisms in transcriptional regulation, including epigenetic marks and chromatin-based regulation. Large-scale prediction of promoter sequences and their contributing cis-acting elements has become routine due to recent advances in transcriptomic technologies and genome sequencing of several plants. However, predicted regulatory sequences may or may not be functional and demonstration of the contribution of the element to promoter activity is essential for confirmation of regulatory sequences. Synthetic promoters and introns provide useful approaches for functional validation of promoter sequences. The development and improvement of gene expression tools for rapid, efficient, predictable, and high-throughput analysis of promoter components will be critical for confirmation of the functional regulatory element sequences identified through transcriptomic and genomic analyses.
Collapse
Affiliation(s)
- Carlos M Hernandez-Garcia
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - John J Finer
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA.
| |
Collapse
|
22
|
Li ZY, Xu ZS, Chen Y, He GY, Yang GX, Chen M, Li LC, Ma YZ. A novel role for Arabidopsis CBL1 in affecting plant responses to glucose and gibberellin during germination and seedling development. PLoS One 2013; 8:e56412. [PMID: 23437128 PMCID: PMC3577912 DOI: 10.1371/journal.pone.0056412] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/09/2013] [Indexed: 01/28/2023] Open
Abstract
Glucose and phytohormones such as abscisic acid (ABA), ethylene, and gibberellin (GA) coordinately regulate germination and seedling development. However, there is still inadequate evidence to link their molecular roles in affecting plant responses. Calcium acts as a second messenger in a diverse range of signal transduction pathways. As calcium sensors unique to plants, calcineurin B-like (CBL) proteins are well known to modulate abiotic stress responses. In this study, it was found that CBL1 was induced by glucose in Arabidopsis. Loss-of-function mutant cbl1 exhibited hypersensitivity to glucose and paclobutrazol, a GA biosynthetic inhibitor. Several sugar-responsive and GA biosynthetic gene expressions were altered in the cbl1 mutant. CBL1 protein physically interacted with AKINβ1, the regulatory β subunit of the SnRK1 complex which has a central role in sugar signaling. Our results indicate a novel role for CBL1 in modulating responses to glucose and GA signals.
Collapse
Affiliation(s)
- Zhi-Yong Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- * E-mail: (Z-SX); (Y-ZM); (YC)
| | - Yang Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- * E-mail: (Z-SX); (Y-ZM); (YC)
| | - Guang-Yuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Guang-Xiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Lian-Cheng Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- * E-mail: (Z-SX); (Y-ZM); (YC)
| |
Collapse
|
23
|
Muramoto N, Tanaka T, Shimamura T, Mitsukawa N, Hori E, Koda K, Otani M, Hirai M, Nakamura K, Imaeda T. Transgenic sweet potato expressing thionin from barley gives resistance to black rot disease caused by Ceratocystis fimbriata in leaves and storage roots. PLANT CELL REPORTS 2012; 31:987-97. [PMID: 22212462 DOI: 10.1007/s00299-011-1217-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/25/2011] [Accepted: 12/15/2011] [Indexed: 05/06/2023]
Abstract
Black rot of sweet potato caused by pathogenic fungus Ceratocystis fimbriata severely deteriorates both growth of plants and post-harvest storage. Antimicrobial peptides from various organisms have broad range activities of killing bacteria, mycobacteria, and fungi. Plant thionin peptide exhibited anti-fungal activity against C. fimbriata. A gene for barley α-hordothionin (αHT) was placed downstream of a strong constitutive promoter of E12Ω or the promoter of a sweet potato gene for β-amylase of storage roots, and introduced into sweet potato commercial cultivar Kokei No. 14. Transgenic E12Ω:αHT plants showed high-level expression of αHT mRNA in both leaves and storage roots. Transgenic β-Amy:αHT plants showed sucrose-inducible expression of αHT mRNA in leaves, in addition to expression in storage roots. Leaves of E12Ω:αHT plants exhibited reduced yellowing upon infection by C. fimbriata compared to leaves of non-transgenic Kokei No. 14, although the level of resistance was weaker than resistance cultivar Tamayutaka. Storage roots of both E12Ω:αHT and β-Amy:αHT plants exhibited reduced lesion areas around the site inoculated with C. fimbriata spores compared to Kokei No. 14, and some of the transgenic lines showed resistance level similar to Tamayutaka. Growth of plants and production of storage roots of these transgenic plants were not significantly different from non-transgenic plants. These results highlight the usefulness of transgenic sweet potato expressing antimicrobial peptide to reduce damages of sweet potato from the black rot disease and to reduce the use of agricultural chemicals.
Collapse
Affiliation(s)
- Nobuhiko Muramoto
- Biotechnology Laboratory, Toyota Central R&D Laboratories, Inc., Nagakute, Aichi 480-1192, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ibraheem O, Botha CEJ, Bradley G. In silico analysis of cis-acting regulatory elements in 5' regulatory regions of sucrose transporter gene families in rice (Oryza sativa Japonica) and Arabidopsis thaliana. Comput Biol Chem 2010; 34:268-83. [PMID: 21036669 DOI: 10.1016/j.compbiolchem.2010.09.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 09/14/2010] [Accepted: 09/27/2010] [Indexed: 11/18/2022]
Abstract
The regulation of gene expression involves a multifarious regulatory system. Each gene contains a unique combination of cis-acting regulatory sequence elements in the 5' regulatory region that determines its temporal and spatial expression. Cis-acting regulatory elements are essential transcriptional gene regulatory units; they control many biological processes and stress responses. Thus a full understanding of the transcriptional gene regulation system will depend on successful functional analyses of cis-acting elements. Cis-acting regulatory elements present within the 5' regulatory region of the sucrose transporter gene families in rice (Oryza sativa Japonica cultivar-group) and Arabidopsis thaliana, were identified using a bioinformatics approach. The possible cis-acting regulatory elements were predicted by scanning 1.5kbp of 5' regulatory regions of the sucrose transporter genes translational start sites, using Plant CARE, PLACE and Genomatix Matinspector professional databases. Several cis-acting regulatory elements that are associated with plant development, plant hormonal regulation and stress response were identified, and were present in varying frequencies within the 1.5kbp of 5' regulatory region, among which are; A-box, RY, CAT, Pyrimidine-box, Sucrose-box, ABRE, ARF, ERE, GARE, Me-JA, ARE, DRE, GA-motif, GATA, GT-1, MYC, MYB, W-box, and I-box. This result reveals the probable cis-acting regulatory elements that possibly are involved in the expression and regulation of sucrose transporter gene families in rice and Arabidopsis thaliana during cellular development or environmental stress conditions.
Collapse
Affiliation(s)
- Omodele Ibraheem
- Plant Stress Response Group, Department of Biochemistry & Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | | | | |
Collapse
|
25
|
Kole C, Michler CH, Abbott AG, Hall TC. Levels and Stability of Expression of Transgenes. TRANSGENIC CROP PLANTS 2010. [PMCID: PMC7122870 DOI: 10.1007/978-3-642-04809-8_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is well known that in a given cell, at a particular time, only a fraction of the entire genome is expressed. Expression of a gene, nuclear, or organellar starts with the onset of transcription and ends in the synthesis of the functional protein. The regulation of gene expression is a complex process that requires the coordinated activity of different proteins and nucleic acids that ultimately determine whether a gene is transcribed, and if transcribed, whether it results in the production of a protein that develops a phenotype. The same also holds true for transgenic crops, which lie at the very core of insert design. There are multiple checkpoints at which the expression of a gene can be regulated and controlled. Much of the emphasis of studies related to gene expression has been on regulation of gene transcription, and a number of methods are used to effect the control of gene expression. Controlling transgene expression for a commercially valuable trait is necessary to capture its value. Many gene functions are either lethal or produce severe deformity (resulting in loss of value) if over-expressed. Thus, expression of a transgene at a particular site or in response to a particular elicitor is always desirable.
Collapse
Affiliation(s)
- Chittaranjan Kole
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634 USA
| | - Charles H. Michler
- NSF I/UCRC Center for Tree Genetics, Hardwood Tree Improvement and Regeneration Center at Purdue University, West Lafayette, IN 47907 USA
| | - Albert G. Abbott
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634 USA
| | - Timothy C. Hall
- Institute of Developmental & Molecular Biology Department of Biology, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
26
|
Li A, Zhang Z, Wang XC, Huang R. Ethylene response factor TERF1 enhances glucose sensitivity in tobacco through activating the expression of sugar-related genes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:184-93. [PMID: 19200157 DOI: 10.1111/j.1744-7909.2008.00794.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Ethylene response factor (ERF) proteins are important plant-specific transcription factors. Increasing evidence shows that ERF proteins regulate plant pathogen resistance, abiotic stress response and plant development through interaction with different stress responsive pathways. Previously, we revealed that overexpression of TERF1 in tobacco activates a cluster gene expression through interacting with GCC box and dehydration responsive element (DRE), resulting in enhanced sensitivity to abscisic acid (ABA) and tolerance to drought, and dark green leaves of mature plants, indicating that TERF1 participates in the integration of ethylene and osmotic responses. Here we further report that overexpression of TERF1 confers sugar response in tobacco. Analysis of the novel isolated tomato TERF1 promoter provides information indicating that there are many cis-acting elements, including sugar responsive elements (SURE) and W box, suggesting that TERF1 might be sugar inducible. This prediction is confirmed by results of reverse transcription-polymerase chain reaction amplification, indicating that transcripts of TERF1 are accumulated in tomato seedlings after application of glucose. Further investigation indicates that the expression of TERF1 in tobacco enhances sensitivity to glucose during seed germination, root and seedling development, showing a decrease of the fresh weight and root elongation under glucose treatment. Detailed investigations provide evidence that TERF1 interacts with the sugar responsive cis-acting element SURE and activates the expression of sugar response genes, establishing the transcriptional regulation of TERF1 in sugar response. Therefore, our results deepen our understanding of the glucose response mediated by the ERF protein TERF1 in tobacco.
Collapse
Affiliation(s)
- Ang Li
- National Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | | | | | | |
Collapse
|
27
|
Silvente S, Reddy PM, Khandual S, Blanco L, Alvarado-Affantranger X, Sanchez F, Lara-Flores M. Evidence for sugar signalling in the regulation of asparagine synthetase gene expressed in Phaseolus vulgaris roots and nodules. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:1279-1294. [PMID: 18407964 DOI: 10.1093/jxb/ern034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A cDNA clone, designated as PvNAS2, encoding asparagine amidotransferase (asparagine synthetase) was isolated from nodule tissue of common bean (Phaseolus vulgaris cv. Negro Jamapa). Southern blot analysis indicated that asparagine synthetase in bean is encoded by a small gene family. Northern analysis of RNAs from various plant organs demonstrated that PvNAS2 is highly expressed in roots, followed by nodules in which it is mainly induced during the early days of nitrogen fixation. Investigations with the PvNAS2 promoter gusA fusion revealed that the expression of PvNAS2 in roots is confined to vascular bundles and meristematic tissues, while in root nodules its expression is solely localized to vascular traces and outer cortical cells encompassing the central nitrogen-fixing zone, but never detected in either infected or non-infected cells located in the central region of the nodule. PvNAS2 is down-regulated when carbon availability is reduced in nodules, and the addition of sugars to the plants, mainly glucose, boosted its induction, leading to the increased asparagine production. In contrast to PvNAS2 expression and the concomitant asparagine synthesis, glucose supplement resulted in the reduction of ureide content in nodules. Studies with glucose analogues as well as hexokinase inhibitors suggested a role for hexokinase in the sugar-sensing mechanism that regulates PvNAS2 expression in roots. In light of the above results, it is proposed that, in bean, low carbon availability in nodules prompts the down-regulation of the asparagine synthetase enzyme and concomitantly asparagine production. Thereby a favourable environment is created for the efficient transfer of the amido group of glutamine for the synthesis of purines, and then ureide generation.
Collapse
MESH Headings
- 3' Untranslated Regions/metabolism
- Amino Acid Sequence
- Asparagine/metabolism
- Aspartate-Ammonia Ligase/chemistry
- Aspartate-Ammonia Ligase/genetics
- Base Sequence
- Carbohydrate Metabolism
- Cloning, Molecular
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Glucose/metabolism
- Hexokinase/metabolism
- Molecular Sequence Data
- Nitrogen Fixation
- Phaseolus/enzymology
- Phaseolus/genetics
- Phaseolus/physiology
- Plant Roots/enzymology
- Plant Roots/genetics
- Plant Roots/physiology
- Plant Structures/enzymology
- Plant Structures/genetics
- Plant Structures/physiology
- Promoter Regions, Genetic
- RNA Processing, Post-Transcriptional
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Root Nodules, Plant/enzymology
- Root Nodules, Plant/genetics
- Root Nodules, Plant/physiology
- Sequence Alignment
- Signal Transduction
Collapse
Affiliation(s)
- Sonia Silvente
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, Cuernavaca, CP 62210, Morelos, México
| | | | | | | | | | | | | |
Collapse
|
28
|
Blanco L, Reddy PM, Silvente S, Bucciarelli B, Khandual S, Alvarado-Affantranger X, Sánchez F, Miller S, Vance C, Lara-Flores M. Molecular cloning, characterization and regulation of two different NADH-glutamate synthase cDNAs in bean nodules. PLANT, CELL & ENVIRONMENT 2008; 31:454-72. [PMID: 18182018 DOI: 10.1111/j.1365-3040.2008.01774.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
NADH-dependent glutamate synthase (NADH-GOGAT) is a key enzyme in primary ammonia assimilation in Phaseolus vulgaris nodules. Two different types of cDNA clones of PvNADH-GOGAT were isolated from the nodule cDNA libraries. The full-length cDNA clones of PvNADH-GOGAT-I (7.4 kb) and PvNADH-GOGAT-II (7.0 kb), which displayed an 83% homology between them, were isolated using cDNA library screening, 'cDNA library walking' and RT-PCR amplification. Southern analysis employing specific 5' cDNA probes derived from PvNADH-GOGAT-I and PvNADH-GOGAT-II indicated the existence of a single copy of each gene in the bean genome. Both these proteins contain approximately 100 amino acid sequences theoretically addressing each isoenzyme to different subcellular compartments. RT-PCR analysis indicated that PvNADH-GOGAT-II expression is higher than PvNADH-GOGAT-I during nodule development. Expression analysis by RT-PCR also revealed that both of these genes are differentially regulated by sucrose. On the other hand, the expression of PvNADH-GOGAT-I, but not PvNADH-GOGAT-II, was inhibited with nitrogen compounds. In situ hybridization and promoter expression analyses demonstrated that the NADH-GOGAT-I and -II genes are differentially expressed in bean root and nodule tissues. In silico analyses of the NADH-GOGAT promoters revealed the presence of potential cis elements in them that could mediate differential tissue-specific, and sugar and amino acid responsive expression of these genes.
Collapse
Affiliation(s)
- Lourdes Blanco
- Centro de Ciencias Genómicas, Univrsidad Nacional Autónoma de México, Av Universidad, C.P. 62210, Cuernavaca, Morelos, México
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gupta AK, Kaur N. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J Biosci 2006; 30:761-76. [PMID: 16388148 DOI: 10.1007/bf02703574] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sucrose is required for plant growth and development. The sugar status of plant cells is sensed by sensor proteins. The signal generated by signal transduction cascades, which could involve mitogen-activated protein kinases, protein phosphatases, Ca 2+ and calmodulins, results in appropriate gene expression. A variety of genes are either induced or repressed depending upon the status of soluble sugars. Abiotic stresses to plants result in major alterations in sugar status and hence affect the expression of various genes by down- and up-regulating their expression. Hexokinase-dependent and hexokinase-independent pathways are involved in sugar sensing. Sucrose also acts as a signal molecule as it affects the activity of a proton-sucrose symporter. The sucrose trans-porter acts as a sucrose sensor and is involved in phloem loading. Fructokinase may represent an additional sensor that bypasses hexokinase phosphorylation especially when sucrose synthase is dominant. Mutants isolated on the basis of response of germination and seedling growth to sugars and reporter-based screening protocols are being used to study the response of altered sugar status on gene expression. Common cis-acting elements in sugar signalling pathways have been identified. Transgenic plants with elevated levels of sugars/sugar alcohols like fructans, raffinose series oligosaccharides, trehalose and mannitol are tolerant to different stresses but have usually impaired growth. Efforts need to be made to have transgenic plants in which abiotic stress responsive genes are expressed only at the time of adverse environmental conditions instead of being constitutively synthesized.
Collapse
Affiliation(s)
- Anil K Gupta
- Department of Biochemistry and Chemistry, Punjab Agricultural University, Ludhiana 141 004, India.
| | | |
Collapse
|
30
|
Rook F, Hadingham SA, Li Y, Bevan MW. Sugar and ABA response pathways and the control of gene expression. PLANT, CELL & ENVIRONMENT 2006; 29:426-34. [PMID: 17080596 DOI: 10.1111/j.1365-3040.2005.01477.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Sugars are essential to plant growth and metabolism, both as energy source and as structural components. Sugar production and use are in part controlled at the level of gene expression by the sugars themselves. Responses to sugar are closely integrated with response pathways that indicate environmental conditions such as light and water availability. High sugar levels inhibit seedling development, repress photosynthetic gene expression and induce genes of storage metabolism such as those of starch biosynthesis. Genetic approaches have demonstrated the importance of abscisic acid (ABA) and the transcriptional regulator ABA-insensitive4 (ABI4) in sugar response pathways. Recent analysis of both photosynthetic and starch biosynthetic gene promoters suggest a direct role for ABI4 in their control. The increased understanding of the regulatory promoter elements controlling gene expression, in response to sugar and ABA, allows transcriptional networks to be understood at a molecular level.
Collapse
Affiliation(s)
- Fred Rook
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK.
| | | | | | | |
Collapse
|
31
|
Scarpella E, Simons EJ, Meijer AH. Multiple regulatory elements contribute to the vascular-specific expression of the rice HD-Zip gene Oshox1 in Arabidopsis. PLANT & CELL PHYSIOLOGY 2005; 46:1400-10. [PMID: 15964905 DOI: 10.1093/pcp/pci153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The primary vascular tissues of plants differentiate from a single precursor tissue, the procambium. The role of upstream regulatory sequences in the transcriptional control of early vascular-specific gene expression is largely unknown. The onset of expression of the rice homeodomain-leucine zipper (HD-Zip) gene Oshox1 marks procambial cells that have acquired their distinctive anatomical features but do not yet display any overt signs of terminal vascular differentiation. The expression pattern of Oshox1 in rice appears to be mainly controlled by the activity of the 1.6 kb upstream promoter region. Here, we show that the Oshox1 promoter directs vascular, auxin- and sucrose-responsive reporter gene expression in Arabidopsis plants in a fashion comparable with that in rice. This is the case not only during normal development but also upon experimental manipulation, suggesting that the cis-acting regulatory elements that are instrumental in Oshox1 expression pattern are conserved between rice and Arabidopsis. Finally, through analysis of reporter gene expression profiles conferred by progressive 5' deletions of the Oshox1 promoter in transgenic Arabidopsis, we have identified upstream regulatory regions required for auxin and sucrose inducibility, and for cell type-, tissue- and organ-specific aspects of Oshox1 expression. Our study suggests that Oshox1 embryonic vascular expression is mainly achieved through suppression of expression in non-vascular tissues.
Collapse
Affiliation(s)
- Enrico Scarpella
- Insitute of Biology, Leiden University, Clusius Laboratory, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | | | | |
Collapse
|
32
|
Morikami A, Matsunaga R, Tanaka Y, Suzuki S, Mano S, Nakamura K. Two cis-acting regulatory elements are involved in the sucrose-inducible expression of the sporamin gene promoter from sweet potato in transgenic tobacco. Mol Genet Genomics 2005; 272:690-9. [PMID: 15654621 DOI: 10.1007/s00438-004-1100-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Accepted: 12/01/2004] [Indexed: 10/25/2022]
Abstract
In this study, we generated transgenic tobacco plants that express the beta-glucuronidase (GUS) gene under the control of the 305-bp 5'-upstream region of a gene coding for sporamin A of sweet potato. Expression of GUS in excised tobacco leaves was induced by sucrose, mimicking the sugar-inducible expression of the endogenous sporamin genes in sweet potato. Deletion of the sequences extending from position -305 (relative to the transcription start site) to -283 and from -146 to -87 resulted in an approximately 40-fold enhancement in GUS reporter expression. Furthermore, the sequence from -282 to -165 conferred sucrose-inducibility on the -89 core promoter of the Cauliflower Mosaic Virus 35S RNA gene. Analysis of internal deletions, linker scanning and the introduction of base substitutions in the sequence between positions -282 and -165 indicated that sucrose-responsiveness conferred by this region was dependent on the presence of two cis-acting elements, termed CMSREs (carbohydrate metabolite signal responsive elements) 1 and 2, which are separated by a spacer. A sequence similar or identical to the core of CMSRE-1 (TGGACGG) is also present in the promoters of several other sugar-inducible genes, and sequences encopassing the TGGACGG-related motifs from two of these could functionally replace the CMSRE-1 in the truncated sporamin A promoter. These results suggest that the TGGACGG element plays an important role in the sucrose-inducible expression of a group of plant genes.
Collapse
Affiliation(s)
- Atsushi Morikami
- Laboratory of Biochemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Shimoda Y, Nagata M, Suzuki A, Abe M, Sato S, Kato T, Tabata S, Higashi S, Uchiumi T. Symbiotic rhizobium and nitric oxide induce gene expression of non-symbiotic hemoglobin in Lotus japonicus. PLANT & CELL PHYSIOLOGY 2005; 46:99-107. [PMID: 15668209 DOI: 10.1093/pci/pci001] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We characterized the expression profiles of LjHb1 and LjHb2, non-symbiotic hemoglobin (non-sym-Hb) genes of Lotus japonicus. Although LjHb1 and LjHb2 showed 77% homology in their cDNA sequences, LjHb2 is located in a unique position in the phylogenetic tree of plant Hbs. The 5'-upstream regions of both genes contain the motif AAAGGG at a position similar to that in promoters of other non-sym-Hb genes. Expression profiles obtained by using quantitative RT-PCR showed that LjHb1 and LjHb2 were expressed in all tissues of mature plants, and expression was enhanced in mature root nodules. LjHb1 was strongly induced under both hypoxic and cold conditions, and by the application of nitric oxide (NO) donor, whereas LjHb2 was induced only by the application of sucrose. LjHb1 was also induced transiently by the inoculation with the symbiotic rhizobium Mesorhizobium loti MAFF303099. Observations using fluorescence microscopy revealed the induction of LjHb1 expression corresponded to the generation of NO. These results suggest that non-sym-Hb and NO have important roles in stress adaptation and in the early stage of legume-rhizobium symbiosis.
Collapse
Affiliation(s)
- Yoshikazu Shimoda
- Graduate School of Science and Technology, Kagoshima University, Kagoshima, 890-0065 Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kaplan F, Guy CL. beta-Amylase induction and the protective role of maltose during temperature shock. PLANT PHYSIOLOGY 2004; 135:1674-84. [PMID: 15247404 PMCID: PMC519081 DOI: 10.1104/pp.104.040808] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 03/25/2004] [Accepted: 03/25/2004] [Indexed: 05/17/2023]
Abstract
A number of studies have demonstrated beta-amylase induction in response to abiotic stress. In the present work, a temperature response profile in 5 degrees C increments from 45 degrees C to 0 degrees C showed that induction at temperature extremes was specific for two members of the gene family (BMY7 and BMY8). Both members encode proteins that possess apparent transit peptides for chloroplast stromal localization. However, induction was not observed for other key starch degrading enzymes demonstrating a rather specific response to temperature stress for BMY7 and BMY8. Time course experiments for heat shock at 40 degrees C and cold shock at 5 degrees C showed that beta-amylase induction correlated with maltose accumulation. Maltose has the ability, as demonstrated by in vitro assays, to protect proteins, membranes, and the photosynthetic electron transport chain at physiologically relevant concentrations. Therefore, beta-amylase induction and the resultant maltose accumulation may function as a compatible-solute stabilizing factor in the chloroplast stroma in response to acute temperature stress.
Collapse
Affiliation(s)
- Fatma Kaplan
- Plant Molecular and Cellular Biology Program, Department of Environmental Horticulture, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611-0675, USA
| | | |
Collapse
|
35
|
Sun C, Palmqvist S, Olsson H, Borén M, Ahlandsberg S, Jansson C. A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. THE PLANT CELL 2003; 15:2076-92. [PMID: 12953112 PMCID: PMC181332 DOI: 10.1105/tpc.014597] [Citation(s) in RCA: 332] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2003] [Accepted: 06/19/2003] [Indexed: 05/17/2023]
Abstract
SURE (sugar responsive) is a cis element in plant sugar signaling. The SURE element was reported first for potato, in which it confers sugar responsiveness to the patatin promoter. A SURE binding transcription factor has not been isolated. We have isolated a transcription factor cDNA from barley and purified the corresponding protein. The transcription factor, SUSIBA2 (sugar signaling in barley), belongs to the WRKY proteins and was shown to bind to SURE and W-box elements but not to the SP8a element in the iso1 promoter. Nuclear localization of SUSIBA2 was demonstrated in a transient assay system with a SUSIBA2:green fluorescent protein fusion protein. Exploiting the novel transcription factor oligodeoxynucleotide decoy strategy with transformed barley endosperm provided experimental evidence for the importance of the SURE elements in iso1 transcription. Antibodies against SUSIBA2 were produced, and the expression pattern for susiba2 was determined at the RNA and protein levels. It was found that susiba2 is expressed in endosperm but not in leaves. Transcription of susiba2 is sugar inducible, and ectopic susiba2 expression was obtained in sugar-treated leaves. Likewise, binding to SURE elements was observed for nuclear extracts from sugar-treated but not from control barley leaves. The temporal expression of susiba2 in barley endosperm followed that of iso1 and endogenous sucrose levels, with a peak at approximately 12 days after pollination. Our data indicate that SUSIBA2 binds to the SURE elements in the barley iso1 promoter as an activator. Furthermore, they show that SUSIBA2 is a regulatory transcription factor in starch synthesis and demonstrate the involvement of a WRKY protein in carbohydrate anabolism. Orthologs to SUSIBA2 were isolated from rice and wheat endosperm.
Collapse
Affiliation(s)
- Chuanxin Sun
- Department of Plant Biology and Forestry Genetics, The Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|