1
|
Shea Z, Ogando do Granja M, Fletcher EB, Zheng Y, Bewick P, Wang Z, Singer WM, Zhang B. A Review of Bioactive Compound Effects from Primary Legume Protein Sources in Human and Animal Health. Curr Issues Mol Biol 2024; 46:4203-4233. [PMID: 38785525 PMCID: PMC11120442 DOI: 10.3390/cimb46050257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
The global demand for sustainable and nutritious food sources has catalyzed interest in legumes, known for their rich repertoire of health-promoting compounds. This review delves into the diverse array of bioactive peptides, protein subunits, isoflavones, antinutritional factors, and saponins found in the primary legume protein sources-soybeans, peas, chickpeas, and mung beans. The current state of research on these compounds is critically evaluated, with an emphasis on the potential health benefits, ranging from antioxidant and anticancer properties to the management of chronic diseases such as diabetes and hypertension. The extensively studied soybean is highlighted and the relatively unexplored potential of other legumes is also included, pointing to a significant, underutilized resource for developing health-enhancing foods. The review advocates for future interdisciplinary research to further unravel the mechanisms of action of these bioactive compounds and to explore their synergistic effects. The ultimate goal is to leverage the full spectrum of benefits offered by legumes, not only to advance human health but also to contribute to the sustainability of food systems. By providing a comprehensive overview of the nutraceutical potential of legumes, this manuscript sets a foundation for future investigations aimed at optimizing the use of legumes in the global pursuit of health and nutritional security.
Collapse
Affiliation(s)
- Zachary Shea
- United States Department of Agriculture–Agricultural Research Service, Raleigh Agricultural Research Station, Raleigh, NC 27606, USA;
| | - Matheus Ogando do Granja
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Elizabeth B. Fletcher
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Yaojie Zheng
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Patrick Bewick
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Zhibo Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
- Donald Danforth Plant Science Center, Olivette, MO 63132, USA
| | - William M. Singer
- Center for Advanced Innovation in Agriculture, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Bo Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| |
Collapse
|
2
|
Wang Y, Shi D, Zou W, Jiang Y, Wang T, Chen X, Ma C, Li W, Chen T, Burrows JF, Wang L, Zhou M. An Effective Modification Strategy to Build Multifunctional Peptides Based on a Trypsin Inhibitory Peptide of the Kunitz Family. Pharmaceutics 2024; 16:597. [PMID: 38794259 PMCID: PMC11125039 DOI: 10.3390/pharmaceutics16050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Peptides with antimicrobial activity or protease inhibitory activity are potential candidates to supplement traditional antibiotics or cancer chemotherapies. However, the potential of many peptides are limited by drawbacks such as cytotoxicity or susceptibility to hydrolysis. Therefore, strategies to modify the structure of promising peptides may represent an effective approach for developing more promising clinical candidates. In this study, the mature peptide OSTI-1949, a Kunitz-type inhibitor from Odorrana schmackeri, and four designed analogues were successfully synthesised. In contrast to the parent peptide, the analogues showed impressive multi-functionality including antimicrobial, anticancer, and trypsin inhibitory activities. In terms of safety, there were no obvious changes observed in the haemolytic activity at the highest tested concentration, and the analogue OSTI-2461 showed an increase in activity against cancer cell lines without cytotoxicity to normal cells (HaCaT). In summary, through structural modification of a natural Kunitz-type peptide, the biological activity of analogues was improved whilst retaining low cytotoxicity. The strategy of helicity enhancement by forming an artificial α-helix and ß-sheet structure provides a promising way to develop original bioactive peptides for clinical therapeutics.
Collapse
Affiliation(s)
- Ying Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (Y.W.); (W.Z.); (Y.J.); (T.W.); (C.M.); (T.C.); (J.F.B.); (L.W.); (M.Z.)
| | - Daning Shi
- Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China;
| | - Wanchen Zou
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (Y.W.); (W.Z.); (Y.J.); (T.W.); (C.M.); (T.C.); (J.F.B.); (L.W.); (M.Z.)
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yangyang Jiang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (Y.W.); (W.Z.); (Y.J.); (T.W.); (C.M.); (T.C.); (J.F.B.); (L.W.); (M.Z.)
| | - Tao Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (Y.W.); (W.Z.); (Y.J.); (T.W.); (C.M.); (T.C.); (J.F.B.); (L.W.); (M.Z.)
| | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (Y.W.); (W.Z.); (Y.J.); (T.W.); (C.M.); (T.C.); (J.F.B.); (L.W.); (M.Z.)
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (Y.W.); (W.Z.); (Y.J.); (T.W.); (C.M.); (T.C.); (J.F.B.); (L.W.); (M.Z.)
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (Y.W.); (W.Z.); (Y.J.); (T.W.); (C.M.); (T.C.); (J.F.B.); (L.W.); (M.Z.)
| | - James F. Burrows
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (Y.W.); (W.Z.); (Y.J.); (T.W.); (C.M.); (T.C.); (J.F.B.); (L.W.); (M.Z.)
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (Y.W.); (W.Z.); (Y.J.); (T.W.); (C.M.); (T.C.); (J.F.B.); (L.W.); (M.Z.)
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (Y.W.); (W.Z.); (Y.J.); (T.W.); (C.M.); (T.C.); (J.F.B.); (L.W.); (M.Z.)
| |
Collapse
|
3
|
Teixeira EMGF, Kalume DE, Ferreira PF, Alves TA, Fontão APGA, Sampaio ALF, de Oliveira DR, Morgado-Díaz JA, Silva-López RE. A Novel Trypsin Kunitz-Type Inhibitor from Cajanus cajan Leaves and Its Inhibitory Activity on New Cancer Serine Proteases and Its Effect on Tumor Cell Growth. Protein J 2024; 43:333-350. [PMID: 38347326 DOI: 10.1007/s10930-023-10175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 05/01/2024]
Abstract
A novel trypsin inhibitor from Cajanus cajan (TIC) fresh leaves was partially purified by affinity chromatography. SDS-PAGE revealed one band with about 15 kDa with expressive trypsin inhibitor activity by zymography. TIC showed high affinity for trypsin (Ki = 1.617 μM) and was a competitive inhibitor for this serine protease. TIC activity was maintained after 24 h of treatment at 70 °C, after 1 h treatments with different pH values, and β-mercaptoethanol increasing concentrations, and demonstrated expressive structural stability. However, the activity of TIC was affected in the presence of oxidizing agents. In order to study the effect of TIC on secreted serine proteases, as well as on the cell culture growth curve, SK-MEL-28 metastatic human melanoma cell line and CaCo-2 colon adenocarcinoma was grown in supplemented DMEM, and the extracellular fractions were submitted salting out and affinity chromatography to obtain new secreted serine proteases. TIC inhibited almost completely, 96 to 89%, the activity of these serine proteases and reduced the melanoma and colon adenocarcinoma cells growth of 48 and 77% respectively. Besides, it is the first time that a trypsin inhibitor was isolated and characterized from C. cajan leaves and cancer serine proteases were isolated and partial characterized from SK-MEL-28 and CaCo-2 cancer cell lines. Furthermore, TIC shown to be potent inhibitor of tumor protease affecting cell growth, and can be one potential drug candidate to be employed in chemotherapy of melanoma and colon adenocarcinoma.
Collapse
Affiliation(s)
- Erika Maria Gomes Ferreira Teixeira
- Departament of Natural Products, Institute of Pharmaceuticals Technology, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
- Laboratory of Bioprospection and Applied Ethnopharmacology, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Dario Eluam Kalume
- Interdisciplinary Laboratory of Medical Research, IOC-Oswaldo Cruz Institute, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Rio de Janeiro, CEP 21045-900, Brazil
| | - Patrícia Fernandes Ferreira
- Departament of Natural Products, Institute of Pharmaceuticals Technology, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
| | - Thayane Aparecida Alves
- Departament of Natural Products, Institute of Pharmaceuticals Technology, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
| | - Ana Paula G A Fontão
- Departament of Pharmacology, Institute of Pharmaceuticals Technology, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Rio de Janeiro, CEP 21045-900, Brazil
| | - André Luís Franco Sampaio
- Departament of Pharmacology, Institute of Pharmaceuticals Technology, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Rio de Janeiro, CEP 21045-900, Brazil
| | - Danilo Ribeiro de Oliveira
- Laboratory of Bioprospection and Applied Ethnopharmacology, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - José Andrés Morgado-Díaz
- Cellular and Molecular Oncobiology Program, National Institute of Cancer (INCa), Rio de Janeiro, Brazil
| | - Raquel Elisa Silva-López
- Departament of Natural Products, Institute of Pharmaceuticals Technology, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil.
| |
Collapse
|
4
|
Qin G, Wang B, Zhang G, Wu L, Zhu P, Zhang Q. Bikunin: A Promising Prognostic Biomarker for Acute-on-Chronic Liver Failure in Patients with Viral Hepatitis B. Infect Drug Resist 2023; 16:5765-5775. [PMID: 37670978 PMCID: PMC10476654 DOI: 10.2147/idr.s417472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/01/2023] [Indexed: 09/07/2023] Open
Abstract
Purpose To screen out potential prognostic biomarkers for HBV-related acute-on-chronic liver failure (HBV-ACLF). Patients and Methods Peripheral blood samples of HBV-ACLF patients (n=56) and normal controls (n=15) from the Affiliated Hospital of Southwest Medical University from January 2021 to April 2022 were collected, 5 normal patients and 10 patients with ACLF were randomly selected for Data independent acquisition (DIA) mass spectrometry analysis, and the potential core proteins were screened out via bioinformatics. All samples were validated by Enzyme linked immunosorbent assays (ELISA) technology, and the survival curve was constructed based on the patient's 90-day survival time. Results A total of 247 differentially expressed proteins (DEPs) were screened, of which 148 were upregulated and 99 were down-regulated. The DEPs were mainly enriched in high-density lipoprotein particle remodeling, coagulation, and hemostasis and participated in signaling pathways such as cholesterol metabolism, coagulation cascades, and PPAR signaling pathway. Finally, bikunin was selected for further study and validated via the ELISA, compared with the normal group, bikunin was poorly expressed in the HBV-ACLF group, the difference was statistically significant (P < 0.0001), the area under the curve (AUC) for Receiver operating characteristic (ROC) analysis was 0.917. Furthermore, compared with the non-survival group, bikunin was highly expressed in the HBV-ACLF survival group, the difference was statistically significant (P=0.0015), and the survival curve showed a positive correlation with patient survival (P=0.0063). Conclusion The level of plasma bikunin in HBV-ACLF is down-regulated, which is positively correlated with the survival of the patients with HBV-ACLF, and is expected to become a new prognostic biomarker.
Collapse
Affiliation(s)
- Gang Qin
- Department of Gastroenterology, Suining First People's Hospital, Suining, People’s Republic of China
| | - Bo Wang
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Geng Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Lili Wu
- Department of Gastroenterology, Suining First People's Hospital, Suining, People’s Republic of China
| | - Peng Zhu
- Department of Gastroenterology, Suining First People's Hospital, Suining, People’s Republic of China
| | - Qian Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
5
|
Urease and α-Chymotrypsin Inhibitory Activities and Molecular Docking Studies of Alkaloids Isolated from Medicinal Plant Isatis minima Bunge. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1904874. [PMID: 35754682 PMCID: PMC9217576 DOI: 10.1155/2022/1904874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022]
Abstract
Phytochemical studies on the alkaloids fraction of the entire plant of Isatis minima Bunge resulted in the alkaloids 1–4 isolation, which were first time isolated from this species. The 1D and 2D NMR spectroscopic data were used to identify their structures, and there was satisfactory compatibility of the data compared to those which were previously published. In the examined compounds 1–4, Isaindigotidione (3) and Isaindigotone (4) were shown as an effective urease inhibitor in such a concentration-dependent way against Jack bean and Bacillus pasteurii urease, with IC50 values 29.03 ± 0.04, 20.04 ± 0.09 and 34.03 ± 0.07, 26.13 ± 0.08 μM, respectively. Compounds 3 and 4 were likewise shown to be an effective inhibitor against α-chymotrypsin, exhibiting IC50 values 16.09 ± 0.07 and 22.01 ± 0.06 μM, correspondingly. The program MOE-Dock was used to perform a molecular docking analysis to confirm probable binding modes of the active complexes of the isolated compounds 1–4 and the crystal structure of urease and α-chymotrypsin enzymes. Compound 3 was the most active, having the highest docking scores against Bacillus pasteurii urease, α-chymotrypsin, and Jack bean (−8.6876), (−7.6647), and (−13.1927) μM, respectively. All four alkaloids (1–4) showed significant urease and protease inhibitory potential and further these activities were confirmed with the help of molecular docking study.
Collapse
|
6
|
Bonturi CR, Salu BR, Bonazza CN, Sinigaglia RDC, Rodrigues T, Alvarez-Flores MP, Chudzinski-Tavassi AM, Oliva MLV. Proliferation and Invasion of Melanoma Are Suppressed by a Plant Protease Inhibitor, Leading to Downregulation of Survival/Death-Related Proteins. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092956. [PMID: 35566311 PMCID: PMC9104945 DOI: 10.3390/molecules27092956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
Abstract
Cell adhesion and migration are crucial for cancer progression and malignancy. Drugs available for the treatment of metastatic melanoma are expensive and unfit for certain patients. Therefore, there is still a need to identify new drugs that block tumor cell development. We investigated the effects of Enterolobium contortisiliquum trypsin inhibitor (EcTI), a protease inhibitor, on cell viability, cell migration, invasion, cell adhesion, and cell death (hallmarks of cancer) in vitro using human melanoma cells (SK-MEL-28 and CHL-1). Although EcTI did not affect non-tumor cells, it significantly inhibited the proliferation, migration, invasion, and adhesion of melanoma cells. Investigation of the underlying mechanisms revealed that EcTI triggered apoptosis and nuclear shrinkage, increased PI uptake, activated effector caspases-3/7, and produced reactive oxygen species (ROS). Furthermore, EcTI disrupted the mitochondrial membrane potential, altered calcium homeostasis, and modified proteins associated with survival and apoptosis/autophagy regulation. Acridine orange staining indicated acidic vesicular organelle formation upon EcTI treatment, demonstrating a cell death display. Electronic microscopy corroborated the apoptotic pattern by allowing the visualization of apoptotic bodies, mitochondrial cristae disorganization, and autophagic vesicles. Taken together, these results provide new insights into the anti-cancer properties of the natural EcTI protein, establishing it as a promising new therapeutic drug for use in melanoma treatment.
Collapse
Affiliation(s)
- Camila Ramalho Bonturi
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, Brazil
| | - Bruno Ramos Salu
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, Brazil
| | - Camila Nimri Bonazza
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, Brazil
| | - Rita de Cassia Sinigaglia
- Electron Microscopy Center, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, Brazil
| | - Tiago Rodrigues
- Centre for Natural and Human Sciences, Universidade Federal do ABC (UFABC), Santo André 09210-580, Brazil
| | | | | | - Maria Luiza Vilela Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, Brazil
| |
Collapse
|
7
|
The Hydrolytic Peptides of Soybean Protein Induce Cell Cycle Arrest and Apoptosis on Human Oral Cancer Cell Line HSC-3. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092839. [PMID: 35566188 PMCID: PMC9101267 DOI: 10.3390/molecules27092839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/22/2022]
Abstract
Protein hydrolysates from various sources, including tuna cooking juice, soy protein isolate, sodium caseinate, wheat gluten and skin gelatin from porcine, tilapia, halibut and milkfish were analyzed to screen their antiproliferative activities against the human oral squamous carcinoma cell line, HSC-3. The soy protein isolate was selected for further investigations based on its hydrolysates with bromelain (SB) and thermolysin (ST), showing the greatest inhibition of cell growth. The SB and ST hydrolysates showed antiproliferative activities up to 35.45–76.39% against HSC-3 cells at 72 h, and their IC50 values were 0.74 and 0.60 mg/mL, respectively. SB and ST induced cell cycle arrest in the S phase through a pathway independent of p21 and p27 protein expression. Further, ST induced the apoptosis of HSC-3 cells by downregulating expression of Bcl-2, PARP, caspase 3 and caspase 9, but an upregulating expression of p53 and cleaved caspase 3. Unlike ST, SB may induce necrosis on HSC-3 cells. Thus, soybean hydrolysates may be a good source for providing antiproliferative peptides against HSC-3, while SB and ST may have the potential to be developed as functional foods.
Collapse
|
8
|
Cid-Gallegos MS, Corzo-Ríos LJ, Jiménez-Martínez C, Sánchez-Chino XM. Protease Inhibitors from Plants as Therapeutic Agents- A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:20-29. [PMID: 35000105 DOI: 10.1007/s11130-022-00949-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 05/18/2023]
Abstract
Plant-based diets are a great source of protease inhibitors (PIs). Two of the most well-known families of PIs are Bowman-Birk inhibitors (BBI) and Kunitz-type inhibitors (KTI). The first group acts mainly on trypsin, chymotrypsin, and elastase; the second is on serine, cysteine, and aspartic proteases. PIs can retard or inhibit the catalytic action of enzymes; therefore, they are considered non-nutritional compounds; nevertheless, animal studies and cell line experiments showed promising results of PIs in treating human illnesses such as obesity, cardiovascular diseases, autoimmune diseases, inflammatory processes, and different types of cancer (gastric, colorectal, breast, and lung cancer). Anticarcinogenic activity's proposed mechanisms of action comprise several inhibitory effects at different molecular levels, i.e., transcription, post-transcription, translation, post-translation, and secretion of cancer cells. This work reviews the potential therapeutic applications of PIs as anticarcinogenic and anti-inflammatory agents in human diseases and the mechanisms by which they exert these effects.
Collapse
Affiliation(s)
- M S Cid-Gallegos
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, México City, C.P. 07738, México
| | - L J Corzo-Ríos
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional. Av. Acueducto S/N, Barrio La Laguna, Col. Ticomán, México City, C.P. 07340, México
| | - C Jiménez-Martínez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, México City, C.P. 07738, México
| | - X M Sánchez-Chino
- CONACYT, Departamento de Salud, El Colegio de La Frontera Sur-Villahermosa, Tabasco, México.
| |
Collapse
|
9
|
Bakku RK, Gupta R, Min CW, Kim ST, Takahashi G, Shibato J, Shioda S, Takenoya F, Agrawal GK, Rakwal R. Unravelling the Helianthus tuberosus L. (Jerusalem Artichoke, Kiku-Imo) Tuber Proteome by Label-Free Quantitative Proteomics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031111. [PMID: 35164374 PMCID: PMC8840128 DOI: 10.3390/molecules27031111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 01/09/2023]
Abstract
The present research investigates the tuber proteome of the ‘medicinal’ plant Jerusalem artichoke (abbreviated as JA) (Helianthus tuberosus L.) using a high-throughput proteomics technique. Although JA has been historically known to the Native Americans, it was introduced to Europe in the late 19th century and later spread to Japan (referred to as ‘kiku-imo’) as a folk remedy for diabetes. Genboku Takahashi research group has been working on the cultivation and utilization of kiku-imo tuber as a traditional/alternative medicine in daily life and researched on the lowering of blood sugar level, HbA1c, etc., in human subjects (unpublished data). Understanding the protein components of the tuber may shed light on its healing properties, especially related to diabetes. Using three commercially processed JA tuber products (dried powder and dried chips) we performed total protein extraction on the powdered samples using a label-free quantitate proteomic approach (mass spectrometry) and catalogued for the first time a comprehensive protein list for the JA tuber. A total of 2967 protein groups were identified, statistically analyzed, and further categorized into different protein classes using bioinformatics techniques. We discussed the association of these proteins to health and disease regulatory metabolism. Data are available via ProteomeXchange with identifier PXD030744.
Collapse
Affiliation(s)
- Ranjith Kumar Bakku
- Faculty of Engineering Information and Systems, University of Tsukuba, 1-1-1 Tenodai, Tsukuba 305-8572, Japan;
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, Korea;
| | - Cheol-Woo Min
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea;
| | - Sun-Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea;
- Correspondence: (S.-T.K.); or (R.R.); Tel.: +81-90-1853-7875 (R.R.)
| | - Genboku Takahashi
- Zen-Yoga Institute, 3916 Okusa, Nakagawa-mura, Kamiina-gun, Nagano 399-3801, Japan;
| | - Junko Shibato
- Department of Functional Morphology, Shonan University Medical Sciences, 16-48 Kamishinano, Totsuka-ku, Yokohama 244-0806, Japan; (J.S.); (S.S.)
| | - Seiji Shioda
- Department of Functional Morphology, Shonan University Medical Sciences, 16-48 Kamishinano, Totsuka-ku, Yokohama 244-0806, Japan; (J.S.); (S.S.)
| | - Fumiko Takenoya
- Department of Physiology and Molecular Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo 142-8501, Japan;
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265, Kathmandu 44600, Nepal;
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265, Kathmandu 44600, Nepal;
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8574, Japan
- Correspondence: (S.-T.K.); or (R.R.); Tel.: +81-90-1853-7875 (R.R.)
| |
Collapse
|
10
|
Li M, Cao R, Tong L, Fan B, Sun R, Liu L, Wang F, Wang L. Effect of freezing treatment of soybean on soymilk nutritional components, protein digestibility, and functional components. Food Sci Nutr 2021; 9:5997-6005. [PMID: 34760232 PMCID: PMC8565220 DOI: 10.1002/fsn3.2524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/07/2022] Open
Abstract
Soymilk is a popular beverage in many countries owing to its nutrition and health effects. To increase household consumption of soymilk, instant soybeans were developed by freezing and subsequent drying pretreatment, which overcome the time-consuming need of soaking during soymilk preparation for home making. However, compared with the traditional soymilk making, the nutritional quality and functional properties of this soymilk made from the soybean by direct grinding in water without soaking are not clear yet. Soymilk made from untreated soybeans, soaked soybeans, and soaking, freezing, and air-drying soybeans (FADTS) were compared on their properties including nutritional components, in vitro protein digestibility, and functional components. It was found that FADTS was the best at extracting lipid and Ca, good at extracting of protein, carbohydrate, oligosaccharides, Fe, phytic acids, and tannins, and in producing soymilks with highest in vitro protein digestibility. The soluble protein and protein digestibility of FADTS (4 day) increased significantly from 44.4% and 78.5% of control to 56.2% and 85.0%, respectively. Soymilk from 4 days FADTS contained similar protein content and higher Fe content (4.40 mg/kg) compared to soaked sample (3.82 mg/kg). The results revealed that FADTS performed better at producing soymilk than untreated and soaked soybeans.
Collapse
Affiliation(s)
- Meng‐jia Li
- Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesKey Laboratory of Agro‐Products ProcessingMinistry of Agriculture and Rural AffairsBeijingChina
| | - Ru‐ge Cao
- School of Food Science and EngineeringTianjin University of Science & TechnologyTianjinChina
| | - Li‐tao Tong
- Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesKey Laboratory of Agro‐Products ProcessingMinistry of Agriculture and Rural AffairsBeijingChina
| | - Bei Fan
- Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesKey Laboratory of Agro‐Products ProcessingMinistry of Agriculture and Rural AffairsBeijingChina
| | - Ruo‐qi Sun
- Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesKey Laboratory of Agro‐Products ProcessingMinistry of Agriculture and Rural AffairsBeijingChina
- School of Food Science and EngineeringTianjin University of Science & TechnologyTianjinChina
| | - Li‐ya Liu
- Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesKey Laboratory of Agro‐Products ProcessingMinistry of Agriculture and Rural AffairsBeijingChina
| | - Feng‐zhong Wang
- Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesKey Laboratory of Agro‐Products ProcessingMinistry of Agriculture and Rural AffairsBeijingChina
| | - Li‐li Wang
- Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesKey Laboratory of Agro‐Products ProcessingMinistry of Agriculture and Rural AffairsBeijingChina
| |
Collapse
|
11
|
Chen Y, Xi X, Ma C, Zhou M, Chen X, Ye Z, Ge L, Wu Q, Chen T, Wang L, Kwok HF. Structure-Activity Relationship and Molecular Docking of a Kunitz-Like Trypsin Inhibitor, Kunitzin-AH, from the Skin Secretion of Amolops hainanensis. Pharmaceutics 2021; 13:pharmaceutics13070966. [PMID: 34206897 PMCID: PMC8309051 DOI: 10.3390/pharmaceutics13070966] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/10/2023] Open
Abstract
Kunitz-like trypsin inhibitors are one of the most noteworthy research objects owing to their significance in pharmacological studies, including anticarcinogenic activity, obesity regulation and anticoagulation. In the current study, a novel Kunitz-like trypsin inhibitor, Kunitzin-AH, was isolated from the skin secretion of Amolops hainanensis. The novel peptide displayed a modest trypsin inhibitory activity with the inhibitor constant (Ki) value of 1.18 ± 0.08 µM without inducing damage to healthy horse erythrocytes. Then, a series of shortened variants of Kunitzin-AH were designed by truncating a peptide loop and site mutation inside the loop to illustrate the structure–activity relationship of the trypsin inhibition function. Among the variants, a significant decrease was observed for the Cys-Cys loop domain, while the extension of an Arg at N-terminus (RCKAAFC) retained the inhibitory activity, indicating that the -RCK-motif is essential in forming the reactive domain for exerting the inhibitory activity. Furthermore, substitutions of Ala by hydrophobic or hydrophilic residues decreased the activity, indicating suitable steric hindrance provides convenience for the combination of trypsin. Additionally, the conformational simulation of the analogues processed with Chimera and Gromacs and further combination simulations between the peptides and trypsin conducted with HDOCK offered a potential opportunity for the natural trypsin inhibitory drug design. The truncated sequence, AH-798, may be a good replacement for the full-length peptide, and can be optimized via cyclization for further study.
Collapse
Affiliation(s)
- Yuqing Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.C.); (C.M.); (M.Z.); (X.C.); (Z.Y.); (T.C.); (L.W.)
| | - Xinping Xi
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.C.); (C.M.); (M.Z.); (X.C.); (Z.Y.); (T.C.); (L.W.)
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
- Correspondence: (X.X.); (H.F.K.)
| | - Chengbang Ma
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.C.); (C.M.); (M.Z.); (X.C.); (Z.Y.); (T.C.); (L.W.)
| | - Mei Zhou
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.C.); (C.M.); (M.Z.); (X.C.); (Z.Y.); (T.C.); (L.W.)
| | - Xiaoling Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.C.); (C.M.); (M.Z.); (X.C.); (Z.Y.); (T.C.); (L.W.)
| | - Zhuming Ye
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.C.); (C.M.); (M.Z.); (X.C.); (Z.Y.); (T.C.); (L.W.)
| | - Lilin Ge
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (L.G.); (Q.W.)
| | - Qinan Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (L.G.); (Q.W.)
| | - Tianbao Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.C.); (C.M.); (M.Z.); (X.C.); (Z.Y.); (T.C.); (L.W.)
| | - Lei Wang
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.C.); (C.M.); (M.Z.); (X.C.); (Z.Y.); (T.C.); (L.W.)
| | - Hang Fai Kwok
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
- Correspondence: (X.X.); (H.F.K.)
| |
Collapse
|
12
|
Jiang Y, Lim J, Wu KC, Xu W, Suen JY, Fairlie DP. PAR2 induces ovarian cancer cell motility by merging three signalling pathways to transactivate EGFR. Br J Pharmacol 2020; 178:913-932. [PMID: 33226635 DOI: 10.1111/bph.15332] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 11/08/2020] [Accepted: 11/14/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Specific cellular functions mediated by GPCRs are often associated with signalling through a particular G protein or β-arrestin. Here, we examine signalling through a GPCR, protease-activated receptor 2 (PAR2), in a high-grade serous ovarian cancer cell line (OV90). EXPERIMENTAL APPROACH Human ovarian cancer tissues (n = 1,200) and nine human ovarian cancer cell lines were assessed for PAR2 expression. PAR2 signalling mechanisms leading to cell migration and invasion were dissected using cellular assays, western blots, CRISPR-Cas9 gene knockouts, pharmacological inhibitors of PAR2 and downstream signalling proteins in OV90 cancer cells. KEY RESULTS PAR2 was significantly overexpressed in clinical ovarian cancer tissues and in OV90 ovarian cancer cells. PAR2 agonists, an endogenous protease (trypsin) and a synthetic peptide (2f-LIGRL-NH2 ), induced migration and invasion of OV90 ovarian cancer cells through activating a combination of Gαq/11 , Gα12/13 and β-arrestin1/2, but not Gαs or Gαi . This novel cooperative rather than parallel signalling resulted in downstream serial activation of Src kinases, then transactivation of epidermal growth factor receptor (EGFR), followed by downstream MEK-ERK1/2-FOS/MYC/STAT3-COX2 signalling. Either a PAR2 antagonist (I-191), CRISPR-Cas9 gene knockouts (PAR2 or Gα proteins or β-arrestin1/2), or inhibitors of each downstream protein attenuated human ovarian cancer cell motility. CONCLUSION AND IMPLICATIONS This study highlights a novel shared signalling cascade, requiring each of Gαq/11 , Gα12/13 and β-arrestin1/2 for PAR2-induced ovarian cancer cell migration and invasion. This mechanism controlling a cellular function is unusual in not being linked to a specific individual G protein or β-arrestin-mediated signalling pathway.
Collapse
Affiliation(s)
- Yuhong Jiang
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Junxian Lim
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Kai-Chen Wu
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Weijun Xu
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Jacky Y Suen
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David P Fairlie
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Xu Y, Zhang P, Liu X, Wang Z, Li S. Preparation and Irreversible Inhibition Mechanism Insight into a Recombinant Kunitz Trypsin Inhibitor from Glycine max L. Seeds. Appl Biochem Biotechnol 2020; 191:1207-1222. [PMID: 32006248 PMCID: PMC7320042 DOI: 10.1007/s12010-020-03254-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/05/2018] [Indexed: 11/26/2022]
Abstract
Soybean Kunitz trypsin inhibitor (SKTI), extracted from soybean (Glycine max L.) seeds, possesses insect resistance and anti-tumor properties. But its specific mechanisms of action are not yet known. This article reports an efficient method to produce recombinant SKTI (rSKTI) in Escherichia coli, reveals some biochemical properties of rSKTI, and discusses the inhibition mechanism of SKTI. The rSKTI was expressed as inclusion body in E. coli BL21 (DE3). After refolding, the active rSKTI was obtained and was further purified with anion-exchange chromatography (DEAE-FF) efficiently. There were similar biochemical properties between SKTI and rSKTI. The optimum pH and the optimum temperature were pH 8.0 and 35 °C, respectively, being stable during pH 7.0-11.0 and below 37 °C. The activity against trypsin was inhibited by Co2+, Mn2+, Fe3+, Al3+, and epoxy chloropropane. Inhibition kinetic assay of SKTI against trypsin as Lineweaver-Burk plots analysis both showed an unchanged Km and a decreased Vmax with N-benzoyl-L-arginine ethyl ester (BAEE) as substrate. Molecular modeling showed Arg63 of SKTI (active residue of SKTI) that interacts with four residues of trypsin, including three catalytic site (His57, Asp102, and Ser195) and one binding site (Asp189), forming five interactions. These provide reference for understanding the inhibition mechanism of such kind of Kunitz trypsin inhibitors.
Collapse
Affiliation(s)
- Yanji Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Panpan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiao Liu
- Shanghai Yaxin Biotechnology Limited Company, Shanghai, 200231, China
| | - Zhike Wang
- Shanghai Yaxin Biotechnology Limited Company, Shanghai, 200231, China
| | - Suxia Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
14
|
de Oliveira CF, Oliveira CT, Taveira GB, de Oliveira Mello E, Gomes VM, Macedo MLR. Characterization of a Kunitz trypsin inhibitor from Enterolobium timbouva with activity against Candida species. Int J Biol Macromol 2018; 119:645-653. [DOI: 10.1016/j.ijbiomac.2018.07.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/15/2022]
|
15
|
Roy UK, Lavignac N, Rahman AM, Nielsen BV. Purification of lectin and Kunitz trypsin inhibitor from soya seeds. J Chromatogr Sci 2018; 56:436-442. [PMID: 29566134 DOI: 10.1093/chromsci/bmy018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/12/2018] [Indexed: 11/13/2022]
Abstract
The search for potent and selective therapeutic agents is progressing by the study of natural compounds in plants. Plant-derived macromolecules are considered emerging therapeutic agents and an alternative to synthetic and small molecule drugs. Where it has long been known that plants possess medicinal properties, the compounds responsible for their action are in many cases still unknown: often only whole crude plant extracts or fractionated extracts are tested for the ability to inhibit common pathogens. Here, we present a fast protein liquid chromatography method for the separation of crude plant proteins. Kunitz trypsin inhibitor (KTI; 24.2 kDa) and lectin (31 kDa) were purified from Glycine max by liquid extraction followed by ion exchange column chromatography. The need for serial chromatographic separation steps has been eliminated by introducing more complex elution profiles hence reducing cost, time and improving recovery. The identity of KTI-A and lectin was confirmed by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-ToF MS). Cell proliferation assays using B16F1 melanoma cells revealed that both KTI and the monomeric lectin retained some antiproliferative activity. This method could be useful for rapid and cost-effective purification of bioactive compounds from plant material.
Collapse
Affiliation(s)
- Uttam K Roy
- Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
| | - Nathalie Lavignac
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent ME4 4TB, UK
| | - Azizur M Rahman
- Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
| | - Birthe V Nielsen
- Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
| |
Collapse
|
16
|
Liu B, Wang H, Hu T, Zhang P, Zhang Z, Pan S, Hu H. Ball-milling changed the physicochemical properties of SPI and its cold-set gels. J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2016.10.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Srikanth S, Chen Z. Plant Protease Inhibitors in Therapeutics-Focus on Cancer Therapy. Front Pharmacol 2016; 7:470. [PMID: 28008315 PMCID: PMC5143346 DOI: 10.3389/fphar.2016.00470] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/18/2016] [Indexed: 12/28/2022] Open
Abstract
Plants are known to have many secondary metabolites and phytochemical compounds which are highly explored at biochemical and molecular genetics level and exploited enormously in the human health care sector. However, there are other less explored small molecular weight proteins, which inhibit proteases/proteinases. Plants are good sources of protease inhibitors (PIs) which protect them against diseases, insects, pests, and herbivores. In the past, proteinaceous PIs were considered primarily as protein-degrading enzymes. Nevertheless, this view has significantly changed and PIs are now treated as very important signaling molecules in many biological activities such as inflammation, apoptosis, blood clotting and hormone processing. In recent years, PIs have been examined extensively as therapeutic agents, primarily to deal with various human cancers. Interestingly, many plant-based PIs are also found to be effective against cardiovascular diseases, osteoporosis, inflammatory diseases and neurological disorders. Several plant PIs are under further evaluation in in vitro clinical trials. Among all types of PIs, Bowman-Birk inhibitors (BBI) have been studied extensively in the treatment of many diseases, especially in the field of cancer prevention. So far, crops such as beans, potatoes, barley, squash, millet, wheat, buckwheat, groundnut, chickpea, pigeonpea, corn, and pineapple have been identified as good sources of PIs. The PI content of such foods has a significant influence on human health disorders, particularly in the regions where people mostly depend on these kind of foods. These natural PIs vary in concentration, protease specificity, heat stability, and sometimes several PIs may be present in the same species or tissue. However, it is important to carry out individual studies to identify the potential effects of each PI on human health. PIs in plants make them incredible sources to determine novel PIs with specific pharmacological and therapeutic effects due to their peculiarity and superabundance.
Collapse
Affiliation(s)
| | - Zhong Chen
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological UniversitySingapore, Singapore
| |
Collapse
|
18
|
van Dam PA, Coelho A, Rolfo C. Is there a role for urokinase-type plasminogen activator inhibitors as maintenance therapy in patients with ovarian cancer? Eur J Surg Oncol 2016; 43:252-257. [PMID: 27345498 DOI: 10.1016/j.ejso.2016.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/27/2016] [Accepted: 06/04/2016] [Indexed: 10/21/2022] Open
Abstract
There is abundant evidence that the urokinase-type plasminogen activator (uPA), its inhibitors PAI-1 and PAI-2 (plasminogen activator inhibitor type-1 and type-2) and its cells surface receptor (uPA-R, CD87) play a fundamental role in tumor invasion and metastasis and are of significant prognostic significance for many tumor types. We performed a systematic Med-line search on uPA, PAI, uPA-R and (epithelial) ovarian cancer (EOC). The majority of malignant EOC specimens show moderate to strong immunostating of tumor and stromal cells. Overexpression of u-PA and PAI-1 can be found in more the 75% of primary ovarian carcinomas, in most metastatic EOC samples and all examined epithelial ovarian cancer cell lines. uPA overexpression in primary specimens was significantly associated with tumor stage, grade, residual disease status after cytoreductive surgery, and poor clinical outcome. This may be explained by increased chemoresistance, a lower resectability and more aggressive tumor biology and tumor dissemination in patients with high uPA and PAI-1. Several therapeutical approaches aimed at inhibiting the uPA/uPAR functions have shown to possess anti-tumor effects in vitro and in animal models. When treating a patient with advanced ovarian cancer it may to be assumed that inhibiting the progression of established (micro) metastases may be more therapeutically relevant than trying to destroy all tumor cells which is not possible in most cases with current systemic treatment modalities. Taking into account the role of uPA and PAI in cell detachment, formation of new stroma, tumor cell reimplantation and metastasis uPA inhibition should be further investigated as maintenance treatment in patients with advanced EOC.
Collapse
Affiliation(s)
- P A van Dam
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, B2650, Belgium; Centre of Oncologic Research (CORE), Antwerp University, Edegem, B2650, Belgium.
| | - A Coelho
- Centre of Oncologic Research (CORE), Antwerp University, Edegem, B2650, Belgium; Phase I-Early Trials Unit, Antwerp University Hospital, Edegem, Belgium
| | - C Rolfo
- Centre of Oncologic Research (CORE), Antwerp University, Edegem, B2650, Belgium; Phase I-Early Trials Unit, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
19
|
Hong M, Tan HY, Li S, Cheung F, Wang N, Nagamatsu T, Feng Y. Cancer Stem Cells: The Potential Targets of Chinese Medicines and Their Active Compounds. Int J Mol Sci 2016; 17:893. [PMID: 27338343 PMCID: PMC4926427 DOI: 10.3390/ijms17060893] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 05/28/2016] [Accepted: 05/30/2016] [Indexed: 12/27/2022] Open
Abstract
The pivotal role of cancer stem cells (CSCs) in the initiation and progression of malignancies has been rigorously validated, and the specific methods for identifying and isolating the CSCs from the parental cancer population have also been rapidly developed in recent years. This review aims to provide an overview of recent research progress of Chinese medicines (CMs) and their active compounds in inhibiting tumor progression by targeting CSCs. A great deal of CMs and their active compounds, such as Antrodia camphorate, berberine, resveratrol, and curcumin have been shown to regress CSCs, in terms of reversing drug resistance, inducing cell death and inhibiting cell proliferation as well as metastasis. Furthermore, one of the active compounds in coptis, berbamine may inhibit tumor progression by modulating microRNAs to regulate CSCs. The underlying molecular mechanisms and related signaling pathways involved in these processes were also discussed and concluded in this paper. Overall, the use of CMs and their active compounds may be a promising therapeutic strategy to eradicate cancer by targeting CSCs. However, further studies are needed to clarify the potential of clinical application of CMs and their active compounds as complementary and alternative therapy in this field.
Collapse
Affiliation(s)
- Ming Hong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Hor Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Fan Cheung
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Tadashi Nagamatsu
- Department of Pharmacobiology and Therapeutics, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tenpakuku, Nagoya 468-8503, Japan.
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
20
|
Hernández-Ledesma B, Hsieh CC. Chemopreventive role of food-derived proteins and peptides: A review. Crit Rev Food Sci Nutr 2015; 57:2358-2376. [DOI: 10.1080/10408398.2015.1057632] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Blanca Hernández-Ledesma
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Madrid, Spain
| | - Chia-Chien Hsieh
- Department of Human Development and Family Studies (Nutritional Science and Education), National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
21
|
Carboxylate groups play a major role in antitumor activity of Ganoderma applanatum polysaccharide. Carbohydr Polym 2015; 123:283-7. [DOI: 10.1016/j.carbpol.2015.01.062] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/18/2015] [Accepted: 01/26/2015] [Indexed: 11/24/2022]
|
22
|
Lyu J, Liu Y, An T, Liu Y, Wang M, Song Y, Zheng F, Wu D, Zhang Y, Deng S. Purification and characterization of a trypsin inhibitor from the seeds of Artocarpus heterophyllus Lam. Acta Biochim Biophys Sin (Shanghai) 2015; 47:376-82. [PMID: 25851516 DOI: 10.1093/abbs/gmv022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/02/2015] [Indexed: 01/30/2023] Open
Abstract
A proteinaceous inhibitor against trypsin was isolated from the seeds of Artocarpus heterophyllus Lam. by successive ammonium sulfate precipitation, ion-exchange, and gel-filtration chromatography. The trypsin inhibitor, named as AHLTI (A. heterophyllus Lam. trypsin inhibitor), consisted of a single polypeptide chain with a molecular weight of 28.5 kDa, which was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel-filtration chromatography. The N-terminal sequence of AHLTI was DEPPSELDAS, which showed no similarity to other known trypsin inhibitor sequence. AHLTI completely inhibited bovine trypsin at a molar ratio of 1:2 (AHLTI:trypsin) analyzed by native polyacrylamide gel electrophoresis, inhibition activity assay, and gel-filtration chromatography. Moreover, kinetic enzymatic studies were carried out to understand the inhibition mechanism of AHLTI against trypsin. Results showed that AHLTI was a competitive inhibitor with an equilibrium dissociation constant (Ki) of 3.7 × 10(-8) M. However, AHLTI showed weak inhibitory activity toward chymotrypsin and elastase. AHLTI was stable over a broad range of pH 4-8 and temperature 20-80°C. The reduction agent, dithiothreitol, had no obvious effect on AHLTI. The trypsin inhibition assays of AHLTI toward digestive enzymes from insect pest guts in vitro demonstrated that AHLTI was effective against enzymes from Locusta migratoria manilensis (Meyen). These results suggested that AHLTI might be a novel trypsin inhibitor from A. heterophyllus Lam. belonging to Kunitz family, and play an important role in protecting from insect pest.
Collapse
Affiliation(s)
- Junchen Lyu
- Key Laboratory of Tropic Biological Resources, Minister of Education, College of Marine Science, Hainan University, Haikou 570228, China
| | - Yuan Liu
- Key Laboratory of Tropic Biological Resources, Minister of Education, College of Marine Science, Hainan University, Haikou 570228, China
| | - Tianchen An
- Key Laboratory of Tropic Biological Resources, Minister of Education, College of Marine Science, Hainan University, Haikou 570228, China
| | - Yujun Liu
- School of Life Science, Jilin Normal University, Siping 136000, China
| | - Manchuriga Wang
- Key Laboratory of Tropic Biological Resources, Minister of Education, College of Marine Science, Hainan University, Haikou 570228, China
| | - Yanting Song
- Key Laboratory of Tropic Biological Resources, Minister of Education, College of Marine Science, Hainan University, Haikou 570228, China
| | - Feifei Zheng
- Key Laboratory of Tropic Biological Resources, Minister of Education, College of Marine Science, Hainan University, Haikou 570228, China
| | - Dan Wu
- Key Laboratory of Tropic Biological Resources, Minister of Education, College of Marine Science, Hainan University, Haikou 570228, China
| | - Yingxia Zhang
- Key Laboratory of Tropic Biological Resources, Minister of Education, College of Marine Science, Hainan University, Haikou 570228, China
| | - Shiming Deng
- Key Laboratory of Tropic Biological Resources, Minister of Education, College of Marine Science, Hainan University, Haikou 570228, China
| |
Collapse
|
23
|
Rakashanda S, Qazi AK, Majeed R, Andrabi SM, Hamid A, Sharma PR, Amin S. Plant-derived protease inhibitors LC-pi (Lavatera cashmeriana) inhibit human lung cancer cell proliferation in vitro. Nutr Cancer 2014; 67:156-66. [PMID: 25412192 DOI: 10.1080/01635581.2015.967876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The objective of this study was to check the anticancer activity of purified protease inhibitors of Lavatera cashmeriana viz LC-pi I, II, III, and IV (Lavatera cashmeriana protease inhibitors) on A549 (lung) cell. It was found that LC-pi I and II significantly inhibited the proliferation of A549 cells with IC₅₀ value of 54 μg/ml and 38 μg/ml, respectively, whereas inhibition by LC-pi III and IV was negligible. LC-pi I and II were further found to inhibit formation of colonies in a dose-dependent manner. Also, both inhibitors were found to induce apoptosis causing chromatin condensation and DNA fragmentation, without loss of mitochondrial membrane potential. Cell cycle revealed a significant increase of subG₀/G₁ phase cells that are apoptotic cells. We also demonstrated a dose-dependent decrease in migration of A549 cells on cell migration assay by both inhibitors. Taken together, we demonstrate that LC-pi I and II inhibited proliferation through arresting cells before apoptosis, inducing apoptosis and inhibiting cell migration in human lung cancer cells, but the study warrants further investigation. Our results support the notion that plant protease inhibitors may have the potential to advance as chemopreventive agents.
Collapse
Affiliation(s)
- Syed Rakashanda
- a Department of Biochemistry , The University of Kashmir , Srinagar , India
| | | | | | | | | | | | | |
Collapse
|
24
|
Khiari Z, Ndagijimana M, Betti M. Low molecular weight bioactive peptides derived from the enzymatic hydrolysis of collagen after isoelectric solubilization/precipitation process of turkey by-products. Poult Sci 2014; 93:2347-62. [DOI: 10.3382/ps.2014-03953] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Li Z, Zhao C, Li Z, Zhao Y, Shan S, Shi T, Li J. Reconstructed mung bean trypsin inhibitor targeting cell surface GRP78 induces apoptosis and inhibits tumor growth in colorectal cancer. Int J Biochem Cell Biol 2013; 47:68-75. [PMID: 24333163 DOI: 10.1016/j.biocel.2013.11.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 11/24/2013] [Accepted: 11/29/2013] [Indexed: 10/25/2022]
Abstract
Glucose regulated protein 78 (GRP78) has been reported to be present on cell membranes of cancer cells but not the normal cells, serving as a potential anti-cancer target. In the present study, a fusion protein containing the GRP78 binding peptide WIFPWIQL and the active fragment of mung bean trypsin inhibitor was constructed, and its targeted anti-tumor effects were investigated both in vitro and in vivo. The results showed that the fusion protein specifically inhibited growth and induced apoptosis in colorectal cancer cells but not in the normal cells. Mechanistically, these anti-tumor effects were attributed to induction of G1 phase arrest and activation of multiple apoptotic pathways. Importantly, the fusion protein could also suppress the growth of xenografted human colorectal carcinoma in vivo. Our study reveals that this fusion protein may be developed as a therapeutic agent for treatment of colon cancer, and holds important implications for developing other anti-cancer peptide drugs.
Collapse
Affiliation(s)
- Zongwei Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Chao Zhao
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China; College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yarui Zhao
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Shuhua Shan
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Tonglin Shi
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jianguo Li
- China Institute for Radiation Protection, Taiyuan 030006, China
| |
Collapse
|
26
|
Robles-Ramírez MDC, Ramón-Gallegos E, Reyes-Duarte FJ, Mora-Escobedo R. Effect of germinated soy protein on the growth of HeLa cervical cancer cells in female athymic mice. Nutr Cancer 2013; 64:1261-8. [PMID: 23163854 DOI: 10.1080/01635581.2012.717681] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous studies showed that germination could improve the antiproliferative effect of soy protein on cervical cancer cells and that a peptide fraction (MAPF) from germinated soybeans decreases the expression of PTTG1 and TOP2A (2 genes considered as therapeutic targets) causing apoptosis of cancer cells. The aim of this work was to study the effect of feeding germinated soybean protein diets on the tumor growth in nude mice inoculated with cervical cancer cells and identify the bioactive component. Mice were randomly assigned to 1 of the 6 dietary groups based in AIN-93G formulation with 6 protein sources: casein, ungerminated soy protein (SP), and SP from 2 and 6 days of germination, with and without ethanol-soluble phytochemicals (ESPC). Compared with casein-fed controls, the tumor volumes after 5 wk were reduced by 44.6% by ungerminated SP, 98.9% by 2-day-germinated SP, 97.7% by 2-day-germinated SP without ESPC, 94.7% by 6-day-germinated SP, and 92.7% by 6-day-germinated SP without ESPC (P < 0.05). Liquid chromatography coupled with tandem mass spectrometry analysis of MAPF showed that the bioactive peptide might be the leginsulin, a peptide involved in signal transduction of soybean cells. Germination is a simple procedure that could help to increase the anticancer activity of soy protein probably through generation of biologically active peptides.
Collapse
|
27
|
Ee KY, Agboola S, Rehman A, Zhao J. In vitro antioxidant and bioactive properties of raw and roasted wattle (Acacia victoriae Bentham) seed extracts. Int J Food Sci Technol 2012. [DOI: 10.1111/j.1365-2621.2012.03063.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Bioactive peptides and depsipeptides with anticancer potential: sources from marine animals. Mar Drugs 2012; 10:963-986. [PMID: 22822350 PMCID: PMC3397454 DOI: 10.3390/md10050963] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 03/24/2012] [Accepted: 04/05/2012] [Indexed: 11/30/2022] Open
Abstract
Biologically active compounds with different modes of action, such as, antiproliferative, antioxidant, antimicrotubule, have been isolated from marine sources, specifically algae and cyanobacteria. Recently research has been focused on peptides from marine animal sources, since they have been found as secondary metabolites from sponges, ascidians, tunicates, and mollusks. The structural characteristics of these peptides include various unusual amino acid residues which may be responsible for their bioactivity. Moreover, protein hydrolysates formed by the enzymatic digestion of aquatic and marine by-products are an important source of bioactive peptides. Purified peptides from these sources have been shown to have antioxidant activity and cytotoxic effect on several human cancer cell lines such as HeLa, AGS, and DLD-1. These characteristics imply that the use of peptides from marine sources has potential for the prevention and treatment of cancer, and that they might also be useful as molecular models in anticancer drug research. This review focuses on the latest studies and critical research in this field, and evidences the immense potential of marine animals as bioactive peptide sources.
Collapse
|
29
|
Rizzello CG, Nionelli L, Coda R, Gobbetti M. Synthesis of the cancer preventive peptide lunasin by lactic acid bacteria during sourdough fermentation. Nutr Cancer 2011; 64:111-20. [PMID: 22098174 DOI: 10.1080/01635581.2012.630159] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study aimed to exploit the potential of sourdough lactic acid bacteria to release lunasin during fermentation of cereal and nonconventional flours. The peptidase activities of a large number of sourdough lactic acid bacteria were screened using synthetic substrates. Selected lactic acid bacteria were used as sourdough starters to ferment wholemeal wheat, soybean, barley, amaranth, and rye flours. Proteinase activity during fermentation was characterized by SDS-PAGE analysis of the water-soluble extracts. Albumins having molecular masses of 18 to 22 kDa, which included the size of lunasin precursors, were markedly affected by proteolysis of lactic acid bacteria. After fermentation, lunasin from the water-soluble extracts was quantified, purified, and identified through RP-HPLC and nano-LC-ESI-MS analyses. Compared to control doughs, the concentration of lunasin increased up to 2-4 times during fermentation. Lactobacillus curvatus SAL33 and Lactobacillus brevis AM7 synthesized the highest concentrations of lunasin in all the flours. Besides the presence of the entire lunasin sequence, fragments containing the immunoreactive epitope RGDDDDDDDDD were also found. This study shows that fermentation by lactic acid bacteria increased the concentration of lunasin to levels that would suggest new possibilities for the biological synthesis and for the formulation of functional foods.
Collapse
Affiliation(s)
- Carlo G Rizzello
- Department of Environmental and Agro-Forestry Biology and Chemistry, University of Bari, Bari, Italy
| | | | | | | |
Collapse
|
30
|
Isolation and characterization of a Kunitz-type trypsin inhibitor with antiproliferative activity from Gymnocladus chinensis (Yunnan bean) seeds. Protein J 2011; 30:240-6. [PMID: 21468674 PMCID: PMC7088384 DOI: 10.1007/s10930-011-9325-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A 20-kDa Kunitz-type trypsin inhibitor was isolated from Gymnocladus chinensis (Yunnan bean) seeds. The isolation procedure involved ion exchange chromatography on diethylaminoethyl cellulose (DEAE-cellulose), affinity chromatography on Affi-gel blue gel, ion exchange chromatography on sulfopropyl sepharose (SP-sepharose), and gel filtration by FPLC on Superdex 75. The trypsin inhibitor was adsorbed on DEAE-cellulose, unadsorbed on Affi-gel blue gel, and adsorbed on SP-Sepharose. It dose-dependently inhibited trypsin with an IC50 value of 0.4 μM. Dithiothreitol reduced its trypsin inhibitory activity, suggesting that an intact disulfide bond is indispensable to the activity. It suppressed [methyl-3H] thymidine incorporation by leukemia L1210 cells and lymphoma MBL2 cells with an IC50 value of 4.7 and 9.4 μM, respectively. There was no effect on human immunodeficiency virus4-1 reverse transcriptase activity and fungal growth when the trypsin inhibitor was tested up to 100 μM.
Collapse
|
31
|
Kingsley K, Truong K, Low E, Hill CK, Chokshi SB, Phipps D, West MA, Keiserman MA, Bergman CJ. Soy protein extract (SPE) exhibits differential in vitro cell proliferation effects in oral cancer and normal cell lines. J Diet Suppl 2011; 8:169-88. [PMID: 22432688 DOI: 10.3109/19390211.2011.571656] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Prior research has demonstrated that specific isoflavones derived from soy may exhibit antitumor effects against many cancers, including oral cancer. Most of this prior research involved isolation and testing of individual soy components, such as genistein, daidzein, and glycitein, which exhibit cytotoxicity against cancerous cells but may also have residual cytotoxic effects on normal cells. Few studies have evaluated whole soy extract, containing a combination of these isoflavones, and other bioreactive compounds, which may function synergistically and more effectively against oral cancers. This study compared the antiproliferative effects of whole soy protein extract (SPE) on CAL 27 and SCC25 oral cancer cell lines in vitro. Administration of SPE significantly inhibited oral cancer growth and exerted these effects at lower concentrations compared with another class of flavonoids (proanthocyanidins) that were previously tested on these cell lines. This SPE-induced growth inhibition correlated with down-regulated mRNA expression in the oral cancer cell-cycle promoter ornithine decarboxylase (ODC), as well as upregulation of caspase-2 and caspase-8, initiators and effectors of apoptosis. These results suggest that SPE may represent a potential chemopreventive or chemotherapeutic option for oral cancer. Moreover, SPE may be more effective than other flavonoids currently used and may be effective at lower concentrations that approximate physiologic serum levels (0-2 μmol/l). This study may help to explain why diets rich in fruits, vegetables, and soy protein are associated with protection against development and progression of oral cancers, although further study is needed to develop specific public health recommendations for oral cancer treatment and prevention.
Collapse
Affiliation(s)
- Karl Kingsley
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada, Las Vegas, Nevada 89106, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Schmitt M, Mengele K, Napieralski R, Magdolen V, Reuning U, Gkazepis A, Sweep F, Brünner N, Foekens J, Harbeck N. Clinical utility of level-of-evidence-1 disease forecast cancer biomarkers uPA and its inhibitor PAI-1. Expert Rev Mol Diagn 2011; 10:1051-67. [PMID: 21080821 DOI: 10.1586/erm.10.71] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The prognostic and/or predictive value of the cancer biomarkers, urokinase-type plasminogen activator (uPA) and its inhibitor (plasminogen activator inhibitor [PAI]-1), determined by ELISA in tumor-tissue extracts, was demonstrated for several cancer types in numerous clinically relevant retrospective or prospective studies, including a multicenter breast cancer therapy trial (Chemo-N0). Consequently, for the first time ever for any cancer biomarker for breast cancer, uPA and PAI-1 have reached the highest level of evidence, level-of-evidence-1. At present, two other breast cancer therapy trials, NNBC-3 and Plan B, also incorporating uPA and PAI-1 as treatment-assignment tools are in effect. Furthermore, small synthetic molecules targeting uPA are currently in Phase II clinical trials in patients afflicted with advanced cancer of the ovary, breast or pancreas.
Collapse
Affiliation(s)
- Manfred Schmitt
- Frauenklinik der Technischen Universitaet Muenchen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hsu KC, Li-Chan EC, Jao CL. Antiproliferative activity of peptides prepared from enzymatic hydrolysates of tuna dark muscle on human breast cancer cell line MCF-7. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.11.066] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Antitumor and HIV-1 Reverse Transcriptase Inhibitory Activities of a Hemagglutinin and a Protease Inhibitor from Mini-Black Soybean. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:851396. [PMID: 21527979 PMCID: PMC3057713 DOI: 10.1155/2011/851396] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 10/18/2010] [Accepted: 01/10/2011] [Indexed: 01/15/2023]
Abstract
Protease inhibitors (PIs) and hemagglutinins are defense proteins produced by many organisms. From Chinese mini-black soybeans, a 17.5-kDa PI was isolated using chromatography on Q-Sepharose, SP-Sepharose, and DEAE-cellulose. A 25-kDa hemagglutinin was purified similarly, but using Superdex 75 instead of DEAE-cellulose in the final step. The PI inhibited trypsin and chymotrypsin (IC50 = 7.2 and 8.8 μM). Its trypsin inhibitory activity was stable from pH 2 to pH 13 and from 0°C to 70°C. The hemagglutinin activity of the hemagglutinin was stable from pH 2 to pH 13 and from 0°C to 75°C. The results indicated that both PI and hemagglutinin were relatively thermostable and pH-stable. The trypsin inhibitory activity was inhibited by dithiothreitol, signifying the importance of the disulfide bond to the activity. The hemagglutinating activity was inhibited most potently by D (+)-raffinose and N-acetyl-D-galactosamine, suggesting that the hemagglutinin was specific for these two sugars. Both PI and hemagglutinin inhibited HIV-1 reverse transcriptase (IC50 = 3.2 and 5.5 μM), proliferation of breast cancer cells (IC50 = 9.7 and 3.5 μM), and hepatoma cells (IC50 = 35 and 6.2 μM), with relatively high potencies.
Collapse
|
35
|
Zhao E, Mu Q. Phytoestrogen biological actions on Mammalian reproductive system and cancer growth. Sci Pharm 2010; 79:1-20. [PMID: 21617769 PMCID: PMC3097497 DOI: 10.3797/scipharm.1007-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 12/31/2010] [Indexed: 02/04/2023] Open
Abstract
Phytoestrogens are a family of diverse polyphenolic compounds derived from nature plant that structurally or functionally mimic circulating estrogen in the mammalian reproductive system. They induce estrogenic and anti-estrogenic effects in the brain-pituitary-gonad axis (a principal endocrine system involving in reproductive regulation) and peripheral reproductive organs. The dichotomy of phytoestrogen-mediated actions elucidates that they play the biological activities via complex mechanisms and belong to various chemical classes. In comparison with their unobvious physiological functions in normal reproductive tissues, there are increasing investigations showing that phytoestrogen induces significant inhibitory effects on the growth of breast and ovarian cancers through different signaling pathways. This review summarized the results of the previous studies regarding principal signaling transductions for mediating the growth of the ovarian and breast cancers. Phytoestrogen potentially modulates the signaling molecules via: (1) blocking the nuclear and membrane estrogen receptors (ER), (2) interfering with the growth factor receptor, (3) inhibiting the G protein-coupled receptor in ER-deficient cells, (4) activating apoptosis and nullifying anti-apoptotic signals.
Collapse
Affiliation(s)
- E Zhao
- Department of Biology, University of Ottawa, Gendron Hall, 30 Marie Curie, K1N 6N5, Ottawa, ON, Canada
| | | |
Collapse
|
36
|
The role of nutraceutical proteins and peptides in apoptosis, angiogenesis, and metastasis of cancer cells. Cancer Metastasis Rev 2010; 29:511-28. [PMID: 20714786 DOI: 10.1007/s10555-010-9241-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The process of carcinogenesis is complex and not easy to eliminate. It includes the initial occurrence of genetic alterations which can lead to the inactivation of tumor-suppressor genes and further accumulation of genetic alterations during tumor progression. Looking for food and food components with biological properties, collectively called nutraceuticals, that can hinder such alterations and prevent the inactivation of tumor-suppressor genes is a very promising area for cancer prevention. Proteins and peptides are one group of nutraceuticals that show potential results in preventing the different stages of cancer including initiation, promotion, and progression. In this review, we summarized current knowledge on the use of nutraceutical proteins and peptides in cancer prevention and treatment. We focused on the role of plant protease inhibitors, lactoferrin and lactoferricin, shark cartilage, plant lectins, and lunasin in the apoptosis, angiogenesis, and metastasis of cancer cells. Also included are studies on bioavailability and clinical trials conducted on these promising proteins and peptides.
Collapse
|
37
|
Silva-Lucca RA, Faneca HMS, de Lima MCP, De Caroli FP, Assis ML, Sampaio MU, Oliva MLV. Interaction of proteinase inhibitors with phospholipid vesicles is modulated by pH. Int J Biol Macromol 2010; 47:551-7. [PMID: 20692285 DOI: 10.1016/j.ijbiomac.2010.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 07/05/2010] [Accepted: 07/28/2010] [Indexed: 11/28/2022]
Abstract
rBbKI and rBbCI, plant recombinant inhibitors from Bauhinia bauhinioides, and BpuTI from Bauhinia purpurea seeds distinctly and specifically block proteolytic enzymes. The secondary structures of those inhibitors were compared and their interactions with phospholipid vesicles were evaluated by the release of calcein and by intrinsic fluorescence of tryptophan residues. The results show that rBbKI, rBbCI and BpuTI are able to interact with phospholipd vesicles and induce membrane permeabilization in a concentration- and pH-dependent manner. The leakage was rapid and extensive at pH 4.5, but at physiological pH, no calcein release was observed. These results may suggest that upon inflammation or microorganism invasion accompanied by lowering of pH, appropriate conditions may occur for the inhibitors to interact with cell membrane and act on specific proteolytic enzyme.
Collapse
Affiliation(s)
- Rosemeire A Silva-Lucca
- Departamento de Bioquímica, Universidade Federal de São Paulo-Escola Paulista de Medicina, Rua Três de Maio, 100 Vila Clementino, 04044-020 São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
38
|
Trypsin isoinhibitors with antiproliferative activity toward leukemia cells from Phaseolus vulgaris cv "White Cloud Bean". J Biomed Biotechnol 2010; 2010:219793. [PMID: 20617140 PMCID: PMC2896657 DOI: 10.1155/2010/219793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 04/21/2010] [Indexed: 11/17/2022] Open
Abstract
A purification protocol that comprised ion exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel, ion exchange chromatography on SP-Sepharose, and gel filtration by FPLC on Superdex 75 was complied to isolate two trypsin inhibitors from Phaseolus vulgaris cv “White Cloud Bean”. Both trypsin inhibitors exhibited a molecular mass of 16 kDa and reduced the activity of trypsin with an IC50 value of about 0.6 μM. Dithiothreitol attenuated the trypsin inhibitory activity, signifying that an intact disulfide bond is indispensable to the activity. [Methyl-3H] thymidine incorporation by leukemia L1210 cells was inhibited with an IC50 value of 28.8 μM and 21.5 μM, respectively. They were lacking in activity toward lymphoma MBL2 cells and inhibitory effect on HIV-1 reverse transcriptase and fungal growth when tested up to 100 μM.
Collapse
|
39
|
Devappa RK, Makkar HPS, Becker K. Nutritional, biochemical, and pharmaceutical potential of proteins and peptides from jatropha: review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:6543-6555. [PMID: 20465279 DOI: 10.1021/jf100003z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Increased bioenergy consciousness and high demand for animal products have propelled the search for alternative resources that could meet the dual demands. Jatropha seeds have potential to fit these roles in view of their multipurpose uses, broad climatic adaptability features, and high oil and protein contents. During the past five years many large-scale cultivation projects have been undertaken to produce jatropha seed oil as a feedstock for the biodiesel industry. The present review aims at providing biological significance of jatropha proteins and peptides along with their nutritional and therapeutic applications. The nutritional qualities of the kernel meal and protein concentrates or isolates prepared from seed cake are presented, enabling their efficient use in animal nutrition. In addition, (a) biologically active proteins involved in plant protection, for example, aquaporin and betaine aldehyde dehydrogenase, which have roles in drought resistance, and beta-glucanase, which has antifungal activity, as well as those having pharmaceutical properties, and (b) cyclic peptides with various biological activities such as antiproliferative, immunomodulatory, antifungal, and antimalarial activity are discussed. It is expected that the information collated will open avenues for new applications of proteins present in jatropha plant, thereby contributing to enhance the financial viability and sustainability of a jatropha-based biodiesel industry.
Collapse
Affiliation(s)
- Rakshit K Devappa
- Institute for Animal Production in the Tropics and Subtropics, University of Hohenheim, 70593 Stuttgart, Germany
| | | | | |
Collapse
|
40
|
Ceruloplasmin-induced aggregation of P19 neurons involves a serine protease activity and is accompanied by reelin cleavage. Neuroscience 2010; 167:633-43. [PMID: 20188154 DOI: 10.1016/j.neuroscience.2010.02.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 12/27/2022]
Abstract
The cytoarchitectural organization of the nervous system depends partly on extracellular serine proteases, including reelin. This 400K protein, which also exists as the N-terminally-derived 300K and 180K fragments, acts through binding to the lipoprotein receptors apolipoprotein E receptor 2 (ApoER2) and very low-density lipoprotein receptor (VLDLR). Ceruloplasmin (CP), a multifunctional protein found in the circulation and also expressed on glial cells, was shown to bind to, and induce aggregation of neurons newly differentiated from P19 embryonic stem cells. This indicated a potential developmental role of CP in neuronal organization, possibly in relation with reelin and other extracellular serine proteases. Therefore, we analysed the effect of cell-impermeant, large spectrum, serine protease inhibitors on CP-induced neuroaggregation and studied reelin expression. Soybean trypsin inhibitor and aprotinin (SBTI+Apro) inhibited CP neuroaggregative action. Undifferentiated and neurally-differentiating cultures secreted the 400K reelin. The 180K fragment was present during and after differentiation whereas the 300K species was barely detectable. However, CP stimulated generation of the 300K in the differentiated neuronal cultures, and SBTI+Apro abolished this CP effect. Time course profiles and function-blocking antibody indicated that neuroaggregation does not depend on the generation of the 300K fragment or on reelin action. CP neuroaggregative action thus involves a pericellular serine protease, different from reelin. On the other hand, the CP stimulation of reelin cleavage is in line with a possible role of CP in nervous system development. Since P19 cells express ApoER2 and VLDLR, they can help understanding relationships existing between CP, reelin and intervening protease(s).
Collapse
|
41
|
Zhang HY, Sun H. Up-regulation of Foxp3 inhibits cell proliferation, migration and invasion in epithelial ovarian cancer. Cancer Lett 2009; 287:91-7. [PMID: 19628330 DOI: 10.1016/j.canlet.2009.06.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 05/12/2009] [Accepted: 06/02/2009] [Indexed: 12/29/2022]
Abstract
The transcription factor Forkhead Box P3 (Foxp3) has been shown to play important roles in the occurring of regulatory T cells (Tregs). Limited evidence indicated that it was also expressed in tissues other than thymus and spleen, while, very recently, it was identified as a suppressor gene in breast cancer. However, the precise role and molecular mechanism of the action of Foxp3 in ovarian cancer remained unclear. To elucidate the function of Foxp3, we examined the expression of Foxp3 in ovarian cancerous cells and the consequences of up-regulation of Foxp3 in epithelial ovarian cancer cell lines, respectively. By multiple cellular and molecular approaches such as gene transfection, CCK-8 assay, flow cytometry, RT-PCR, in-cell western, wound healing assay, and invasion assay, we found that Foxp3 was weakly/no expressed in ovarian cancerous cells. Up-regulation of Foxp3 inhibited cell proliferation, decreased cell migration, and reduced cell invasion. Compared with control, Foxp3 up-regulated cells showed decreased expression of Ki-67 and cyclin-dependent kinases (CDKs). Moreover, up-regulation of Foxp3 reduced the expression of matrix metalloproteinase-2 (MMP-2) and urokinase-type plasminogen activator (uPA), resulting in the inhibition of cell migration and invasion. In addition, Foxp3 up-regulation inhibited the activation of mammalian target of rapamycin (mTOR) and NF-kappaB signaling. These findings suggested that up-regulation of Foxp3 could be a novel approach for inhibiting ovarian cancer progression.
Collapse
Affiliation(s)
- Hai-Yan Zhang
- The Hospital of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | | |
Collapse
|
42
|
Lin P, Ye X, Ng T. Purification of melibiose-binding lectins from two cultivars of Chinese black soybeans. Acta Biochim Biophys Sin (Shanghai) 2008; 40:1029-38. [PMID: 19089301 PMCID: PMC7110201 DOI: 10.1111/j.1745-7270.2008.00488.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 11/07/2008] [Indexed: 11/28/2022] Open
Abstract
A dimeric 50 kDa melibiose-binding lectin was isolated from the seeds of the cultivar of soybean (Glycine max), called the small glossy black soybean. The isolation procedure comprised ion exchange chromatography on Q Sepharose, SP Sepharose and Mono Q followed by gel filtration on Superdex 75. The lectin was adsorbed on all three ion exchangers, and it exhibited an N-terminal sequence identical to that of soybean lectin. Of all the sugars tested, melibiose most potently inhibited the hemagglutinating activity of the lectin, which was stable between pH 3-12 and 0-70 degrees C. The lectin evoked maximal mitogenic response at about the same molar concentration as Con A. However, the response was much weaker. The soybean lectin inhibited the activity of HIV-1 reverse transcriptase as well as the proliferation of breast cancer MCF7 cells and hepatoma HepG2 cells with an IC50 of 2.82 microM, 2.6 microM and 4.1 microM, respectively. There was no antifungal activity. Another lectin was isolated from a different cultivar of soybean called little black soybean. The lectin was essentially similar to small glossy black soybean lectin except for a larger subunit molecular mass (31 kDa), a more potent mitogenic activity and lower thermostability. The results indicate that different cultivars of soybean produce lectins that are not identical in every aspect.
Collapse
Affiliation(s)
- Peng Lin
- Department of Biochemistry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | |
Collapse
|
43
|
Lin P, Ye X, Ng TB. Purification of melibiose-binding lectins from two cultivars of Chinese black soybeans. Acta Biochim Biophys Sin (Shanghai) 2008. [DOI: 10.1111/j.1745-7270.2008.00488.x pmid: 19089301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
44
|
da Silva AJ, Teles RCL, Esteves GF, dos Santos CR, Barbosa JARG, de Freitas SM. Purification, crystallization and preliminary crystallographic studies of SPCI-chymotrypsin complex at 2.8 A resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:914-7. [PMID: 18931434 PMCID: PMC2564883 DOI: 10.1107/s1744309108026870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 08/20/2008] [Indexed: 11/10/2022]
Abstract
A binary complex of the Schizolobium parahyba chymotrypsin inhibitor (SPCI) with chymotrypsin was purified by size-exclusion chromatography and crystallized by the sitting-drop vapour-diffusion method with 100 mM MES-NaOH pH 5.5, 20%(w/v) PEG 6000, 200 mM LiCl as precipitant and 200 mM nondetergent sulfobetaine molecular weight 201 Da (NDSB-201) as an additive. SPCI is a small protein with 180 amino-acid residues isolated from S. parahyba seeds and is able to inhibit chymotrypsin at a 1:1 molar ratio by forming a stable complex. X-ray data were collected to 2.8 A resolution from a single crystal of the SPCI-chymotrypsin binary complex under cryogenic conditions. The crystal belongs to space group P2(1)2(1)2(1), with unit-cell parameters a = 45.28, b = 64.57, c = 169.23 A, and the R(merge) is 0.122 for 11 254 unique reflections. A molecular-replacement solution was found using the preliminary crystal structure of SPCI and the structure of chymotrypsin (PDB code 4cha) independently as search models.
Collapse
Affiliation(s)
- Adelson Joel da Silva
- Biophysics Laboratory, Biological Sciences Institute, University of Brasília, Brasília-DF, 70910-900, Brazil
| | - Rozeni Chagas Lima Teles
- Biophysics Laboratory, Biological Sciences Institute, University of Brasília, Brasília-DF, 70910-900, Brazil
| | - Gisele Ferreira Esteves
- Biophysics Laboratory, Biological Sciences Institute, University of Brasília, Brasília-DF, 70910-900, Brazil
| | - Camila Ramos dos Santos
- Center for Structural Molecular Biology (CeBiME), Brazilian Synchrotron Light Laboratory (LNLS), CP 6192, Campinas-SP, 13083-970, Brazil
| | | | - Sonia Maria de Freitas
- Biophysics Laboratory, Biological Sciences Institute, University of Brasília, Brasília-DF, 70910-900, Brazil
| |
Collapse
|
45
|
A stable trypsin inhibitor from Chinese dull black soybeans with potentially exploitable activities. Process Biochem 2008; 43:992-998. [PMID: 32288592 PMCID: PMC7108285 DOI: 10.1016/j.procbio.2008.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 05/06/2008] [Accepted: 05/07/2008] [Indexed: 11/23/2022]
Abstract
A dimeric 40-kDa Kunitz-type trypsin inhibitor was isolated from seeds of the Chinese black soybean Glycine max cv. ‘Dull Black’. The purification protocol comprised ion exchange chromatography on Q-Sepharose, SP-Sepharose, and Mono Q, and gel filtration on Superdex 75. The trypsin inhibitor inhibited chymotrypsin, albeit to a lesser extent than it inhibited trypsin. Its trypsin-inhibitory activity was unaffected after exposure to pH 1–14, or to temperatures up to 80 °C. The trypsin inhibitor was inhibited by dithiothreitol in a dose-dependent (from 2.5 to 50 mM) and a time-dependent (from 5 to 120 min) manner. Besides inhibiting serine proteases, the trypsin inhibitor demonstrated additional biological activities including stimulation of nitric oxide production by macrophages. It inhibited HIV-1 reverse transcriptase, cell-free translation and proliferation of liver cancer cells and breast cancer cells, with an IC50 value 9.4, 14, 39 and 70 μM, respectively. However, it did not exhibit antifungal, antibacterial or mitogenic activity.
Collapse
|
46
|
Ho VSM, Ng TB. A Bowman-Birk trypsin inhibitor with antiproliferative activity from Hokkaido large black soybeans. J Pept Sci 2008; 14:278-82. [PMID: 17880027 DOI: 10.1002/psc.922] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 07/24/2007] [Indexed: 11/12/2022]
Abstract
A trypsin inhibitor, with an N-terminal sequence highly homologous to those of 8-kDa Bowman-Birk trypsin inhibitors, was isolated from the seeds of Hokkaido large black soybeans. The trypsin inhibitor was unadsorbed on SP-Sepharose but adsorbed on DEAE-cellulose and Mono Q. It inhibited proliferation in breast cancer (MCF-7) cells and hepatoma (Hep G2) cells with an IC50 of 35 and 140 microM, respectively. The trypsin inhibitory activity of the inhibitor was completely preserved after exposure to temperatures up to 100 degrees C for 30 min and to the pH range 2-13 for the same duration. The trypsin inhibitor inhibited HIV-1 reverse transcriptase with an IC50 of 38 microM, but was devoid of antifungal activity toward Fusarium oxysporum and Mycosphaerella arachidicola.
Collapse
Affiliation(s)
- Vincent S M Ho
- Department of Biochemistry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | | |
Collapse
|
47
|
Teles RCL, Esteves GF, Araújo MAM, Bloch C, Barbosa JARG, de Freitas SM. Crystallization and preliminary crystallographic studies of Schizolobium parahyba chymotrypsin inhibitor (SPCI) at 1.8 A resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:929-31. [PMID: 18007042 PMCID: PMC2339747 DOI: 10.1107/s1744309107045393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 09/15/2007] [Indexed: 11/10/2022]
Abstract
SPCI, a Kunitz-type chymotrypsin inhibitor, is a 180-amino-acid polypeptide isolated from Schizolobium parahyba seeds. This inhibitor has been characterized as a highly stable protein over a broad pH and temperature range. SPCI was crystallized using a solution containing 0.1 M sodium acetate trihydrate buffer pH 4.6, 33%(v/v) PEG 2000 and 0.2 M ammonium sulfate. Data were collected to 1.80 A resolution from a single crystal of SPCI under cryogenic conditions. The protein crystallized in space group P2(1)2(1)2, with unit-cell parameters a = 40.01, b = 71.58, c = 108.68 A and an R(merge) of 0.052. The structure of SPCI has been solved by molecular replacement using the known structure of the Kunitz-type trypsin inhibitor from Delonix regia (PDB code 1r8n) as the search model.
Collapse
Affiliation(s)
- Rozeni Chagas Lima Teles
- Laboratório de Biofísica, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília-DF, 70910-900, Brazil
| | - Gisele Ferreira Esteves
- Laboratório de Biofísica, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília-DF, 70910-900, Brazil
| | - Marcus Aurélio Miranda Araújo
- Laboratório de Biofísica, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília-DF, 70910-900, Brazil
| | - Carlos Bloch
- Laboratório de Espectrometria de Massa, Empresa Brasileira de Pesquisa Agropecuária – Recursos Genéticos e Biotecnologia, Brasília-DF, 70770-900, Brazil
| | | | - Sonia Maria de Freitas
- Laboratório de Biofísica, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília-DF, 70910-900, Brazil
| |
Collapse
|
48
|
Mei J, Wood C, L'abbé MR, Gilani GS, Cooke GM, Curran IH, Xiao CW. Consumption of soy protein isolate modulates the phosphorylation status of hepatic ATPase/ATP synthase beta protein and increases ATPase activity in rats. J Nutr 2007; 137:2029-35. [PMID: 17709438 DOI: 10.1093/jn/137.9.2029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
ATPase/ATP synthase plays important roles in the regulation of carbohydrate, protein, and lipid metabolism through modulating energy homeostasis. The purpose of this study was to examine the effects of feeding soy proteins and isoflavones (ISF) on the enzymatic activity and protein modification of hepatic mitochondrial ATPase/ATP synthase. In Expt. 1, Sprague-Dawley rats aged 50 d were fed diets containing either 20% casein or 20% alcohol-washed soy protein isolate (SPI) with or without supplemental ISF (770.7 micromol/kg diet) for 70 d. In Expt. 2, weanling Sprague-Dawley rats were fed diets containing 20% casein with or without added ISF (154.1 micromol/kg diet) or 20% SPI for 90 d. Hepatic mitochondrial ATPase activity was significantly higher in the rats fed SPI than in those fed casein. Addition of ISF to SPI eliminated the action of SPI. ATPase/ATP synthase beta protein contents in the liver were unchanged; however, its patterns measured by 2-dimensional Western blot were different among dietary groups. The rats fed SPI or SPI plus ISF had 3 more major protein spots with the same molecular weights (80 kDa and 55 kDa) as those presented in the rats fed casein but with different isoelectric points. Pretreatment of hepatic mitochondrial proteins from the rats fed casein with alkaline phosphatase produced the same ATPase/ATP synthase beta patterns as observed in the SPI-fed rats and significantly elevated the ATPase activity. These results suggest that consumption of soy proteins increases hepatic ATPase activity, which might be a consequence of increased dephosphorylation or decreased phosphorylation of the mitochondrial ATPase/ATP synthase beta protein.
Collapse
Affiliation(s)
- Jie Mei
- Nutrition Research Division, Health Products and Food Branch, Health Canada, Ottawa, Canada K1A 0L2
| | | | | | | | | | | | | |
Collapse
|
49
|
Troncoso MF, Biron VA, Longhi SA, Retegui LA, Wolfenstein-Todel C. Peltophorum dubium and soybean Kunitz-type trypsin inhibitors induce human Jurkat cell apoptosis. Int Immunopharmacol 2007; 7:625-636. [PMID: 17386410 DOI: 10.1016/j.intimp.2007.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 12/27/2006] [Accepted: 01/06/2007] [Indexed: 10/23/2022]
Abstract
Plants constitute an important source of compounds which can induce apoptosis in a variety of cells. Previously, we reported the isolation of a trypsin inhibitor from Peltophorum dubium seeds (PDTI). This inhibitor, as well as soybean trypsin inhibitor (SBTI), both belonging to the Kunitz family, have lectin-like properties and trigger rat lymphoma cell apoptosis. In the present study, we demonstrate for the first time that PDTI and SBTI induce human leukemia Jurkat cell death. Induction of apoptosis was confirmed by flow cytometry after propidium iodide labeling of apoptotic nuclei, showing a considerable increase of the sub G(0)/G(1) fraction, with no cell cycle arrest. With the purpose of gaining insight into the signaling pathways involved, we investigated the activation of caspases and the effect of caspase inhibitors, and showed caspases-3 and -8-like activation by PDTI or SBTI-treatment. Consistent with these results, pan caspase inhibitor and caspase-8 inhibitor protected Jurkat cells from apoptosis. However, there was no caspase-9 activation, confirmed by the failure of caspase-9 inhibitor to prevent cell death. No significant release of cytochrome c from mitochondria was detected suggesting that the intrinsic mitochondrial pathway is not predominant in the apoptotic process. On the other hand, recruitment of Fas-associated death domain (FADD) to the cell membrane indicates the involvement of this adaptor protein in PDTI- and SBTI-induced apoptosis in Jurkat cells. Furthermore, human peripheral lymphocytes, either stimulated with phytohemagglutinin or not, are also susceptible to viability decrease induced by these inhibitors.
Collapse
Affiliation(s)
- María F Troncoso
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
50
|
Maeda N, Yoshimi K, Tachibana H, Yamada K. Soy-Derived Immunoglobulin Production Stimulating Factor Enhances IgM Production of Mouse Spleen Lymphocytes. J Food Sci 2006. [DOI: 10.1111/j.1750-3841.2006.00131.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|