1
|
Bobkova NV, Chuvakova LN, Kovalev VI, Zhdanova DY, Chaplygina AV, Rezvykh AP, Evgen'ev MB. A Mouse Model of Sporadic Alzheimer's Disease with Elements of Major Depression. Mol Neurobiol 2025; 62:1337-1358. [PMID: 38980563 DOI: 10.1007/s12035-024-04346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
After olfactory bulbectomy, animals are often used as a model of major depression or sporadic Alzheimer's disease and, hence, the status of this model is still disputable. To elucidate the nature of alterations in the expression of the genome after the operation, we analyzed transcriptomes of the cortex, hippocampus, and cerebellum of the olfactory bulbectomized (OBX) mice. Analysis of the functional significance of genes in the brain of OBX mice indicates that the balance of the GABA/glutamatergic systems is disturbed with hyperactivation of the latter in the hippocampus, leading to the development of excitotoxicity and induction of apoptosis in the background of severe mitochondrial dysfunction and astrogliosis. On top of this, the synthesis of neurotrophic factors decreases leading to the disruption of the cytoskeleton of neurons, an increase in the level of intracellular calcium, and the activation of tau protein hyperphosphorylation. Moreover, the acetylcholinergic system is deficient in the background of the hyperactivation of acetylcholinesterase. Importantly, the activity of the dopaminergic, endorphin, and opiate systems in OBX mice decreases, leading to hormonal dysfunction. On the other hand, genes responsible for the regulation of circadian rhythms, cell migration, and innate immunity are activated in OBX animals. All this takes place in the background of a drastic downregulation of ribosomal protein genes in the brain. The obtained results indicate that OBX mice represent a model of Alzheimer's disease with elements of major depression.
Collapse
Affiliation(s)
- N V Bobkova
- Institute of Cell Biophysics of the Russian Academy of Sciences-Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - L N Chuvakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - V I Kovalev
- Institute of Cell Biophysics of the Russian Academy of Sciences-Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - D Y Zhdanova
- Institute of Cell Biophysics of the Russian Academy of Sciences-Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - A V Chaplygina
- Institute of Cell Biophysics of the Russian Academy of Sciences-Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - A P Rezvykh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - M B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia.
| |
Collapse
|
2
|
Pang KS, Peng HB, Li BP, Wen B, Noh K, Xia R, Toscan A, Serson S, Fraser PE, Tirona RG, de Lannoy IAM. Aging and brain free cholesterol concentration on amyloid-β peptide accumulation in guinea pigs. Biopharm Drug Dispos 2024; 45:93-106. [PMID: 38488691 DOI: 10.1002/bdd.2386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 01/21/2024] [Accepted: 02/08/2024] [Indexed: 04/19/2024]
Abstract
Alzheimer's disease is a complex multifactorial neurodegenerative disorder wherein age is a major risk factor. The appropriateness of the Hartley guinea pig (GP), which displays high sequence homologies of its amyloid-β (Aβ40 and Aβ42) peptides, Mdr1 and APP (amyloid precursor protein) and similarity in lipid handling to humans, was appraised among 9-40 weeks old guinea pigs. Protein expression levels of P-gp (Abcb1) and Cyp46a1 (24(S)-hydroxylase) for Aβ40, and Aβ42 efflux and cholesterol metabolism, respectively, were decreased with age, whereas those for Lrp1 (low-density lipoprotein receptor related protein 1), Rage (receptor for advanced glycation endproducts) for Aβ efflux and influx, respectively, and Abca1 (the ATP binding cassette subfamily A member 1) for cholesterol efflux, were unchanged among the ages examined. There was a strong, negative correlation of the brain Aβ peptide concentrations and Abca1 protein expression levels with free cholesterol. The correlation of Aβ peptide concentrations with Cyp46a1 was, however, not significant, and concentrations of the 24(S)-hydroxycholesterol metabolite revealed a decreasing trend from 20 weeks old toward 40 weeks old guinea pigs. The composite data suggest a role for free cholesterol on brain Aβ accumulation. The decreases in P-gp and Lrp1 protein levels should further exacerbate the accumulation of Aβ peptides in guinea pig brain.
Collapse
Affiliation(s)
- K Sandy Pang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - H Benson Peng
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Betty P Li
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Binyu Wen
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Keumhan Noh
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Runyu Xia
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anja Toscan
- Transpharmation Canada, Mississauga, Ontario, Canada
| | - Sylvia Serson
- Transpharmation Canada, Mississauga, Ontario, Canada
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Rommel G Tirona
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
3
|
Polis B, Samson AO. Addressing the Discrepancies Between Animal Models and Human Alzheimer's Disease Pathology: Implications for Translational Research. J Alzheimers Dis 2024; 98:1199-1218. [PMID: 38517793 DOI: 10.3233/jad-240058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Animal models, particularly transgenic mice, are extensively used in Alzheimer's disease (AD) research to emulate key disease hallmarks, such as amyloid plaques and neurofibrillary tangles formation. Although these models have contributed to our understanding of AD pathogenesis and can be helpful in testing potential therapeutic interventions, their reliability is dubious. While preclinical studies have shown promise, clinical trials often yield disappointing results, highlighting a notable gap and disparity between animal models and human AD pathology. Existing models frequently overlook early-stage human pathologies and other key AD characteristics, thereby limiting their application in identifying optimal therapeutic interventions. Enhancing model reliability necessitates rigorous study design, comprehensive behavioral evaluations, and biomarker utilization. Overall, a nuanced understanding of each model's neuropathology, its fidelity to human AD, and its limitations is essential for accurate interpretation and successful translation of findings. This article analyzes the discrepancies between animal models and human AD pathology that complicate the translation of findings from preclinical studies to clinical applications. We also delve into AD pathogenesis and attributes to propose a new perspective on this pathology and deliberate over the primary limitations of key experimental models. Additionally, we discuss several fundamental problems that may explain the translational failures and suggest some possible directions for more effective preclinical studies.
Collapse
Affiliation(s)
- Baruh Polis
- Bar-Ilan University Azrieli Faculty of Medicine, Safed, Israel
| | | |
Collapse
|
4
|
Akhtar A, Gupta SM, Dwivedi S, Kumar D, Shaikh MF, Negi A. Preclinical Models for Alzheimer's Disease: Past, Present, and Future Approaches. ACS OMEGA 2022; 7:47504-47517. [PMID: 36591205 PMCID: PMC9798399 DOI: 10.1021/acsomega.2c05609] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
A robust preclinical disease model is a primary requirement to understand the underlying mechanisms, signaling pathways, and drug screening for human diseases. Although various preclinical models are available for several diseases, clinical models for Alzheimer's disease (AD) remain underdeveloped and inaccurate. The pathophysiology of AD mainly includes the presence of amyloid plaques and neurofibrillary tangles (NFT). Furthermore, neuroinflammation and free radical generation also contribute to AD. Currently, there is a wide gap in scientific approaches to preventing AD progression. Most of the available drugs are limited to symptomatic relief and improve deteriorating cognitive functions. To mimic the pathogenesis of human AD, animal models like 3XTg-AD and 5XFAD are the primarily used mice models in AD therapeutics. Animal models for AD include intracerebroventricular-streptozotocin (ICV-STZ), amyloid beta-induced, colchicine-induced, etc., focusing on parameters such as cognitive decline and dementia. Unfortunately, the translational rate of the potential drug candidates in clinical trials is poor due to limitations in imitating human AD pathology in animal models. Therefore, the available preclinical models possess a gap in AD modeling. This paper presents an outline that critically assesses the applicability and limitations of the current approaches in disease modeling for AD. Also, we attempted to provide key suggestions for the best-fit model to evaluate potential therapies, which might improve therapy translation from preclinical studies to patients with AD.
Collapse
Affiliation(s)
- Ansab Akhtar
- Department
of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand, Dehradun 248007, India
| | - Shraddha M. Gupta
- Department
of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand, Dehradun 248007, India
| | - Shubham Dwivedi
- Department
of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand, Dehradun 248007, India
| | - Devendra Kumar
- Faculty
of Pharmacy, DIT University, Uttarakhand, Dehradun 248009, India
| | - Mohd. Farooq Shaikh
- Neuropharmacology
Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia
| | - Arvind Negi
- Department
of Bioproducts and Biosystems, Aalto University, FI-00076 Espoo, Finland
- E-mail:
| |
Collapse
|
5
|
Wahl D, Moreno JA, Santangelo KS, Zhang Q, Afzali MF, Walsh MA, Musci RV, Cavalier AN, Hamilton KL, LaRocca TJ. Nontransgenic Guinea Pig Strains Exhibit Hallmarks of Human Brain Aging and Alzheimer's Disease. J Gerontol A Biol Sci Med Sci 2022; 77:1766-1774. [PMID: 35323931 PMCID: PMC9434446 DOI: 10.1093/gerona/glac073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Indexed: 11/14/2022] Open
Abstract
Older age is the primary risk factor for most chronic diseases, including Alzheimer's disease (AD). Current preclinical models to study brain aging and AD are mainly transgenic and harbor mutations intended to mirror brain pathologies associated with human brain aging/AD (eg, by increasing production of the amyloid precursor protein, amyloid beta [Aβ], and/or phosphorylated tau, all of which are key pathological mediators of AD). Although these models may provide insight on pathophysiological processes in AD, none completely recapitulate the disease and its strong age-dependence, and there has been limited success in translating preclinical results and treatments to humans. Here, we describe 2 nontransgenic guinea pig (GP) models, a standard PigmEnTed (PET) strain, and lesser-studied Dunkin-Hartley (DH) strain, that may naturally mimic key features of brain aging and AD in humans. We show that brain aging in PET GP is transcriptomically similar to human brain aging, whereas older DH brains are transcriptomically more similar to human AD. Both strains/models also exhibit increased neurofilament light chain (NFL, a marker of neuronal damage) with aging, and DH animals display greater S100 calcium-binding protein B (S100β), ionized calcium-binding adapter molecule 1 (Iba1), and Aβ and phosphorylated tau-which are all important markers of neuroinflammation-associated AD. Collectively, our results suggest that both the PET and DH GP may be useful, nontransgenic models to study brain aging and AD, respectively.
Collapse
Affiliation(s)
- Devin Wahl
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, USA
| | - Julie A Moreno
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Kelly S Santangelo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Qian Zhang
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
| | - Maryam F Afzali
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Maureen A Walsh
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
| | - Robert V Musci
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
| | - Alyssa N Cavalier
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
| | - Karyn L Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, USA
| | - Thomas J LaRocca
- Address correspondence to: Thomas J. LaRocca, PhD, Department of Health and Exercise Science, Center for Healthy Aging, Colorado State University, 1582 Campus Delivery, Fort Collins, CO 80523-1582, USA. E-mail:
| |
Collapse
|
6
|
Peng HB, de Lannoy IAM, Pang KS. Measuring Amyloid-β Peptide Concentrations in Murine Brain with Improved ELISA Assay. Curr Protoc 2021; 1:e253. [PMID: 34661993 DOI: 10.1002/cpz1.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The amyloid-β (Aβ) peptides of 40 and 42 amino acids that are implicated in Alzheimer's disease may potentially aggregate into toxic oligomers and form neuritic plaques. The enzyme-linked immunosorbent assay (ELISA) is a facile method used for the determination of Aβ concentrations in biological matrices, namely plasma, cerebrospinal fluid, and brain. The method is mostly used for the measurement of Aβ concentrations in transgenic mice, but it is unknown whether the ELISA method is suitable for measuring low, endogenous levels of Aβ in the brains of wild-type mice. The Aβ ELISA kit manufacturer recommends use of 5 M guanidine hydrochloride (GuHCl), a protein-denaturing agent, for homogenization of the brain tissue, followed by dilution back down to 0.1 M to avoid quenching by GuHCl. Components of brain matrices and GuHCl that could interfere with the quantitation have not been investigated. In this article, we describe an improved method involving homogenization of mouse brain with 1 M instead of 5 M GuHCl, reducing the dilution factor by 5× to provide a higher sensitivity. The modified ELISA assay is improved for the quantitation of brain Aβ peptides in wild-type mice, where Aβ peptide levels are much lower than those in transgenic mouse models. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- H Benson Peng
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | | | - K Sandy Pang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Kwon DJ, Lee YS, Shin D, Won KH, Song KD. Genome analysis of Yucatan miniature pigs to assess their potential as biomedical model animals. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 32:290-296. [PMID: 29879811 PMCID: PMC6325393 DOI: 10.5713/ajas.18.0170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/29/2018] [Indexed: 11/27/2022]
Abstract
Objective Pigs share many physiological, anatomical and genomic similarities with humans, which make them suitable models for biomedical researches. Understanding the genetic status of Yucatan miniature pigs (YMPs) and their association with human diseases will help to assess their potential as biomedical model animals. This study was performed to identify non-synonymous single nucleotide polymorphisms (nsSNPs) in selective sweep regions of the genome of YMPs and present the genetic nsSNP distributions that are potentially associated with disease occurrence in humans. Methods nsSNPs in whole genome resequencing data from 12 YMPs were identified and annotated to predict their possible effects on protein function. Sorting intolerant from tolerant (SIFT) and polymorphism phenotyping v2 analyses were used, and gene ontology (GO) network and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses were performed. Results The results showed that 8,462 genes, encompassing 72,067 nsSNPs were identified, and 118 nsSNPs in 46 genes were predicted as deleterious. GO network analysis classified 13 genes into 5 GO terms (p<0.05) that were associated with kidney development and metabolic processes. Seven genes encompassing nsSNPs were classified into the term associated with Alzheimer’s disease by referencing the genetic association database. The KEGG pathway analysis identified only one significantly enriched pathway (p<0.05), hsa04080: Neuroactive ligand-receptor interaction, among the transcripts. Conclusion The number of deleterious nsSNPs in YMPs was identified and then these variants-containing genes in YMPs data were adopted as the putative human diseases-related genes. The results revealed that many genes encompassing nsSNPs in YMPs were related to the various human genes which are potentially associated with kidney development and metabolic processes as well as human disease occurrence.
Collapse
Affiliation(s)
- Dae-Jin Kwon
- International Agricultural Development and Cooperation Center, Chonbuk National University, Jeonju 54896, Korea
| | - Yeong-Sup Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 54896, Korea
| | - Donghyun Shin
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 54896, Korea
| | - Kyeong-Hye Won
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 54896, Korea
| | - Ki-Duk Song
- International Agricultural Development and Cooperation Center, Chonbuk National University, Jeonju 54896, Korea.,Department of Animal Biotechnology, Chonbuk National University, Jeonju 54896, Korea.,The Animal Molecular Genetics and Breeding Center, Chonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
8
|
Hansen SN, Ipsen DH, Schou-Pedersen AM, Lykkesfeldt J, Tveden-Nyborg P. Long term Westernized diet leads to region-specific changes in brain signaling mechanisms. Neurosci Lett 2018; 676:85-91. [DOI: 10.1016/j.neulet.2018.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 12/14/2022]
|
9
|
Gulyaeva NV, Bobkova NV, Kolosova NG, Samokhin AN, Stepanichev MY, Stefanova NA. Molecular and Cellular Mechanisms of Sporadic Alzheimer's Disease: Studies on Rodent Models in vivo. BIOCHEMISTRY (MOSCOW) 2017; 82:1088-1102. [PMID: 29037130 DOI: 10.1134/s0006297917100029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this review, recent data are presented on molecular and cellular mechanisms of pathogenesis of the most widespread (about 95%) sporadic forms of Alzheimer's disease obtained on in vivo rodent models. Although none of the available models can fully reproduce the human disease, several key molecular mechanisms (such as dysfunction of neurotransmitter systems, especially of the acetylcholinergic system, β-amyloid toxicity, oxidative stress, neuroinflammation, mitochondrial dysfunction, disturbances in neurotrophic systems) are confirmed with different models. Injection models, olfactory bulbectomy, and senescence accelerated OXYS rats are reviewed in detail. These three approaches to in vivo modeling of sporadic Alzheimer's disease have demonstrated a considerable similarity in molecular and cellular mechanisms of pathology development. Studies on these models provide complementary data, and each model possesses its specific advantages. A general analysis of the data reported for the three models provides a multifaceted and the currently most complete molecular picture of sporadic Alzheimer's disease. This is highly relevant also from the practical viewpoint because it creates a basis for elaboration and preclinical studies of means for treatment of this disease.
Collapse
Affiliation(s)
- N V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.
| | | | | | | | | | | |
Collapse
|
10
|
Höfling C, Morawski M, Zeitschel U, Zanier ER, Moschke K, Serdaroglu A, Canneva F, von Hörsten S, De Simoni M, Forloni G, Jäger C, Kremmer E, Roßner S, Lichtenthaler SF, Kuhn P. Differential transgene expression patterns in Alzheimer mouse models revealed by novel human amyloid precursor protein-specific antibodies. Aging Cell 2016; 15:953-63. [PMID: 27470171 PMCID: PMC5013031 DOI: 10.1111/acel.12508] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2016] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD) is histopathologically characterized by neurodegeneration, the formation of intracellular neurofibrillary tangles and extracellular Aβ deposits that derive from proteolytic processing of the amyloid precursor protein (APP). As rodents do not normally develop Aβ pathology, various transgenic animal models of AD were designed to overexpress human APP with mutations favouring its amyloidogenic processing. However, these mouse models display tremendous differences in the spatial and temporal appearance of Aβ deposits, synaptic dysfunction, neurodegeneration and the manifestation of learning deficits which may be caused by age-related and brain region-specific differences in APP transgene levels. Consequentially, a comparative temporal and regional analysis of the pathological effects of Aβ in mouse brains is difficult complicating the validation of therapeutic AD treatment strategies in different mouse models. To date, no antibodies are available that properly discriminate endogenous rodent and transgenic human APP in brains of APP-transgenic animals. Here, we developed and characterized rat monoclonal antibodies by immunohistochemistry and Western blot that detect human but not murine APP in brains of three APP-transgenic mouse and one APP-transgenic rat model. We observed remarkable differences in expression levels and brain region-specific expression of human APP among the investigated transgenic mouse lines. This may explain the differences between APP-transgenic models mentioned above. Furthermore, we provide compelling evidence that our new antibodies specifically detect endogenous human APP in immunocytochemistry, FACS and immunoprecipitation. Hence, we propose these antibodies as standard tool for monitoring expression of endogenous or transfected APP in human cells and APP expression in transgenic animals.
Collapse
Affiliation(s)
- Corinna Höfling
- Paul Flechsig Institute for Brain ResearchUniversity of LeipzigLeipzigGermany
| | - Markus Morawski
- Paul Flechsig Institute for Brain ResearchUniversity of LeipzigLeipzigGermany
| | - Ulrike Zeitschel
- Paul Flechsig Institute for Brain ResearchUniversity of LeipzigLeipzigGermany
| | - Elisa R. Zanier
- Department of NeuroscienceIRCCSIstituto di Ricerche Farmacologiche Mario NegriMilanoItaly
| | - Katrin Moschke
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
| | - Alperen Serdaroglu
- Institute for Advanced StudyTechnische Universität MünchenGarchingGermany
- Institut für Pathologie und Pathologische AnatomieTechnische Universität MünchenMunichGermany
| | - Fabio Canneva
- Department of Experimental TherapyPräklinisches Experimentelles Tierzentrum (PETZ)Universitätsklinikum ErlangenErlangenGermany
| | - Stephan von Hörsten
- Department of Experimental TherapyPräklinisches Experimentelles Tierzentrum (PETZ)Universitätsklinikum ErlangenErlangenGermany
| | - Maria‐Grazia De Simoni
- Department of NeuroscienceIRCCSIstituto di Ricerche Farmacologiche Mario NegriMilanoItaly
| | - Gianluigi Forloni
- Department of NeuroscienceIRCCSIstituto di Ricerche Farmacologiche Mario NegriMilanoItaly
| | - Carsten Jäger
- Paul Flechsig Institute for Brain ResearchUniversity of LeipzigLeipzigGermany
| | - Elisabeth Kremmer
- Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthInstitute of Molecular ImmunologyMunichGermany
| | - Steffen Roßner
- Paul Flechsig Institute for Brain ResearchUniversity of LeipzigLeipzigGermany
| | - Stefan F. Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Institute for Advanced StudyTechnische Universität MünchenGarchingGermany
- Neuroproteomics, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Peer‐Hendrik Kuhn
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Institute for Advanced StudyTechnische Universität MünchenGarchingGermany
- Institut für Pathologie und Pathologische AnatomieTechnische Universität MünchenMunichGermany
- Neuroproteomics, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
| |
Collapse
|
11
|
Steffen J, Krohn M, Paarmann K, Schwitlick C, Brüning T, Marreiros R, Müller-Schiffmann A, Korth C, Braun K, Pahnke J. Revisiting rodent models: Octodon degus as Alzheimer's disease model? Acta Neuropathol Commun 2016; 4:91. [PMID: 27566602 PMCID: PMC5002178 DOI: 10.1186/s40478-016-0363-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/11/2016] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease primarily occurs as sporadic disease and is accompanied with vast socio-economic problems. The mandatory basic research relies on robust and reliable disease models to overcome increasing incidence and emerging social challenges. Rodent models are most efficient, versatile, and predominantly used in research. However, only highly artificial and mostly genetically modified models are available. As these 'engineered' models reproduce only isolated features, researchers demand more suitable models of sporadic neurodegenerative diseases. One very promising animal model was the South American rodent Octodon degus, which was repeatedly described as natural 'sporadic Alzheimer's disease model' with 'Alzheimer's disease-like neuropathology'. To unveil advantages over the 'artificial' mouse models, we re-evaluated the age-dependent, neurohistological changes in young and aged Octodon degus (1 to 5-years-old) bred in a wild-type colony in Germany. In our hands, extensive neuropathological analyses of young and aged animals revealed normal age-related cortical changes without obvious signs for extensive degeneration as seen in patients with dementia. Neither significant neuronal loss nor enhanced microglial activation were observed in aged animals. Silver impregnation methods, conventional, and immunohistological stains as well as biochemical fractionations revealed neither amyloid accumulation nor tangle formation. Phosphoepitope-specific antibodies against tau species displayed similar intraneuronal reactivity in both, young and aged Octodon degus.In contrast to previous results, our study suggests that Octodon degus born and bred in captivity do not inevitably develop cortical amyloidosis, tangle formation or neuronal loss as seen in Alzheimer's disease patients or transgenic disease models.
Collapse
|
12
|
Li JM, Cai Y, Liu F, Yang L, Hu X, Patrylo PR, Cai H, Luo XG, Xiao D, Yan XX. Experimental microembolism induces localized neuritic pathology in guinea pig cerebrum. Oncotarget 2016; 6:10772-85. [PMID: 25871402 PMCID: PMC4484418 DOI: 10.18632/oncotarget.3599] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/20/2015] [Indexed: 01/17/2023] Open
Abstract
Microbleeds are a common finding in aged human brains. In Alzheimer's disease (AD), neuritic plaques composed of β-amyloid (Aβ) deposits and dystrophic neurites occur frequently around cerebral vasculature, raising a compelling question as to whether, and if so, how, microvascular abnormality and amyloid/neuritic pathology might be causally related. Here we used a guinea pig model of cerebral microembolism to explore a potential inductive effect of vascular injury on neuritic and amyloid pathogenesis. Brains were examined 7-30 days after experimental microvascular embolization occupying ~0.5% of total cortical area. Compared to sham-operated controls, glial fibrillary acidic protein immunoreactivity was increased in the embolized cerebrum, evidently around intracortical vasculature. Swollen/sprouting neurites exhibiting increased reactivity of nicotinamide adenine dinucleotide phosphate diaphorase, parvalbumin, vesicular glutamate transporter 1 and choline acetyltransferase appeared locally in the embolized brains in proximity to intracortical vasculature. The embolization-induced swollen/sprouting neurites were also robustly immunoreactive for β-amyloid precursor protein and β-secretase-1, the substrate and initiating enzyme for Aβ genesis. These experimental data suggest that microvascular injury can induce multisystem neuritic pathology associated with an enhanced amyloidogenic potential in wild-type mammalian brain.
Collapse
Affiliation(s)
- Jian-Ming Li
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, Hunan, China.,Neuroscience Research Center, Changsha Medical University, Changsha, Hunan, China
| | - Yan Cai
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, Hunan, China
| | - Fei Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - La Yang
- Neuroscience Research Center, Changsha Medical University, Changsha, Hunan, China
| | - Xia Hu
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, Hunan, China
| | - Peter R Patrylo
- Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Huaibin Cai
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Xue-Gang Luo
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, Hunan, China
| | - Dong Xiao
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, Hunan, China
| |
Collapse
|
13
|
Salazar C, Valdivia G, Ardiles ÁO, Ewer J, Palacios AG. Genetic variants associated with neurodegenerative Alzheimer disease in natural models. Biol Res 2016; 49:14. [PMID: 26919851 PMCID: PMC4769573 DOI: 10.1186/s40659-016-0072-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/12/2016] [Indexed: 01/05/2023] Open
Abstract
The use of transgenic models for the study of neurodegenerative diseases has made valuable contributions to the field. However, some important limitations, including protein overexpression and general systemic compensation for the missing genes, has caused researchers to seek natural models that show the main biomarkers of neurodegenerative diseases during aging. Here we review some of these models-most of them rodents, focusing especially on the genetic variations in biomarkers for Alzheimer diseases, in order to explain their relationships with variants associated with the occurrence of the disease in humans.
Collapse
Affiliation(s)
- Claudia Salazar
- Facultad de Ciencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.
| | - Gonzalo Valdivia
- Facultad de Ciencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.
| | - Álvaro O Ardiles
- Facultad de Ciencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.
| | - John Ewer
- Facultad de Ciencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.
| | - Adrián G Palacios
- Facultad de Ciencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile. .,Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Pasaje Harrington 287, Playa Ancha, 2360102, Valparaíso, Chile.
| |
Collapse
|
14
|
Bird SM, Sohrabi HR, Sutton TA, Weinborn M, Rainey-Smith SR, Brown B, Patterson L, Taddei K, Gupta V, Carruthers M, Lenzo N, Knuckey N, Bucks RS, Verdile G, Martins RN. Cerebral amyloid-β accumulation and deposition following traumatic brain injury--A narrative review and meta-analysis of animal studies. Neurosci Biobehav Rev 2016; 64:215-28. [PMID: 26899257 DOI: 10.1016/j.neubiorev.2016.01.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/15/2016] [Indexed: 10/22/2022]
Abstract
Traumatic brain injury (TBI) increases the risk of neurodegenerative disorders many years post-injury. However, molecular mechanisms underlying the relationship between TBI and neurodegenerative diseases, such as Alzheimer's disease (AD), remain to be elucidated. Nevertheless, previous studies have demonstrated a link between TBI and increased amyloid-β (Aβ), a protein involved in AD pathogenesis. Here, we review animal studies that measured Aβ levels following TBI. In addition, from a pool of initially identified 1209 published papers, we examined data from 19 eligible animal model studies using a meta-analytic approach. We found an acute increase in cerebral Aβ levels ranging from 24h to one month following TBI (overall log OR=2.97 ± 0.40, p<0.001). These findings may contribute to further understanding the relationship between TBI and future dementia risk. The methodological inconsistencies of the studies discussed in this review suggest the need for improved and more standardised data collection and study design, in order to properly elucidate the role of TBI in the expression and accumulation of Aβ.
Collapse
Affiliation(s)
- Sabine M Bird
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Hamid R Sohrabi
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia; Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Thomas A Sutton
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia
| | - Michael Weinborn
- Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia; School of Psychology, University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia
| | - Stephanie R Rainey-Smith
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Belinda Brown
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Leigh Patterson
- Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Kevin Taddei
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Veer Gupta
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Malcolm Carruthers
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; Centre for Men's Health, 96 Harley Street, London, W1G 7HY, United Kingdom
| | - Nat Lenzo
- Oceanic Medical Imaging, Hollywood Medical Centre, 85 Monash Avenue, Nedlands, 6009 WA, Australia
| | - Neville Knuckey
- Centre for Neuromuscular and Neurological Disorders (CNND), University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia
| | - Romola S Bucks
- School of Psychology, University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia
| | - Giuseppe Verdile
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia; Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Kent Street, Bentley, 6102 WA, Australia
| | - Ralph N Martins
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, 35 Stirling Hwy, Crawley, 6009 WA, Australia; Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), 115 Monash Avenue, Nedlands, 6009 WA, Australia.
| |
Collapse
|
15
|
Li X, Bao X, Wang R. Experimental models of Alzheimer's disease for deciphering the pathogenesis and therapeutic screening (Review). Int J Mol Med 2015; 37:271-83. [PMID: 26676932 DOI: 10.3892/ijmm.2015.2428] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 12/02/2015] [Indexed: 11/06/2022] Open
Abstract
Despite decades of laboratory and clinical research, Alzheimer's disease (AD) is still the leading cause of dementia in adults and there are no curative therapies currently available for this disease. This may be due to the pathological features of AD, which include extensive extracellular amyloid plaques and intracellular neurofibrillary tangles, as well as subsequent neuronal and synaptic loss, which begin to appear several years prior to memory loss and the damge is already irreversible and extensive at the time of clinical diagnosis. The poor therapeutic effects of current treatments necessitate the introduction of experimental models able to replicate AD pathology, particularly in the pre-symptomatic stage, and then to explore preventive and therapeutic strategies. In response to this necessity, various experimental models reproducing human AD pathology have been developed, which are also useful tools for therapeutic screening. Although none of these models fully reproduce the key features of human AD, the experimental models do provide important insight into the pathological changes which occur in AD. This review summarizes the commonly used experimental models of AD and also discusses how the models may be used to decipher the pathogenesis underlying AD and to screen novel therapies for this disease.
Collapse
Affiliation(s)
- Xueyuan Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongdan, Dong Cheng, Beijing 100005, P.R. China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongdan, Dong Cheng, Beijing 100005, P.R. China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongdan, Dong Cheng, Beijing 100005, P.R. China
| |
Collapse
|
16
|
Hook G, Yu J, Toneff T, Kindy M, Hook V. Brain pyroglutamate amyloid-β is produced by cathepsin B and is reduced by the cysteine protease inhibitor E64d, representing a potential Alzheimer's disease therapeutic. J Alzheimers Dis 2015; 41:129-49. [PMID: 24595198 DOI: 10.3233/jad-131370] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pyroglutamate amyloid-β peptides (pGlu-Aβ) are particularly pernicious forms of amyloid-β peptides (Aβ) present in Alzheimer's disease (AD) brains. pGlu-Aβ peptides are N-terminally truncated forms of full-length Aβ peptides (flAβ(1-40/42)) in which the N-terminal glutamate is cyclized to pyroglutamate to generate pGlu-Aβ(3-40/42). β-secretase cleavage of amyloid-β precursor protein (AβPP) produces flAβ(1-40/42), but it is not yet known whether the β-secretase BACE1 or the alternative β-secretase cathepsin B (CatB) participate in the production of pGlu-Aβ. Therefore, this study examined the effects of gene knockout of these proteases on brain pGlu-Aβ levels in transgenic AβPPLon mice, which express AβPP isoform 695 and have the wild-type (wt) β-secretase activity found in most AD patients. Knockout or overexpression of the CatB gene reduced or increased, respectively, pGlu-Aβ(3-40/42), flAβ(1-40/42), and pGlu-Aβ plaque load, but knockout of the BACE1 gene had no effect on those parameters in the transgenic mice. Treatment of AβPPLon mice with E64d, a cysteine protease inhibitor of CatB, also reduced brain pGlu-Aβ(3-42), flAβ(1-40/42), and pGlu-Aβ plaque load. Treatment of neuronal-like chromaffin cells with CA074Me, an inhibitor of CatB, resulted in reduced levels of pGlu-Aβ(3-40) released from the activity-dependent, regulated secretory pathway. Moreover, CatB knockout and E64d treatment has been previously shown to improve memory deficits in the AβPPLon mice. These data illustrate the role of CatB in producing pGlu-Aβ and flAβ that participate as key factors in the development of AD. The advantages of CatB inhibitors, especially E64d and its derivatives, as alternatives to BACE1 inhibitors in treating AD patients are discussed.
Collapse
Affiliation(s)
- Gregory Hook
- American Life Science Pharmaceuticals, La Jolla, CA, USA
| | - Jin Yu
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Thomas Toneff
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of Neurosciences and Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Mark Kindy
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of Neurosciences and Pharmacology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
17
|
Cheng XR, Zhou WX, Zhang YX. The behavioral, pathological and therapeutic features of the senescence-accelerated mouse prone 8 strain as an Alzheimer's disease animal model. Ageing Res Rev 2014; 13:13-37. [PMID: 24269312 DOI: 10.1016/j.arr.2013.10.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 10/10/2013] [Accepted: 10/30/2013] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a widespread and devastating progressive neurodegenerative disease. Disease-modifying treatments remain beyond reach, and the etiology of the disease is uncertain. Animal model are essential for identifying disease mechanisms and developing effective therapeutic strategies. Research on AD is currently being carried out in rodent models. The most common transgenic mouse model mimics familial AD, which accounts for a small percentage of cases. The senescence-accelerated mouse prone 8 (SAMP8) strain is a spontaneous animal model of accelerated aging. Many studies indicate that SAMP8 mice harbor the behavioral and histopathological signatures of AD, namely AD-like cognitive and behavioral alterations, neuropathological phenotypes (neuron and dendrite spine loss, spongiosis, gliosis and cholinergic deficits in the forebrain), β-amyloid deposits resembling senile plaques, and aberrant hyperphosphorylation of Tau-like neurofibrillary tangles. SAMP8 mice are useful in the development of novel therapies, and many pharmacological agents and approaches are effective in SAMP8 mice. SAMP8 mice are considered a robust model for exploring the etiopathogenesis of sporadic AD and a plausible experimental model for developing preventative and therapeutic treatments for late-onset/age-related AD, which accounts for the vast majority of cases.
Collapse
Affiliation(s)
- Xiao-rui Cheng
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Wen-xia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Yong-xiang Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
18
|
Bates K, Vink R, Martins R, Harvey A. Aging, cortical injury and Alzheimer's disease-like pathology in the guinea pig brain. Neurobiol Aging 2013; 35:1345-51. [PMID: 24360504 DOI: 10.1016/j.neurobiolaging.2013.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 10/26/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized histopathologically by the abnormal deposition of the proteins amyloid-beta (Aβ) and tau. A major issue for AD research is the lack of an animal model that accurately replicates the human disease, thus making it difficult to investigate potential risk factors for AD such as head injury. Furthermore, as age remains the strongest risk factor for most of the AD cases, transgenic models in which mutant human genes are expressed throughout the life span of the animal provide only limited insight into age-related factors in disease development. Guinea pigs (Cavia porcellus) are of interest in AD research because they have a similar Aβ sequence to humans and thus may present a useful non-transgenic animal model of AD. Brains from guinea pigs aged 3-48 months were examined to determine the presence of age-associated AD-like pathology. In addition, fluid percussion-induced brain injury was performed to characterize mechanisms underlying the association between AD risk and head injury. No statistically significant changes were detected in the overall response to aging, although we did observe some region-specific changes. Diffuse deposits of Aβ were found in the hippocampal region of the oldest animals and alterations in amyloid precursor protein processing and tau immunoreactivity were observed with age. Brain injury resulted in a strong and sustained increase in amyloid precursor protein and tau immunoreactivity without Aβ deposition, over 7 days. Guinea pigs may therefore provide a useful model for investigating the influence of environmental and non-genetic risk factors on the pathogenesis of AD.
Collapse
Affiliation(s)
- Kristyn Bates
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia; School of Psychiatry and Clinical Neuroscience, The University of Western Australia, Crawley, Western Australia, Australia; The McCusker Foundation for Alzheimer's Disease Research Inc, Nedlands, Western Australia, Australia.
| | - Robert Vink
- School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Ralph Martins
- School of Psychiatry and Clinical Neuroscience, The University of Western Australia, Crawley, Western Australia, Australia; The McCusker Foundation for Alzheimer's Disease Research Inc, Nedlands, Western Australia, Australia; School of Medical Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Alan Harvey
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
19
|
Sharman MJ, Moussavi Nik SH, Chen MM, Ong D, Wijaya L, Laws SM, Taddei K, Newman M, Lardelli M, Martins RN, Verdile G. The Guinea Pig as a Model for Sporadic Alzheimer's Disease (AD): The Impact of Cholesterol Intake on Expression of AD-Related Genes. PLoS One 2013; 8:e66235. [PMID: 23805206 PMCID: PMC3689723 DOI: 10.1371/journal.pone.0066235] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/02/2013] [Indexed: 11/25/2022] Open
Abstract
We investigated the guinea pig, Cavia porcellus, as a model for Alzheimer’s disease (AD), both in terms of the conservation of genes involved in AD and the regulatory responses of these to a known AD risk factor - high cholesterol intake. Unlike rats and mice, guinea pigs possess an Aβ peptide sequence identical to human Aβ. Consistent with the commonality between cardiovascular and AD risk factors in humans, we saw that a high cholesterol diet leads to up-regulation of BACE1 (β-secretase) transcription and down-regulation of ADAM10 (α-secretase) transcription which should increase release of Aβ from APP. Significantly, guinea pigs possess isoforms of AD-related genes found in humans but not present in mice or rats. For example, we discovered that the truncated PS2V isoform of human PSEN2, that is found at raised levels in AD brains and that increases γ-secretase activity and Aβ synthesis, is not uniquely human or aberrant as previously believed. We show that PS2V formation is up-regulated by hypoxia and a high-cholesterol diet while, consistent with observations in humans, Aβ concentrations are raised in some brain regions but not others. Also like humans, but unlike mice, the guinea pig gene encoding tau, MAPT, encodes isoforms with both three and four microtubule binding domains, and cholesterol alters the ratio of these isoforms. We conclude that AD-related genes are highly conserved and more similar to human than the rat or mouse. Guinea pigs represent a superior rodent model for analysis of the impact of dietary factors such as cholesterol on the regulation of AD-related genes.
Collapse
Affiliation(s)
- Mathew J. Sharman
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
- School of Human Life Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Seyyed H. Moussavi Nik
- Discipline of Genetics, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, Australia
| | - Mengqi M. Chen
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | - Daniel Ong
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | - Linda Wijaya
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | - Simon M. Laws
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | - Kevin Taddei
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
- Sir James McCusker Alzheimer’s Disease Research Unit, Hollywood Private Hospital, Nedlands, WA, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
| | - Morgan Newman
- Discipline of Genetics, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, Australia
| | - Michael Lardelli
- Discipline of Genetics, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, Australia
| | - Ralph N. Martins
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
- Sir James McCusker Alzheimer’s Disease Research Unit, Hollywood Private Hospital, Nedlands, WA, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
| | - Giuseppe Verdile
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
- Sir James McCusker Alzheimer’s Disease Research Unit, Hollywood Private Hospital, Nedlands, WA, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
- * E-mail:
| |
Collapse
|
20
|
Hunt KW, Cook AW, Watts RJ, Clark CT, Vigers G, Smith D, Metcalf AT, Gunawardana IW, Burkard M, Cox AA, Geck Do MK, Dutcher D, Thomas AA, Rana S, Kallan NC, DeLisle RK, Rizzi JP, Regal K, Sammond D, Groneberg R, Siu M, Purkey H, Lyssikatos JP, Marlow A, Liu X, Tang TP. Spirocyclic β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors: from hit to lowering of cerebrospinal fluid (CSF) amyloid β in a higher species. J Med Chem 2013; 56:3379-403. [PMID: 23537249 DOI: 10.1021/jm4002154] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A hallmark of Alzheimer's disease is the brain deposition of amyloid beta (Aβ), a peptide of 36-43 amino acids that is likely a primary driver of neurodegeneration. Aβ is produced by the sequential cleavage of APP by BACE1 and γ-secretase; therefore, inhibition of BACE1 represents an attractive therapeutic target to slow or prevent Alzheimer's disease. Herein we describe BACE1 inhibitors with limited molecular flexibility and molecular weight that decrease CSF Aβ in vivo, despite efflux. Starting with spirocycle 1a, we explore structure-activity relationships of core changes, P3 moieties, and Asp binding functional groups in order to optimize BACE1 affinity, cathepsin D selectivity, and blood-brain barrier (BBB) penetration. Using wild type guinea pig and rat, we demonstrate a PK/PD relationship between free drug concentrations in the brain and CSF Aβ lowering. Optimization of brain exposure led to the discovery of (R)-50 which reduced CSF Aβ in rodents and in monkey.
Collapse
Affiliation(s)
- Kevin W Hunt
- Array BioPharma, 3200 Walnut Street, Boulder, CO 80301, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Experimental animals in biomedical research provide insights into disease mechanisms and models for determining the efficacy and safety of new therapies and for discovery of corresponding biomarkers. Although mouse and rat models are most widely used, observations in these species cannot always be faithfully extrapolated to human patients. Thus, a number of domestic species are additionally used in specific disease areas. This review summarizes the most important applications of domestic animal models and emphasizes the new possibilities genetic tailoring of disease models, specifically in pigs, provides.
Collapse
Affiliation(s)
- A Bähr
- Chair for Molecular Animal Breeding and Biotechnology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | | |
Collapse
|
22
|
Kindy MS, Yu J, Zhu H, El-Amouri SS, Hook V, Hook GR. Deletion of the cathepsin B gene improves memory deficits in a transgenic ALZHeimer's disease mouse model expressing AβPP containing the wild-type β-secretase site sequence. J Alzheimers Dis 2012; 29:827-40. [PMID: 22337825 DOI: 10.3233/jad-2012-111604] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Therapeutic agents that improve the memory loss of Alzheimer's disease (AD) may eventually be developed if drug targets are identified that improve memory deficits in appropriate AD animal models. One such target is β-secretase which, in most AD patients, cleaves the wild-type (WT) β-secretase site sequence of the amyloid-β protein precursor (AβPP) to produce neurotoxic amyloid-β (Aβ). Thus, an animal model representing most AD patients for evaluating β-secretase effects on memory deficits is one that expresses human AβPP containing the WT β-secretase site sequence. BACE1 and cathepsin B (CatB) proteases have β-secretase activity, but gene knockout studies have not yet validated that the absence of these proteases improves memory deficits in such an animal model. This study assessed the effects of deleting these protease genes on memory deficits in the AD mouse model expressing human AβPP containing the WT β-secretase site sequence and the London γ-secretase site (AβPPWT/Lon mice). Knockout of the CatB gene in the AβPPWT/Lon mice improved memory deficits and altered the pattern of Aβ-related biomarkers in a manner consistent with CatB having WT β-secretase activity. But deletion of the BACE1 gene had no effect on these parameters in the AβPPWT/Lon mice. These data are the first to show that knockout of a putative β-secretase gene results in improved memory in an AD animal model expressing the WT β-secretase site sequence of AβPP, present in the majority of AD patients. CatB may be an effective drug target for improving memory deficits in most AD patients.
Collapse
Affiliation(s)
- Mark S Kindy
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Postsynaptic dysfunction is associated with spatial and object recognition memory loss in a natural model of Alzheimer's disease. Proc Natl Acad Sci U S A 2012; 109:13835-40. [PMID: 22869717 DOI: 10.1073/pnas.1201209109] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder associated with progressive memory loss, severe dementia, and hallmark neuropathological markers, such as deposition of amyloid-β (Aβ) peptides in senile plaques and accumulation of hyperphosphorylated tau proteins in neurofibrillary tangles. Recent evidence obtained from transgenic mouse models suggests that soluble, nonfibrillar Aβ oligomers may induce synaptic failure early in AD. Despite their undoubted value, these transgenic models rely on genetic manipulations that represent the inherited and familial, but not the most abundant, sporadic form of AD. A nontransgenic animal model that still develops hallmarks of AD would be an important step toward understanding how sporadic AD is initiated. Here we show that starting between 12 and 36 mo of age, the rodent Octodon degus naturally develops neuropathological signs of AD, such as accumulation of Aβ oligomers and phosphorylated tau proteins. Moreover, age-related changes in Aβ oligomers and tau phosphorylation levels are correlated with decreases in spatial and object recognition memory, postsynaptic function, and synaptic plasticity. These findings validate O. degus as a suitable natural model for studying how sporadic AD may be initiated.
Collapse
|
24
|
Sabbagh JJ, Kinney JW, Cummings JL. Animal systems in the development of treatments for Alzheimer's disease: challenges, methods, and implications. Neurobiol Aging 2012; 34:169-83. [PMID: 22464953 DOI: 10.1016/j.neurobiolaging.2012.02.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/25/2012] [Accepted: 02/26/2012] [Indexed: 11/18/2022]
Abstract
Substantial resources and effort have been invested into the development of therapeutic agents for Alzheimer's disease (AD) with mixed and limited success. Research into the etiology of AD with animal models mimicking aspects of the disorder has substantially contributed to the advancement of potential therapies. Although these models have shown utility in testing novel therapeutic candidates, large variability still exists in terms of methodology and how the models are utilized. No model has yet predicted a successful disease-modifying therapy for AD. This report reviews several of the widely accepted transgenic and nontransgenic animal models of AD, highlighting the pathological and behavioral characteristics of each. Methodological considerations for conducting preclinical animal research are discussed, such as which behavioral tasks and histological markers may be associated with the greatest insight into therapeutic benefit. An overview of previous and current therapeutic interventions being investigated in AD models is presented, with an emphasis on factors that may have contributed to failure in past clinical trials. Finally, we propose a multitiered approach for investigating candidate therapies for AD that may reduce the likelihood of inappropriate conclusions from models and failed trials in humans.
Collapse
Affiliation(s)
- Jonathan J Sabbagh
- Behavioral Neuroscience Laboratory, University of Nevada, Las Vegas, NV, USA
| | | | | |
Collapse
|
25
|
Hook G, Hook V, Kindy M. The cysteine protease inhibitor, E64d, reduces brain amyloid-β and improves memory deficits in Alzheimer's disease animal models by inhibiting cathepsin B, but not BACE1, β-secretase activity. J Alzheimers Dis 2012; 26:387-408. [PMID: 21613740 DOI: 10.3233/jad-2011-110101] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cysteine protease cathepsin B is a potential drug target for reducing brain amyloid-β (Aβ) and improving memory in Alzheimer's disease (AD), as reduction of cathepsin B in transgenic mice expressing human wild-type amyloid-β protein precursor (AβPP) results in significantly decreased brain Aβ. Cathepsin B cleaves the wild-type β-secretase site sequence in AβPP to produce Aβ, and cathepsin B inhibitors administered to animal models expressing AβPP containing the wild-type β-secretase site sequence reduce brain Aβ in a manner consistent with β-secretase inhibition. But such inhibitors could act either by direct inhibition of cathepsin B β-secretase activity or by off-target inhibition of the other β-secretase, the aspartyl protease BACE1. To evaluate that issue, we orally administered a cysteine protease inhibitor, E64d, to normal guinea pigs or transgenic mice expressing human AβPP, both of which express the human wild-type β-secretase site sequence. In guinea pigs, oral E64d administration caused a dose-dependent reduction of up to 92% in brain, CSF, and plasma of Aβ40 and Aβ42, a reduction of up to 50% in the C-terminal β-secretase fragment (CTFβ), and a 91% reduction in brain cathepsin B activity, but increased brain BACE1 activity by 20%. In transgenic AD mice, oral E64d administration improved memory deficits and reduced brain Aβ40 and Aβ42, amyloid plaque, brain CTFβ, and brain cathepsin B activity, but increased brain BACE1 activity. We conclude that E64d likely reduces brain Aβ by inhibiting cathepsin B and not BACE1 β-secretase activity and that E64d therefore may have potential for treating AD patients.
Collapse
Affiliation(s)
- Gregory Hook
- American Life Science Pharmaceuticals, San Diego, CA 92109, USA.
| | | | | |
Collapse
|
26
|
Ionov ID, Pushinskaya II. Amyloid-beta production in aged guinea pigs: atropine-induced enhancement is reversed by naloxone. Neurosci Lett 2010; 480:83-6. [PMID: 20540990 DOI: 10.1016/j.neulet.2010.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/15/2010] [Accepted: 06/02/2010] [Indexed: 11/29/2022]
Abstract
Advanced age, cholinergic deficit, and elevated brain levels of enkephalin are associated with sporadic Alzheimer's disease. The influence of these factors on production of amyloidogenic peptides (Abeta) is uncertain. In the present experiments, the levels of 40/42 amino acid-residue Abeta were measured in the brain cortex of guinea pigs aged 15-16 weeks (young) and 25-26 months (aged). As was found, injections of atropine (21 days, 5mg/kg/day) increase Abeta levels in aged but not young animals. This atropine-induced effect was antagonized by simultaneous injections of naloxone (3mg/kg/day) whereas naloxone alone failed to affect Abeta accumulation. These results are discussed in the light of a possible "acetylcholine - Abeta" feedback loop and an influence of enkephalin on the loop function.
Collapse
Affiliation(s)
- Ilya D Ionov
- Centre on Theoretical Problems in Physical and Chemical Pharmacology, Russian Academy of Sciences, Leninsky Prospect 123-4-63, Moscow 117513, Russia.
| | | |
Collapse
|
27
|
Blanc F, Poisbeau P, Sellal F, Tranchant C, de Seze J, André G. [Alzheimer disease, memory and estrogen]. Rev Neurol (Paris) 2010; 166:377-88. [PMID: 19836813 DOI: 10.1016/j.neurol.2009.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Revised: 04/18/2009] [Accepted: 07/15/2009] [Indexed: 11/19/2022]
Abstract
Epidemiological studies of Alzheimer disease have shown a higher prevalence of women. Some data argue for a link between Alzheimer disease and the decrease of estrogen in post-menopausal women. Animal studies have shown a beneficial effect of estrogen on memory with a decrease of amyloid deposition in models of AD, whereas estrogen has a positive effect on BDNF. Six studies have shown a positive effect of estrogen therapy on memory and studies on structural and functional imaging have shown a beneficial effect of estrogens but the largest study on prevention of dementia with estrogens (WHI) showed a deleterious effect. To better understand this paradoxical situation, we reviewed the literature on estrogens, memory and Alzheimer disease. We first discuss the promnesic effect of estrogen on mice and rats, second the neuroprotector effect of estrogen on animal models of Alzheimer disease, and third the available human studies. We hypothesize a link with the time of instauration of the estrogen treatment. Nevertheless this hypothesis remains to be demonstrated.
Collapse
Affiliation(s)
- F Blanc
- Service de Neuropsychologie, Département de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
28
|
Dosunmu R, Wu J, Adwan L, Maloney B, Basha MR, McPherson CA, Harry GJ, Rice DC, Zawia NH, Lahiri DK. Lifespan profiles of Alzheimer's disease-associated genes and products in monkeys and mice. J Alzheimers Dis 2010; 18:211-30. [PMID: 19584442 DOI: 10.3233/jad-2009-1138] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is characterized by plaques of amyloid-beta (Abeta) peptide, cleaved from amyloid-beta protein precursor (AbetaPP). Our hypothesis is that lifespan profiles of AD-associated mRNA and protein levels in monkeys would differ from mice and that differential lifespan expression profiles would be useful to understand human AD pathogenesis. We compared profiles of AbetaPP mRNA, AbetaPP protein, and Abeta levels in rodents and primates. We also tracked a transcriptional regulator of the AbetaPP gene, specificity protein 1 (SP1), and the beta amyloid precursor cleaving enzyme (BACE1). In mice, AbetaPP and SP1 mRNA and their protein products were elevated late in life; Abeta levels declined in old age. In monkeys, SP1, AbetaPP, and BACE1 mRNA declined in old age, while protein products and Abeta levels rose. Proteolytic processing in both species did not match production of Abeta. In primates, AbetaPP and SP1 mRNA levels coordinate, but an inverse relationship exists with corresponding protein products as well as Abeta levels. Comparison of human DNA and mRNA sequences to monkey and mouse counterparts revealed structural features that may explain differences in transcriptional and translational processing. These findings are important for selecting appropriate models for AD and other age-related diseases.
Collapse
Affiliation(s)
- Remi Dosunmu
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lewejohann L, Pickel T, Sachser N, Kaiser S. Wild genius - domestic fool? Spatial learning abilities of wild and domestic guinea pigs. Front Zool 2010; 7:9. [PMID: 20334697 PMCID: PMC2859863 DOI: 10.1186/1742-9994-7-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 03/25/2010] [Indexed: 11/10/2022] Open
Abstract
Background Domestic animals and their wild relatives differ in a wide variety of aspects. The process of domestication of the domestic guinea pig (Cavia aperea f. porcellus), starting at least 4500 years ago, led to changes in the anatomy, physiology, and behaviour compared with their wild relative, the wild cavy, Cavia aperea. Although domestic guinea pigs are widely used as a laboratory animal, learning and memory capabilities are often disregarded as being very scarce. Even less is known about learning and memory of wild cavies. In this regard, one striking domestic trait is a reduction in relative brain size, which in the domesticated form of the guinea pig amounts to 13%. However, the common belief, that such a reduction of brain size in the course of domestication of different species is accomplished by less learning capabilities is not at all very well established in the literature. Indeed, domestic animals might also even outperform their wild conspecifics taking advantage of their adaptation to a man-made environment. In our study we compared the spatial learning abilities of wild and domestic guinea pigs. We expected that the two forms are different regarding their learning performance possibly related to the process of domestication. Therefore wild cavies as well as domestic guinea pigs of both sexes, aged 35 to 45 days, were tested in the Morris water maze to investigate their ability of spatial learning. Results Both, wild cavies and domestic guinea pigs were able to learn the task, proving the water maze to be a suitable test also for wild cavies. Regarding the speed of learning, male as well as female domestic guinea pigs outperformed their wild conspecifics significantly. Interestingly, only domestic guinea pigs showed a significant spatial association of the platform position, while other effective search strategies were used by wild cavies. Conclusion The results demonstrate that domestic guinea pigs do not at all perform worse than their wild relatives in tests of spatial learning abilities. Yet, the contrary seems to be true. Hence, artificial selection and breeding did not lead to a cognitive decline but rather to an adaptation to man-made environment that allows solving the task more efficiently.
Collapse
Affiliation(s)
- Lars Lewejohann
- Department of Behavioural Biology, University of Münster, 48149 Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany
| | - Thorsten Pickel
- Department of Behavioural Biology, University of Münster, 48149 Münster, Germany
| | - Norbert Sachser
- Department of Behavioural Biology, University of Münster, 48149 Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, 48149 Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany
| |
Collapse
|
30
|
Kaminsky YG, Marlatt MW, Smith MA, Kosenko EA. Subcellular and metabolic examination of amyloid-beta peptides in Alzheimer disease pathogenesis: evidence for Abeta(25-35). Exp Neurol 2009; 221:26-37. [PMID: 19751725 DOI: 10.1016/j.expneurol.2009.09.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 09/03/2009] [Accepted: 09/04/2009] [Indexed: 11/28/2022]
Abstract
Amyloid-beta peptide (Abeta) is a central player in the pathogenesis and diagnosis of Alzheimer disease. It aggregates to form the core of Alzheimer disease-associated plaques found in coordination with tau deposits in diseased individuals. Despite this clinical relevance, no single hypothesis satisfies and explicates the role of Abeta in toxicity and progression of the disease. To explore this area, investigators have focused on mechanisms of cellular dysfunction, aggregation, and maladaptive responses. Extensive research has been conducted using various methodologies to investigate Abeta peptides and oligomers, and these multiple facets have provided a wealth of data from specific models. Notably, the utility of each experiment must be considered in regards to the brain environment. The use of Abeta(25-35) in studies of cellular dysfunction has provided data indicating that the peptide is indeed responsible for multiple disturbances to cellular integrity. We will review how Abeta peptide induces oxidative stress and calcium homeostasis, and how multiple enzymes are deleteriously impacted by Abeta(25-35). Understanding and discussing the origin and properties of Abeta peptides is essential to evaluating their effects on various intracellular metabolic processes. Attention will also be specifically directed to metabolic compartmentation in affected brain cells, including mitochondrial, cytosolic, nuclear, and lysosomal enzymes.
Collapse
Affiliation(s)
- Yury G Kaminsky
- Institute of Theoretical and Experimental Biophysics, RAS, Pushchino, Russia.
| | | | | | | |
Collapse
|
31
|
Abstract
The most common animal models currently used for Alzheimer disease (AD) research are transgenic mice that express a mutant form of human Aβ precursor protein (APP) and/or some of the enzymes implicated in their metabolic processing. However, these transgenic mice carry their own APP and APP-processing enzymes, which may interfere in the production of different amyloid-beta (Aβ) peptides encoded by the human transgenes. Additionally, the genetic backgrounds of the different transgenic mice are a possible confounding factor with regard to crucial aspects of AD that they may (or may not) reproduce. Thus, although the usefulness of transgenic mice is undisputed, we hypothesized that additional relevant information on the physiopathology of AD could be obtained from other natural non-transgenic models. We have analyzed the chick embryo and the dog, which may be better experimental models because their enzymatic machinery for processing APP is almost identical to that of humans. The chick embryo is extremely easy to access and manipulate. It could be an advantageous natural model in which to study the cell biology and developmental function of APP and a potential assay system for drugs that regulate APP processing. The dog suffers from an age-related syndrome of cognitive dysfunction that naturally reproduces key aspects of AD including Aβ cortical pathology, neuronal degeneration and learning and memory disabilities. However, dense core neuritic plaques and neurofibrillary tangles have not been consistently demonstrated in the dog. Thus, these species may be natural models with which to study the biology of AD, and could also serve as assay systems for Aβ-targeted drugs or new therapeutic strategies against this devastating disease.
Collapse
|
32
|
Hook VYH, Kindy M, Reinheckel T, Peters C, Hook G. Genetic cathepsin B deficiency reduces beta-amyloid in transgenic mice expressing human wild-type amyloid precursor protein. Biochem Biophys Res Commun 2009; 386:284-8. [PMID: 19501042 DOI: 10.1016/j.bbrc.2009.05.131] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 05/12/2009] [Indexed: 10/20/2022]
Abstract
Neurotoxic beta-amyloid (Abeta) peptides participate in Alzheimer's disease (AD); therefore, reduction of Abeta generated from APP may provide a therapeutic approach for AD. Gene knockout studies in transgenic mice producing human Abeta may identify targets for reducing Abeta. This study shows that knockout of the cathepsin B gene in mice expressing human wild-type APP (hAPPwt) results in substantial decreases in brain Abeta40 and Abeta42 by 67% and decreases in levels of the C-terminal beta-secretase fragment (CTFbeta) derived from APP. In contrast, knockout of cathepsin B in mice expressing hAPP with the rare Swedish (Swe) and Indiana (Ind) mutations had no effect on Abeta. The difference in reduction of Abeta in hAPPwt mice, but not in hAPPSwe/Ind mice, shows that the transgenic model can affect cathepsin B gene knockout results. Since most AD patients express hAPPwt, these data validate cathepsin B as a target for development of inhibitors to lower Abeta in AD.
Collapse
Affiliation(s)
- Vivian Y H Hook
- Depts of Neurosciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0744, USA.
| | | | | | | | | |
Collapse
|
33
|
Hook V, Schechter I, Demuth HU, Hook G. Alternative pathways for production of beta-amyloid peptides of Alzheimer's disease. Biol Chem 2008; 389:993-1006. [PMID: 18979625 DOI: 10.1515/bc.2008.124] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This highlight article describes three Alzheimer's disease (AD) studies presented at the 5th General Meeting of the International Proteolysis Society that address enzymatic mechanisms for producing neurotoxic beta-amyloid (Abeta) peptides. One group described the poor kinetics of BACE 1 for cleaving the wild-type (WT) beta-secretase site of APP found in most AD patients. They showed that cathepsin D displays BACE 1-like specificity and cathepsin D is 280-fold more abundant in human brain than BACE 1. Nevertheless, as BACE 1 and cathepsin D show poor activity towards the WT beta-secretase site, they suggested continuing the search for additional beta-secretase(s). The second group reported cathepsin B as an alternative beta-secretase possessing excellent kinetic efficiency and specificity for the WT beta-secretase site. Significantly, inhibitors of cathepsin B improved memory, with reduced amyloid plaques and decreased Abeta(40/42) in brains of AD animal models expressing amyloid precursor protein containing the WT beta-secretase site. The third group addressed isoaspartate and pyroglutamate (pGlu) posttranslational modifications of Abeta. Results showed that cathepsin B, but not BACE 1, efficiently cleaves the WT beta-secretase isoaspartate site. Furthermore, cyclization of N-terminal Glu by glutaminyl cyclase generates highly amyloidogenic pGluAbeta(3-40/42). These presentations suggest cathepsin B and glutaminyl cyclase as potential new AD therapeutic targets.
Collapse
Affiliation(s)
- Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA.
| | | | | | | |
Collapse
|
34
|
Hook V, Schechter I, Demuth HU, Hook G. Alternative pathways for production of β-amyloid peptides of Alzheimer's disease. Biol Chem 2008. [DOI: 10.1515/bc.2008.124_bchm.just-accepted] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Marcade M, Bourdin J, Loiseau N, Peillon H, Rayer A, Drouin D, Schweighoffer F, Désiré L. Etazolate, a neuroprotective drug linking GABA(A) receptor pharmacology to amyloid precursor protein processing. J Neurochem 2008; 106:392-404. [PMID: 18397369 DOI: 10.1111/j.1471-4159.2008.05396.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pharmacological modulation of the GABA(A) receptor has gained increasing attention as a potential treatment for central processes affected in Alzheimer disease (AD), including neuronal survival and cognition. The proteolytic cleavage of the amyloid precursor protein (APP) through the alpha-secretase pathway decreases in AD, concurrent with cognitive impairment. This APP cleavage occurs within the beta-amyloid peptide (Abeta) sequence, precluding formation of amyloidogenic peptides and leading to the release of the soluble N-terminal APP fragment (sAPPalpha) which is neurotrophic and procognitive. In this study, we show that at nanomolar-low micromolar concentrations, etazolate, a selective GABA(A) receptor modulator, stimulates sAPPalpha production in rat cortical neurons and in guinea pig brains. Etazolate (20 nM-2 microM) dose-dependently protected rat cortical neurons against Abeta-induced toxicity. The neuroprotective effects of etazolate were fully blocked by GABA(A) receptor antagonists indicating that this neuroprotection was due to GABA(A) receptor signalling. Baclofen, a GABA(B) receptor agonist failed to inhibit the Abeta-induced neuronal death. Furthermore, both pharmacological alpha-secretase pathway inhibition and sAPPalpha immunoneutralization approaches prevented etazolate neuroprotection against Abeta, indicating that etazolate exerts its neuroprotective effect via sAPPalpha induction. Our findings therefore indicate a relationship between GABA(A) receptor signalling, the alpha-secretase pathway and neuroprotection, documenting a new therapeutic approach for AD treatment.
Collapse
|
36
|
Hook VYH, Kindy M, Hook G. Inhibitors of cathepsin B improve memory and reduce beta-amyloid in transgenic Alzheimer disease mice expressing the wild-type, but not the Swedish mutant, beta-secretase site of the amyloid precursor protein. J Biol Chem 2008; 283:7745-53. [PMID: 18184658 DOI: 10.1074/jbc.m708362200] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elucidation of Abeta-lowering agents that inhibit processing of the wild-type (WT) beta-secretase amyloid precursor protein (APP) site, present in most Alzheimer disease (AD) patients, is a logical approach for improving memory deficit in AD. The cysteine protease inhibitors CA074Me and E64d were selected by inhibition of beta-secretase activity in regulated secretory vesicles that produce beta-amyloid (Abeta). The regulated secretory vesicle activity, represented by cathepsin B, selectively cleaves the WT beta-secretase site but not the rare Swedish mutant beta-secretase site. In vivo treatment of London APP mice, expressing the WT beta-secretase site, with these inhibitors resulted in substantial improvement in memory deficit assessed by the Morris water maze test. After inhibitor treatment, the improved memory function was accompanied by reduced amyloid plaque load, decreased Abeta40 and Abeta42, and reduced C-terminal beta-secretase fragment derived from APP by beta-secretase. However, the inhibitors had no effects on any of these parameters in mice expressing the Swedish mutant beta-secretase site of APP. The notable efficacy of these inhibitors to improve memory and reduce Abeta in an AD animal model expressing the WT beta-secretase APP site present in the majority of AD patients provides support for CA074Me and E64d inhibitors as potential AD therapeutic agents.
Collapse
Affiliation(s)
- Vivian Y H Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
37
|
Hook G, Hook VYH, Kindy M. Cysteine protease inhibitors reduce brain beta-amyloid and beta-secretase activity in vivo and are potential Alzheimer's disease therapeutics. Biol Chem 2007; 388:979-83. [PMID: 17696783 DOI: 10.1515/bc.2007.117] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Beta-secretase inhibitors that lower brain beta-amyloid peptides (Abeta) are likely to be effective for treating Alzheimer's disease (AD). Irreversible epoxysuccinyl cysteine protease inhibitors are known to reduce brain Abeta and beta-secretase activity in the guinea pig model of human Abeta production. In this study, acetyl-L-leucyl-L-valyl-L-lysinal (Ac-LVK-CHO) is also shown to significantly reduce brain Abeta and beta-secretase activity and brain Abeta in the same model. Ac-LVK-CHO is structurally distinct from the epoxysuccinyl inhibitors and is a reversible cysteine protease inhibitor. The results suggest that cysteine protease inhibitors generally, and reversible cysteine protease inhibitors specifically, have potential for development as AD therapeutics.
Collapse
Affiliation(s)
- Gregory Hook
- American Life Science Pharmaceuticals Inc., San Diego, CA 92121, USA.
| | | | | |
Collapse
|
38
|
Du P, Wood KM, Rosner MH, Cunningham D, Tate B, Geoghegan KF. Dominance of amyloid precursor protein sequence over host cell secretases in determining beta-amyloid profiles studies of interspecies variation and drug action by internally standardized immunoprecipitation/mass spectrometry. J Pharmacol Exp Ther 2007; 320:1144-52. [PMID: 17202404 DOI: 10.1124/jpet.106.114561] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
beta-Amyloid peptides, tentatively regarded as the principal neurotoxins responsible for Alzheimer's Disease, make up a set of products that varies significantly among different biological systems. The full implications of this complexity and its variations have yet to be defined. In this work, Abeta peptide populations were extracted from animal brain tissue or cell-conditioned media, immunoprecipitated with specific antibodies, and analyzed by matrix-assisted laser desorption time-of-flight mass spectrometry. (15)N-Substituted Abeta internal standards were added to gauge variations in the profile of captured peptides. Results from a range of species, including guinea pig, dog, rabbit, and wild-type and transgenic mice, showed that the Abeta peptide population in each system was mainly determined by the species of origin of the amyloid precursor protein (APP) and not by the host tissue or cell line. The same method was used to gauge the effect on the Abeta peptide profile of an inhibitor of gamma-secretase, one of the two proteinases that excises Abeta peptides from the precursor protein with different effects on specific peptides. Overall, the results demonstrate that the species of origin of the APP substrate dictates the outcome of APP processing to a greater extent than the origin of the processing enzymes, an important consideration in rationalizing the properties of different model systems.
Collapse
Affiliation(s)
- Ping Du
- Pfizer Global Research and Development, Groton, CT 06340, USA
| | | | | | | | | | | |
Collapse
|
39
|
Désiré L, Bourdin J, Loiseau N, Peillon H, Picard V, De Oliveira C, Bachelot F, Leblond B, Taverne T, Beausoleil E, Lacombe S, Drouin D, Schweighoffer F. RAC1 inhibition targets amyloid precursor protein processing by gamma-secretase and decreases Abeta production in vitro and in vivo. J Biol Chem 2005; 280:37516-25. [PMID: 16150730 DOI: 10.1074/jbc.m507913200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Amyloid peptides (Abeta) that form the senile plaques of Alzheimer disease consist mainly of 40- and 42-amino acid (Abeta 40 and Abeta 42) peptides generated from the cleavage of the amyloid precursor protein (APP). Generation of Abeta involves beta-secretase and gamma-secretase activities and is regulated by membrane trafficking of the proteins involved in Abeta production. Here we describe a new small molecule, EHT 1864, which blocks the Rac1 signaling pathways. In vitro, EHT 1864 blocks Abeta 40 and Abeta 42 production but does not impact sAPPalpha levels and does not inhibit beta-secretase. Rather, EHT 1864 modulates APP processing at the level of gamma-secretase to prevent Abeta 40 and Abeta 42 generation. This effect does not result from a direct inhibition of the gamma-secretase activity and is specific for APP cleavage, since EHT 1864 does not affect Notch cleavage. In vivo, EHT 1864 significantly reduces Abeta 40 and Abeta 42 levels in guinea pig brains at a threshold that is compatible with delaying plaque accumulation and/or clearing the existing plaque in brain. EHT 1864 is the first derivative of a new chemical series that consists of candidates for inhibiting Abeta formation in the brain of AD patients. Our findings represent the first pharmacological validation of Rac1 signaling as a target for developing novel therapies for Alzheimer disease.
Collapse
|
40
|
Maloney B, Ge YW, Greig N, Lahiri DK. Presence of a “CAGA box” in the
APP
gene unique to amyloid plaque‐forming species and absent in all
APLP
‐1/2 genes: implications in Alzheimer's disease. FASEB J 2004; 18:1288-90. [PMID: 15208260 DOI: 10.1096/fj.03-1703fje] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Potentially toxic amyloid beta-peptide (Abeta) in Alzheimer's disease (AD) is generated from a family of Abeta-containing precursor proteins (APP), which is regulated via the 5'-untranslated region (5'-UTR) of its mRNA. We analyzed 5'-UTRs of the APP superfamily, including amyloid plaque-forming and non-amyloid plaque-forming species, and of prions (27 different DNA sequences). A "CAGA" sequence proximal to the "ATG" start codon was present in a location unique to APP genes of amyloid plaque-forming species and absent in all other genes surveyed. This CAGA box is immediately upstream of an interleukin-1-responsive element (acute box). In addition, the proximal CAGA box is predicted to appear on a stem-loop structure in both human and guinea pig APP mRNA. This stem-loop is part of a predicted bulge-loop that encompasses a known iron regulatory element (IRE). Electrophoretic mobility shift with segments of the APP 5'-UTR showed that a region with the proximal CAGA sequence binds nuclear proteins, and this UTR fragment is active in a reporter gene functional assay. Thus, the 5'-UTR in the human APP but not those of APP-like proteins contains a specific region that may participate in APP regulation and may determine a more general model for amyloid generation as seen in AD. The 5'-UTR of human APP contains several interesting control elements, such as an acute box element, a CAGA box, an IRE, and a transforming growth factor-beta-responsive element, that could control APP expression and provide suitable and specific drug targets for AD.
Collapse
Affiliation(s)
- Bryan Maloney
- Departments of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|