1
|
Gao H, Zhang T, Li K, Li X. CD73: a new immune checkpoint for leukemia treatment. Front Immunol 2025; 16:1486868. [PMID: 40114928 PMCID: PMC11922907 DOI: 10.3389/fimmu.2025.1486868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
Recent studies on the pathogenesis of leukemia have led to remarkable advances in disease treatment. Numerous studies have shown the potential and viability of immune responses against leukemia. In the classical pathway, this process is often initiated by the upstream activity of CD39, which hydrolyzes extracellular adenosine triphosphate (ATP) and adenosine diphosphate (ADP) to AMP. Subsequently, CD73 acts on AMP to generate adenosine, contributing to an immunosuppressive microenvironment. However, CD73 can also utilize substrates derived from other molecules through the non-canonical NAD+ pathway, specifically via the CD38/CD203a/CD73 axis, further enhancing adenosine production and facilitating immune escape. Targeting CD73 has shown potential in disrupting these immunosuppressive pathways, thereby enhancing anti-leukemic immune responses and improving patient outcomes. Inhibiting CD73 not only reduces the levels of immunosuppressive adenosine but also increases the efficacy of existing immunotherapies, such as PD-1/PD-L1 inhibitors, making it a versatile therapeutic target in leukemia treatment. This review discusses the potential of CD73 as a therapeutic target and emphasizes its unique position in the immune escape mechanism of leukemia. Moreover, this review provides an overview of the current research progress and future trends, emphasizing the clinical significance of targeting CD73 and other potential therapeutic strategies in leukemia.
Collapse
Affiliation(s)
- Huan Gao
- Marine College, Shandong University, Weihai, China
| | - Tingting Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ke Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xia Li
- Marine College, Shandong University, Weihai, China
| |
Collapse
|
2
|
Giraulo C, Orlando L, Morretta E, Voli A, Plaitano P, Cicala C, Potaptschuk E, Müller CE, Tosco A, Monti MC, Morello S. High levels of soluble CD73 unveil resistance to BRAF inhibitors in melanoma cells. Biomed Pharmacother 2024; 177:117033. [PMID: 38941889 DOI: 10.1016/j.biopha.2024.117033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024] Open
Abstract
Melanoma cells express high levels of CD73 that produce extracellular immunosuppressive adenosine. Changes in the CD73 expression occur in response to tumor environmental factors, contributing to tumor phenotype plasticity and therapeutic resistance. Previously, we have observed that CD73 expression can be up-regulated on the surface of melanoma cells in response to nutritional stress. Here, we explore the mechanism by which melanoma cells release soluble CD73 under low nutrient availability and whether this might be affected by agents targeting the proto-oncogene B-Raf (BRAF). We found that starved melanoma cells can release high levels of CD73, able to convert AMP into adenosine, and this activity is abrogated by selective CD73 inhibitors, APCP or PSB-12489. The release of CD73 from melanoma cells is mediated by the matrix metalloproteinase MMP-9. Indeed, MMP-9 inhibitors significantly reduce the levels of CD73 released from the cells, while its surface levels increase. Of relevance, melanoma cells, harboring an activating BRAF mutation, upon treatment with dabrafenib or vemurafenib, show a strong reduction of CD73 cell expression and reduced levels of CD73 released into the extracellular space. Conversely, melanoma cells resistant to dabrafenib show high expression of membrane-bound CD73 and soluble CD73 released into the culture medium. In summary, our data indicate that CD73 is released from melanoma cells. The expression of CD73 is associated with response to BRAF inhibitors. Melanoma cells developing resistance to dabrafenib show increased expression of CD73, including soluble CD73 released from cells, suggesting that CD73 is involved in acquiring resistance to treatment.
Collapse
Affiliation(s)
- Caterina Giraulo
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, SA, Italy
| | - Lavinia Orlando
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, SA, Italy
| | - Elva Morretta
- Department of Pharmacy, University of Naples "Federico II", Napoli, NA, Italy
| | - Antonia Voli
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, SA, Italy
| | - Paola Plaitano
- Department of Pharmacy, University of Naples "Federico II", Napoli, NA, Italy
| | - Carla Cicala
- Department of Pharmacy, University of Naples "Federico II", Napoli, NA, Italy
| | - Eugen Potaptschuk
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Maria Chiara Monti
- Department of Pharmacy, University of Naples "Federico II", Napoli, NA, Italy
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy.
| |
Collapse
|
3
|
Hernandez C, Gorska AM, Eugenin E. Mechanisms of HIV-mediated blood-brain barrier compromise and leukocyte transmigration under the current antiretroviral era. iScience 2024; 27:109236. [PMID: 38487019 PMCID: PMC10937838 DOI: 10.1016/j.isci.2024.109236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/18/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
HIV-associated neurological compromise is observed in more than half of all people with HIV (PWH), even under antiretroviral therapy (ART). The mechanism has been associated with the early transmigration of HIV-infected monocytes across the BBB in a CCL2 and HIV replication-dependent manner. However, the mechanisms of chronic brain damage are unknown. We demonstrate that all PWH under ART have elevated circulating ATP levels that correlate with the onset of cognitive impairment even in the absence of a circulating virus. Serum ATP levels found in PWH with the most severe neurocognitive impairment trigger the transcellular migration of HIV-infected leukocytes across the BBB in a JAM-A and LFA-1-dependent manner. We propose that targeting transcellular leukocyte transmigration could reduce or prevent the devastating consequences of HIV within the brains of PWH under ART.
Collapse
Affiliation(s)
- Cristian Hernandez
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Anna Maria Gorska
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
- Department of Pathology, University of Oslo, Oslo, Norway
| | - Eliseo Eugenin
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| |
Collapse
|
4
|
Liu Y, Armbrister SA, Okeugo B, Mills TW, Daniel RC, Oh JH, van Pijkeren JP, Park ES, Saleh ZM, Lahiri S, Roos S, Rhoads JM. Probiotic-Derived Ecto-5'-Nucleotidase Produces Anti-Inflammatory Adenosine Metabolites in Treg-Deficient Scurfy Mice. Probiotics Antimicrob Proteins 2023; 15:1001-1013. [PMID: 37178405 PMCID: PMC10926147 DOI: 10.1007/s12602-023-10089-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Probiotic Limosilactobacillus reuteri DSM 17938 (DSM 17938) prolongs the survival of Treg-deficient scurfy (SF) mice and reduces multiorgan inflammation by a process requiring adenosine receptor 2A (A2A) on T cells. We hypothesized that L. reuteri-derived ecto-5'-nucleotidase (ecto-5'NT) activity acts to generate adenosine, which may be a central mediator for L. reuteri protection in SF mice. We evaluated DSM 17938-5'NT activity and the associated adenosine and inosine levels in plasma, gut, and liver of SF mice. We examined orally fed DSM 17938, DSM 17938Δ5NT (with a deleted 5'NT gene), and DSM 32846 (BG-R46) (a naturally selected strain derived from DSM 17938). Results showed that DSM 17938 and BG-R46 produced adenosine while "exhausting" AMP, whereas DSM 17938∆5NT did not generate adenosine in culture. Plasma 5'NT activity was increased by DSM 17938 or BG-R46, but not by DSM 17938Δ5NT in SF mice. BG-R46 increased both adenosine and inosine levels in the cecum of SF mice. DSM 17938 increased adenosine levels, whereas BG-R46 increased inosine levels in the liver. DSM 17938Δ5NT did not significantly change the levels of adenosine or inosine in the GI tract or the liver of SF mice. Although regulatory CD73+CD8+ T cells were decreased in spleen and blood of SF mice, these regulatory T cells could be increased by orally feeding DSM 17938 or BG-R46, but not DSM 17938Δ5NT. In conclusion, probiotic-5'NT may be a central mediator of DSM 17938 protection against autoimmunity. Optimal 5'NT activity from various probiotic strains could be beneficial in treating Treg-associated immune disorders in humans.
Collapse
Affiliation(s)
- Yuying Liu
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Shabba A Armbrister
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Beanna Okeugo
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Tingting W Mills
- Department of Biochemistry & Molecular Biology, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Rhea C Daniel
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jee-Hwan Oh
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Evelyn S Park
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zeina M Saleh
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Sharmistha Lahiri
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Stefan Roos
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
- BioGaia AB, Stockholm, Sweden
| | - JMarc Rhoads
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| |
Collapse
|
5
|
Müller GA, Müller TD. (Patho)Physiology of Glycosylphosphatidylinositol-Anchored Proteins I: Localization at Plasma Membranes and Extracellular Compartments. Biomolecules 2023; 13:biom13050855. [PMID: 37238725 DOI: 10.3390/biom13050855] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) are anchored at the outer leaflet of plasma membranes (PMs) of all eukaryotic organisms studied so far by covalent linkage to a highly conserved glycolipid rather than a transmembrane domain. Since their first description, experimental data have been accumulating for the capability of GPI-APs to be released from PMs into the surrounding milieu. It became evident that this release results in distinct arrangements of GPI-APs which are compatible with the aqueous milieu upon loss of their GPI anchor by (proteolytic or lipolytic) cleavage or in the course of shielding of the full-length GPI anchor by incorporation into extracellular vesicles, lipoprotein-like particles and (lyso)phospholipid- and cholesterol-harboring micelle-like complexes or by association with GPI-binding proteins or/and other full-length GPI-APs. In mammalian organisms, the (patho)physiological roles of the released GPI-APs in the extracellular environment, such as blood and tissue cells, depend on the molecular mechanisms of their release as well as the cell types and tissues involved, and are controlled by their removal from circulation. This is accomplished by endocytic uptake by liver cells and/or degradation by GPI-specific phospholipase D in order to bypass potential unwanted effects of the released GPI-APs or their transfer from the releasing donor to acceptor cells (which will be reviewed in a forthcoming manuscript).
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany
| |
Collapse
|
6
|
Liu Y, Armbrister SA, Okeugo B, Mills TW, Daniel RC, Oh JH, Pijkeren JP, Park ES, Saleh ZM, Lahiri S, Roos S, Rhoads JM. Probiotic-derived ecto-5'-nucleotidase produces anti-inflammatory adenosine metabolites in Treg-deficient scurfy mice. RESEARCH SQUARE 2023:rs.3.rs-2781715. [PMID: 37066419 PMCID: PMC10104250 DOI: 10.21203/rs.3.rs-2781715/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Probiotic Limosilactobacillus reuteri DSM 17938 (DSM 17938) prolonges the survival of Treg-deficient scurfy (SF) mice and reduces multiorgan inflammation by a process requiring adenosine receptor 2A (A 2A ) on T cells. We hypothesized that L. reuteri -derived ecto-5'-nucleotidase (ecto-5'NT) activity acts to generate adenosine, which may be a central mediator for L. reuteri protection in SF mice. We evaluated DSM 17938-5'NT activity and the associated adenosine and inosine levels in plasma, gut and liver of SF mice. We examined orally fed DSM 17938, DSM 17938Δ5NT (with a deleted 5'NT gene), and DSM 32846 (BG-R46) (a naturally selected strain derived from DSM 17938). Results showed that DSM 17938 and BG-R46 produced adenosine while "exhausting" AMP, whereas DSM 17938∆5NT did not generate adenosine in culture. Plasma 5'NT activity was increased by DSM 17938 or BG-R46, but not by DSM 17938Δ5NT in SF mice. BG-R46 increased both adenosine and inosine levels in the cecum of SF mice. DSM 17938 increased adenosine levels, whereas BG-R46 increased inosine levels in the liver. DSM 17938Δ5NT did not significantly change the levels of adenosine or inosine in the GI tract or the liver of SF mice. Although regulatory CD73 + CD8 + T cells were decreased in spleen and blood of SF mice, these regulatory T cells could be increased by orally feeding DSM 17938 or BG-R46, but not DSM 17938Δ5NT. In conclusion, probiotic-5'NT may be a central mediator of DSM 17938 protection against autoimmunity. Optimal 5'NT activity from various probiotic strains could be beneficial in treating Treg-associated immune disorders in humans.
Collapse
|
7
|
Jacoberger-Foissac C, Cousineau I, Bareche Y, Allard D, Chrobak P, Allard B, Pommey S, Messaoudi N, McNicoll Y, Soucy G, Koseoglu S, Masia R, Lake AC, Seo H, Eeles CB, Rohatgi N, Robson SC, Turcotte S, Haibe-Kains B, Stagg J. CD73 Inhibits cGAS-STING and Cooperates with CD39 to Promote Pancreatic Cancer. Cancer Immunol Res 2023; 11:56-71. [PMID: 36409930 PMCID: PMC9812927 DOI: 10.1158/2326-6066.cir-22-0260] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/07/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022]
Abstract
The ectonucleotidases CD39 and CD73 catalyze extracellular ATP to immunosuppressive adenosine, and as such, represent potential cancer targets. We investigated biological impacts of CD39 and CD73 in pancreatic ductal adenocarcinoma (PDAC) by studying clinical samples and experimental mouse tumors. Stromal CD39 and tumoral CD73 expression significantly associated with worse survival in human PDAC samples and abolished the favorable prognostic impact associated with the presence of tumor-infiltrating CD8+ T cells. In mouse transplanted KPC tumors, both CD39 and CD73 on myeloid cells, as well as CD73 on tumor cells, promoted polarization of infiltrating myeloid cells towards an M2-like phenotype, which enhanced tumor growth. CD39 on tumor-specific CD8+ T cells and pancreatic stellate cells also suppressed IFNγ production by T cells. Although therapeutic inhibition of CD39 or CD73 alone significantly delayed tumor growth in vivo, targeting of both ectonucleotidases exhibited markedly superior antitumor activity. CD73 expression on human and mouse PDAC tumor cells also protected against DNA damage induced by gemcitabine and irradiation. Accordingly, large-scale pharmacogenomic analyses of human PDAC cell lines revealed significant associations between CD73 expression and gemcitabine chemoresistance. Strikingly, increased DNA damage in CD73-deficient tumor cells associated with activation of the cGAS-STING pathway. Moreover, cGAS expression in mouse KPC tumor cells was required for antitumor activity of the CD73 inhibitor AB680 in vivo. Our study, thus, illuminates molecular mechanisms whereby CD73 and CD39 seemingly cooperate to promote PDAC progression.
Collapse
Affiliation(s)
- Célia Jacoberger-Foissac
- Faculty of Pharmacy, University of Montreal., Cancer Axis, Centre de Recherche Du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada., Institut du Cancer de Montréal
| | - Isabelle Cousineau
- Cancer Axis, Centre de Recherche Du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada., Institut du Cancer de Montréal
| | - Yacine Bareche
- Faculty of Pharmacy, University of Montreal., Cancer Axis, Centre de Recherche Du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada., Institut du Cancer de Montréal
| | - David Allard
- Faculty of Pharmacy, University of Montreal., Cancer Axis, Centre de Recherche Du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada., Institut du Cancer de Montréal
| | - Pavel Chrobak
- Cancer Axis, Centre de Recherche Du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada., Institut du Cancer de Montréal
| | - Bertrand Allard
- Cancer Axis, Centre de Recherche Du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada., Institut du Cancer de Montréal
| | - Sandra Pommey
- Cancer Axis, Centre de Recherche Du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada., Institut du Cancer de Montréal
| | - Nouredin Messaoudi
- Department of Surgery, University of Antwerp, Antwerp, Belgium., Department of Surgery, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel and Europe Hospitals, Brussels, Belgium
| | - Yannic McNicoll
- Surgery Department, Hôpital Jean-Talon, CIUSSS NIM, Montreal, Quebec, Canada
| | - Geneviève Soucy
- Pathology Service, Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | | | - Ricard Masia
- Surface Oncology, Inc. Cambridge, Massachusetts, USA
| | | | - Heewon Seo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Christopher B. Eeles
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Neha Rohatgi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Simon C. Robson
- Center for Inflammation Research, Gastroenterology, Departments of Medicine and Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Simon Turcotte
- Cancer Axis, Centre de Recherche Du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada., Institut du Cancer de Montréal., Hepatopancreatobiliary Surgery & Liver Transplantation Service, Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada., Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada, Department of Computer Science, University of Toronto, Toronto, Ontario, Canada, Ontario Institute for Cancer Research, Toronto, Ontario, Canada, Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| | - John Stagg
- Faculty of Pharmacy, University of Montreal., Cancer Axis, Centre de Recherche Du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada., Institut du Cancer de Montréal.,Correspondence: 900 St-Denis Street, Montréal, QC, Canada, H2X 0A9; ; Tel: 514-890-8000 ex:25170
| |
Collapse
|
8
|
Qu Q, Fu B, Long Y, Liu ZY, Tian XH. Current Strategies for Promoting the Large-scale Production of Exosomes. Curr Neuropharmacol 2023; 21:1964-1979. [PMID: 36797614 PMCID: PMC10514529 DOI: 10.2174/1570159x21666230216095938] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/21/2022] [Accepted: 11/05/2022] [Indexed: 02/18/2023] Open
Abstract
Exosomes, as nanoscale biological vesicles, have been shown to have great potential for biomedical applications. However, the low yield of exosomes limits their application. In this review, we focus on methods to increase exosome yield. Two main strategies are used to increase exosome production, one is based on genetic manipulation of the exosome biogenesis and release pathway, and the other is by pretreating parent cells, changing the culture method or adding different components to the medium. By applying these strategies, exosomes can be produced on a large scale to facilitate their practical application in the clinic.
Collapse
Affiliation(s)
- Qing Qu
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| | - Bin Fu
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| | - Yong Long
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| | - Zi-Yu Liu
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| | - Xiao-Hong Tian
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| |
Collapse
|
9
|
Koszalka P, Kutryb-Zajac B, Mierzejewska P, Tomczyk M, Wietrzyk J, Serafin PK, Smolenski RT, Slominska EM. 4-Pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR)—A Novel Oncometabolite Modulating Cancer-Endothelial Interactions in Breast Cancer Metastasis. Int J Mol Sci 2022; 23:ijms23105774. [PMID: 35628582 PMCID: PMC9145394 DOI: 10.3390/ijms23105774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
The accumulation of specific metabolic intermediates is known to promote cancer progression. We analyzed the role of 4-pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR), a nucleotide metabolite that accumulates in the blood of cancer patients, using the 4T1 murine in vivo breast cancer model, and cultured cancer (4T1) and endothelial cells (ECs) for in vitro studies. In vivo studies demonstrated that 4PYR facilitated lung metastasis without affecting primary tumor growth. In vitro studies demonstrated that 4PYR affected extracellular adenine nucleotide metabolism and the intracellular energy status in ECs, shifting catabolite patterns toward the accumulation of extracellular inosine, and leading to the increased permeability of lung ECs. These changes prevailed over the direct effect of 4PYR on 4T1 cells that reduced their invasive potential through 4PYR-induced modulation of the CD73-adenosine axis. We conclude that 4PYR is an oncometabolite that affects later stages of the metastatic cascade by acting specifically through the regulation of EC permeability and metabolic controls of inflammation.
Collapse
Affiliation(s)
- Patrycja Koszalka
- Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdansk, 80-210 Gdansk, Poland;
- Correspondence: (P.K.); (E.M.S.); Tel.: +48-58-349-1410 (P.K.); +48-58-349-1006 (E.M.S.)
| | - Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (B.K.-Z.); (P.M.); (M.T.); (R.T.S.)
| | - Paulina Mierzejewska
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (B.K.-Z.); (P.M.); (M.T.); (R.T.S.)
| | - Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (B.K.-Z.); (P.M.); (M.T.); (R.T.S.)
| | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| | - Pawel K. Serafin
- Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (B.K.-Z.); (P.M.); (M.T.); (R.T.S.)
| | - Ewa M. Slominska
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (B.K.-Z.); (P.M.); (M.T.); (R.T.S.)
- Correspondence: (P.K.); (E.M.S.); Tel.: +48-58-349-1410 (P.K.); +48-58-349-1006 (E.M.S.)
| |
Collapse
|
10
|
Nakao Y, Fukuda T, Zhang Q, Sanui T, Shinjo T, Kou X, Chen C, Liu D, Watanabe Y, Hayashi C, Yamato H, Yotsumoto K, Tanaka U, Taketomi T, Uchiumi T, Le AD, Shi S, Nishimura F. Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomater 2021; 122:306-324. [PMID: 33359765 PMCID: PMC7897289 DOI: 10.1016/j.actbio.2020.12.046] [Citation(s) in RCA: 284] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cell (MSC)-derived exosome plays a central role in the cell-free therapeutics involving MSCs and the contents can be customized under disease-associated microenvironments. However, optimal MSC-preconditioning to enhance its therapeutic potential is largely unknown. Here, we show that preconditioning of gingival tissue-derived MSCs (GMSCs) with tumor necrosis factor-alpha (TNF-α) is ideal for the treatment of periodontitis. TNF-α stimulation not only increased the amount of exosome secreted from GMSCs, but also enhanced the exosomal expression of CD73, thereby inducing anti-inflammatory M2 macrophage polarization. The effect of GMSC-derived exosomes on inflammatory bone loss were examined by ligature-induced periodontitis model in mice. Local injection of GMSC-derived exosomes significantly reduced periodontal bone resorption and the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, and these effects were further enhanced by preconditioning of GMSCs with TNF-α. Thus, GMSC-derived exosomes also exhibited anti-osteoclastogenic activity. Receptor activator of NF-κB ligand (RANKL) expression was regulated by Wnt5a in periodontal ligament cells (PDLCs), and exosomal miR-1260b was found to target Wnt5a-mediated RANKL pathway and inhibit its osteoclastogenic activity. These results indicate that significant ability of the TNF-α-preconditioned GMSC-derived exosomes to regulate inflammation and osteoclastogenesis paves the way for establishment of a therapeutic approach for periodontitis.
Collapse
Affiliation(s)
- Yuki Nakao
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takao Fukuda
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan; Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Qunzhou Zhang
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, PA, USA
| | - Terukazu Sanui
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takanori Shinjo
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Xiaoxing Kou
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA; South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, China
| | - Chider Chen
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA; Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, PA, USA
| | - Dawei Liu
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA; Department of Orthodontics, Peking University School and Stomatology, Peking, China
| | - Yukari Watanabe
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Chikako Hayashi
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hiroaki Yamato
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Karen Yotsumoto
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Urara Tanaka
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takaharu Taketomi
- Dental and Oral Medical Center, Kurume University School of Medicine, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Anh D Le
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, PA, USA
| | - Songtao Shi
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA; South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, China
| | - Fusanori Nishimura
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
11
|
Guillén-Gómez E, Silva I, Serra N, Caballero F, Leal J, Breda A, San Martín R, Pastor-Anglada M, Ballarín JA, Guirado L, Díaz-Encarnación MM. From Inflammation to the Onset of Fibrosis through A 2A Receptors in Kidneys from Deceased Donors. Int J Mol Sci 2020; 21:ijms21228826. [PMID: 33233484 PMCID: PMC7700266 DOI: 10.3390/ijms21228826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022] Open
Abstract
Pretransplant graft inflammation could be involved in the worse prognosis of deceased donor (DD) kidney transplants. A2A adenosine receptor (A2AR) can stimulate anti-inflammatory M2 macrophages, leading to fibrosis if injury and inflammation persist. Pre-implantation biopsies of kidney donors (47 DD and 21 living donors (LD)) were used to analyze expression levels and activated intracellular pathways related to inflammatory and pro-fibrotic processes. A2AR expression and PKA pathway were enhanced in DD kidneys. A2AR gene expression correlated with TGF-β1 and other profibrotic markers, as well as CD163, C/EBPβ, and Col1A1, which are highly expressed in DD kidneys. TNF-α mRNA levels correlated with profibrotic and anti-inflammatory factors such as TGF-β1 and A2AR. Experiments with THP-1 cells point to the involvement of the TNF-α/NF-κB pathway in the up-regulation of A2AR, which induces the M2 phenotype increasing CD163 and TGF-β1 expression. In DD kidneys, the TNF-α/NF-κB pathway could be involved in the increase of A2AR expression, which would activate the PKA–CREB axis, inducing the macrophage M2 phenotype, TGF-β1 production, and ultimately, fibrosis. Thus, in inflamed DD kidneys, an increase in A2AR expression is associated with the onset of fibrosis, which may contribute to graft dysfunction and prognostic differences between DD and LD transplants.
Collapse
Affiliation(s)
- Elena Guillén-Gómez
- Molecular Biology Laboratory, Fundació Puigvert, 08025 Barcelona, Spain
- Nephrology Department, Fundació Puigvert, 08025 Barcelona, Spain; (I.S.); (N.S.); (J.A.B.); (L.G.)
- Institut Investigació Biosanitaria Sant Pau, Fundación Renal Iñigo Álvarez de Toledo (FRIAT), REDinREN, Autonomous University of Barcelona (UAB), 08025 Barcelona, Spain
- Correspondence: (E.G.-G.); (M.M.D.-E.)
| | - Irene Silva
- Nephrology Department, Fundació Puigvert, 08025 Barcelona, Spain; (I.S.); (N.S.); (J.A.B.); (L.G.)
- Institut Investigació Biosanitaria Sant Pau, Fundación Renal Iñigo Álvarez de Toledo (FRIAT), REDinREN, Autonomous University of Barcelona (UAB), 08025 Barcelona, Spain
- Renal Transplant Unit, Fundació Puigvert, 08025 Barcelona, Spain
| | - Núria Serra
- Nephrology Department, Fundació Puigvert, 08025 Barcelona, Spain; (I.S.); (N.S.); (J.A.B.); (L.G.)
- Institut Investigació Biosanitaria Sant Pau, Fundación Renal Iñigo Álvarez de Toledo (FRIAT), REDinREN, Autonomous University of Barcelona (UAB), 08025 Barcelona, Spain
- Renal Transplant Unit, Fundació Puigvert, 08025 Barcelona, Spain
| | - Francisco Caballero
- Department of Emergency Medicine and Transplant Coordination, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain; (F.C.); (J.L.)
| | - Jesús Leal
- Department of Emergency Medicine and Transplant Coordination, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain; (F.C.); (J.L.)
| | - Alberto Breda
- Urology Department, Autonomous University of Barcelona (UAB), Fundació Puigvert, 08025 Barcelona, Spain;
| | - Rody San Martín
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, 5110566 Valdivia, Chile;
| | - Marçal Pastor-Anglada
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, National Biomedical Research Institute of Liver and Gastrointestinal Diseases (CIBER EHD), 08028 Barcelona, Spain;
- Institut de Recerca Sant Joan de Déu (IR SJD), 08950 Esplugues de Llobregat Barcelona, Spain
| | - José A. Ballarín
- Nephrology Department, Fundació Puigvert, 08025 Barcelona, Spain; (I.S.); (N.S.); (J.A.B.); (L.G.)
- Institut Investigació Biosanitaria Sant Pau, Fundación Renal Iñigo Álvarez de Toledo (FRIAT), REDinREN, Autonomous University of Barcelona (UAB), 08025 Barcelona, Spain
| | - Lluís Guirado
- Nephrology Department, Fundació Puigvert, 08025 Barcelona, Spain; (I.S.); (N.S.); (J.A.B.); (L.G.)
- Renal Transplant Unit, Fundació Puigvert, 08025 Barcelona, Spain
| | - Montserrat M. Díaz-Encarnación
- Nephrology Department, Fundació Puigvert, 08025 Barcelona, Spain; (I.S.); (N.S.); (J.A.B.); (L.G.)
- Institut Investigació Biosanitaria Sant Pau, Fundación Renal Iñigo Álvarez de Toledo (FRIAT), REDinREN, Autonomous University of Barcelona (UAB), 08025 Barcelona, Spain
- Correspondence: (E.G.-G.); (M.M.D.-E.)
| |
Collapse
|
12
|
Khawaja AA, Taylor KA, Lovell AO, Nelson M, Gazzard B, Boffito M, Emerson M. HIV Antivirals Affect Endothelial Activation and Endothelial-Platelet Crosstalk. Circ Res 2020; 127:1365-1380. [PMID: 32998637 DOI: 10.1161/circresaha.119.316477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
RATIONALE People living with HIV on effective antiretroviral therapy are at increased risk of cardiovascular complications, possibly due to off-target drug effects. Some studies have associated antiretroviral therapy with increased risk of myocardial infarction and endothelial dysfunction, but a link between endothelial function and antiretrovirals has not been established. OBJECTIVE To determine the effects of antiretrovirals in common clinical use upon in vitro endothelial function to better understand cardiovascular risk in people living with HIV. METHODS AND RESULTS Human umbilical cord vein endothelial cells or human coronary artery endothelial cells were pretreated with the antiretrovirals abacavir sulphate (ABC), tenofovir disoproxil fumarate, or tenofovir alafenamide. Expression of adhesion molecules, ectonucleotidases (CD39 and CD73), tissue factor (TF), endothelial-derived microparticle (EMP) numbers and phenotype, and platelet activation were evaluated by flow cytometry. TF and ectonucleotidase activities were measured using colourimetric plate-based assays. ABC-treated endothelial cells had higher levels of ICAM (intercellular adhesion molecule)-1 and TF expression following TNF (tumor necrosis factor)-α stimulation. In contrast, tenofovir disoproxil fumarate and tenofovir alafenamide treatment gave rise to greater populations of CD39+CD73+ cells. These cell surface differences were also observed within EMP repertoires. ABC-treated cells and EMP had greater TF activity, while tenofovir disoproxil fumarate- and tenofovir alafenamide-treated cells and EMP displayed higher ectonucleotidase activity. Finally, EMP isolated from ABC-treated cells enhanced collagen-evoked platelet integrin activation and α-granule release. CONCLUSIONS We report differential effects of antiretrovirals used in the treatment of HIV upon endothelial function. ABC treatment led to an inflammatory, prothrombotic endothelial phenotype that promoted platelet activation. In contrast, tenofovir disoproxil fumarate and tenofovir alafenamide conferred potentially cardioprotective properties associated with ectonucleotidase activity. These observations establish a link between antiretrovirals and specific functional effects that provide insight into cardiovascular disease in people living with HIV.
Collapse
Affiliation(s)
- Akif A Khawaja
- National Heart and Lung Institute (A.A.K., K.A.T., M.E.), Imperial College London, London, United Kingdom
| | - Kirk A Taylor
- National Heart and Lung Institute (A.A.K., K.A.T., M.E.), Imperial College London, London, United Kingdom
| | - Andrew O Lovell
- Department of Infectious Disease (A.O.L., M.N., B.G., M.B.), Imperial College London, London, United Kingdom
| | - Mark Nelson
- National Heart and Lung Institute (A.A.K., K.A.T., M.E.), Imperial College London, London, United Kingdom.,Department of Infectious Disease (A.O.L., M.N., B.G., M.B.), Imperial College London, London, United Kingdom.,Chelsea and Westminster NHS Foundation Trust, London, United Kingdom (M.N., B.G., M.B.)
| | - Brian Gazzard
- Department of Infectious Disease (A.O.L., M.N., B.G., M.B.), Imperial College London, London, United Kingdom.,Chelsea and Westminster NHS Foundation Trust, London, United Kingdom (M.N., B.G., M.B.)
| | - Marta Boffito
- Chelsea and Westminster NHS Foundation Trust, London, United Kingdom (M.N., B.G., M.B.)
| | - Michael Emerson
- Department of Infectious Disease (A.O.L., M.N., B.G., M.B.), Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Pinto-Cardoso R, Pereira-Costa F, Pedro Faria J, Bandarrinha P, Bessa-Andrês C, Correia-de-Sá P, Bernardo Noronha-Matos J. Adenosinergic signalling in chondrogenesis and cartilage homeostasis: Friend or foe? Biochem Pharmacol 2019; 174:113784. [PMID: 31884043 DOI: 10.1016/j.bcp.2019.113784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Chondrocytes and their mesenchymal cell progenitors secrete a variety of bioactive molecules, including adenine nucleotides and nucleosides, but these molecules are not usually highlighted in review papers about the secretome of these cells. Ageing and inflammatory insults compromise chondrocytes ability to keep ATP/adenosine synthesis, release and turnover. Cartilage homeostasis depends on extracellular adenosine levels, which acting via four P1 purinoceptor subtypes modulates the release of pro-inflammatory mediators, including NO, PGE2 and several cytokines. Native articular cartilage is challenged by synovial fluid flow during normal joint motion transiently increasing ATP release and adenosine formation in the joint microenvironment. Excessive joint motion and shockwave trauma are deleterious to cartilage homeostasis due to HIF-1α overexpression, resulting in disproportionate ecto-5'-nucleotidase/CD73 production, adenosine accumulation and superfluous A2B receptors activation. Scarcity of data however exists on the putative interplay between coexistent high affinity (A2A and A3) and low affinity (A2B) adenosine receptors activation affecting stem cells fate towards preferential chondrogenic or osteogenic lineages in the human cartilage. Hints gathered in this commentary result mainly from studies using human immortalized cell lines and animal (e.g. rodent, equine, bovine) tissue samples. The available data point towards adenosine A2A and A3 receptors having cartilage protective roles, while excessive adenosine accumulation may be detrimental via low affinity A2B receptors activation, with little reference to the putative role of the adenosine forming enzyme ecto-5'-nucleotidase/CD73. Thus, emphasizing the multiple pathways responsible for controlling adenosine signalling in cartilage will certainly impact on the search for novel therapeutic targets for highly disabling articular disorders.
Collapse
Affiliation(s)
- Rui Pinto-Cardoso
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal
| | - Flávio Pereira-Costa
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal
| | - João Pedro Faria
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal
| | - Patrícia Bandarrinha
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal
| | - Catarina Bessa-Andrês
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal.
| | - José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal.
| |
Collapse
|
14
|
Schneider E, Rissiek A, Winzer R, Puig B, Rissiek B, Haag F, Mittrücker HW, Magnus T, Tolosa E. Generation and Function of Non-cell-bound CD73 in Inflammation. Front Immunol 2019; 10:1729. [PMID: 31404305 PMCID: PMC6676417 DOI: 10.3389/fimmu.2019.01729] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Extracellular adenine nucleotides participate in cell-to-cell communication and modulate the immune response. The concerted action of ectonucleotidases CD39 and CD73 plays a major role in the local production of anti-inflammatory adenosine, but both ectonucleotidases are rarely co-expressed by human T cells. The expression of CD39 on T cells increases upon T cell activation and is high at sites of inflammation. CD73, in contrast, disappears from the cellular membrane after activation. The possibility that CD73 could act in trans would resolve the conundrum of both enzymes being co-expressed for the degradation of ATP and the generation of adenosine. An enzymatically active soluble form of CD73 has been reported, and AMPase activity has been detected in body fluids of patients with inflammation and cancer. It is not yet clear how CD73, a glycosylphosphatidylinositol (GPI)-anchored protein, is released from the cell membrane, but plausible mechanisms include cleavage by metalloproteinases and shedding mediated by cell-associated phospholipases. Importantly, like many other GPI-anchored proteins, CD73 at the cell membrane is preferentially localized in detergent-resistant domains or lipid rafts, which often contribute to extracellular vesicles (EVs). Indeed, CD73-containing vesicles of different size and origin and with immunomodulatory function have been found in the tumor microenvironment. The occurrence of CD73 as non-cell-bound molecule widens the range of action of this enzyme at sites of inflammation. In this review, we will discuss the generation of non-cell-bound CD73 and its physiological role in inflammation.
Collapse
Affiliation(s)
- Enja Schneider
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Rissiek
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Riekje Winzer
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Berta Puig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
15
|
Nedeljkovic N. Complex regulation of ecto-5'-nucleotidase/CD73 and A 2AR-mediated adenosine signaling at neurovascular unit: A link between acute and chronic neuroinflammation. Pharmacol Res 2019; 144:99-115. [PMID: 30954629 DOI: 10.1016/j.phrs.2019.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/20/2022]
Abstract
The review summarizes available data regarding the complex regulation of CD73 at the neurovascular unit (NVU) during neuroinflammation. Based on available data we propose the biphasic pattern of CD73 regulation at NVU, with an early attenuation and a postponed up-regulation of CD73 activity. Transient attenuation of CD73 activity on leukocyte/vascular endothelium and leukocyte/astrocyte surface, required for the initiation of a neuroinflammatory response, may be effectuated either by catalytic inhibition of CD73 and/or by shedding of the CD73 molecule from the cell surface, while postponed induction of CD73 is effectuated by transcriptional up-regulation of Nt5e and posttranslational modifications. Neuroinflammatory conditions are also associated with significant enhancement and gain-of-function of A2AR-mediated adenosine signaling. However, in contrast to the temporary prevalence of A2AR over A1R signaling during an acute inflammatory response, prolonged induction of A2AR and resulting perpetual CD73/A2AR coupling may be a contributing factors in the transition between acute and chronic neuroinflammation. Thus, pharmacological targeting of the CD73/A2AR axis may attenuate inflammatory response and ameliorate neurological deficits in chronic neuroinflammatory conditions.
Collapse
Affiliation(s)
- Nadezda Nedeljkovic
- Department of General Physiology and Biophysics, Faculty of Biology University of Belgrade, Studentski trg 3, Belgrade 11001, Serbia.
| |
Collapse
|
16
|
Müller GA. The release of glycosylphosphatidylinositol-anchored proteins from the cell surface. Arch Biochem Biophys 2018; 656:1-18. [DOI: 10.1016/j.abb.2018.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/07/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022]
|
17
|
Rybakowska IM, Kutryb-Zając B, Milczarek R, Łukasz B, Slominska EM, Smolenski RT. Activities of purine converting enzymes in heart, liver and kidney mice LDLR-/- and Apo E-/. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2018; 37:340-347. [PMID: 29781767 DOI: 10.1080/15257770.2018.1460482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Nucleotide metabolism plays a major role in a number of vital cellular processes such as energetics. This, in turn, is important in pathologies such as atherosclerosis. Three month old atherosclerotic mice with knock outs for LDLR and apolipoprotein E (ApoE) were used for the experiments. Activities of AMP-deaminase (AMPD), ecto5'-nucleotidase (e5NT), adenosine deaminase (ADA), purine nucleoside phosphorylase (PNP) were measured in heart, liver and kidney cortex and medulla by analysing conversion of substrates into products using HPLC. The activity of ecto5'-nucleotidase differ in hearts of LDLR-/- and ApoE-/- mice with no differences in ADA and AMPD activity. We noticed highest activity of e5NT in kidney medulla of the models. This model of atherosclerosis characterize with an inhibition of enzyme responsible for production of protective adenosine in heart but not in other organs and different metabolism of nucleotides in kidney medulla.
Collapse
Affiliation(s)
- I M Rybakowska
- a Department of Biochemistry and Clinical Physiology , Medical University of Gdansk , Gdansk , Poland
| | - B Kutryb-Zając
- b Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland
| | - R Milczarek
- c Department of Pharmaceutical Biochemistry , Medical University of Gdansk , Gdansk , Poland
| | - B Łukasz
- a Department of Biochemistry and Clinical Physiology , Medical University of Gdansk , Gdansk , Poland
| | - E M Slominska
- b Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland
| | - R T Smolenski
- b Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland
| |
Collapse
|
18
|
Kutryb-Zajac B, Mateuszuk L, Zukowska P, Jasztal A, Zabielska MA, Toczek M, Jablonska P, Zakrzewska A, Sitek B, Rogowski J, Lango R, Slominska EM, Chlopicki S, Smolenski RT. Increased activity of vascular adenosine deaminase in atherosclerosis and therapeutic potential of its inhibition. Cardiovasc Res 2018; 112:590-605. [PMID: 28513806 DOI: 10.1093/cvr/cvw203] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/24/2016] [Indexed: 01/07/2023] Open
Abstract
Aims Extracellular nucleotides and adenosine that are formed or degraded by membrane-bound ecto-enzymes could affect atherosclerosis by regulating the inflammation and thrombosis. This study aimed to evaluate a relation between ecto-enzymes that convert extracellular adenosine triphosphate to adenine dinucleotide phosphate, adenosine monophosphate, adenosine, and inosine on the surface of the vessel wall with the severity or progression of experimental and clinical atherosclerosis. Furthermore, we tested whether the inhibition of adenosine deaminase will block the development of experimental atherosclerosis. Methods and results Vascular activities of ecto-nucleoside triphosphate diphosphohydrolase 1, ecto-5'-nucleotidase, and ecto-adenosine deaminase (eADA) were measured in aortas of apolipoprotein E-/- low density lipoprotein receptor (ApoE-/-LDLR-/-) and wild-type mice as well as in human aortas. Plaques were analysed in the entire aorta, aortic root, and brachiocephalic artery by Oil-Red O and Orcein Martius Scarlet Blue staining and vascular accumulation of macrophages. The cellular location of ecto-enzymes was analysed by immunofluorescence. The effect of eADA inhibition on atherosclerosis progression was studied by a 2-month deoxycoformycin treatment of ApoE-/-LDLR-/- mice. The vascular eADA activity prominently increased in ApoE-/-LDLR-/- mice when compared with wild type already at the age of 1 month and progressed along atherosclerosis development, reaching a 10-fold difference at 10 months. The activity of eADA correlated with atherosclerotic changes in human aortas. High abundance of eADA in atherosclerotic vessels originated from activated endothelial cells and macrophages. There were no changes in ecto-nucleoside triphosphate diphosphohydrolase 1 activity, whereas ecto-5'-nucleotidase was moderately decreased in ApoE-/-LDLR-/- mice. Deoxycoformycin treatment attenuated plaque development in aortic root and brachiocephalic artery of ApoE-/-LDLR-/- mice, suppressed vascular inflammation and improved endothelial function. Conclusions This study highlights the importance of extracellular nucleotides and adenosine metabolism in the atherosclerotic vessel in both experimental and clinical setting. The increased eADA activity marks an early stage of atherosclerosis, contributes to its progression and could represent a novel target for therapy.
Collapse
Affiliation(s)
- Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Lukasz Mateuszuk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Paulina Zukowska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Magdalena A Zabielska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Marta Toczek
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Patrycja Jablonska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Agnieszka Zakrzewska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Barbara Sitek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Jan Rogowski
- Department of Cardiac and Vascular Surgery, Medical University of Gdansk, 7 Debinki St., 80-211 Gdansk, Poland
| | - Romuald Lango
- Department of Cardiac Anaesthesiology, Chair of Anaesthesiology and Intensive Care, Medical University of Gdansk, 7 Debinki St., 80-211 Gdansk, Poland
| | - Ewa M Slominska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Ryszard T Smolenski
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| |
Collapse
|
19
|
Abstract
Some anticancer agents induce immunogenic cell death that is accompanied by the emission of danger signals into the tumor microenvironment, thus attracting and activating innate immune effectors and finally inducing anticancer immunity. The release of extracellular nucleosides such as adenosine triphosphate (ATP) from the tumor in response to anticancer therapy plays a pivotal role in the attraction of antigen presenting cells and the activation of inflammasome-mediated proinflammatory cascades. In contrast, the ectonucleotidase-catalyzed phosphohydrolysis of nucleotides to nucleosides reduces the extracellular availability of nucleotides, hence limiting the recruitment and activation of antigen-presenting cells. In addition, the (over-)production of nucleosides including adenosine by ectonucleotidases located on cancer cells and regulatory T cells can induce immunosuppression, as adenosine directly inhibits the proliferation and activation of effector T cells. Here, we discuss the importance of death metabolites for immunomodulation in general, and the role of the purine nucleotide ATP and its derivative adenosine in particular. In addition, we provide an overview on therapeutic interventions that reinstate tumor immunogenicity in conditions where nucleotide-dependent immunostimulation is obstructed.
Collapse
Affiliation(s)
- Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, INSERM U 1138, Paris, France
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Friedemann Loos
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, INSERM U 1138, Paris, France
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Peng Liu
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, INSERM U 1138, Paris, France
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France
- Université Pierre et Marie Curie, Paris, France
- University of Paris Sud XI, Kremlin Bicêtre, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, INSERM U 1138, Paris, France
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France
- Université Pierre et Marie Curie, Paris, France
- University of Paris Sud XI, Kremlin Bicêtre, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
20
|
Liberski A, Ayad N, Wojciechowska D, Kot R, Vo DM, Aibibu D, Hoffmann G, Cherif C, Grobelny-Mayer K, Snycerski M, Goldmann H. Weaving for heart valve tissue engineering. Biotechnol Adv 2017; 35:633-656. [DOI: 10.1016/j.biotechadv.2017.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
|
21
|
Faas MM, Sáez T, de Vos P. Extracellular ATP and adenosine: The Yin and Yang in immune responses? Mol Aspects Med 2017; 55:9-19. [PMID: 28093236 DOI: 10.1016/j.mam.2017.01.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/22/2016] [Accepted: 01/12/2017] [Indexed: 12/20/2022]
Abstract
Extracellular adenosine 5'-triphosphate (ATP) and adenosine molecules are intimately involved in immune responses. ATP is mostly a pro-inflammatory molecule and is released during hypoxic condition and by necrotic cells, as well as by activated immune cells and endothelial cells. However, under certain conditions, for instance at low concentrations or at prolonged exposure, ATP may also have anti-inflammatory properties. Extracellular ATP can activate both P2X and P2Y purinergic receptors. Extracellular ATP can be hydrolyzed into adenosine in a two-step enzymatic process involving the ectonucleotidases CD39 (ecto-apyrase) and CD73. These enzymes are expressed by many cell types, including endothelial cells and immune cells. The counterpart of ATP is adenosine, which is produced by breakdown of intra- or extracellular ATP. Adenosine has mainly anti-inflammatory effects by binding to the adenosine, or P1, receptors (A1, A2A, A2B, and A3). These receptors are also expressed in many cells, including immune cells. The final effect of ATP and adenosine in immune responses depends on the fine regulatory balance between the 2 molecules. In the present review, we will discuss the current knowledge on the role of these 2 molecules in the immune responses.
Collapse
Affiliation(s)
- M M Faas
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; Department of Obstetrics and Gynecology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - T Sáez
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - P de Vos
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
22
|
Liberski A, Ayad N, Wojciechowska D, Zielińska D, Struszczyk MH, Latif N, Yacoub M. Knitting for heart valve tissue engineering. Glob Cardiol Sci Pract 2016; 2016:e201631. [PMID: 29043276 PMCID: PMC5642840 DOI: 10.21542/gcsp.2016.31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Knitting is a versatile technology which offers a large portfolio of products and solutions of interest in heart valve (HV) tissue engineering (TE). One of the main advantages of knitting is its ability to construct complex shapes and structures by precisely assembling the yarns in the desired position. With this in mind, knitting could be employed to construct a HV scaffold that closely resembles the authentic valve. This has the potential to reproduce the anisotropic structure that is characteristic of the heart valve with the yarns, in particular the 3-layered architecture of the leaflets. These yarns can provide oriented growth of cells lengthwise and consequently enable the deposition of extracellular matrix (ECM) proteins in an oriented manner. This technique, therefore, has a potential to provide a functional knitted scaffold, but to achieve that textile engineers need to gain a basic understanding of structural and mechanical aspects of the heart valve and in addition, tissue engineers must acquire the knowledge of tools and capacities that are essential in knitting technology. The aim of this review is to provide a platform to consolidate these two fields as well as to enable an efficient communication and cooperation among these two research areas.
Collapse
Affiliation(s)
- Albert Liberski
- Sidra Medical and Research Center, P.O. Box 26999, Doha, Qatar
| | - Nadia Ayad
- Mechanical Engineering and Material Science Department, Military Institute of Engineering (IME), Rio de Janeiro, RJ, Brazil
| | - Dorota Wojciechowska
- Lodz University of Technology, Faculty of Material Technologies and Textile Design, Department of Material and Commodity Sciences and Textile Metrology, ul. Zeromskiego 116, 90-924, Lodz, Poland
| | - Dorota Zielińska
- Institute of Security Technologies "Moratex" 3 M, Skłodowskiej-Curie Street 90-505 Lodz, Poland
| | - Marcin H Struszczyk
- Institute of Security Technologies "Moratex" 3 M, Skłodowskiej-Curie Street 90-505 Lodz, Poland
| | - Najma Latif
- Imperial College of Science and Technology, London, UK
| | - Magdi Yacoub
- Sidra Medical and Research Center, P.O. Box 26999, Doha, Qatar
| |
Collapse
|
23
|
Kisseleva EP, Krylov AV, Lyamina IV, Kudryavtsev IV, Lioudyno VI. Role of Vascular Endothelial Growth Factor (VEGF) in Thymus of Mice under Normal Conditions and with Tumor Growth. BIOCHEMISTRY (MOSCOW) 2016; 81:491-501. [PMID: 27297899 DOI: 10.1134/s0006297916050060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In our study, we for the first time investigated a role for VEGF as a factor regulating transendothelial migration of murine thymocytes in vitro. Effects of VEGF were examined in a model of thymocyte migration across a monolayer of EA.hy 926 endothelial cells. We showed that VEGF enhanced transendothelial migration of murine thymocytes and their adhesion to endothelial cells in a dose-dependent manner. VEGF did not influence thymocytes, but rather acted on endothelial cells by upregulating surface expression of adhesion molecule ICAM-1 and downregulating activity of 5'-nucleotidase. Effects from VEGF were comparable with those from TNF-α. Because it is known that administration of VEGF to intact animals results in thymic atrophy, it was assumed that it might play a role in developing thymic involution during tumor growth. Enhanced egress of thymocytes to the periphery was considered as a plausible mechanism underlying effects of VEGF. However, we revealed no difference in parameters of in vitro transendothelial migration for thymocytes from animals bearing a transplantable hepatoma 22a compared to control animals. VEGF mRNA expression in lysates of thymic stroma was found to be upregulated in mice with grafted tumors, whereas at the protein level the amount of VEGF did not differ. While examining expression of VEGF receptors on thymocytes by flow cytometry, both VEGFR-1 and VEGFR-2 were not detected, whereas the percentage of Nrp-1-positive thymocytes in animals with hepatoma 22a was as high as in the control group. Thus, we were unable to confirm a hypothesis regarding participation of VEGF in developing thymic involution during progression of experimental hepatoma. However, a set of novel data concerning a role for VEGF in stimulating transendothelial migration of thymocytes in vitro was obtained, and it may be of significance for understanding mechanisms underlying thymus functioning as well as a role of this cytokine in preparing endothelial cells for egress of thymocytes to the periphery.
Collapse
Affiliation(s)
- E P Kisseleva
- Institute for Experimental Medicine, St. Petersburg, 197376, Russia.
| | | | | | | | | |
Collapse
|
24
|
Allard B, Beavis PA, Darcy PK, Stagg J. Immunosuppressive activities of adenosine in cancer. Curr Opin Pharmacol 2016; 29:7-16. [PMID: 27209048 DOI: 10.1016/j.coph.2016.04.001] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/20/2016] [Accepted: 04/29/2016] [Indexed: 12/18/2022]
Abstract
Multiple immunosuppressive mechanisms impede anti-tumor immunity. Among them, the accumulation of extracellular adenosine is a potent and widespread strategy exploited by tumors to escape immunosurveillance through the activation of purinergic receptors. In the immune system, engagement of A2a and A2b adenosine receptors is a critical regulatory mechanism that protects tissues against excessive immune reactions. In tumors, this pathway is hijacked and hinders anti-tumor immunity, promoting cancer progression. Different groups have highlighted the therapeutic potential of blocking CD73-dependent adenosine-mediated immunosuppression to reinstate anti-tumor immunity. Phase clinical trials evaluating anti-CD73 antibodies and A2a receptor antagonists in cancer patients are currently ongoing. We here review the recent literature on the immunosuppressive effects of extracellular adenosine and discuss the development of adenosine inhibitors.
Collapse
Affiliation(s)
- Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Institut du Cancer de Montréal, 900 Rue Saint-Denis, H2X0A9 Montréal, QC, Canada; Faculté de Pharmacie, Université de Montréal, Pavillon Jean-Coutu, 2940 chemin de Polytechnique, Montréal, QC, Canada
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Australia
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Department of Pathology, University of Melbourne, Parkville, Australia
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Institut du Cancer de Montréal, 900 Rue Saint-Denis, H2X0A9 Montréal, QC, Canada; Faculté de Pharmacie, Université de Montréal, Pavillon Jean-Coutu, 2940 chemin de Polytechnique, Montréal, QC, Canada.
| |
Collapse
|
25
|
Kutryb-Zajac B, Yuen AHY, Khalpey Z, Zukowska P, Slominska EM, Taylor PM, Goldstein S, Heacox AE, Lavitrano M, Chester AH, Yacoub MH, Smolenski RT. Nucleotide Catabolism on the Surface of Aortic Valve Xenografts; Effects of Different Decellularization Strategies. J Cardiovasc Transl Res 2016; 9:119-26. [PMID: 26832118 PMCID: PMC4830859 DOI: 10.1007/s12265-016-9672-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/04/2016] [Indexed: 02/07/2023]
Abstract
Extracellular nucleotide metabolism controls thrombosis and inflammation and may affect degeneration and calcification of aortic valve prostheses. We evaluated the effect of different decellularization strategies on enzyme activities involved in extracellular nucleotide metabolism. Porcine valves were tested intact or decellularized either by detergent treatment or hypotonic lysis and nuclease digestion. The rates of ATP hydrolysis, AMP hydrolysis, and adenosine deamination were estimated by incubation of aorta or valve leaflet sections with substrates followed by HPLC analysis. We demonstrated relatively high activities of ecto-enzymes on porcine valve as compared to the aortic wall. Hypotonic lysis/nuclease digestion preserved >80 % of ATP and AMP hydrolytic activity but reduced adenosine deamination to <10 %. Detergent decellularization completely removed (<5 %) all these activities. These results demonstrate high intensity of extracellular nucleotide metabolism on valve surface and indicate that various valve decellularization techniques differently affect ecto-enzyme activities that could be important in the development of improved valve prostheses.
Collapse
Affiliation(s)
| | - Ada H Y Yuen
- Heart Science Centre, Imperial College London, London, UK
| | | | - Paulina Zukowska
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Ewa M Slominska
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | | | | | | | | | | | - Magdi H Yacoub
- Heart Science Centre, Imperial College London, London, UK
| | | |
Collapse
|
26
|
Takahashi-Sato K, Murakawa M, Kimura J, Ito MA, Matsuoka I. Loss of ectonucleotidases from the coronary vascular bed after ischemia-reperfusion in isolated rat heart. BMC Cardiovasc Disord 2013; 13:53. [PMID: 23890190 PMCID: PMC3733877 DOI: 10.1186/1471-2261-13-53] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 07/25/2013] [Indexed: 11/30/2022] Open
Abstract
Background Ectonucleotidase plays an important role in the regulation of cardiac function by controlling extracellular levels of adenine nucleotides and adenosine. To determine the influence of ischemia-reperfusion injury on ectonucleotidase activity in coronary vascular bed, we compared the metabolic profile of adenine nucleotides during the coronary circulation in pre- and post-ischemic heart. Methods Langendorff-perfused rat hearts were used to assess the intracoronary metabolism of adenine nucleotides. The effects of ischemia on the adenine nucleotide metabolism were examined after 30 min of ischemia and 30 min of reperfusion. Adenine nucleotide metabolites were measured by high performance liquid chromatography. Results ATP, ADP and AMP were rapidly metabolized to adenosine and inosine during the coronary circulation. After ischemia, ectonucleotidase activity of the coronary vascular bed was significantly decreased. In addition, the perfusate from the ischemic heart contained a considerable amount of enzymes degrading ATP, AMP and adenosine. Immunoblot analysis revealed that the perfusate from the ischemic heart dominantly contained ectonucleoside triphosphate diphosphohydrolase 1, and, to a lesser extent, ecto-5’-nucleotidase. The leakage of nucleotide metabolizing enzymes from the coronary vascular bed by ischemia-reperfusion was more remarkable in aged rats, in which post-ischemic cardiac dysfunction was more serious. Conclusion Ectonucleotidases were liberated from the coronary vascular bed by ischemia-reperfusion, resulting in an overall decrease in ectonucleotidase activity in the post-ischemic coronary vascular bed. These results suggest that decreased ectonucleotidase activity by ischemia may exacerbate subsequent reperfusion injury, and that levels of circulating ectonucleotidase may reflect the severity of ischemic vascular injury.
Collapse
|
27
|
Shen Z, Fahey JV, Bodwell JE, Rodriguez-Garcia M, Rossoll RM, Crist SG, Patel MV, Wira CR. Estradiol regulation of nucleotidases in female reproductive tract epithelial cells and fibroblasts. PLoS One 2013; 8:e69854. [PMID: 23936114 PMCID: PMC3723851 DOI: 10.1371/journal.pone.0069854] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/12/2013] [Indexed: 12/29/2022] Open
Abstract
The use of topical and oral adenosine derivatives in HIV prevention that need to be maintained in tissues and cells at effective levels to prevent transmission prompted us to ask whether estradiol could influence the regulation of catabolic nucleotidase enzymes in epithelial cells and fibroblasts from the upper and lower female reproductive tract (FRT) as these might affect cellular TFV-DP levels. Epithelial cells and fibroblasts were isolated from endometrium (EM), endocervix (CX) and ectocervix (ECX) tissues from hysterectomy patients, grown to confluence and treated with or without estradiol prior to RNA isolation. The expression of nucleotidase (NT) genes was measurable by RT-PCR in epithelial cells and fibroblasts from all FRT tissues. To determine if sex hormones have the potential to regulate NT, we evaluated NT gene expression and NT biological activity in FRT cells following hormone treatment. Estradiol increased expression of Cytosolic 5′-nucleotidase after 2 or 4 h in endometrial epithelial cells but not epithelial cells or fibroblasts from other sites. In studies using a modified 5′-Nucleotidase biological assay for nucleotidases, estradiol increased NT activity in epithelial cells and fibroblasts from the EM, CX and ECX at 24 and 48 h. In related studies, HUVEC primary cells and a HUVEC cell line were unresponsive to estradiol in terms of nucleotidase expression or biological activity. Our findings of an increase in nucleotidase expression and biological activity induced by estradiol do not directly assess changes in microbicide metabolism. However, they do suggest that when estradiol levels are elevated during the menstrual cycle, FRT epithelial cells and fibroblasts from the EM, CX and ECX have the potential to influence microbicide levels that could enhance protection of HIV-target cells (CD4+T cells, macrophages and dendritic cells) throughout the FRT.
Collapse
Affiliation(s)
- Zheng Shen
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - John V. Fahey
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Jack E. Bodwell
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Marta Rodriguez-Garcia
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Richard M. Rossoll
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Sarah G. Crist
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Mickey V. Patel
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Charles R. Wira
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
28
|
CD73-generated adenosine: orchestrating the tumor-stroma interplay to promote cancer growth. J Biomed Biotechnol 2012; 2012:485156. [PMID: 23125525 PMCID: PMC3482007 DOI: 10.1155/2012/485156] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 07/05/2012] [Indexed: 12/13/2022] Open
Abstract
Despite the coming of age of cancer immunotherapy, clinical benefits are still modest. An important barrier to successful cancer immunotherapy is that tumors employ a number of mechanisms to facilitate immune escape, including the production of anti-inflammatory cytokines, the recruitment of regulatory immune subsets, and the production of immunosuppressive metabolites. Significant therapeutic opportunity exists in targeting these immunosuppressive pathways. One such immunosuppressive pathway is the production of extracellular adenosine by CD73, an ectonucleotidase overexpressed in various types of cancer. We hereafter review the biology of CD73 and its role in cancer progression and metastasis. We describe the role of extracellular adenosine in promoting tumor growth through paracrine and autocrine action on tumor cells, endothelial cells, and immune cells.
Collapse
|
29
|
Production of adenosine by ectonucleotidases: a key factor in tumor immunoescape. J Biomed Biotechnol 2012; 2012:473712. [PMID: 23133312 PMCID: PMC3481458 DOI: 10.1155/2012/473712] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/03/2012] [Indexed: 02/07/2023] Open
Abstract
It is now well known that tumor immunosurveillance contributes to the control of cancer growth. Many mechanisms can be used by cancer cells to avoid the antitumor immune response. One such mechanism relies on the capacity of cancer cells or more generally of the tumor microenvironment to generate adenosine, a major molecule involved in antitumor T cell response suppression. Adenosine is generated by the dephosphorylation of extracellular ATP released by dying tumor cells. The conversion of ATP into adenosine is mediated by ectonucleotidase molecules, namely, CD73 and CD39. These molecules are frequently expressed in the tumor bed by a wide range of cells including tumor cells, regulatory T cells, Th17 cells, myeloid cells, and stromal cells. Recent evidence suggests that targeting adenosine by inhibiting ectonucleotidases may restore the resident antitumor immune response or enhance the efficacy of antitumor therapies. This paper will underline the impact of adenosine and ectonucleotidases on the antitumor response.
Collapse
|
30
|
Takedachi M, Oohara H, Smith BJ, Iyama M, Kobashi M, Maeda K, Long CL, Humphrey MB, Stoecker BJ, Toyosawa S, Thompson LF, Murakami S. CD73-generated adenosine promotes osteoblast differentiation. J Cell Physiol 2012; 227:2622-31. [PMID: 21882189 DOI: 10.1002/jcp.23001] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CD731 is a GPI-anchored cell surface protein with ecto-5'-nucleotidase enzyme activity that plays a crucial role in adenosine production. While the roles of adenosine receptors (AR) on osteoblasts and osteoclasts have been unveiled to some extent, the roles of CD73 and CD73-generated adenosine in bone tissue are largely unknown. To address this issue, we first analyzed the bone phenotype of CD73-deficient (cd73(-/-)) mice. The mutant male mice showed osteopenia, with significant decreases of osteoblastic markers. Levels of osteoclastic markers were, however, comparable to those of wild-type mice. A series of in vitro studies revealed that CD73 deficiency resulted in impairment in osteoblast differentiation but not in the number of osteoblast progenitors. In addition, over expression of CD73 on MC3T3-E1 cells resulted in enhanced osteoblastic differentiation. Moreover, MC3T3-E1 cells expressed adenosine A(2A) receptors (A(2A)AR) and A(2B) receptors (A(2B)AR) and expression of these receptors increased with osteoblastic differentiation. Enhanced expression of osteocalcin (OC) and bone sialoprotein (BSP) observed in MC3T3-E1 cells over expressing CD73 were suppressed by treatment with an A(2B)AR antagonist but not with an A(2A) AR antagonist. Collectively, our results indicate that CD73 generated adenosine positively regulates osteoblast differentiation via A(2B)AR signaling.
Collapse
Affiliation(s)
- Masahide Takedachi
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bjelobaba I, Parabucki A, Lavrnja I, Stojkov D, Dacic S, Pekovic S, Rakic L, Stojiljkovic M, Nedeljkovic N. Dynamic changes in the expression pattern of ecto-5'-nucleotidase in the rat model of cortical stab injury. J Neurosci Res 2011; 89:862-73. [PMID: 21337375 DOI: 10.1002/jnr.22599] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 12/10/2010] [Accepted: 12/18/2010] [Indexed: 02/06/2023]
Abstract
Traumatic injury induces massive release of ATP in the extracellular space, where it influences numerous aspects of neuronal, astrocytic, and microglial responses to injury by activating P2X and P2Y receptors. The extracellular ATP actions are controlled by the ectonucleotidase enzyme pathway, which hydrolyses ATP to adenosine at all neuronal and nonneuronal cell types. Adenosine activates its P1 receptors, which have important neuroprotective roles. The rate-limiting enzyme in the ectonucleotidase pathway is ecto-5'-nucleotidase (e-5NT), which catalyzes the final step of dephosphorylation of AMP to adenosine. The aim of the present study was to characterize the expression pattern and cellular distribution of e-5NT in the perilesioned cortex at 4 hr and 1, 2, 7, and 15 days after unilateral cortical stab injury (CSI). Immunoblot and immunohistochemical studies showed that overall e-5NT expression was lower 4 hr and 1 day postinjury and then gradually increased above the control levels. Double-immunofluorescence studies further showed in control tissue the presence of the enzyme in the membranes surrounding neuronal somata and apical dendrites and less frequently in astrocytes. CSI caused a rapid (after 4 hr) and irreversible loss of the enzyme from neurons, accounting for a decrease in the overall enzyme expression. This was accompanied with a gradual increase in e-5NT-positive astrocytes, accounting for up-regulation of the enzyme levels in the injured area. Thus, CSI induced dynamic changes in the expression pattern of e-5NT that modify the ATP/adenosine ratio and the extent of P1 and P2 receptors activation and, therefore, outcome of the pathological processes after CSI.
Collapse
Affiliation(s)
- Ivana Bjelobaba
- Department for Neurobiology, Institute for Biological Research Sinisa Stankovic, University Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Purinergic signaling and immune modulation at the schistosome surface? Trends Parasitol 2009; 25:256-60. [PMID: 19423396 DOI: 10.1016/j.pt.2009.03.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 02/25/2009] [Accepted: 03/04/2009] [Indexed: 12/20/2022]
Abstract
After tissue stress or injury, intracellular ATP can be released into the extracellular environment. This signals cell damage because extracellular ATP acts as a danger-associated molecular pattern (DAMP) that is potently proinflammatory. Vertebrates temper this effect by catabolizing ATP to adenosine - a strongly anti-inflammatory molecule - using a set of characterized ecto-enzymes (notably alkaline phosphatase, phosphodiesterase and ATP diphosphohydrolase). Strikingly, schistosomes in the bloodstream have this same set of ATP-catabolizing enzymes on their tegumental surfaces. It is our opinion that these function to remove the DAMP (ATP) released by host cells in response to schistosome intravascular migration. We propose this as one mechanism by which schistosomes prevent their hosts from focusing immunological mediators in their vicinity.
Collapse
|
33
|
de Souza LF, Gelain DP, Jardim FR, Ribeiro GR, Zim M, Bernard EA. Extracellular inosine participates in tumor necrosis factor-alpha induced nitric oxide production in cultured Sertoli cells. Mol Cell Biochem 2009; 281:123-8. [PMID: 16328964 DOI: 10.1007/s11010-006-0639-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 07/07/2005] [Indexed: 02/02/2023]
Abstract
Recent reports have described purinergic modulation of tumor necrosis factor-alpha (TNF-alpha) signaling in neutrophils and astrocytes. In Sertoli cells, both TNF-R1 and TNF-R2 TNF-alpha receptors are present and this cytokine modulates many functions of these cells related to the maintenance of spermatogenesis. Sertoli cells express distinct purinoreceptors and previous work has shown that these cells secrete extracellular nucleotides and their metabolites. In this work, we studied the possible role of extracellular purines in TNF-alpha signaling in cultured Sertoli cells. This cytokine increased inosine concentration from 30 min to 6 h, with no effect at 24 h. Both TNF-alpha and inosine increased nitrite accumulation and nitric oxide synthase activity. Erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), an adenosine deaminase inhibitor, abolished the TNF-alpha induced inosine increase, nitrite accumulation and nitric oxide synthase activity. These results suggest that extracellular inosine acts as intermediary in TNF-alpha stimulated nitric oxide production in cultured Sertoli cells.
Collapse
Affiliation(s)
- Luiz Fernando de Souza
- Laboratório de Transdução de Sinais em Células Testiculares, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
34
|
Katebi M, Soleimani M, Cronstein BN. Adenosine A2A receptors play an active role in mouse bone marrow-derived mesenchymal stem cell development. J Leukoc Biol 2008; 85:438-44. [PMID: 19056861 DOI: 10.1189/jlb.0908520] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) play a role in wound healing and tissue repair and may also be useful for organ regeneration. As we have demonstrated previously that A(2A) adenosine receptors (A(2A)R) promote tissue repair and wound healing by stimulating local repair mechanisms and enhancing accumulation of endothelial progenitor cells, we investigated whether A(2A)R activation modulates BM-MSC proliferation and differentiation. BM-MSCs were isolated and cultured from A(2A)-deficient and ecto-5'nucleotidase (CD73)-deficient female mice; the MSCs were identified and quantified by a CFU-fibroblast (CFU-F) assay. Procollagen alpha2 type I expression was determined by Western blotting and immunocytochemistry. MSC-specific markers were examined in primary cells and third-passage cells by cytofluorography. PCR and real time-PCR were used to quantitate adenosine receptor and CD73 expression. There were significantly fewer CFU-Fs in cultures of BM-MSCs from A(2A)R knockout (KO) mice or BM-MSCs treated with the A(2A)R antagonist ZM241385, 1 microM. Similarly, there were significantly fewer procollagen alpha2 type I-positive MSCs in cultures from A(2A)R KO and antagonist-treated cultures as well. In late passage cells, there were significantly fewer MSCs from A(2A) KO mice expressing CD90, CD105, and procollagen type I (P<0.05 for all; n=3). These findings indicate that adenosine and adenosine A(2A)R play a critical role in promoting the proliferation and differentiation of mouse BM-MSCs.
Collapse
Affiliation(s)
- Majid Katebi
- New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
35
|
Li RWS, Man RYK, Vanhoutte PM, Leung GPH. Stimulation of ecto-5'-nucleotidase in human umbilical vein endothelial cells by lipopolysaccharide. Am J Physiol Heart Circ Physiol 2008; 295:H1177-H1181. [PMID: 18641267 DOI: 10.1152/ajpheart.91513.2007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The involvement of ecto-5'-nucleotidase (E-5'Nu) in the elevation of extracellular adenosine during inflammation is unclear. In the present study, the effect of lipopolysaccharide (LPS), an inflammation inducer, was investigated on E-5'Nu in human umbilical vein endothelial cells (HUVECs). E-5'Nu activity was enhanced after a 24 h exposure to LPS. This effect was dose dependent, with an EC50 of 1.66 ng/ml. At 10 microM, the phosphatidylinositol 3-kinase (PI3K) inhibitor LY-294002 abolished the LPS-induced E-5'Nu activity. However, at 10 microM, the NF-kappaB inhibitor ammonium pyrrolidine dithiocarbamate had no effect. LPS upregulated the protein expression but not the messenger RNA expression of E-5'Nu. The inhibition of E-5'Nu by 100 microM alpha,beta-methylene adenosine-5'-diphosphate increased the LPS-induced inflammation, suggesting that E-5'Nu plays a significant role in reducing inflammation, probably through the generation of adenosine. In conclusion, the experiments indicate that LPS upregulates E-5'Nu activity in HUVECs through a PI3K-dependent increase in the abundance of E-5'Nu on cell membranes. Since adenosine is an anti-inflammatory molecule, E-5'Nu upregulation may be crucial in protecting endothelial cells against inflammatory damage.
Collapse
Affiliation(s)
- R W S Li
- Department of Pharmacology, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | |
Collapse
|
36
|
Takedachi M, Qu D, Ebisuno Y, Oohara H, Joachims ML, McGee ST, Maeda E, McEver RP, Tanaka T, Miyasaka M, Murakami S, Krahn T, Blackburn MR, Thompson LF. CD73-generated adenosine restricts lymphocyte migration into draining lymph nodes. THE JOURNAL OF IMMUNOLOGY 2008; 180:6288-96. [PMID: 18424752 DOI: 10.4049/jimmunol.180.9.6288] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
After an inflammatory stimulus, lymphocyte migration into draining lymph nodes increases dramatically to facilitate the encounter of naive T cells with Ag-loaded dendritic cells. In this study, we show that CD73 (ecto-5'-nucleotidase) plays an important role in regulating this process. CD73 produces adenosine from AMP and is expressed on high endothelial venules (HEV) and subsets of lymphocytes. Cd73(-/-) mice have normal sized lymphoid organs in the steady state, but approximately 1.5-fold larger draining lymph nodes and 2.5-fold increased rates of L-selectin-dependent lymphocyte migration from the blood through HEV compared with wild-type mice 24 h after LPS administration. Migration rates of cd73(+/+) and cd73(-/-) lymphocytes into lymph nodes of wild-type mice are equal, suggesting that it is CD73 on HEV that regulates lymphocyte migration into draining lymph nodes. The A(2B) receptor is a likely target of CD73-generated adenosine, because it is the only adenosine receptor expressed on the HEV-like cell line KOP2.16 and it is up-regulated by TNF-alpha. Furthermore, increased lymphocyte migration into draining lymph nodes of cd73(-/-) mice is largely normalized by pretreatment with the selective A(2B) receptor agonist BAY 60-6583. Adenosine receptor signaling to restrict lymphocyte migration across HEV may be an important mechanism to control the magnitude of an inflammatory response.
Collapse
Affiliation(s)
- Masahide Takedachi
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, 825 Northeast 13th Street, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hashikawa T, Takedachi M, Terakura M, Yamada S, Thompson L, Shimabukuro Y, Murakami S. Activation of adenosine receptor on gingival fibroblasts. J Dent Res 2006; 85:739-44. [PMID: 16861292 PMCID: PMC2225592 DOI: 10.1177/154405910608500810] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
CD73 (ecto-5'-nucleotidase) on human gingival fibroblasts plays a role in the regulation of intracellular cAMP levels through the generation of adenosine, which subsequently activates adenosine receptors. In this study, we examined the involvement of ecto-adenosine deaminase, which can be anchored to CD26 on human gingival fibroblasts, in metabolizing adenosine generated by CD73, and thus attenuating adenosine receptor activation. Ecto-adenosine deaminase expression on fibroblasts could be increased by pre-treatment with a lysate of Jurkat cells, a cell line rich in cytoplasmic adenosine deaminase. Interestingly, the cAMP response to adenosine generated from 5'-AMP via CD73 and the ability of 5'-AMP to induce hyaluronan synthase 1 mRNA were significantly decreased by the pre-treatment of fibroblasts with Jurkat cell lysate. This inhibitory effect was reversed by the specific adenosine deaminase inhibitor. These results suggest that ecto-adenosine deaminase metabolizes CD73-generated adenosine and regulates adenosine receptor activation.
Collapse
Affiliation(s)
- T. Hashikawa
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - M. Takedachi
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - M. Terakura
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - S. Yamada
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - L.F. Thompson
- Oklahoma Medical Research Foundation, Immunobiology and Cancer Program, Oklahoma City, OK 73104, USA
| | - Y. Shimabukuro
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - S. Murakami
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
- corresponding author,
| |
Collapse
|
38
|
Dreger SA, Thomas P, Sachlos E, Chester AH, Czernuszka JT, Taylor PM, Yacoub MH. Potential for Synthesis and Degradation of Extracellular Matrix Proteins by Valve Interstitial Cells Seeded onto Collagen Scaffolds. ACTA ACUST UNITED AC 2006; 12:2533-40. [PMID: 16995786 DOI: 10.1089/ten.2006.12.2533] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Matrix remodeling, which involves proteolytic enzymes, such as the matrix metalloproteinases (MMPs), is of significant importance with respect to tissue engineering a heart valve construct. The ability of valve interstitial cells (ICs) to release these enzymes in biological scaffolds and to synthesize their own matrix has not been adequately studied, and this has important implications for tissue engineering. Cultured human aortic valve ICs were seeded onto a 3-dimensional type I collagen matrix for 28 days, whereby the presence of the remodeling enzymes, MMPs, were determined using immunohistochemistry, and detection of extracellular matrix (ECM) gene expression was performed using in situ hybridization. The collagenases, stromelysins, and membrane-type MMPs were expressed in 1%, 2%, and 5% collagen scaffolds after 28 days, whereas gelatinase expression was not observed. In situ hybridization revealed the presence of the ECM messenger ribonucleic acid (mRNA) in cells cultured in collagen scaffolds however, an increase in all three mRNAs was only detected in the 1% collagen scaffolds. The presence of collagenases, stromelysins, and membrane-type MMPs indicate that human valve ICs have the capacity to remodel type I collagen scaffold and that the genes necessary for synthesizing matrix have been turned on within the cells themselves. Scaffold composition also demonstrated differential effects onMMPexpression. These observations are of relevance with respect to the development of tissue-engineered heart valves.
Collapse
Affiliation(s)
- Sally A Dreger
- National Heart and Lung Institute, Imperial College London at Harefield Hospital, Heart Science Centre, Harefield, Middlesex, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
39
|
Stimulation of an alpha1-adrenergic receptor downregulates ecto-5' nucleotidase activity on the apical membrane of RPE cells. Purinergic Signal 2006; 2:499-507. [PMID: 18404487 PMCID: PMC2104005 DOI: 10.1007/s11302-005-3980-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 09/13/2005] [Indexed: 12/11/2022] Open
Abstract
The purines ATP and adenosine play an important role in the communication between the photoreceptors and the retinal pigment epithelium (RPE). While the RPE is known to release ATP into subretinal space, the source of extracellular adenosine is unclear. In other tissues, ecto-nucleotidases mediate the consecutive dephosphorylation of ATP to AMP, and AMP is converted to adenosine by ecto-5' nucleotidase (CD73). This study identifies ecto-5' nucleotidase on RPE cells and investigates modulation of enzyme activity. The RPE was the most active site of 5'AMP dephosphorylation in the posterior rat eye. The ecto-5' nucleotidase inhibitor alphabetamADP prevented the production adenosine by the apical membrane of the bovine RPE. Cultured human ARPE-19 cells expressed mRNA and protein for ecto-5' nucleotidase. The production of phosphate from 5'AMP by ARPE-19 cells was inhibited by alphabetamADP, but the ecto-alkaline phosphatase inhibitor levamisole had no effect. Degradation of 5'AMP was blocked by norepinephrine, epinephrine and phenylephrine, with inhibition by antagonists prazosin and corynanthine implicating the alpha1 adrenergic receptor. The block of enzyme activity by norepinephrine was rapid, occurring within 1 min, and was similar at both 4 and 37 degrees C, consistent with cleavage of the enzyme from its GPI anchor. HPLC measurements indicated norepinephrine reduced levels of adenosine in the bath. In the apical face of the bovine-RPE eyecup, norepinephrine reduced the production of phosphate from 5'AMP, suggesting that both receptor and enzyme face sub-retinal space. In conclusion, RPE cells express ecto-5' nucleotidase, with activity on the apical membrane, and stimulation of alpha-1 adrenergic receptors downregulates activity. As epinephrine is released at light onset, and adenosine can inhibit phagocytosis, the corresponding decrease in subretinal adenosine levels may contribute to the enhanced the phagocytosis of rod outer segments that occurs at this time.
Collapse
|
40
|
Bours MJL, Swennen ELR, Di Virgilio F, Cronstein BN, Dagnelie PC. Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 2006; 112:358-404. [PMID: 16784779 DOI: 10.1016/j.pharmthera.2005.04.013] [Citation(s) in RCA: 782] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 04/20/2005] [Indexed: 02/07/2023]
Abstract
Human health is under constant threat of a wide variety of dangers, both self and nonself. The immune system is occupied with protecting the host against such dangers in order to preserve human health. For that purpose, the immune system is equipped with a diverse array of both cellular and non-cellular effectors that are in continuous communication with each other. The naturally occurring nucleotide adenosine 5'-triphosphate (ATP) and its metabolite adenosine (Ado) probably constitute an intrinsic part of this extensive immunological network through purinergic signaling by their cognate receptors, which are widely expressed throughout the body. This review provides a thorough overview of the effects of ATP and Ado on major immune cell types. The overwhelming evidence indicates that ATP and Ado are important endogenous signaling molecules in immunity and inflammation. Although the role of ATP and Ado during the course of inflammatory and immune responses in vivo appears to be extremely complex, we propose that their immunological role is both interdependent and multifaceted, meaning that the nature of their effects may shift from immunostimulatory to immunoregulatory or vice versa depending on extracellular concentrations as well as on expression patterns of purinergic receptors and ecto-enzymes. Purinergic signaling thus contributes to the fine-tuning of inflammatory and immune responses in such a way that the danger to the host is eliminated efficiently with minimal damage to healthy tissues.
Collapse
Affiliation(s)
- M J L Bours
- Maastricht University, Department of Epidemiology, Nutrition and Toxicology Research Institute Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
41
|
Hunsucker SA, Mitchell BS, Spychala J. The 5'-nucleotidases as regulators of nucleotide and drug metabolism. Pharmacol Ther 2005; 107:1-30. [PMID: 15963349 DOI: 10.1016/j.pharmthera.2005.01.003] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2005] [Indexed: 11/19/2022]
Abstract
The 5'-nucleotidases are a family of enzymes that catalyze the dephosphorylation of nucleoside monophosphates and regulate cellular nucleotide and nucleoside levels. While the nucleoside kinases responsible for the initial phosphorylation of salvaged nucleosides have been well studied, many of the catabolic nucleotidases have only recently been cloned and characterized. Aside from maintaining balanced ribo- and deoxyribonucleotide pools, substrate cycles that are formed with kinase and nucleotidase activities are also likely to regulate the activation of nucleoside analogues, a class of anticancer and antiviral agents that rely on the nucleoside kinases for phosphorylation to their active forms. Both clinical and in vitro studies suggest that an increase in nucleotidase activity can inhibit nucleoside analogue activation and result in drug resistance. The physiological role of the 5'-nucleotidases will be covered in this review, as will the evidence that these enzymes can mediate resistance to nucleoside analogues.
Collapse
Affiliation(s)
- Sally Anne Hunsucker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
42
|
Headrick JP, Hack B, Ashton KJ. Acute adenosinergic cardioprotection in ischemic-reperfused hearts. Am J Physiol Heart Circ Physiol 2003; 285:H1797-818. [PMID: 14561676 DOI: 10.1152/ajpheart.00407.2003] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cells of the cardiovascular system generate and release purine nucleoside adenosine in increasing quantities when constituent cells are "stressed" or subjected to injurious stimuli. This increased adenosine can interact with surface receptors in myocardial, vascular, fibroblast, and inflammatory cells to modulate cellular function and phenotype. Additionally, adenosine is rapidly reincorporated back into 5'-AMP to maintain the adenine nucleotide pool. Via these receptor-dependent and independent (metabolic) paths, adenosine can substantially modify the acute response to ischemic insult, in addition to generating a more sustained ischemia-tolerant phenotype (preconditioning). However, the molecular basis for acute adenosinergic cardioprotection remains incompletely understood and may well differ from more widely studied preconditioning. Here we review current knowledge and some controversies regarding acute cardioprotection via adenosine and adenosine receptor activation.
Collapse
Affiliation(s)
- John P Headrick
- Heart Foundation Research Centre, Griffith University, Southport, Queensland 4217, Australia.
| | | | | |
Collapse
|