1
|
Liang X, Li P, Qin Y, Mo Y, Chen D. Beta-adrenergic receptor blockers improve survival in patients with advanced non-small cell lung cancer combined with hypertension undergoing radiotherapy. Sci Rep 2025; 15:10702. [PMID: 40155651 PMCID: PMC11953261 DOI: 10.1038/s41598-025-93205-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/05/2025] [Indexed: 04/01/2025] Open
Abstract
Hypertension (HTN) is prevalent in non-small cell lung cancer (NSCLC) patients, yet the cardioprotective and survival benefits of β-adrenergic blockers during radiotherapy (RT) remain underexplored. We analyzed data from a Chinese clinical cohort of 750 patients with stage IIIA to IIIB NSCLC and HTN receiving RT between 2014 and 2018. The findings were further validated using data from the NHANES database. In Chinese clinical cohort, β-adrenergic blockers were associated with improved OS (β-adrenergic blockers: median overall survival (mOS) 17.64 months, 95% CI, 15.95-19.33; no β-adrenergic blockers: mOS 13.16 months, 95% CI, 12.62-13.70; p < 0.0001) and PFS (β-adrenergic blockers: median progression-free survival (mPFS) 7.50 months, 95% CI, 6.50-8.50; without β-adrenergic blockers: mPFS 4.91 months, 95% CI, 4.53-5.31; p < 0.0001). Simultaneously, in the NHANES database, the utilization of β-adrenergic blockers exhibited no discernible impact on OS within the entire tumor population, as evidenced by the Kaplan-Meier curve, which revealed no statistically significant difference between the two groups (p = 0.254). β-adrenergic blockers may improve OS and PFS in patients with HTN and NSCLC undergoing RT. β-adrenergic blockers show potential and warrant further investigation in the context of RT.
Collapse
Affiliation(s)
- Xinyi Liang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261000, Shandong, People's Republic of China
- Department of Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440, Jiyan Road, Huaiyin District, Jinan, 250000, Shandong, People's Republic of China
| | - Pengwei Li
- Department of Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440, Jiyan Road, Huaiyin District, Jinan, 250000, Shandong, People's Republic of China
| | - Yiwei Qin
- Department of Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440, Jiyan Road, Huaiyin District, Jinan, 250000, Shandong, People's Republic of China
- Department of Radiation Oncology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - You Mo
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, 515000, Guangdong, People's Republic of China.
| | - Dawei Chen
- Department of Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440, Jiyan Road, Huaiyin District, Jinan, 250000, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Huang Y, Zhou X, Liu J, Cao Y, Fu W, Yang J. Emerging neuroimmune mechanisms in cancer neuroscience. Cancer Lett 2025; 612:217492. [PMID: 39848532 DOI: 10.1016/j.canlet.2025.217492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/11/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
It has become increasingly recognized that neural signals can profoundly influence the prognosis of various cancer types. In the past years, we have witnessed "cancer neuroscience," which primarily focuses on the complex crosstalk between tumors and neural signals, emerging as a new, multidisciplinary direction of biomedical science. This review aims to summarize the current knowledge of this research frontier, with an emphasis on the neuroimmune mechanisms enacted through the reciprocal interactions between tumors and the central or peripheral nervous system. In addition, we wish to highlight several key questions of cancer neuroscience and its neuroimmune action that warrant future research and translational efforts, including novel strategies for manipulating neural signals for antitumor immunotherapies, as well as managing cancer-related neurological or psychiatric complications.
Collapse
Affiliation(s)
- Yingying Huang
- School of Life Sciences, Peking University Third Hospital Cancer Center, Center for Life Sciences, State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Xin Zhou
- School of Life Sciences, Peking University Third Hospital Cancer Center, Center for Life Sciences, State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China; Department of General Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Jiaqi Liu
- School of Life Sciences, Peking University Third Hospital Cancer Center, Center for Life Sciences, State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Ying Cao
- School of Life Sciences, Peking University Third Hospital Cancer Center, Center for Life Sciences, State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| | - Wei Fu
- School of Life Sciences, Peking University Third Hospital Cancer Center, Center for Life Sciences, State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China; Department of General Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Jing Yang
- School of Life Sciences, Peking University Third Hospital Cancer Center, Center for Life Sciences, State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China; Peking Union Medical College Hospital, Beijing, 100730, China.
| |
Collapse
|
3
|
Varshini MS, Krishnamurthy PT, Reddy RA, Wadhwani A, Chandrashekar VM. Insights into the Emerging Therapeutic Targets of Triple-negative Breast Cancer. Curr Cancer Drug Targets 2025; 25:3-25. [PMID: 38385495 DOI: 10.2174/0115680096280750240123054936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024]
Abstract
Triple-negative Breast Cancer (TNBC), the most aggressive breast cancer subtype, is characterized by the non-appearance of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Clinically, TNBC is marked by its low survival rate, poor therapeutic outcomes, high aggressiveness, and lack of targeted therapies. Over the past few decades, many clinical trials have been ongoing for targeted therapies in TNBC. Although some classes, such as Poly (ADP Ribose) Polymerase (PARP) inhibitors and immunotherapies, have shown positive therapeutic outcomes, however, clinical effects are not much satisfiable. Moreover, the development of drug resistance is the major pattern observed in many targeted monotherapies. The heterogeneity of TNBC might be the cause for limited clinical benefits. Hence,, there is a need for the potential identification of new therapeutic targets to address the above limitations. In this context, some novel targets that can address the above-mentioned concerns are emerging in the era of TNBC therapy, which include Hypoxia Inducible Factor (HIF-1α), Matrix Metalloproteinase 9 (MMP-9), Tumour Necrosis Factor-α (TNF-α), β-Adrenergic Receptor (β-AR), Voltage Gated Sodium Channels (VGSCs), and Cell Cycle Regulators. Currently, we summarize the ongoing clinical trials and discuss the novel therapeutic targets in the management of TNBC.
Collapse
Affiliation(s)
- Magham Sai Varshini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, TN, India
| | | | - Ramakamma Aishwarya Reddy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, TN, India
| | - Ashish Wadhwani
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, TN, India
- Faculty of Health Sciences, School of Pharmacy, JSS Academy of Higher Education and Research, Mauritius, Vacoas, 73304, Mauritius
| | - V M Chandrashekar
- Department of Pharmacology, HSK College of Pharmacy, Bagalkot, 587101, Karnataka, India
| |
Collapse
|
4
|
Goel N, Hernandez A, Cole S. Social Genomic Determinants of Health: Understanding the Molecular Pathways by Which Neighborhood Disadvantage Affects Cancer Outcomes. J Clin Oncol 2024; 42:3618-3627. [PMID: 39178356 PMCID: PMC12045328 DOI: 10.1200/jco.23.02780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 08/25/2024] Open
Abstract
PURPOSE Neighborhoods represent complex environments with unique social, cultural, physical, and economic attributes that have major impacts on disparities in health, disease, and survival. Neighborhood disadvantage is associated with shorter breast cancer recurrence-free survival (RFS) independent of individual-level (race, ethnicity, socioeconomic status, insurance, tumor characteristics) and health system-level determinants of health (receipt of guideline-concordant treatment). This persistent disparity in RFS suggests unaccounted mechanisms such as more aggressive tumor biology among women living in disadvantaged neighborhoods compared with advantaged neighborhoods. The objective of this article was to provide a clear framework and biological mechanistic explanation for how neighborhood disadvantage affects cancer survival. METHODS Development of a translational epidemiological framework that takes a translational disparities approach to study cancer outcome disparities through the lens of social genomics and social epigenomics. RESULTS The social genomic determinants of health, defined as the physiological gene regulatory pathways (ie, neural/endocrine control of gene expression and epigenetic processes) through which contextual factors, particularly one's neighborhood, can affect activity of the cancer genome and the surrounding tumor microenvironment to alter disease progression and treatment outcomes. CONCLUSION We propose a novel, multilevel determinants of health model that takes a translational epidemiological approach to evaluate the interplay between political, health system, social, psychosocial, individual, and social genomic determinants of health to understand social disparities in oncologic outcomes. In doing so, we provide a concrete biological pathway through which the effects of social processes and social epidemiology come to affect the basic biology of cancer and ultimately clinical outcomes and survival.
Collapse
Affiliation(s)
- Neha Goel
- Department of Surgery, Division of Surgical Oncology, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Alexandra Hernandez
- Department of Surgery, Division of Surgical Oncology, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Steve Cole
- Department of Psychiatry/ Biobehavioral Sciences and Medicine, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
5
|
Kokori E, Olatunji G, Isarinade DT, Aboje JE, Ogieuhi IJ, Lawal ZD, Woldehana NA, Nazar MW, Scott GY, Aderinto N. Ejaculation Frequency and Prostate Cancer Risk: A Narrative Review of Current Evidence. Clin Genitourin Cancer 2024; 22:102043. [PMID: 38430857 DOI: 10.1016/j.clgc.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 03/05/2024]
Abstract
Prostate cancer, constituting a substantial portion of global cancer incidence and mortality, prompts a critical examination of potential modifiers, notably ejaculation frequency. This narrative review explores the complex relationship between ejaculation frequency and prostate cancer risk, addressing the paucity of consensus and the intricate interplay of factors. The evidence drawn from eleven studies with diverse methodologies reveals a complex understanding of this association. While some studies suggest an inverse correlation between ejaculation frequency and prostate cancer risk, signifying a potential protective effect, others present conflicting findings, necessitating a comprehensive exploration. Evidence synthesis underscores the importance of considering age, urinary health, and lifestyle factors in elucidating the ejaculation frequency-prostate cancer relationship. Notably, technological advancements, including machine learning models and genetic markers, enhance the precision of patient counselling and individualized care. In a clinical context, the findings emphasize the clinical relevance of incorporating sexual behavior into preventive strategies. Public health campaigns emerge as influential tools, breaking taboos, raising awareness, and empowering men to prioritize their well-being. The paradigm shift in prostate cancer understanding, fueled by technology and personalized medicine, holds promise for more accurate risk assessments. Liquid biopsies, multiparametric MRI, and considerations of the gut microbiome present avenues for tailored preventive strategies. However, methodological challenges and study variations necessitate further research, emphasizing consistency, exploring underlying mechanisms, and a life course perspective.
Collapse
Affiliation(s)
- Emmanuel Kokori
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Gbolahan Olatunji
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | | | - John Ehi Aboje
- Department of Medicine, College of Health Sciences, Benue State University, Benue, Nigeria
| | | | | | | | | | - Godfred Yawson Scott
- Department of Medical Diagnostics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Nicholas Aderinto
- Department of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
| |
Collapse
|
6
|
Yu X, Zoh RS, Fluharty DA, Mestre LM, Valdez D, Tekwe CD, Vorland CJ, Jamshidi-Naeini Y, Chiou SH, Lartey ST, Allison DB. Misstatements, misperceptions, and mistakes in controlling for covariates in observational research. eLife 2024; 13:e82268. [PMID: 38752987 PMCID: PMC11098558 DOI: 10.7554/elife.82268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/02/2024] [Indexed: 05/18/2024] Open
Abstract
We discuss 12 misperceptions, misstatements, or mistakes concerning the use of covariates in observational or nonrandomized research. Additionally, we offer advice to help investigators, editors, reviewers, and readers make more informed decisions about conducting and interpreting research where the influence of covariates may be at issue. We primarily address misperceptions in the context of statistical management of the covariates through various forms of modeling, although we also emphasize design and model or variable selection. Other approaches to addressing the effects of covariates, including matching, have logical extensions from what we discuss here but are not dwelled upon heavily. The misperceptions, misstatements, or mistakes we discuss include accurate representation of covariates, effects of measurement error, overreliance on covariate categorization, underestimation of power loss when controlling for covariates, misinterpretation of significance in statistical models, and misconceptions about confounding variables, selecting on a collider, and p value interpretations in covariate-inclusive analyses. This condensed overview serves to correct common errors and improve research quality in general and in nutrition research specifically.
Collapse
Affiliation(s)
- Xiaoxin Yu
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-BloomingtonBloomingtonUnited States
| | - Roger S Zoh
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-BloomingtonBloomingtonUnited States
| | - David A Fluharty
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-BloomingtonBloomingtonUnited States
| | - Luis M Mestre
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-BloomingtonBloomingtonUnited States
| | - Danny Valdez
- Department of Applied Health Science, Indiana University School of Public Health-BloomingtonBloomingtonUnited States
| | - Carmen D Tekwe
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-BloomingtonBloomingtonUnited States
| | - Colby J Vorland
- Department of Applied Health Science, Indiana University School of Public Health-BloomingtonBloomingtonUnited States
| | - Yasaman Jamshidi-Naeini
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-BloomingtonBloomingtonUnited States
| | - Sy Han Chiou
- Department of Statistics and Data Science, Southern Methodist UniversityDallasUnited States
| | - Stella T Lartey
- University of Memphis, School of Public HealthMemphisUnited Kingdom
| | - David B Allison
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-BloomingtonBloomingtonUnited States
| |
Collapse
|
7
|
Chen PY, Keerthi Reddy T, Rajaji U, Alothman AA, Govindasamy M. Optimization of Electrochemical Sensitivity in Anticancer Drug Quantification through ZnS@CNS Nanosheets: Synthesis via Accelerated Sonochemical Methodology. ULTRASONICS SONOCHEMISTRY 2024; 105:106858. [PMID: 38564910 PMCID: PMC11002299 DOI: 10.1016/j.ultsonch.2024.106858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Zinc sulfide/graphitic Carbon Nitride binary nanosheets were synthesized by using a novel sonochemical pathway with high electrocatalytic ability. The as- obtained samples were characterized by various analytical methods such as Transmission Electron Microscopy (TEM), Field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS) to evaluate the properties of ZnS@CNS synthesized by this new route. Subsequently, the electrical and electrochemical performance of the proposed electrodes were characterized by using EIS and CV to establish an electroactive ability of the nanocomposites. The complete properties like structural and physical of ZnS@CNS were analyzed. As-prepared binary nanocomposite was applied towards the detection of anticancer drug (flutamide) by various electrochemical methods such as cyclic voltammetry (CV), differential pulse voltammetry (DPV) and amperometry. The glassy carbon electrode modified with a ZnS@CNS composite demonstrates a remarkable electrocatalytic efficiency for detecting flutamide in a pH 7.0 (PBS). The composite modified electrode shows synergistic effect of ZnS and CNS catalyst. The electrochemical sensing performance of the linear range was improved significantly due to high electroactive sites and rapid electron transport pathways. Crucially, the electrochemical method was successfully demonstrated in biological fluids which reveals its potential real-time applicability in the analysis of drug.
Collapse
Affiliation(s)
- Pin-Yi Chen
- Department of Mechanical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Department of Mechanical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan.
| | - T Keerthi Reddy
- Department of Mechanical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Umamaheswari Rajaji
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India
| | - Asma A Alothman
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mani Govindasamy
- International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Research Center for Intelligence Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan.
| |
Collapse
|
8
|
Iheanacho CO, Enechukwu OH. Role of antihypertensive medicines in prostate cancer: a systematic review. BMC Cancer 2024; 24:542. [PMID: 38684963 PMCID: PMC11059764 DOI: 10.1186/s12885-024-12218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Hypertension is associated with the risk of prostate cancer (PCa) and its progression, however, it remains unclear whether antihypertensive medicines alter PCa risk or prognosis. This systematic review evaluated the role of calcium channel blockers (CCBs) and renin-angiotensin system (RAS) inhibitors in the risk and prognosis of PCa. This review was performed in line with PRISMA 2020 guidelines. METHODS Eligible studies comprised peer-reviewed observational studies which reported the role of CCBs and RAS inhibitors in PCa, had accessible full texts, and were written in English. Using a combination of keywords, 5 electronic bibliographic databases which included Web of Science, EMBASE, PubMed, Google Scholar and Scopus were searched. RESULTS A total of 1,346 studies were retrieved and 18 met the inclusion criteria. Thirteen studies reported reduced or no associated risk, improved prognosis, and survival with the use of RAS inhibitors. Studies on CCBs showed evidence of associated risk of PCa. Data extraction from retrieved studies focused on included study characteristics, setting, authors, year, outcomes of interest, and risk ratios. The quality assessment of included studies by the National Heart, Lung, and Blood Institute study assessment tools, showed that all studies had good quality. CONCLUSIONS The use of RAS inhibitors was mostly associated with lower risks or improved prognosis of PCa. CCBs may also be associated with risks of PCa. This suggests that high-risk patients managed with CCBs should be actively monitored for PCa. However, there is need for further evidence from large-scale prospective, controlled cohort studies to determine any influence of CCBs on PCa.
Collapse
Affiliation(s)
- Chinonyerem O Iheanacho
- Department of Clinical Pharmacy and Public Health, Faculty of Pharmacy, University of Calabar, 540271, Calabar, Cross River State, Nigeria.
| | | |
Collapse
|
9
|
Zmaili M, Alzubi J, Alkhayyat M, Albakri A, Alkhalaileh F, Longinow J, Moudgil R. Cancer and Cardiovascular Disease: The Conjoined Twins. Cancers (Basel) 2024; 16:1450. [PMID: 38672532 PMCID: PMC11048405 DOI: 10.3390/cancers16081450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer and cardiovascular disease are the two most common causes of death worldwide. As the fields of cardiovascular medicine and oncology continue to expand, the area of overlap is becoming more prominent demanding dedicated attention and individualized patient care. We have come to realize that both fields are inextricably intertwined in several aspects, so much so that the mere presence of one, with its resultant downstream implications, has an impact on the other. Nonetheless, cardiovascular disease and cancer are generally approached independently. The focus that is granted to the predominant pathological entity (either cardiovascular disease or cancer), does not allow for optimal medical care for the other. As a result, ample opportunities for improvement in overall health care are being overlooked. Herein, we hope to shed light on the interconnected relationship between cardiovascular disease and cancer and uncover some of the unintentionally neglected intricacies of common cardiovascular therapeutics from an oncologic standpoint.
Collapse
Affiliation(s)
- Mohammad Zmaili
- Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Jafar Alzubi
- Department of Medicine, Division of Cardiology, Einstein Medical Center, Philadelphia, PA 19141, USA
| | - Motasem Alkhayyat
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Almaza Albakri
- Jordanian Royal Medical Services, Department of Internal Medicine, King Abdullah II Ben Al-Hussein Street, Amman 11855, Jordan
| | - Feras Alkhalaileh
- Department of Internal Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Joshua Longinow
- Department of Internal Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Rohit Moudgil
- Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
- Department of Internal Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
10
|
Xiao L, Li X, Fang C, Yu J, Chen T. Neurotransmitters: promising immune modulators in the tumor microenvironment. Front Immunol 2023; 14:1118637. [PMID: 37215113 PMCID: PMC10196476 DOI: 10.3389/fimmu.2023.1118637] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
The tumor microenvironment (TME) is modified by its cellular or acellular components throughout the whole period of tumor development. The dynamic modulation can reprogram tumor initiation, growth, invasion, metastasis, and response to therapies. Hence, the focus of cancer research and intervention has gradually shifted to TME components and their interactions. Accumulated evidence indicates neural and immune factors play a distinct role in modulating TME synergistically. Among the complicated interactions, neurotransmitters, the traditional neural regulators, mediate some crucial regulatory functions. Nevertheless, knowledge of the exact mechanisms is still scarce. Meanwhile, therapies targeting the TME remain unsatisfactory. It holds a great prospect to reveal the molecular mechanism by which the interplay between the nervous and immune systems regulate cancer progression for laying a vivid landscape of tumor development and improving clinical treatment.
Collapse
Affiliation(s)
- Luxi Xiao
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xunjun Li
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuanfa Fang
- Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China
| | - Jiang Yu
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Chen
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
11
|
Kakkat S, Pramanik P, Singh S, Singh AP, Sarkar C, Chakroborty D. Cardiovascular Complications in Patients with Prostate Cancer: Potential Molecular Connections. Int J Mol Sci 2023; 24:ijms24086984. [PMID: 37108147 PMCID: PMC10138415 DOI: 10.3390/ijms24086984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Cardiovascular diseases (CVDs) and complications are often seen in patients with prostate cancer (PCa) and affect their clinical management. Despite acceptable safety profiles and patient compliance, androgen deprivation therapy (ADT), the mainstay of PCa treatment and chemotherapy, has increased cardiovascular risks and metabolic syndromes in patients. A growing body of evidence also suggests that patients with pre-existing cardiovascular conditions show an increased incidence of PCa and present with fatal forms of the disease. Therefore, it is possible that a molecular link exists between the two diseases, which has not yet been unraveled. This article provides insight into the connection between PCa and CVDs. In this context, we present our findings linking PCa progression with patients' cardiovascular health by performing a comprehensive gene expression study, gene set enrichment (GSEA) and biological pathway analysis using publicly available data extracted from patients with advanced metastatic PCa. We also discuss the common androgen deprivation strategies and CVDs most frequently reported in PCa patients and present evidence from various clinical trials that suggest that therapy induces CVD in PCa patients.
Collapse
Affiliation(s)
- Sooraj Kakkat
- Department of Pathology, University of South Alabama, Mobile, AL 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Paramahansa Pramanik
- Department of Mathematics and Statistics, University of South Alabama, Mobile, AL 36688, USA
| | - Seema Singh
- Department of Pathology, University of South Alabama, Mobile, AL 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Ajay Pratap Singh
- Department of Pathology, University of South Alabama, Mobile, AL 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Chandrani Sarkar
- Department of Pathology, University of South Alabama, Mobile, AL 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Debanjan Chakroborty
- Department of Pathology, University of South Alabama, Mobile, AL 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
12
|
Rotshild V, Rabkin N, Matok I. The Risk for Prostate Cancer With Calcium Channel Blockers: A Systematic Review, Meta-Analysis, and Meta-Regression. Ann Pharmacother 2023; 57:16-28. [PMID: 35645169 DOI: 10.1177/10600280221098121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND For decades, conflicting results were published regarding the increased risk of Prostate cancer (PCa) among calcium channel blocker (CCB) users. OBJECTIVE We aimed to evaluate the association between PCa and CCB exposure and assess moderating factors. METHODS We performed a systematic literature search in PubMed, Embase, and Cochrane databases for observational and randomized studies published until November 2020 with no language limitations, including data on the risk for PCa in CCB users compared with non-CCB users. We applied a random-effects model meta-analysis to pool results. In addition, we investigated potential moderating factors, such as CCB type, study type, participants' age, and duration of exposure, using meta-regression methods. RESULTS In our primary analysis, we included 18 studies. A statistically significant 5% increase in the risk for PCa was observed among CCB users (risk ratio [RR] = 1.05; 95% confidence interval [CI]: 1.01-1.10), with no significant association between the duration of exposure to CCBs and the risk for PCa (RR = 1.08; 95% CI: 0.98-1.19 for exposure for < 5years and RR = 1.01; 95% CI: 0.9-1.14 for exposure ≥ 5 years). The association remained statistically significant for the subgroup of dihydropyridines (RR = 1.13; 95% CI: 1.05-1.22). In addition, the association was not influenced by participants' age. CONCLUSION AND RELEVANCE CCBs are an important modality in treating hypertension. The 5% increased risk observed in the current meta-analysis could be influenced by residual confounding factors and should not affect hypertension treatment guidelines until more studies provide additional clinical information.
Collapse
Affiliation(s)
- Victoria Rotshild
- Division of Clinical Pharmacy, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Natalie Rabkin
- Division of Clinical Pharmacy, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilan Matok
- Pharmacoepidemiology Research Lab, Division of Clinical Pharmacy, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
13
|
Jongerius C, Vermeulen L, van Egmond M, Evers AWM, Buffart LM, Lenos KJ. Behavioral factors to modulate immunotherapy efficacy in cancer. Front Immunol 2022; 13:1066359. [PMID: 36591246 PMCID: PMC9800824 DOI: 10.3389/fimmu.2022.1066359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Immune checkpoint inhibitors, including anti-PD-1 and anti-CTLA-4 therapies, are used to (re)activate the immune system to treat cancer. Despite promising results, a large group of patients does not respond to checkpoint inhibition. In the vulnerability-stress model of behavioral medicine, behavioral factors, such as stress, exercise and classical pharmacological conditioning, predict cancer incidence, recurrence and the efficacy of conventional cancer treatments. Given the important role of the immune system in these processes, certain behavior may be promising to complement immune checkpoint inhibition therapy. Here, we discuss the preliminary evidence and suitability of three behavioral mechanisms, i.e. stress modulation, exercise and classical pharmacological conditioning for the benefit of immunotherapy. It is crucial to study the potential beneficial effects of behavioral strategies that support immunotherapeutic anti-tumor effects with rigorous experimental evidence, to exploit behavioral mechanisms in improving checkpoint inhibition efficacy.
Collapse
Affiliation(s)
- C. Jongerius
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers location University of Amsterdam, Amsterdam, Netherlands,Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands,Oncode Institute, Amsterdam, Netherlands,*Correspondence: C. Jongerius,
| | - L. Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers location University of Amsterdam, Amsterdam, Netherlands,Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands,Oncode Institute, Amsterdam, Netherlands
| | - M. van Egmond
- Department of Molecular Cell Biology & Immunology, Amsterdam UMC, Location VU University, Amsterdam, Netherlands,Department of Surgery, Amsterdam UMC, Location VU University, Amsterdam, Netherlands
| | - A. W. M. Evers
- Department of Health, Medical and Neuropsychology, Leiden University, Leiden, Netherlands
| | - L. M. Buffart
- Department of Physiology, Radboudumc, Nijmegen, Netherlands
| | - K. J. Lenos
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers location University of Amsterdam, Amsterdam, Netherlands,Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands,Oncode Institute, Amsterdam, Netherlands
| |
Collapse
|
14
|
Li W, Wan J, Chen C, Zhou C, Liao P, Hu Q, Hu J, Wang Y, Zhang Y, Peng C, Huang Y, Huang W, Zhang W, Mcleod HL, He Y. Dissecting the role of cell signaling versus CD8 + T cell modulation in propranolol antitumor activity. J Mol Med (Berl) 2022; 100:1299-1306. [PMID: 35895125 DOI: 10.1007/s00109-022-02238-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022]
Abstract
Preclinical and early clinical mechanistic studies of antitumor activity from the beta-adrenergic receptor (β-AR) blocker propranolol have revealed both cell signaling and immune function pathway effects. Intertumoral studies were performed using propranolol, a β1-AR selective agent (atenolol), and a β2-AR selective agent (ICI 118,551) in a preclinical in vivo model, as a step to dissect the contribution of cell signaling and CD8+ immunological effects on anticancer activity. We found that repression of β2-AR but not β1-AR signaling selectively suppressed cell viability and inhibited xenograft growth in vivo. Moreover, western blot analysis indicated that the phosphorylation levels of AKT/MEK/ERK were significantly decreased following the inhibition of β2-AR. Furthermore, propranolol was found to activate the tumor microenvironment by inducing an increased intratumoral frequency of CD8+ T cells, whereas neither selective β1 nor β2-AR blockers had a significant effect on the tumor immune microenvironment. Thus, the results of this mechanistic dissection support a predominant role of tumor cell signaling, rather than the accumulation of CD8+ T cells, as the basis for propranolol antitumor activity. KEY MESSAGES : Molecular signaling of AKT/MAPK pathway contributes to propranolol caused cancer control. CD8+ T cells in tumor microenvironment were activated upon propranolol exposure. The basis for propranolol antitumor activity was predominantly dependent on cell signaling, rather than the activation of CD8+ T cells.
Collapse
Affiliation(s)
- Wei Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Jielin Wan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Cuiyu Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Chengfang Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Ping Liao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Qian Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Jiali Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Yang Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Yu Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China
| | - Yuanfei Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China
| | - Weihua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China
| | - Howard L Mcleod
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China.
- Intermountain Precision Genomics, Intermountain Healthcare, St. George, UT, 84770, USA.
| | - Yijing He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China.
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China.
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
15
|
Yarmolinsky J, Díez-Obrero V, Richardson TG, Pigeyre M, Sjaarda J, Paré G, Walker VM, Vincent EE, Tan VY, Obón-Santacana M, Albanes D, Hampe J, Gsur A, Hampel H, Pai RK, Jenkins M, Gallinger S, Casey G, Zheng W, Amos CI, Smith GD, Martin RM, Moreno V. Genetically proxied therapeutic inhibition of antihypertensive drug targets and risk of common cancers: A mendelian randomization analysis. PLoS Med 2022; 19:e1003897. [PMID: 35113855 PMCID: PMC8812899 DOI: 10.1371/journal.pmed.1003897] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Epidemiological studies have reported conflicting findings on the potential adverse effects of long-term antihypertensive medication use on cancer risk. Naturally occurring variation in genes encoding antihypertensive drug targets can be used as proxies for these targets to examine the effect of their long-term therapeutic inhibition on disease outcomes. METHODS AND FINDINGS We performed a mendelian randomization analysis to examine the association between genetically proxied inhibition of 3 antihypertensive drug targets and risk of 4 common cancers (breast, colorectal, lung, and prostate). Single-nucleotide polymorphisms (SNPs) in ACE, ADRB1, and SLC12A3 associated (P < 5.0 × 10-8) with systolic blood pressure (SBP) in genome-wide association studies (GWAS) were used to proxy inhibition of angiotensin-converting enzyme (ACE), β-1 adrenergic receptor (ADRB1), and sodium-chloride symporter (NCC), respectively. Summary genetic association estimates for these SNPs were obtained from GWAS consortia for the following cancers: breast (122,977 cases, 105,974 controls), colorectal (58,221 cases, 67,694 controls), lung (29,266 cases, 56,450 controls), and prostate (79,148 cases, 61,106 controls). Replication analyses were performed in the FinnGen consortium (1,573 colorectal cancer cases, 120,006 controls). Cancer GWAS and FinnGen consortia data were restricted to individuals of European ancestry. Inverse-variance weighted random-effects models were used to examine associations between genetically proxied inhibition of these drug targets and risk of cancer. Multivariable mendelian randomization and colocalization analyses were employed to examine robustness of findings to violations of mendelian randomization assumptions. Genetically proxied ACE inhibition equivalent to a 1-mm Hg reduction in SBP was associated with increased odds of colorectal cancer (odds ratio (OR) 1.13, 95% CI 1.06 to 1.22; P = 3.6 × 10-4). This finding was replicated in the FinnGen consortium (OR 1.40, 95% CI 1.02 to 1.92; P = 0.035). There was little evidence of association of genetically proxied ACE inhibition with risk of breast cancer (OR 0.98, 95% CI 0.94 to 1.02, P = 0.35), lung cancer (OR 1.01, 95% CI 0.92 to 1.10; P = 0.93), or prostate cancer (OR 1.06, 95% CI 0.99 to 1.13; P = 0.08). Genetically proxied inhibition of ADRB1 and NCC were not associated with risk of these cancers. The primary limitations of this analysis include the modest statistical power for analyses of drug targets in relation to some less common histological subtypes of cancers examined and the restriction of the majority of analyses to participants of European ancestry. CONCLUSIONS In this study, we observed that genetically proxied long-term ACE inhibition was associated with an increased risk of colorectal cancer, warranting comprehensive evaluation of the safety profiles of ACE inhibitors in clinical trials with adequate follow-up. There was little evidence to support associations across other drug target-cancer risk analyses, consistent with findings from short-term randomized controlled trials for these medications.
Collapse
Affiliation(s)
- James Yarmolinsky
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Virginia Díez-Obrero
- Biomarkers and Susceptibility Unit, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Tom G. Richardson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Marie Pigeyre
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Canada
- Thrombosis and Atherosclerosis Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Canada
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Canada
| | - Jennifer Sjaarda
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Canada
- Thrombosis and Atherosclerosis Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Michael G. DeGroote School of Medicine, Hamilton, Canada
| | - Guillaume Paré
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Canada
- Thrombosis and Atherosclerosis Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Michael G. DeGroote School of Medicine, Hamilton, Canada
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Ontario, Canada
| | - Venexia M. Walker
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Emma E. Vincent
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Vanessa Y. Tan
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Mireia Obón-Santacana
- Biomarkers and Susceptibility Unit, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
| | - Rish K. Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, Arizona, United States of America
| | - Mark Jenkins
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, Australia
| | - Steven Gallinger
- Division of General Surgery, University Health Network, University of Toronto, Toronto, Canada
| | - Graham Casey
- Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Wei Zheng
- Division of Epidemiology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Christopher I. Amos
- Department of Medicine, Baylor College of Medicine, Institute for Clinical and Translational Research, Houston, Texas, United States of America
| | | | | | | | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Richard M. Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- University Hospitals Bristol, NHS Foundation Trust, National Institute for Health Research Bristol Biomedical Research Centre, University of Bristol, Bristol, United Kingdom
| | - Victor Moreno
- Biomarkers and Susceptibility Unit, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Madel MB, Elefteriou F. Mechanisms Supporting the Use of Beta-Blockers for the Management of Breast Cancer Bone Metastasis. Cancers (Basel) 2021; 13:cancers13122887. [PMID: 34207620 PMCID: PMC8228198 DOI: 10.3390/cancers13122887] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Bone represents the most common site of metastasis for breast cancer and the establishment and growth of metastatic cancer cells within the skeleton significantly reduces the quality of life of patients and their survival. The interplay between sympathetic nerves and bone cells, and its influence on the process of breast cancer bone metastasis is increasingly being recognized. Several mechanisms, all dependent on β-adrenergic receptor signaling in stromal bone cells, were shown to promote the establishment of disseminated cancer cells into the skeleton. This review provides a summary of these mechanisms in support of the therapeutic potential of β-blockers for the early management of breast cancer metastasis. Abstract The skeleton is heavily innervated by sympathetic nerves and represents a common site for breast cancer metastases, the latter being the main cause of morbidity and mortality in breast cancer patients. Progression and recurrence of breast cancer, as well as decreased overall survival in breast cancer patients, are associated with chronic stress, a condition known to stimulate sympathetic nerve outflow. Preclinical studies have demonstrated that sympathetic stimulation of β-adrenergic receptors in osteoblasts increases bone vascular density, adhesion of metastatic cancer cells to blood vessels, and their colonization of the bone microenvironment, whereas β-blockade prevented these events in mice with high endogenous sympathetic activity. These findings in preclinical models, along with clinical data from breast cancer patients receiving β-blockers, support the pathophysiological role of excess sympathetic nervous system activity in the formation of bone metastases, and the potential of commonly used, safe, and low-cost β-blockers as adjuvant therapy to improve the prognosis of bone metastases.
Collapse
Affiliation(s)
| | - Florent Elefteriou
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
17
|
Modzelewska B, Jóźwik M, Kleszczewski T, Sulkowski S, Jóźwik M. Myometrial Responses to Beta-Adrenoceptor Antagonists in Gynecological Malignancies. Gynecol Obstet Invest 2021; 86:162-169. [PMID: 33640886 DOI: 10.1159/000513718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/11/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of the study was to determine the influence of beta-adrenoceptor (ADRB) antagonists on contractile activity of the nonpregnant human uterus in patients affected by gynecological malignancies. DESIGN This was a controlled and prospective ex vivo study. SETTING The work was conducted as a collaboration between 4 academic departments. MATERIALS AND METHODS Myometrial specimens were obtained from women undergoing hysterectomy for benign gynecological disorders (reference group; N = 15), and ovarian (N = 15), endometrial (N = 15), synchronous ovarian-endometrial (N = 3), and cervical cancer (N = 10). Contractions of myometrial strips in an organ bath before and after applications of ADRB antagonists (propranolol, bupranolol, SR 59230A, and butoxamine) were studied under isometric conditions. RESULTS Propranolol and bupranolol attenuated contractions in the endometrial and cervical cancer groups similar to that in the reference group (all p < 0.05), whereas opposite effects were observed in the ovarian and synchronous ovarian-endometrial cancer groups. SR 59230A and butoxamine significantly increased contractions in the ovarian cancer group (both p < 0.001). LIMITATIONS These results require now to be placed into a firm clinical context. CONCLUSIONS Our study indicates that ovarian cancer considerably alters contractile activity of the nonpregnant human uterus in response to ADRB antagonists. This suggests a pathogenetic role of beta-adrenergic pathways in this malignancy. Furthermore, propranolol and bupranolol substantially influence spontaneous uterine contractility.
Collapse
Affiliation(s)
- Beata Modzelewska
- Department of Biophysics, Medical University of Białystok, Białystok, Poland
| | - Marcin Jóźwik
- Department of Gynecology and Obstetrics, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tomasz Kleszczewski
- Department of Biophysics, Medical University of Białystok, Białystok, Poland
| | - Stanisław Sulkowski
- Department of General Pathomorphology, Medical University of Białystok, Białystok, Poland
| | - Maciej Jóźwik
- Department of Gynecology and Gynecologic Oncology, Medical University of Białystok, Białystok, Poland,
| |
Collapse
|
18
|
Conceição F, Sousa DM, Paredes J, Lamghari M. Sympathetic activity in breast cancer and metastasis: partners in crime. Bone Res 2021; 9:9. [PMID: 33547275 PMCID: PMC7864971 DOI: 10.1038/s41413-021-00137-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 01/30/2023] Open
Abstract
The vast majority of patients with advanced breast cancer present skeletal complications that severely compromise their quality of life. Breast cancer cells are characterized by a strong tropism to the bone niche. After engraftment and colonization of bone, breast cancer cells interact with native bone cells to hinder the normal bone remodeling process and establish an osteolytic "metastatic vicious cycle". The sympathetic nervous system has emerged in recent years as an important modulator of breast cancer progression and metastasis, potentiating and accelerating the onset of the vicious cycle and leading to extensive bone degradation. Furthermore, sympathetic neurotransmitters and their cognate receptors have been shown to promote several hallmarks of breast cancer, such as proliferation, angiogenesis, immune escape, and invasion of the extracellular matrix. In this review, we assembled the current knowledge concerning the complex interactions that take place in the tumor microenvironment, with a special emphasis on sympathetic modulation of breast cancer cells and stromal cells. Notably, the differential action of epinephrine and norepinephrine, through either α- or β-adrenergic receptors, on breast cancer progression prompts careful consideration when designing new therapeutic options. In addition, the contribution of sympathetic innervation to the formation of bone metastatic foci is highlighted. In particular, we address the remarkable ability of adrenergic signaling to condition the native bone remodeling process and modulate the bone vasculature, driving breast cancer cell engraftment in the bone niche. Finally, clinical perspectives and developments on the use of β-adrenergic receptor inhibitors for breast cancer management and treatment are discussed.
Collapse
Affiliation(s)
- Francisco Conceição
- grid.5808.50000 0001 1503 7226I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Daniela M. Sousa
- grid.5808.50000 0001 1503 7226I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Paredes
- grid.5808.50000 0001 1503 7226I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226FMUP—Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
| | - Meriem Lamghari
- grid.5808.50000 0001 1503 7226I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
19
|
Zhang M, Wang Q, Sun X, Yin Q, Chen J, Xu L, Xu C. β 2 -adrenergic receptor signaling drives prostate cancer progression by targeting the Sonic hedgehog-Gli1 signaling activation. Prostate 2020; 80:1328-1340. [PMID: 32894788 PMCID: PMC7540401 DOI: 10.1002/pros.24060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Considerable evidence suggests that the sympathetic nervous system, mainly via adrenergic signaling, contributes to prostate cancer (PCa) progression. However, the underlying molecular mechanisms remain unknown. METHODS The expression level of β2 -adrenergic receptor (β2 -AR) in tissue microarray was evaluated by immunohistochemistry. The effects of isoproterenol (ISO) or Sonic Hedgehog (Shh) signaling inhibitor on tumor growth were analyzed in proliferation and colony formation assays. The apoptosis of cells was analyzed by flow cytometry. Small hairpin RNA-based knockdown of β2 -AR or Gli1 was validated by Western blot analysis and real-time PCR. Effects of β2 -AR on prostate carcinogenesis in vivo were observed in a mouse xenograft model. The expression levels of the indicated proteins in xenograft tissues were evaluated by immunohistochemistry. Expression levels of Shh signaling components and downstream proteins were assessed by immunoblotting. RESULTS We determined that β2 -AR was expressed at significantly higher levels in carcinoma than in normal prostate tissues. β2 -AR signaling also played an essential role in sustaining PCa cell proliferation in vivo and in vitro. We also found that inhibition of Shh signaling or knockdown of Gli1 expression significantly restrained ISO-induced cell proliferation in vitro. ISO alleviated the apoptosis induced by suppressing or knocking down of Gli1. The β2 -AR agonist ISO upregulated the transcription and protein expression of target genes of Shh signaling, including c-Myc, Cyclin D1, and VEGFA. Conversely, knocking down β2 -AR markedly suppressed the expression of Shh components in vivo and in vitro. In Gli1 knockdown cells, ISO failed to increase the expression of target genes of Shh signaling. CONCLUSIONS In this study, we uncovered an important role of β2 -AR signaling in regulating the Shh pathway activity in PCa tumorigenesis and provide further insight into the mechanism of the involvement of the Hh signaling pathway. Furthermore, given the efficacy of β2 -adrenergic modulation on PCa, our study might also add evidence for potential therapeutic options of β-blockers for PCa.
Collapse
Affiliation(s)
- Mi Zhang
- Institute of Life SciencesChongqing Medical UniversityChongqingChina
| | - Qianhui Wang
- Institute of Life SciencesChongqing Medical UniversityChongqingChina
| | - Xueqing Sun
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qingqing Yin
- Institute of Life SciencesChongqing Medical UniversityChongqingChina
| | - Jinying Chen
- Institute of Life SciencesChongqing Medical UniversityChongqingChina
| | - Linhui Xu
- Institute of Life SciencesChongqing Medical UniversityChongqingChina
| | - Chen Xu
- Institute of Life SciencesChongqing Medical UniversityChongqingChina
| |
Collapse
|
20
|
Zahalka AH, Fram E, Lin W, Mohn L, Frenette PS, Agalliu I, Watts KL. Use of beta-blocker types and risk of incident prostate cancer in a multiethnic population. Urol Oncol 2020; 38:794.e11-794.e16. [PMID: 32307329 DOI: 10.1016/j.urolonc.2020.03.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/15/2020] [Accepted: 03/24/2020] [Indexed: 11/19/2022]
Abstract
PURPOSE Increased adrenergic innervation is observed in prostate cancer (CaP) and is associated with aggressive disease. Emerging evidence suggests that beta-adrenergic blockade inhibits CaP progression. However, the association between type of beta-blocker use and risk of incident CaP on initial prostate biopsy has not been investigated in multiethnic populations. MATERIALS AND METHODS A retrospective study of racially/ethnically diverse men (64% African-American and Hispanic), who underwent initial prostate biopsy between 2006 and 2016 in a large healthcare system was performed. Oral use of beta-blocker type was assessed by reviewing active prescriptions within the 5-year period preceding initial biopsy. Patient demographics and clinical factors were collected. RESULTS Of 4,607 men who underwent initial prostate biopsy, 4,516 met criteria and 2,128 had a biopsy positive for CaP; 20% high-risk, 41% intermediate-risk, and 39% low or very-low risk (National Comprehensive Cancer Network classification). Overall, 15% of patients were taking a beta-blocker prior to initial biopsy, with Metoprolol, Atenolol, and Carvedilol accounting for the majority. Of beta-blocker types, Atenolol alone was associated with a 38% reduction in odds of incident CaP (P= 0.01), with a 40% and 54% reduction in risks of National Comprehensive Cancer Network intermediate and high-risk CaP (P = 0.03 and P = 0.03, respectively) compared to men not taking a beta-blocker. Furthermore, longer duration of Atenolol use (3-5 years) was associated with a 54% and 72% reduction in intermediate and high-risk disease, (P = 0.03 and P = 0.03, respectively). CONCLUSIONS Among beta blocker types, long-term Atenolol use is associated with a significant reduction in incident CaP risk on initial prostate biopsy for clinically-significant intermediate and high-risk disease compared to men not taking a beta-blocker.
Collapse
Affiliation(s)
- Ali H Zahalka
- Department of Urology, Albert Einstein College of Medicine / Montefiore Medical Center, Bronx, NY; Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Ethan Fram
- Department of Urology, Albert Einstein College of Medicine / Montefiore Medical Center, Bronx, NY
| | - Wilson Lin
- Department of Urology, Albert Einstein College of Medicine / Montefiore Medical Center, Bronx, NY
| | - Larkin Mohn
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - Paul S Frenette
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY; Ruth L. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Ilir Agalliu
- Department of Urology, Albert Einstein College of Medicine / Montefiore Medical Center, Bronx, NY; Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - Kara L Watts
- Department of Urology, Albert Einstein College of Medicine / Montefiore Medical Center, Bronx, NY
| |
Collapse
|
21
|
Beta-adrenergic blocker inhibits oral carcinogenesis and reduces tumor invasion. Cancer Chemother Pharmacol 2020; 86:681-686. [PMID: 32980903 DOI: 10.1007/s00280-020-04149-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Beta-adrenergic signaling can influence cancer progression and the use of beta blockers as adjuvant drugs in oncologic patients has been suggested. However, the involvement of beta-adrenergic blockers in tumorigenesis is poorly understood. This study investigated the action of beta-adrenergic blocker propranolol on tumor onset using a preclinical model of chemically induced oral cancer. METHODS Thirty-two male Wistar rats were subjected to daily subcutaneous injection of beta-blocker propranolol (10 mg/kg; SubQ), while another 32 rats received only a PBS injection (sham group). One week after starting propranolol treatment, all rats were submitted to chemical induction of oral carcinogenesis with 4-nitroquinoline-1-oxide (4NQO). After 16 weeks, they were assessed for occurrence of oral squamous cell carcinoma (OSCC), in addition to measurement of tumor volume and thickness, and tissue levels of cytokines IL-6, TNF-alpha and IL-10 in the tumor microenvironment. RESULTS Propranolol treatment reduced the occurrence of OSCC by 31%, 95% CI ( - 127, 216). Beta-adrenergic blocker significantly decreased thickness of OSCC when compared with PBS. Rats treated with propranolol exhibited a lower tumor volume when compared with control rats, but this result did not reach statistical significance. Tumors from propranolol-treated rats exhibited reduced concentrations of pro-inflammatory cytokines IL-6 and TNF-α. There was no difference in the IL-10 levels between tumors from propranolol- and sham-treated rats. CONCLUSION Beta-adrenergic signaling may be one of the mechanisms associated with chemically induced oral carcinogenesis.
Collapse
|
22
|
Chakroborty D, Goswami S, Basu S, Sarkar C. Catecholamines in the regulation of angiogenesis in cutaneous wound healing. FASEB J 2020; 34:14093-14102. [PMID: 32949437 DOI: 10.1096/fj.202001701r] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/04/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
Angiogenesis involves the formation of new blood vessels from preexisting ones, and it is an essential step during cutaneous wound healing, which supports cells at the wound site with nutrition and oxygen. Impaired angiogenesis in the wound tissues results in delayed wound closure and healing. Among the regulators of angiogenesis, the role of catecholamines (epinephrine, norepinephrine, and dopamine) is of interest due to their diverse roles in the process of wound healing. While both norepinephrine and epinephrine mostly inhibit the angiogenic process in cutaneous wounds, dopamine, the other member of the catecholamine family, has interesting and contradictory roles in the regulation of angiogenesis in the wound beds, depending on the type of dopamine receptor involved. The stimulation of dopamine D2 receptors negatively regulates the angiogenic process in normal dermal wounds and thereby delays healing, whereas the stimulation of dopamine D1 receptors promotes angiogenesis and expedites healing in diabetic wounds. Importantly, catecholamines also play important roles in other pathological conditions, and specific agonists and antagonists of catecholamines are available for the treatment of some disorders. Therefore, such drugs may be utilized for the management of angiogenesis to promote the healing of dermal wounds. This review provides a broad overview of the angiogenic process during cutaneous wound healing and the regulatory roles played by catecholamines during the process.
Collapse
Affiliation(s)
| | - Sandeep Goswami
- Department of Pathology, Ohio State University, Columbus, OH, USA
| | - Sujit Basu
- Department of Pathology, Ohio State University, Columbus, OH, USA.,Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA.,Department of Medical Oncology, Ohio State University, Columbus, OH, USA
| | - Chandrani Sarkar
- Department of Pathology, Ohio State University, Columbus, OH, USA.,Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| |
Collapse
|
23
|
Hassan S, Pullikuth A, Nelson KC, Flores A, Karpova Y, Baiz D, Zhu S, Sui G, Huang Y, Choi YA, D'Agostino R, Hemal A, von Holzen U, Debinski W, Kulik G. β2-adrenoreceptor Signaling Increases Therapy Resistance in Prostate Cancer by Upregulating MCL1. Mol Cancer Res 2020; 18:1839-1848. [PMID: 32928910 DOI: 10.1158/1541-7786.mcr-19-1037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/23/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022]
Abstract
There is accumulating evidence that continuous activation of the sympathetic nervous system due to psychosocial stress increases resistance to therapy and accelerates tumor growth via β2-adrenoreceptor signaling (ADRB2). However, the effector mechanisms appear to be specific to tumor type. Here we show that activation of ADRB2 by epinephrine, increased in response to immobilization stress, delays the loss of MCL1 apoptosis regulator (MCL1) protein expression induced by cytotoxic drugs in prostate cancer cells; and thus, increases resistance of prostate cancer xenografts to cytotoxic therapies. The effect of epinephrine on MCL1 protein depended on protein kinase A (PKA) activity, but was independent from androgen receptor expression. Furthermore, elevated blood epinephrine levels correlated positively with an increased MCL1 protein expression in human prostate biopsies. In summary, we demonstrate that stress triggers an androgen-independent antiapoptotic signaling via the ADRB2/PKA/MCL1 pathway in prostate cancer cells. IMPLICATIONS: Presented results justify clinical studies of ADRB2 blockers as therapeutics and of MCL1 protein expression as potential biomarker predicting efficacy of apoptosis-targeting drugs in prostate cancer.
Collapse
Affiliation(s)
- Sazzad Hassan
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Indiana University School of Medicine-South Bend, South Bend, Indiana
| | - Ashok Pullikuth
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Kyle C Nelson
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Anabel Flores
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Yelena Karpova
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Daniele Baiz
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Sinan Zhu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Guangchao Sui
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Yue Huang
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Young A Choi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ralph D'Agostino
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ashok Hemal
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Urs von Holzen
- Indiana University School of Medicine-South Bend, South Bend, Indiana
- Goshen Center for Cancer Care, Goshen, Indiana
| | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - George Kulik
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina.
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Department of Life Sciences, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
24
|
Association Between the Overall Risk of Prostate Cancer and Use of Calcium Channel Blockers: A Systematic Review and Meta-analysis. Clin Ther 2020; 42:1715-1727.e2. [PMID: 32807506 DOI: 10.1016/j.clinthera.2020.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/14/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Although calcium channel blockers (CCBs) are now commonly prescribed to treat hypertension as a first-line drug therapy, their impact on prostate cancer (PCa) is unclear. This systematic review and meta-analysis was conducted to determine the association between CCB use and the overall risk of PCa. METHODS PubMed, EMBASE, and Cochrane were searched up to December 26, 2019, stratified according to statistical method of outcome [odd ratios (ORs), relative ratios (RRs), hazard ratios (HRs)] and cumulative duration of CCB use. The quality assessment of included studies was evaluated by using the Newcastle-Ottawa Scale. Fixed effects models were used to study the association between CCB use and the risk of PCa. Between-study heterogeneity was quantified by using Cochran's Q-statistic and I2 statistics. Sensitivity analysis was performed by excluding the studies one by one, and publication bias was analyzed by using funnel plots. FINDINGS Nineteen studies with 1,418,407 patients were identified for inclusion in the meta-analysis, which was based on the comparison of cohort studies, nested case-control studies, and case-control studies. Pooled estimates showed a RR of 1.08 (95% CI, 1.05-1.11; P < 0.00001) and a HR of 1.07 (95% CI, 1.02-1.13; P = 0.008) for association between CCB use and the risk of PCa. In addition, the results of subgroup analysis showed that CCB users of <5 years had an 8% increased overall risk of PCa (RR, 1.08; 95% CI, 1.04-1.12; P = 0.0001), and CCB users of 5-10 years had a 13% increased overall risk of PCa (RR, 1.13; 95% CI, 1.04-1.23; P = 0.003). IMPLICATIONS CCB use had a tendency to increase the overall risk of PCa, and cumulative duration of CCB use might also be positively correlated with the overall risk of PCa.
Collapse
|
25
|
Ghali GZ, Ghali MGZ. β adrenergic receptor modulated signaling in glioma models: promoting β adrenergic receptor-β arrestin scaffold-mediated activation of extracellular-regulated kinase 1/2 may prove to be a panacea in the treatment of intracranial and spinal malignancy and extra-neuraxial carcinoma. Mol Biol Rep 2020; 47:4631-4650. [PMID: 32303958 PMCID: PMC7165076 DOI: 10.1007/s11033-020-05427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/03/2020] [Indexed: 12/03/2022]
Abstract
Neoplastically transformed astrocytes express functionally active cell surface β adrenergic receptors (βARs). Treatment of glioma models in vitro and in vivo with β adrenergic agonists variably amplifies or attenuates cellular proliferation. In the majority of in vivo models, β adrenergic agonists generally reduce cellular proliferation. However, treatment with β adrenergic agonists consistently reduces tumor cell invasive potential, angiogenesis, and metastasis. β adrenergic agonists induced decreases of invasive potential are chiefly mediated through reductions in the expression of matrix metalloproteinases types 2 and 9. Treatment with β adrenergic agonists also clearly reduce tumoral neoangiogenesis, which may represent a putatively useful mechanism to adjuvantly amplify the effects of bevacizumab. Bevacizumab is a monoclonal antibody targeting the vascular endothelial growth factor receptor. We may accordingly designate βagonists to represent an enhancer of bevacizumab. The antiangiogenic effects of β adrenergic agonists may thus effectively render an otherwise borderline effective therapy to generate significant enhancement in clinical outcomes. β adrenergic agonists upregulate expression of the major histocompatibility class II DR alpha gene, effectively potentiating the immunogenicity of tumor cells to tumor surveillance mechanisms. Authors have also demonstrated crossmodal modulation of signaling events downstream from the β adrenergic cell surface receptor and microtubular polymerization and depolymerization. Complex effects and desensitization mechanisms of the β adrenergic signaling may putatively represent promising therapeutic targets. Constant stimulation of the β adrenergic receptor induces its phosphorylation by β adrenergic receptor kinase (βARK), rendering it a suitable substrate for alternate binding by β arrestins 1 or 2. The binding of a β arrestin to βARK phosphorylated βAR promotes receptor mediated internalization and downregulation of cell surface receptor and contemporaneously generates a cell surface scaffold at the βAR. The scaffold mediated activation of extracellular regulated kinase 1/2, compared with protein kinase A mediated activation, preferentially favors cytosolic retention of ERK1/2 and blunting of nuclear translocation and ensuant pro-transcriptional activity. Thus, βAR desensitization and consequent scaffold assembly effectively retains the cytosolic homeostatic functions of ERK1/2 while inhibiting its pro-proliferative effects. We suggest these mechanisms specifically will prove quite promising in developing primary and adjuvant therapies mitigating glioma growth, angiogenesis, invasive potential, and angiogenesis. We suggest generating compounds and targeted mutations of the β adrenergic receptor favoring β arrestin binding and scaffold facilitated activation of ERK1/2 may hold potential promise and therapeutic benefit in adjuvantly treating most or all cancers. We hope our discussion will generate fruitful research endeavors seeking to exploit these mechanisms.
Collapse
Affiliation(s)
- George Zaki Ghali
- United States Environmental Protection Agency, Arlington, VA, USA.,Emeritus Professor, Department of Toxicology, Purdue University, West Lafayette, IN, USA
| | - Michael George Zaki Ghali
- Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, Box-0112, San Francisco, CA, 94143, USA. .,Department of Neurological Surgery, Karolinska Institutet, Nobels väg 6, Solna and Alfred Nobels Allé 8, Huddinge, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
26
|
Sama IE, Woolley RJ, Nauta JF, Romaine SPR, Tromp J, Ter Maaten JM, van der Meer P, Lam CSP, Samani NJ, Ng LL, Metra M, Dickstein K, Anker SD, Zannad F, Lang CC, Cleland JGF, van Veldhuisen DJ, Hillege HL, Voors AA. A network analysis to identify pathophysiological pathways distinguishing ischaemic from non-ischaemic heart failure. Eur J Heart Fail 2020; 22:821-833. [PMID: 32243695 PMCID: PMC7319432 DOI: 10.1002/ejhf.1811] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
Aims Heart failure (HF) is frequently caused by an ischaemic event (e.g. myocardial infarction) but might also be caused by a primary disease of the myocardium (cardiomyopathy). In order to identify targeted therapies specific for either ischaemic or non‐ischaemic HF, it is important to better understand differences in underlying molecular mechanisms. Methods and results We performed a biological physical protein–protein interaction network analysis to identify pathophysiological pathways distinguishing ischaemic from non‐ischaemic HF. First, differentially expressed plasma protein biomarkers were identified in 1160 patients enrolled in the BIOSTAT‐CHF study, 715 of whom had ischaemic HF and 445 had non‐ischaemic HF. Second, we constructed an enriched physical protein–protein interaction network, followed by a pathway over‐representation analysis. Finally, we identified key network proteins. Data were validated in an independent HF cohort comprised of 765 ischaemic and 100 non‐ischaemic HF patients. We found 21/92 proteins to be up‐regulated and 2/92 down‐regulated in ischaemic relative to non‐ischaemic HF patients. An enriched network of 18 proteins that were specific for ischaemic heart disease yielded six pathways, which are related to inflammation, endothelial dysfunction superoxide production, coagulation, and atherosclerosis. We identified five key network proteins: acid phosphatase 5, epidermal growth factor receptor, insulin‐like growth factor binding protein‐1, plasminogen activator urokinase receptor, and secreted phosphoprotein 1. Similar results were observed in the independent validation cohort. Conclusions Pathophysiological pathways distinguishing patients with ischaemic HF from those with non‐ischaemic HF were related to inflammation, endothelial dysfunction superoxide production, coagulation, and atherosclerosis. The five key pathway proteins identified are potential treatment targets specifically for patients with ischaemic
HF.
Collapse
Affiliation(s)
- Iziah E Sama
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rebecca J Woolley
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan F Nauta
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Simon P R Romaine
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, and NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Jasper Tromp
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Cardiology, National Heart Centre Singapore, Singapore.,Singapore Duke-NUS Graduate Medical School, Singapore
| | - Jozine M Ter Maaten
- Robertson Centre for Biostatistics & Clinical Trials Unit, University of Glasgow and Clinical Cardiology, National Heart & Lung Institute, Imperial College London, London, UK
| | - Peter van der Meer
- Robertson Centre for Biostatistics & Clinical Trials Unit, University of Glasgow and Clinical Cardiology, National Heart & Lung Institute, Imperial College London, London, UK
| | - Carolyn S P Lam
- Singapore Duke-NUS Graduate Medical School, Singapore.,Robertson Centre for Biostatistics & Clinical Trials Unit, University of Glasgow and Clinical Cardiology, National Heart & Lung Institute, Imperial College London, London, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, and NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Leong L Ng
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, and NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Marco Metra
- Institute of Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Kenneth Dickstein
- University of Bergen, Bergen, Norway.,Stavanger University Hospital, Stavanger, Norway
| | - Stefan D Anker
- Department of Cardiology (CVK) and Berlin-Brandenburg Center for Regenerative Therapies (BCRT); German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Faiez Zannad
- CHU de Nancy, Inserm CIC 1433, Université de Lorrain, CHRU de Nancy, F-CRIN INI-CRCT, Nancy, France
| | - Chim C Lang
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee Ninewells Hospital and Medical School, Dundee, UK
| | - John G F Cleland
- Robertson Centre for Biostatistics & Clinical Trials Unit, University of Glasgow and Clinical Cardiology, National Heart & Lung Institute, Imperial College London, London, UK
| | - Dirk J van Veldhuisen
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hans L Hillege
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
27
|
Abstract
The worldwide incidence of melanoma has risen rapidly in the past 50 years and is a considerable public health burden in the United States, with significant financial implications. Studies have demonstrated the potential anticarcinogenic effects of antihypertensive agents, specifically beta-blockers, in patients with prostate cancer, breast cancer, and lately cutaneous malignant melanoma. This article explores the empirical clinical evidence of propranolol's anticarcinogenic effects on melanoma and the chemoprotective mechanisms of beta-blockers and other agents that have been used to modify melanoma progression.
Collapse
|
28
|
Tewarie IA, Senders JT, Hulsbergen AFC, Kremer S, Broekman MLD. Beta-blockers and glioma: a systematic review of preclinical studies and clinical results. Neurosurg Rev 2020; 44:669-677. [PMID: 32172480 PMCID: PMC8035104 DOI: 10.1007/s10143-020-01277-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
Given the median survival of 15 months after diagnosis, novel treatment strategies are needed for glioblastoma. Beta-blockers have been demonstrated to inhibit angiogenesis and tumor cell proliferation in various cancer types. The aim of this study was to systematically review the evidence on the effect of beta-blockers on glioma growth. A systematic literature search was performed in the PubMed, Embase, Google Scholar, Web of Science, and Cochrane Central to identify all relevant studies. Preclinical studies concerning the pharmacodynamic effects of beta-blockers on glioma growth and proliferation were included, as well as clinical studies that studied the effect of beta-blockers on patient outcomes according to PRISMA guidelines. Among the 980 citations, 10 preclinical studies and 1 clinical study were included after title/abstract and full-text screening. The following potential mechanisms were identified: reduction of glioma cell proliferation (n = 9), decrease of glioma cell migration (n = 2), increase of drug sensitivity (n = 1), induction of glioma cell death (n = 1). Beta-blockers affect glioma proliferation by inducing a brief reduction of cAMP and a temporary cell cycle arrest in vitro. Contrasting results were observed concerning glioma cell migration. The identified clinical study did not find an association between beta-blockers and survival in glioma patients. Although preclinical studies provide scarce evidence for the use of beta-blockers in glioma, they identified potential pathways for targeting glioma. Future studies are needed to clarify the effect of beta-blockers on clinical endpoints including survival outcomes in glioma patients to scrutinize the value of beta-blockers in glioma care.
Collapse
Affiliation(s)
- Ishaan Ashwini Tewarie
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, The Netherlands.,Faculty of Medicine, Erasmus University Rotterdam/Erasmus Medical Center, Rotterdam, The Netherlands.,Computational Neurosciences Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joeky T Senders
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, The Netherlands.,Computational Neurosciences Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander F C Hulsbergen
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, The Netherlands.,Computational Neurosciences Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Stijn Kremer
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, The Netherlands
| | - Marike L D Broekman
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, The Netherlands. .,Computational Neurosciences Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
29
|
Huang Z, Li G, Zhang Z, Gu R, Wang W, Lai X, Cui ZK, Zeng F, Xu S, Deng F. β2AR-HIF-1α-CXCL12 signaling of osteoblasts activated by isoproterenol promotes migration and invasion of prostate cancer cells. BMC Cancer 2019; 19:1142. [PMID: 31771535 PMCID: PMC6878637 DOI: 10.1186/s12885-019-6301-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/28/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Chronic stress is well known to promote tumor progression, however, little is known whether chronic stress-mediated regulation of osteoblasts contributes to the migration and invasion of metastatic cancer cells. METHODS The proliferation, migration and invasion of prostate cancer cells were assessed by CCK-8 and transwell assay. HIF-1α expression of osteoblasts and epithelial-mesenchymal transition (EMT) markers of prostate cancer cells were examined by Western blot. The mRNA level of cytokines associated with bone metastasis in osteoblasts and EMT markers in PC-3 and DU145 cells were performed by qRT-PCR. Functional rescue experiment of cells were performed by using siRNA, plasmid transfection and inhibitor treatment. RESULTS Isoproterenol (ISO), a pharmacological surrogate of sympathetic nerve activation induced by chronic stress, exhibited no direct effect on migration and invasion of PC-3 and DU145 prostate cancer cells. Whereas, osteoblasts pretreated with ISO promoted EMT, migration and invasion of PC-3 and DU145 cells, which could be inhibited by β2AR inhibitor. Mechanistically, ISO increased the secretion of CXCL12 via the β2AR-HIF-1α signaling in osteoblasts. Moreover, overexpression of HIF-1α osteoblasts promoted migration and invasion of PC-3 and DU145 cells, which was inhibited by addition of recombinant knockdown of CXCR4 in PC-3 and DU145 cells, and inhibiting CXCL12-CXCR4 signaling with LY2510924 blunted the effects of osteoblasts in response to ISO on EMT and migration as well as invasion of PC-3 and DU145 cells. CONCLUSIONS These findings demonstrated that β2AR-HIF-1α-CXCL12 signaling in osteoblasts facilitates migration and invasion as well as EMT of prostate cancer cells, and may play a potential role in affecting bone metastasis of prostate cancer.
Collapse
Affiliation(s)
- Zhibin Huang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280 China
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
- Department of Anesthesiology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350001 China
| | - Guihuan Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Zhishuai Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Ruonan Gu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280 China
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Wenyang Wang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Xiaoju Lai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Zhong-Kai Cui
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Fangyin Zeng
- Department of Clinical Laboratory, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, 510900 China
| | - Shiyuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280 China
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| |
Collapse
|
30
|
Shepard MJ, Bugarini A, Edwards NA, Lu J, Zhang Q, Wu T, Zhuang Z, Chittiboina P. Repurposing propranolol as an antitumor agent in von Hippel-Lindau disease. J Neurosurg 2019; 131:1106-1114. [PMID: 30497198 PMCID: PMC7265978 DOI: 10.3171/2018.5.jns172879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/10/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Von Hippel-Lindau disease (VHL) is a tumor predisposition syndrome characterized by CNS hemangioblastomas (HBs) and clear cell renal cell carcinomas (RCCs) due to hypoxia-inducible factor activation (pseudohypoxia). Because of the lack of effective medical therapies for VHL, HBs and RCCs account for significant morbidity and mortality, ultimately necessitating numerous neurological and renal surgeries. Propranolol is an FDA-approved pan-beta adrenergic antagonist with antitumor effects against infantile hemangiomas (IHs) and possibly VHL HBs. Here, the authors investigated the antitumor efficacy of propranolol against pseudohypoxia-driven VHL-HBs and VHL-RCCs. METHODS Patient-derived VHL-associated HBs (VHL-HBs) or 786-O-VHL-/- RCC cells were treated with clinically relevant concentrations of propranolol in vitro and assessed with viability assays, flow cytometry, quantitative real-time polymerase chain reaction, and western blotting. In vivo confirmation of propranolol antitumor activity was confirmed in athymic nude mice bearing 786-O xenograft tumors. Lastly, patients enrolled in a VHL natural history study (NCT00005902) were analyzed for incidental propranolol intake. Propranolol activity against VHL-HBs was assessed retrospectively with volumetric HB growth kinetic analysis. RESULTS Propranolol decreased HB and RCC viability in vitro with IC50 (half maximal inhibitory concentration) values of 50 µM and 200 µM, respectively. Similar to prior reports in infantile hemangiomas, propranolol induced apoptosis and paradoxically increased VEGF-A mRNA expression in patient-derived VHL-HBs and 786-O cells. While intracellular VEGF protein levels were not affected by propranolol treatment, propranolol decreased HIF expression in 786-O cells (7.6-fold reduction, p < 0.005). Propranolol attenuated tumor progression compared with control (33% volume reduction at 7 days, p < 0.005) in 786-O xenografted tumor-bearing mice. Three patients (harboring 25 growing CNS HBs) started propranolol therapy during the longitudinal VHL-HB study. HBs in these patients tended to grow slower (median growth rate 27.1 mm3/year vs 13.3 mm3/year) during propranolol treatment (p < 0.0004). CONCLUSIONS Propranolol decreases VHL-HB and VHL-related RCC viability in vitro likely by modulation of VEGF expression and by inducing apoptosis. Propranolol abrogates 786-O xenograft tumor progression in vivo, and retrospective clinical data suggest that propranolol curtails HB growth. These results suggest that propranolol may play a role in the treatment of VHL-related tumors.
Collapse
Affiliation(s)
- Matthew J. Shepard
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Alejandro Bugarini
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Nancy A. Edwards
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Jie Lu
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Qi Zhang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda
| | - Tianxia Wu
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda
| | - Prashant Chittiboina
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
31
|
Beyond the boundaries of cardiology: Still untapped anticancer properties of the cardiovascular system-related drugs. Pharmacol Res 2019; 147:104326. [DOI: 10.1016/j.phrs.2019.104326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023]
|
32
|
Kamiya A, Hayama Y, Kato S, Shimomura A, Shimomura T, Irie K, Kaneko R, Yanagawa Y, Kobayashi K, Ochiya T. Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression. Nat Neurosci 2019; 22:1289-1305. [PMID: 31285612 DOI: 10.1038/s41593-019-0430-3] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 05/17/2019] [Indexed: 12/24/2022]
Abstract
The effects of autonomic innervation of tumors on tumor growth remain unclear. Here we developed a series of genetic techniques to manipulate autonomic innervation in a tumor- and fiber-type-specific manner in mice with human breast cancer xenografts and in rats with chemically induced breast tumors. Breast cancer growth and progression were accelerated following stimulation of sympathetic nerves in tumors, but were reduced following stimulation of parasympathetic nerves. Tumor-specific sympathetic denervation suppressed tumor growth and downregulated the expression of immune checkpoint molecules (programed death-1 (PD-1), programed death ligand-1 (PD-L1), and FOXP3) to a greater extent than with pharmacological α- or β-adrenergic receptor blockers. Genetically induced simulation of parasympathetic innervation of tumors decreased PD-1 and PD-L1 expression. In humans, a retrospective analysis of breast cancer specimens from 29 patients revealed that increased sympathetic and decreased parasympathetic nerve density in tumors were associated with poor clinical outcomes and correlated with higher expression of immune checkpoint molecules. These findings suggest that autonomic innervation of tumors regulates breast cancer progression.
Collapse
Affiliation(s)
- Atsunori Kamiya
- Department of Cellular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan.
- PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan.
| | - Yohsuke Hayama
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Akihiko Shimomura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takushi Shimomura
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa, Nagoya, Japan
- Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Katsumasa Irie
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa, Nagoya, Japan
| | - Ryosuke Kaneko
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
33
|
The β2-adrenergic receptor antagonist ICI-118,551 blocks the constitutively activated HIF signalling in hemangioblastomas from von Hippel-Lindau disease. Sci Rep 2019; 9:10062. [PMID: 31296894 PMCID: PMC6624208 DOI: 10.1038/s41598-019-46448-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 06/28/2019] [Indexed: 12/12/2022] Open
Abstract
One of the major consequences of the lack of a functional VHL protein in von Hippel-Lindau disease, a rare cancer, is the constitutive activation of the HIF pathway. This activation ends up in the generation of Central Nervous System (CNS) Hemangioblastomas among other tumours along the lifespan of the patient. Nowadays, only surgery has been proven efficient as therapy since the systemic attempts have failed. Propranolol, a non-specific β1-and β2-adrenergic receptor antagonist, was recently designated as the first therapeutic (orphan) drug for VHL disease. Nevertheless, its β1 affinity provokes the decrease in blood pressure, being not recommended for low or regular blood pressure VHL patients. In order to overcome the β1-drawback, the properties of a high specific β2-adrenergic receptor blocker named ICI-118,551 have been studied. ICI-118,551 was able to decrease Hemangioblastomas cell viability in a specific manner, by triggering apoptosis. Moreover, ICI-118,551 also impaired the nuclear internalization of HIF-1α in Hemangioblastomas and hypoxic primary endothelial cells, reducing significantly the activation of HIF-target genes and halting the tumour-related angiogenic processes. In this work, we demonstrate the therapeutical properties of ICI-118,551 in VHL-derived CNS-Hemangioblastoma primary cultures, becoming a promising drug for VHL disease and other HIF-related diseases.
Collapse
|
34
|
Seretis A, Cividini S, Markozannes G, Tseretopoulou X, Lopez DS, Ntzani EE, Tsilidis KK. Association between blood pressure and risk of cancer development: a systematic review and meta-analysis of observational studies. Sci Rep 2019; 9:8565. [PMID: 31189941 PMCID: PMC6561976 DOI: 10.1038/s41598-019-45014-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
With the exception of renal cell carcinoma, studies assessing the association between hypertension and other cancers are inconsistent. We conducted a meta-analysis to assess this evidence. We included observational studies investigating the association between any definition of hypertension or systolic and diastolic blood pressure and risk of any cancer, after searching PubMed until November 2017. We calculated summary relative risks (RR) and 95% confidence intervals (CI) using inverse-variance weighted random effects methods. A total of 148 eligible publications were identified out of 39,891 initially screened citations. Considering only evidence from 85 prospective studies, positive associations were observed between hypertension and kidney, colorectal and breast cancer. Positive associations between hypertension and risk of oesophageal adenocarcinoma and squamous cell carcinoma, liver and endometrial cancer were also observed, but the majority of studies did not perform comprehensive multivariable adjustments. Systolic and diastolic blood pressure were positively associated with risk of kidney cancer but not with other cancers. In addition to the previously well-described association between hypertension and risk of kidney cancer, the current meta-analysis suggested that hypertensive individuals may also be at higher risk of colorectal and breast cancer. However, careful interpretation is required as most meta-analyses included relatively small number of studies, several relative risks had weak or moderate magnitude and maybe affected by residual confounding.
Collapse
Affiliation(s)
- Aristeidis Seretis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | | | - Georgios Markozannes
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Xanthippi Tseretopoulou
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - David S Lopez
- The University of Texas School of Public Health, Houston, TX, USA
| | - Evangelia E Ntzani
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece.,Center for Evidence-Based Medicine, Department of Health Services, Policy and Practice, School of Public Health, Brown University, Providence, RI, USA
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece. .,Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK.
| |
Collapse
|
35
|
Kao LT, Huang CC, Lin HC, Huang CY. Antiarrhythmic drug usage and prostate cancer: a population-based cohort study. Asian J Androl 2019; 20:37-42. [PMID: 28857052 PMCID: PMC5753552 DOI: 10.4103/aja.aja_26_17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Even though the relationship between antiarrhythmic drug usage and subsequent prostate cancer (PCa) risk has recently been highlighted, relevant findings in the previous literature are still inconsistent. In addition, very few studies have attempted to investigate the association between sodium channel blockers or potassium channel blockers for arrhythmia and the subsequent PCa risk. Therefore, this cohort study aimed to find the relationship between antiarrhythmic drug usage and the subsequent PCa risk using a population-based dataset. The data used in this study were derived from the Longitudinal Health Insurance Database 2005, Taiwan, China. We respectively identified 9988 sodium channel blocker users, 3663 potassium channel blocker users, 65 966 beta-blocker users, 23 366 calcium channel blockers users, and 7031 digoxin users as the study cohorts. The matched comparison cohorts (one comparison subject for each antiarrhythmic drug user) were selected from the same dataset. Each patient was tracked for a 5-year period to define those who were subsequently diagnosed with PCa. After adjusting for sociodemographic characteristics, comorbidities, and age, Cox proportional hazard regressions found that the hazard ratio (HR) of subsequent PCa for sodium channel blocker users was 1.12 (95% confidence interval [CI]: 0.84–1.50), for potassium channel blocker users was 0.89 (95% CI: 0.59–1.34), for beta-blocker users was 1.08 (95% CI: 0.96–1.22), for calcium channel blocker users was 1.14 (95% CI: 0.95–1.36), and for digoxin users was 0.89 (95% CI: 0.67–1.18), compared to their matched nonusers. We concluded that there were no statistical associations between different types of antiarrhythmic drug usage and subsequent PCa risk.
Collapse
Affiliation(s)
- Li-Ting Kao
- Graduate Institute of Life Science, National Defense Medical Center, Taipei 110, Taiwan, China.,Sleep Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan, China
| | - Chung-Chien Huang
- School of Health Care Administration, Taipei Medical University, Taipei 110, Taiwan, China
| | - Herng-Ching Lin
- Sleep Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan, China.,School of Health Care Administration, Taipei Medical University, Taipei 110, Taiwan, China
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 110, Taiwan, China.,Department of Urology, National Taiwan University Hospital, Hsin Chu Branch, Hsin Chu City 100, Taiwan, China.,School of Public Health, Taipei Medical University, Taipei 100, Taiwan, China
| |
Collapse
|
36
|
Reyes-Corral M, Sørensen NM, Thrasivoulou C, Dasgupta P, Ashmore JF, Ahmed A. Differential Free Intracellular Calcium Release by Class II Antiarrhythmics in Cancer Cell Lines. J Pharmacol Exp Ther 2019; 369:152-162. [PMID: 30655298 DOI: 10.1124/jpet.118.254375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/02/2019] [Indexed: 12/31/2022] Open
Abstract
Class II antiarrhythmics or β-blockers are antisympathetic nervous system agents that act by blocking β-adrenoceptors. Despite their common clinical use, little is known about the effects of β-blockers on free intracellular calcium (Ca2+ i), an important cytosolic second messenger and a key regulator of cell function. We investigated the role of four chemical analogs, commonly prescribed β-blockers (atenolol, metoprolol, propranolol, and sotalol), on Ca2+ i release and whole-cell currents in mammalian cancer cells (PC3 prostate cancer and MCF7 breast cancer cell lines). We discovered that only propranolol activated free Ca2+ i release with distinct kinetics, whereas atenolol, metoprolol, and sotalol did not. The propranolol-induced Ca2+ i release was significantly inhibited by the chelation of extracellular calcium with ethylene glycol tetraacetic acid (EGTA) and by dantrolene, an inhibitor of the endoplasmic reticulum (ER) ryanodine receptor channels, and it was completely abolished by 2-aminoethoxydiphenyl borate, an inhibitor of the ER inositol-1,4,5-trisphosphate (IP3) receptor channels. Exhaustion of ER stores with 4-chloro-m-cresol, a ryanodine receptor activator, or thapsigargin, a sarco/ER Ca2+ ATPase inhibitor, precluded the propranolol-induced Ca2+ i release. Finally, preincubation of cells with sotalol or timolol, nonselective blockers of β-adrenoceptors, also reduced the Ca2+ i release activated by propranolol. Our results show that different β-blockers have differential effects on whole-cell currents and free Ca2+ i release and that propranolol activates store-operated Ca2+ i release via a mechanism that involves calcium-induced calcium release and putative downstream transducers such as IP3 The differential action of class II antiarrhythmics on Ca2+ i release may have implications on the pharmacology of these drugs.
Collapse
Affiliation(s)
- Marta Reyes-Corral
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Naja M Sørensen
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Christopher Thrasivoulou
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Prokar Dasgupta
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Jonathan F Ashmore
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Aamir Ahmed
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| |
Collapse
|
37
|
Rotshild V, Azoulay L, Feldhamer I, Perlman A, Muszkat M, Matok I. Calcium Channel Blocker Use and the Risk for Prostate Cancer: A Population-Based Nested Case-Control Study. Pharmacotherapy 2019; 39:690-696. [PMID: 30917404 DOI: 10.1002/phar.2266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Calcium channels play a significant role in the regulation of cell proliferation and apoptosis. This study investigates associations between calcium channel blocker (CCB) use and the incidence of prostate cancer (PCa). METHODS A nested case-control study was conducted using the Clalit Health Services database. We formed a population-based cohort of patients who were prescribed their first antihypertensive agent between 2000 and 2014. For each newly diagnosed PCa case in the cohort, 10 controls were matched by age, calendar year of cohort entry, and duration of follow-up. Multivariate conditional logistic regression analyses were used to evaluate the odds ratios (ORs) of PCa among CCB users compared with users of other antihypertensive drugs. RESULTS We identified 4346 patients with newly diagnosed PCa during the median follow-up of 5.3 years. The exposure to CCBs was associated with a slight increase in risk for PCa (OR 1.10, 95% confidence interval [CI] 1.02-1.18) when compared with non-CCB antihypertensive drugs. In secondary analyses, evidence was found of a duration-response relationship, with the association for PCa increasing by 27% for every 10-year increment of CCB use (OR 1.27, 95% CI 1.04-1.56). CONCLUSIONS The results of this large population-based study indicate a modest but significant increase in the risk of PCa among CCB users, and the risk increases with duration of use.
Collapse
Affiliation(s)
- Victoria Rotshild
- Division of Clinical Pharmacy, Institute for Drug Research, School of Pharmacy and The David R. Bloom Center of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Laurent Azoulay
- Department of Epidemiology, Biostatistics, and Occupational Health, and Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.,Centre for Clinical Epidemiology, Oncology Department, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Ilan Feldhamer
- Research and Information Department, Chief Physician Office, Clalit Health Services, Tel Aviv, Israel
| | - Amichai Perlman
- Division of Clinical Pharmacy, Institute for Drug Research, School of Pharmacy and The David R. Bloom Center of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mordechai Muszkat
- Department of Internal Medicine, Hadassah University Hospital Mt. Scopus, Jerusalem, Israel
| | - Ilan Matok
- Division of Clinical Pharmacy, Institute for Drug Research, School of Pharmacy and The David R. Bloom Center of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
38
|
Kulik G. ADRB2-Targeting Therapies for Prostate Cancer. Cancers (Basel) 2019; 11:E358. [PMID: 30871232 PMCID: PMC6468358 DOI: 10.3390/cancers11030358] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 01/01/2023] Open
Abstract
There is accumulating evidence that β-2 adrenergic receptor (ADRB2) signaling contributes to the progression and therapy resistance of prostate cancer, whereas availability of clinically tested β-blocker propranolol makes this pathway especially attractive as potential therapeutic target. Yet even in tumors with active ADRB2 signaling propranolol may be ineffective. Inhibition of apoptosis is one of the major mechanisms by which activation of ADRB2 contributes to prostate cancer pathophysiology. The signaling network that controls apoptosis in prostate tumors is highly redundant, with several signaling pathways targeting a few critical apoptosis regulatory molecules. Therefore, a comprehensive analysis of ADRB2 signaling in the context of other signaling mechanisms is necessary to identify patients who will benefit from propranolol therapy. This review discusses how information on the antiapoptotic mechanisms activated by ADRB2 can guide clinical trials of ADRB2 antagonist propranolol as potential life-extending therapy for prostate cancer. To select patients for clinical trials of propranolol three classes of biomarkers are proposed. First, biomarkers of ADRB2/cAMP-dependent protein kinase (PKA) pathway activation; second, biomarkers that inform about activation of other signaling pathways unrelated to ADRB2; third, apoptosis regulatory molecules controlled by ADRB2 signaling and other survival signaling pathways.
Collapse
Affiliation(s)
- George Kulik
- Department of Cancer Biology, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC 27157, USA.
- Department of Life Sciences, Alfaisal University, Riyadh 11533, Saudi Arabia.
| |
Collapse
|
39
|
Siltari A, Murtola TJ, Talala K, Taari K, Tammela TLJ, Auvinen A. Antihypertensive drugs and prostate cancer risk in a Finnish population-based cohort. Scand J Urol 2019; 52:321-327. [PMID: 30698056 DOI: 10.1080/21681805.2018.1559882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND The etiology of prostate cancer (PCa) involves environmental and genetic factors. Understanding the role of medication use on PCa risk may clarify the pathophysiological changes and mechanisms in development of cancer. METHODS This study investigated PCa risk in relation to overall use of anti-hypertensive drugs and those with specific mechanisms of action. The study cohort (78,615 men) was linked to the prescription database to obtain information on medication use during 20-year follow-up. Information was obtained on PCa diagnoses, causes of deaths, and for a sub-set on B.M.I. and use of non-prescription drugs. Time-dependent drug use variables hazard ratios (HR) with 95% confidence intervals (CI) were calculated using Cox regression analyses. RESULTS Use of antihypertensive drugs slightly increased PCa risk (HR = 1.16, 95% CI = 1.11-1.22). The risk increase was clearest for metastatic PCa (HR = 1.36, 95% CI = 1.14-1.62). ACE inhibitors, beta-blockers, and diuretics were all separately associated with a small excess risk (HR = 1.10, 95% CI = 1.01-1.19, HR = 1.14, 95% CI = 1.06-1.21, and HR = 1.16, 95% CI = 1.07-1.27, respectively). None of the other groups showed a clear association with PCa risk. CONCLUSIONS The use of antihypertensive drugs was associated with increased prostate cancer risk. Similar risk association for multiple drug groups suggests that the findings may not reflect a direct medication effect, but may be due to underlying hypertension.
Collapse
Affiliation(s)
- Aino Siltari
- a Faculty of Medicine, Pharmacology , University of Helsinki , Helsinki , Finland.,b Faculty of Medicine and Life Sciences , University of Tampere , Tampere , Finland
| | - Teemu J Murtola
- b Faculty of Medicine and Life Sciences , University of Tampere , Tampere , Finland.,c Department of Urology , Tampere University Hospital , Tampere , Finland.,d Department of Surgery , Seinäjoki Central Hospital , Seinäjoki , Finland
| | | | - Kimmo Taari
- f Department of Urology , University of Helsinki and Helsinki University Hospital , Helsinki , Finland
| | - Teuvo L J Tammela
- b Faculty of Medicine and Life Sciences , University of Tampere , Tampere , Finland.,c Department of Urology , Tampere University Hospital , Tampere , Finland
| | - Anssi Auvinen
- g Faculty of Social Sciences , University of Tampere , Tampere , Finland
| |
Collapse
|
40
|
Santala EEE, Rannikko A, Murtola TJ. Antihypertensive drugs and prostate cancer survival after radical prostatectomy in Finland—A nationwide cohort study. Int J Cancer 2018; 144:440-447. [DOI: 10.1002/ijc.31802] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/27/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Eerik EE Santala
- Faculty of Medicine and Life SciencesUniversity of Tampere Tampere Finland
| | - Antti Rannikko
- Department of UrologyHelsinki University Hospital and University of Helsinki Helsinki Finland
| | - Teemu J Murtola
- Faculty of Medicine and Life SciencesUniversity of Tampere Tampere Finland
- Department of UrologyTampere University Hospital Tampere Finland
| |
Collapse
|
41
|
Thakur AA, Wang X, Garcia-Betancourt MM, Forse RA. Calcium channel blockers and the incidence of breast and prostate cancer: A meta-analysis. J Clin Pharm Ther 2018; 43:519-529. [DOI: 10.1111/jcpt.12673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 02/01/2018] [Indexed: 01/07/2023]
Affiliation(s)
- A. A. Thakur
- Internal Medicine; Danbury Hospital; Western Connecticut Health Network; Danbury CT USA
- Doctor's Hospital at Renaissance Health System; Edinburg TX USA
| | - X. Wang
- Department of Mathematics and Statistics; University of Texas-Rio Grande Valley; Edinburg TX USA
| | - M. M. Garcia-Betancourt
- Department of Academic Medicine; Doctors Hospital at Renaissance Health System; Edinburg TX USA
| | - R. A. Forse
- Doctor's Hospital at Renaissance Health System; Edinburg TX USA
- Doctor’s Hospital at Renaissance Health System Clinical Professor of Surgery; University of Texas-Rio Grande Valley; Edinburg TX USA
| |
Collapse
|
42
|
Cao L, Zhang S, Jia CM, He W, Wu LT, Li YQ, Wang W, Li Z, Ma J. Antihypertensive drugs use and the risk of prostate cancer: a meta-analysis of 21 observational studies. BMC Urol 2018. [PMID: 29514670 PMCID: PMC5842557 DOI: 10.1186/s12894-018-0318-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Due to the lack of strong evidence to identify the relationship between antihypertensive drugs use and the risk of prostate cancer, it was needed to do a systematic review to go into the subject. Methods We systematically searched PubMed, Web of Science and Embase to identify studies published, through May 2015. Two evaluators independently reviewed and selected articles involving the subject. We used the Newcastle-Ottawa Scale (NOS) to assess the quality of the studies. All extracted results to evaluate the relationship between antihypertensive drugs usage and prostate cancer risk were pool-analysed using Stata 12.0 software. Results A total of 12 cohort and 9 case-control studies were ultimately included in our review. Most of the studies were evaluated to be of high quality. There was no significant relationship between angiotensin converting enzyme inhibitors (ACEI) usage and the risk of prostate cancer (RR 1.07, 95% CI 0.96–1.20), according to the total pool-analysed. Use of angiotensin receptor blocker (ARB) was not associated with the risk of prostate cancer (RR 1.09, 95% CI 0.97–1.21), while use of CCB may well increase prostate cancer risk based on the total pool-analysed (RR 1.08, 95% CI 1–1.16). Moreover, subgroup analysis suggested that use of CCB clearly increased prostate cancer risk (RR 1.10, 95% CI 1.04–1.16) in terms of case-control studies. There was also no significant relationship between use of diuretic (RR 1.09, 95% CI 0.95–1.25) or antiadrenergic agents (RR 1.22, 95% CI 0.76–1.96) and prostate cancer risk. Conclusions There is no significant relationship between the use of antihypertensive drugs (ACEI, ARB, beta-blockers and diuretics) and prostate cancer risk, but CCB may well increase prostate cancer risk, according to existing observational studies. Electronic supplementary material The online version of this article (10.1186/s12894-018-0318-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liang Cao
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Sha Zhang
- Shanxi University of Chinese Medicine, Xian yang, 712046, People's Republic of China
| | - Cheng-Ming Jia
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Wei He
- Shanxi University of Chinese Medicine, Xian yang, 712046, People's Republic of China
| | - Lei-Tao Wu
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Ying-Qi Li
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Wen Wang
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Zhe Li
- Shanxi University of Chinese Medicine, Xian yang, 712046, People's Republic of China.
| | - Jing Ma
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
43
|
Abstract
Laboratory studies have suggested that adrenergic blockers may inhibit the proliferation and migration of cancer cells, but epidemiological evidence of their effect on cancer incidence has proven inconsistent. We therefore conducted a case-control study using the Clinical Practice Research Datalink to assess the effect of adrenergic blockers on the incidence of prostate, lung, bowel and breast cancers. From among patients aged 18 years or older who contributed at least 2 years of prospectively gathered data between 1 January 1987 and 31 December 2012, we selected incident cases of relevant cancers and controls, frequency matched 10 : 1 by age. Logistic regression was used to adjust effect estimates for age, sex, smoking, alcohol use, and a number of potentially confounding comorbidities and coprescriptions. A total of 18 968 colorectal, 19 082 lung, 21 608 prostate and 29 109 breast cancers were identified. We found no evidence of a protective effect of adrenergic blockade in lung and prostate cancers and found a slightly increased risk for colorectal and breast cancers in users. This was largely explained by the effects of confounding in multivariate analyses, with final odds ratio estimates for lung, colorectal, breast and prostate cancers of 0.99 [95% confidence interval (0.96-1.04)], 1.14 (1.09-1.18), 1.10 (1.06-1.14), and 1.01 (0.98-1.05), respectively, for β-blocker exposure, and final odds ratio estimates for lung, colorectal and breast cancer of 1.03 (0.97-1.09), 1.13 (1.07-1.20), and 1.08 (1.00-1.17), respectively, for α-blocker exposure. We found no evidence to suggest that adrenergic blocker use prevents common cancers. Indeed, we found a slightly increased risk for colorectal and breast cancers, which may reflect residual confounding.
Collapse
|
44
|
Koh SP, Wickremesekera AC, Brasch HD, Marsh R, Tan ST, Itinteang T. Expression of Cathepsins B, D, and G in Isocitrate Dehydrogenase-Wildtype Glioblastoma. Front Surg 2017; 4:28. [PMID: 28611989 PMCID: PMC5447023 DOI: 10.3389/fsurg.2017.00028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/08/2017] [Indexed: 11/13/2022] Open
Abstract
AIM To investigate the expression of cathepsins B, D, and G, in relation to the cancer stem cell (CSC) subpopulations, we have previously characterized within isocitrate dehydogenase (IDH)-wildtype glioblastoma (IDHWGB). METHODS 3,3-Diaminobezidine (DAB) immunohistochemical (IHC) staining for cathepsins B, D, and G, was performed on 4μm-thick formalin-fixed paraffin-embedded IDHWGB samples obtained from six patients. Two representative DHWGB samples from the original cohort of patients were selected for immunofluorescent (IF) IHC staining, to identify the localization of the cathepsins in relation to the CSC subpopulations. NanoString gene expression analysis and colorimetric in situ hybridization (CISH) were conducted to investigate the transcriptional activation of genes encoding for cathepsins B, D, and G. Data obtained from cell counting of DAB IHC-stained slides and from NanoString analysis were subjected to statistical analyses to determine significance. RESULTS Cathepsin B and cathepsin D were detected in IDHWGB by DAB IHC staining. IF IHC staining demonstrated the expression of both cathepsin B and cathepsin D by the OCT4+ and SALL4+ CSC subpopulations. NanoString gene analysis and CISH confirmed the abundant transcript expression of these cathepsins. The transcriptional and translational expressions of cathepsin G were minimal and were confined to cells within the microvasculature. CONCLUSION This study demonstrated the expression of cathepsin B and cathepsin D but not cathepsin G within the CSC subpopulations of IDHWGB at both the transcriptional and translational level. Cathepsin G was expressed at low levels and was not localized to the CSC population of IDHWGB. The novel finding of cathepsin B and cathepsin D in IDHWGB suggests the presence of bypass loops for the renin-angiotensin system, which may facilitate the production of angiotensin peptides. Elucidating the precise role of these cathepsins may lead to better understanding and more effective treatment of this aggressive tumor.
Collapse
Affiliation(s)
- Sabrina P Koh
- Gillies McIndoe Research Institute, Newtown, Wellington, New Zealand
| | - Agadha C Wickremesekera
- Gillies McIndoe Research Institute, Newtown, Wellington, New Zealand.,Department of Neurosurgery, Wellington Regional Hospital, Wellington, New Zealand
| | - Helen D Brasch
- Gillies McIndoe Research Institute, Newtown, Wellington, New Zealand
| | - Reginald Marsh
- Gillies McIndoe Research Institute, Newtown, Wellington, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Newtown, Wellington, New Zealand.,Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Wellington, New Zealand
| | - Tinte Itinteang
- Gillies McIndoe Research Institute, Newtown, Wellington, New Zealand
| |
Collapse
|
45
|
Geybels MS, McCloskey KD, Mills IG, Stanford JL. Calcium Channel Blocker Use and Risk of Prostate Cancer by TMPRSS2:ERG Gene Fusion Status. Prostate 2017; 77:282-290. [PMID: 27753122 PMCID: PMC5668682 DOI: 10.1002/pros.23267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/30/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Calcium channel blockers (CCBs) may affect prostate cancer (PCa) growth by various mechanisms including those related to androgens. The fusion of the androgen-regulated gene TMPRSS2 and the oncogene ERG (TMPRSS2:ERG or T2E) is common in PCa, and prostate tumors that harbor the gene fusion are believed to represent a distinct disease subtype. We studied the association of CCB use with the risk of PCa, and molecular subtypes of PCa defined by T2E status. METHODS Participants were residents of King County, Washington, recruited for population-based case-control studies (1993-1996 or 2002-2005). Tumor T2E status was determined by fluorescence in situ hybridization using tumor tissue specimens from radical prostatectomy. Detailed information on use of CCBs and other variables was obtained through in-person interviews. Binomial and polytomous logistic regression were used to generate odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS The study included 1,747 PCa patients and 1,635 age-matched controls. A subset of 563 patients treated with radical prostatectomy had T2E status determined, of which 295 were T2E positive (52%). Use of CCBs (ever vs. never) was not associated with overall PCa risk. However, among European-American men, users had a reduced risk of higher-grade PCa (Gleason scores ≥7: adjusted OR = 0.64; 95% CI: 0.44-0.95). Further, use of CCBs was associated with a reduced risk of T2E positive PCa (adjusted OR = 0.38; 95% CI: 0.19-0.78), but was not associated with T2E negative PCa. CONCLUSIONS This study found suggestive evidence that use of CCBs is associated with reduced relative risks for higher Gleason score and T2E positive PCa. Future studies of PCa etiology should consider etiologic heterogeneity as PCa subtypes may develop through different causal pathways. Prostate 77:282-290, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Milan S. Geybels
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
- Corresponding authors: ;
| | - Karen D. McCloskey
- Centre for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast, UK
| | - Ian G. Mills
- Prostate Cancer Research Group, Centre for Molecular Medicine, University of Oslo and Oslo University Hospitals, Oslo, Norway; Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospitals-Radium Hospital, Montebello, Oslo, Norway
| | - Janet L. Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington, School of Public Health, Seattle, Washington
- Corresponding authors: ;
| |
Collapse
|
46
|
Anker MS, Ebner N, Hildebrandt B, Springer J, Sinn M, Riess H, Anker SD, Landmesser U, Haverkamp W, von Haehling S. Resting heart rate is an independent predictor of death in patients with colorectal, pancreatic, and non-small cell lung cancer: results of a prospective cardiovascular long-term study. Eur J Heart Fail 2016; 18:1524-1534. [DOI: 10.1002/ejhf.670] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/28/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022] Open
Affiliation(s)
- Markus S. Anker
- Charité-Campus Benjamin Franklin (CBF); Department of Cardiology; Berlin Germany
| | - Nicole Ebner
- Innovative Clinical Trials, University Medicine Gottingen (UMG); Department of Cardiology and Pneumology; Gottingen Germany
| | - Bert Hildebrandt
- Charité-Campus Virchow-Klinikum (CVK); Department of Hematology and Oncology; Berlin Germany
| | - Jochen Springer
- Innovative Clinical Trials, University Medicine Gottingen (UMG); Department of Cardiology and Pneumology; Gottingen Germany
| | - Marianne Sinn
- Charité-Campus Virchow-Klinikum (CVK); Department of Hematology and Oncology; Berlin Germany
| | - Hanno Riess
- Charité-Campus Virchow-Klinikum (CVK); Department of Hematology and Oncology; Berlin Germany
| | - Stefan D. Anker
- Innovative Clinical Trials, University Medicine Gottingen (UMG); Department of Cardiology and Pneumology; Gottingen Germany
| | - Ulf Landmesser
- Charité-Campus Benjamin Franklin (CBF); Department of Cardiology; Berlin Germany
| | - Wilhelm Haverkamp
- Charité-Campus Virchow-Klinikum (CVK); Department of Cardiology; Berlin Germany
| | - Stephan von Haehling
- Innovative Clinical Trials, University Medicine Gottingen (UMG); Department of Cardiology and Pneumology; Gottingen Germany
| |
Collapse
|
47
|
Pantziarka P, Bouche G, Sukhatme V, Meheus L, Rooman I, Sukhatme VP. Repurposing Drugs in Oncology (ReDO)-Propranolol as an anti-cancer agent. Ecancermedicalscience 2016; 10:680. [PMID: 27899953 PMCID: PMC5102691 DOI: 10.3332/ecancer.2016.680] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Indexed: 12/23/2022] Open
Abstract
Propranolol (PRO) is a well-known and widely used non-selective beta-adrenergic receptor antagonist (beta-blocker), with a range of actions which are of interest in an oncological context. PRO displays effects on cellular proliferation and invasion, on the immune system, on the angiogenic cascade, and on tumour cell sensitivity to existing treatments. Both pre-clinical and clinical evidence of these effects, in multiple cancer types, is assessed and summarised and relevant mechanisms of action outlined. In particular there is evidence that PRO is effective at multiple points in the metastatic cascade, particularly in the context of the post-surgical wound response. Based on this evidence the case is made for further clinical investigation of the anticancer effects of PRO, particularly in combination with other agents. A number of trials are on-going, in different treatment settings for various cancers.
Collapse
Affiliation(s)
- Pan Pantziarka
- Anticancer Fund, Brussels, 1853 Strombeek-Bever, Belgium; The George Pantziarka TP53 Trust, London, UK
| | | | | | - Lydie Meheus
- Anticancer Fund, Brussels, 1853 Strombeek-Bever, Belgium
| | - Ilse Rooman
- Anticancer Fund, Brussels, 1853 Strombeek-Bever, Belgium; Oncology Research Centre, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Vikas P Sukhatme
- GlobalCures, Inc, Newton MA 02459, USA; Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
48
|
Yoshida T, Kinoshita H, Fukui K, Matsuzaki T, Yoshida K, Mishima T, Yanishi M, Komai Y, Sugi M, Inoue T, Murota T, Matsuda T. Prognostic Impact of Renin-Angiotensin Inhibitors in Patients with Bladder Cancer Undergoing Radical Cystectomy. Ann Surg Oncol 2016; 24:823-831. [PMID: 27730369 DOI: 10.1245/s10434-016-5534-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND Renin-angiotensin system blockade has been effective for the treatment of patients with several types of malignancy. This study evaluated the prognostic impact of renin-angiotensin system inhibitors, including angiotensin-2 converting enzyme inhibitors and angiotensin 2 receptor blockers, in patients with bladder cancer undergoing radical cystectomy. METHODS This retrospective study included 269 patients who had undergone radical cystectomy. The oncologic outcomes of patients treated or not treated with renin-angiotensin system inhibitors after surgery were evaluated. Overall survival and cancer-specific survival were assessed by the Kaplan-Meier method and by Cox regression analysis. RESULTS The median follow-up duration after radical cystectomy in survivors was 44.5 months. The 5-year, cancer-specific survival rates in patients who did and did not receive renin-angiotensin system inhibitors were 79.0 and 66.4 %, respectively (P = 0.011). Similarly, the 5-year overall survival rates were 76.1 and 61.4 %, respectively (P = 0.0097). Multivariable analyses showed that use of renin-angiotensin system inhibitors was an independent prognostic factor for cancer-specific survival (hazard ratio 0.47, P = 0.036) and for overall survival (hazard ratio 0.36, P = 0.022). CONCLUSIONS Renin-angiotensin system inhibitors significantly reduced the risks of cancer-specific and overall mortality after radical cystectomy in patients with bladder cancer. Renin-angiotensin system inhibitors may improve oncologic outcomes in high-risk patients with bladder cancer.
Collapse
Affiliation(s)
- Takashi Yoshida
- Department of Urology and Andrology, Kansai Medical University, Kori Hospital, Osaka, Japan.,Department of Urology and Andrology, Kansai Medical University Hospital, Osaka, Japan
| | - Hidefumi Kinoshita
- Department of Urology and Andrology, Kansai Medical University Hospital, Osaka, Japan.
| | - Katsuya Fukui
- Department of Urology and Andrology, Kansai Medical University, Kori Hospital, Osaka, Japan
| | - Tomoaki Matsuzaki
- Department of Urology and Andrology, Kansai Medical University, General Medical Center, Osaka, Japan
| | - Kenji Yoshida
- Department of Urology and Andrology, Kansai Medical University Hospital, Osaka, Japan
| | - Takao Mishima
- Department of Urology and Andrology, Kansai Medical University Hospital, Osaka, Japan
| | - Masaaki Yanishi
- Department of Urology and Andrology, Kansai Medical University Hospital, Osaka, Japan
| | - Yoshihiro Komai
- Department of Urology and Andrology, Kansai Medical University Hospital, Osaka, Japan
| | - Motohiko Sugi
- Department of Urology and Andrology, Kansai Medical University Hospital, Osaka, Japan
| | - Takaaki Inoue
- Department of Urology and Andrology, Kansai Medical University, General Medical Center, Osaka, Japan
| | - Takashi Murota
- Department of Urology and Andrology, Kansai Medical University, General Medical Center, Osaka, Japan
| | - Tadashi Matsuda
- Department of Urology and Andrology, Kansai Medical University Hospital, Osaka, Japan
| |
Collapse
|
49
|
Grimaldi-Bensouda L, Klungel O, Kurz X, de Groot MCH, Maciel Afonso AS, de Bruin ML, Reynolds R, Rossignol M. Calcium channel blockers and cancer: a risk analysis using the UK Clinical Practice Research Datalink (CPRD). BMJ Open 2016; 6:e009147. [PMID: 26747033 PMCID: PMC4716173 DOI: 10.1136/bmjopen-2015-009147] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVE The evidence of an association between calcium channel blockers (CCBs) and cancer is conflicting. The objective of the present study was to evaluate the risk of cancer (all, breast, prostate and colon cancers) in association with exposure to CCB. METHODS This is a population-based cohort study in patients exposed to CCBs from across the UK, using two comparison cohorts: (1) patients with no exposure to CCB (non-CCB) matched on age and gender and (2) unmatched patients unexposed to CCB and at least one other antihypertensive (AHT) prescription. Cancer incidence rates computed in the exposed and the two unexposed groups were compared using HRs and 95% CIs obtained from multivariate Cox regression analyses. RESULTS Overall, 150,750, 557,931 and 156,966 patients were included, respectively, in the CCB, non-CCB and AHT cohorts. Crude cancer incidence rates per 1000 person-years were 16.51, 15.75 and 10.62 for the three cohorts, respectively. Adjusted HRs (CI) for all cancers comparing CCB, non-CCB and AHT cohorts were 0.88 (0.86 to 0.89) and 1.01 (0.98 to 1.04), respectively. Compared to the AHT cohort, adjusted HRs (CI) for breast, prostate and colon cancer for the CCB cohort were 0.95 (0.87 to 1.04), 1.07 (0.98 to 1.16) and 0.89 (0.81 to 0.98), respectively. Analyses by duration of exposure to CCB did not show excess risk. CONCLUSIONS This large population-based study provides strong evidence that CCB use is not associated with an increased risk of cancer. The analyses yielded robust results across all types of cancer and different durations of exposure to CCBs.
Collapse
Affiliation(s)
| | - Olaf Klungel
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Mark C H de Groot
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ana S Maciel Afonso
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marie L de Bruin
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Robert Reynolds
- Pfizer Epidemiology, New York, New York, USA
- Tulane University, New Orleans, Louisiana, USA
| | - Michel Rossignol
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| |
Collapse
|
50
|
Han QF, Ren XF, Wu L, Li T, Yao HC. Use of calcium channel blockers in prostate cancer: Friends or foe? Int J Cardiol 2016; 203:740-1. [DOI: 10.1016/j.ijcard.2015.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 10/22/2022]
|