1
|
Cheng T, Liu Z, Li H, Huang X, Wang W, Shi C, Zhang X, Chen H, Yao Z, Zhao P, Peng X, Sun MX. Sperm-origin paternal effects on root stem cell niche differentiation. Nature 2024; 634:220-227. [PMID: 39198649 DOI: 10.1038/s41586-024-07885-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
Fertilization introduces parental genetic information into the zygote to guide embryogenesis. Parental contributions to postfertilization development have been discussed for decades, and the data available show that both parents contribute to the zygotic transcriptome, suggesting a paternal role in early embryogenesis1-6. However, because the specific paternal effects on postfertilization development and the molecular pathways underpinning these effects remain poorly understood, paternal contribution to early embryogenesis and plant development has not yet been adequately demonstrated7. Here our research shows that TREE1 and its homologue DAZ3 are expressed exclusively in Arabidopsis sperm. Despite presenting no evident defects in sperm development and fertilization, tree1 daz3 unexpectedly led to aberrant differentiation of the embryo root stem cell niche. This defect persisted in seedlings and disrupted root tip regeneration, comparable to congenital defects in animals. TREE1 and DAZ3 function by suppression of maternal RKD2 transcription, thus mitigating the detrimental maternal effects from RKD2 on root stem cell niche. Therefore, our findings illuminate how genetic deficiencies in sperm can exert enduring paternal effects on specific plant organ differentiation and how parental-of-origin genes interact to ensure normal embryogenesis. This work also provides a new concept of how gamete quality or genetic deficiency can affect specific plant organ formation.
Collapse
Affiliation(s)
- Tianhe Cheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhenzhen Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Haiming Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaorong Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ce Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xuecheng Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhuang Yao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Gazzarrini S, Song L. LAFL Factors in Seed Development and Phase Transitions. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:459-488. [PMID: 38657282 DOI: 10.1146/annurev-arplant-070623-111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Development is a chain reaction in which one event leads to another until the completion of a life cycle. Phase transitions are milestone events in the cycle of life. LEAFY COTYLEDON1 (LEC1), ABA INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 proteins, collectively known as LAFL, are master transcription factors (TFs) regulating seed and other developmental processes. Since the initial characterization of the LAFL genes, more than three decades of active research has generated tremendous amounts of knowledge about these TFs, whose roles in seed development and germination have been comprehensively reviewed. Recent advances in cell biology with genetic and genomic tools have allowed the characterization of the LAFL regulatory networks in previously challenging tissues at a higher throughput and resolution in reference species and crops. In this review, we provide a holistic perspective by integrating advances at the epigenetic, transcriptional, posttranscriptional, and protein levels to exemplify the spatiotemporal regulation of the LAFL networks in Arabidopsis seed development and phase transitions, and we briefly discuss the evolution of these TF networks.
Collapse
Affiliation(s)
- Sonia Gazzarrini
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada;
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada;
| |
Collapse
|
3
|
Roscoe TJ, Vaissayre V, Paszkiewicz G, Clavijo F, Kelemen Z, Michaud C, Lepiniec LC, Dubreucq B, Zhou DX, Devic M. Regulation of FUSCA3 Expression During Seed Development in Arabidopsis. PLANT & CELL PHYSIOLOGY 2019; 60:476-487. [PMID: 30462310 DOI: 10.1093/pcp/pcy224] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
FUSCA3 (FUS3) is a master regulator of seed development important in establishing and maintaining embryonic identity whose expression is tightly regulated at genetic and epigenetic levels. Despite this prominent role, the control of FUS3 expression remains poorly understood. Promoter and functional complementation analyses provided insight into the regulation of FUS3. W-boxes present in the promoter proximal to the start of transcription are recognized by WRKY type-1 factors which are necessary for the activation of FUS3 expression. The RY motif, the binding site of B3 factors, is important for the activation of FUS3 in the embryo proper but not in the suspensor. The loss of a negative regulatory sequence (NRS) leads to preferential expression of FUS3 in the vasculature of vegetative tissues. Since the NRS includes the RY motif, mechanisms of activation and repression target adjacent or overlapping regions. These findings discriminate the regulation of FUS3 from that of LEAFY COTYLEDON2 by the control exerted by WRKY factors and by the presence of the RY motif, yet also confirm conservation of certain regulatory elements, thereby implicating potential regulation by BASIC PENTACYSTEINE (BPC) factors and POLYCOMB REPRESSIVE COMPLEX2 (PRC2).
Collapse
Affiliation(s)
| | - Virginie Vaissayre
- DIADE, ERL 5300 CNRS-IRD, Universit� de Montpellier, Montpellier, France
| | - Gael Paszkiewicz
- DIADE, ERL 5300 CNRS-IRD, Universit� de Montpellier, Montpellier, France
| | - Fernando Clavijo
- DIADE, ERL 5300 CNRS-IRD, Universit� de Montpellier, Montpellier, France
| | - Zsolt Kelemen
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Universit� Paris-Saclay, Versailles Cedex, France
| | - Caroline Michaud
- DIADE, ERL 5300 CNRS-IRD, Universit� de Montpellier, Montpellier, France
| | - Loï C Lepiniec
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Universit� Paris-Saclay, Versailles Cedex, France
| | - Bertrand Dubreucq
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Universit� Paris-Saclay, Versailles Cedex, France
| | - Dao-Xiu Zhou
- Universit� Paris-sud 11, Institut de Biologie des Plantes, CNRS, UMR8618, Saclay Plant Science, Orsay, France
| | - Martine Devic
- DIADE, ERL 5300 CNRS-IRD, Universit� de Montpellier, Montpellier, France
| |
Collapse
|
4
|
Lepiniec L, Devic M, Roscoe TJ, Bouyer D, Zhou DX, Boulard C, Baud S, Dubreucq B. Molecular and epigenetic regulations and functions of the LAFL transcriptional regulators that control seed development. PLANT REPRODUCTION 2018; 31:291-307. [PMID: 29797091 DOI: 10.1007/s00497-018-0337-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/10/2018] [Indexed: 05/20/2023]
Abstract
The LAFL (i.e. LEC1, ABI3, FUS3, and LEC2) master transcriptional regulators interact to form different complexes that induce embryo development and maturation, and inhibit seed germination and vegetative growth in Arabidopsis. Orthologous genes involved in similar regulatory processes have been described in various angiosperms including important crop species. Consistent with a prominent role of the LAFL regulators in triggering and maintaining embryonic cell fate, their expression appears finely tuned in different tissues during seed development and tightly repressed in vegetative tissues by a surprisingly high number of genetic and epigenetic factors. Partial functional redundancies and intricate feedback regulations of the LAFL have hampered the elucidation of the underpinning molecular mechanisms. Nevertheless, genetic, genomic, cellular, molecular, and biochemical analyses implemented during the last years have greatly improved our knowledge of the LALF network. Here we summarize and discuss recent progress, together with current issues required to gain a comprehensive insight into the network, including the emerging function of LEC1 and possibly LEC2 as pioneer transcription factors.
Collapse
Affiliation(s)
- L Lepiniec
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France.
| | - M Devic
- Régulations Epigénétiques et Développement de la Graine, ERL 5300 CNRS-IRD UMR DIADE, IRD centre de Montpellier, 911 Avenue Agropolis, BP 64501, 34394, Montpellier, France
- Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, Université Pierre et Marie Curie (Paris 06) & Centre National pour la Recherche Scientifique CNRS UMR 7621, 66650, Banyuls-sur-Mer, France
| | - T J Roscoe
- Régulations Epigénétiques et Développement de la Graine, ERL 5300 CNRS-IRD UMR DIADE, IRD centre de Montpellier, 911 Avenue Agropolis, BP 64501, 34394, Montpellier, France
- Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, Université Pierre et Marie Curie (Paris 06) & Centre National pour la Recherche Scientifique CNRS UMR 7621, 66650, Banyuls-sur-Mer, France
| | - D Bouyer
- Institut de Biologie de l'ENS, CNRS UMR8197, Ecole Normale Supérieure, 46 rue d'Ulm, 75230, Paris Cedex 05, France
| | - D-X Zhou
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Sud 11, Université Paris-Saclay, 91405, Orsay, France
| | - C Boulard
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France
| | - S Baud
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France
| | - B Dubreucq
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France
| |
Collapse
|
5
|
Bedi S, Nag Chaudhuri R. Transcription factor
ABI
3 auto‐activates its own expression during dehydration stress response. FEBS Lett 2018; 592:2594-2611. [DOI: 10.1002/1873-3468.13194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/28/2018] [Accepted: 07/06/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Sonia Bedi
- Department of Biotechnology St. Xavier's College Kolkata India
| | | |
Collapse
|
6
|
Minina EA, Reza SH, Gutierrez-Beltran E, Elander PH, Bozhkov PV, Moschou PN. The Arabidopsis homolog of Scc4/MAU2 is essential for embryogenesis. J Cell Sci 2017; 130:1051-1063. [PMID: 28137757 DOI: 10.1242/jcs.196865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/25/2017] [Indexed: 01/25/2023] Open
Abstract
Factors regulating dynamics of chromatin structure have direct impact on expression of genetic information. Cohesin is a multi-subunit protein complex that is crucial for pairing sister chromatids during cell division, DNA repair and regulation of gene transcription and silencing. In non-plant species, cohesin is loaded on chromatin by the Scc2-Scc4 complex (also known as the NIBPL-MAU2 complex). Here, we identify the Arabidopsis homolog of Scc4, which we denote Arabidopsis thaliana (At)SCC4, and show that it forms a functional complex with AtSCC2, the homolog of Scc2. We demonstrate that AtSCC2 and AtSCC4 act in the same pathway, and that both proteins are indispensable for cell fate determination during early stages of embryo development. Mutant embryos lacking either of these proteins develop only up to the globular stage, and show the suspensor overproliferation phenotype preceded by ectopic auxin maxima distribution. We further establish a new assay to reveal the AtSCC4-dependent dynamics of cohesin loading on chromatin in vivo Our findings define the Scc2-Scc4 complex as an evolutionary conserved machinery controlling cohesin loading and chromatin structure maintenance, and provide new insight into the plant-specific role of this complex in controlling cell fate during embryogenesis.
Collapse
Affiliation(s)
- Elena A Minina
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, Uppsala SE-75007, Sweden
| | - Salim Hossain Reza
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, Uppsala SE-75007, Sweden
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7080, Uppsala SE-75007, Sweden
| | - Emilio Gutierrez-Beltran
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, Uppsala SE-75007, Sweden
| | - Pernilla H Elander
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, Uppsala SE-75007, Sweden
| | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, Uppsala SE-75007, Sweden
| | - Panagiotis N Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7080, Uppsala SE-75007, Sweden
| |
Collapse
|
7
|
Sohrabi M, Zebarjadi A, Najaphy A, Kahrizi D. Isolation and sequence analysis of napin seed specific promoter from Iranian Rapeseed (Brassica napus L.). Gene 2015; 563:160-4. [PMID: 25797503 DOI: 10.1016/j.gene.2015.03.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/06/2015] [Accepted: 03/13/2015] [Indexed: 10/23/2022]
Abstract
Rapeseed (Brassica napus L.) has become an important crop during the last 30years. In addition to a high lipid level, the seeds also have a significant protein content, which constitutes 20-25% of the dry seed weight. The synthesis of storage proteins is primarily controlled at transcriptional level and seed-specific expression has been shown to be conferred upon the promoter regions of many storage protein genes. Napin is one of the main storage proteins in rapeseed(')s embryo that is produced in seed developing stage. Its promoter region located at 5' upstream of the napin gene has already been isolated (GenBank number, EU416279.1). In current research, seed-specific promoter (napin) of Iranian B. napus L. was isolated from the genomic DNA and cloned into pBI121 plant binary vector to use in future researches. For this purpose, the napin promoter was amplified by PCR method using specific primers, cloned in pSK(+) vector and sequenced. Sequencing analysis showed that the cloned promoter contained all of conserved motifs such as TATA box (TATAAA), RY repeats (CATGCA), dist-B (TCAAACACC) and prox-B elements (GCCACTTGTC), G-box (CACGTG) and CAAT Motifs, which constituted the seed-specific promoter activity and according to this analysis, the seed-specific promoter activity of cloned sequence was predicted. Based on sequence distances of nucleotide sequences, our sequence had the highest similarity (99.8%) whit B. napus sequence (with EU416279.1 accession number). Finally the promoter obtained might be interesting not only as a useful tool for biotechnological application but also for fundamental research.
Collapse
Affiliation(s)
- Maryam Sohrabi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Razi University, Kermanshah, Iran
| | - Alireza Zebarjadi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Razi University, Kermanshah, Iran; Department of Biotechnology for Drought Resistance, Razi University, Kermanshah, Iran.
| | - Abdollah Najaphy
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Razi University, Kermanshah, Iran; Department of Biotechnology for Drought Resistance, Razi University, Kermanshah, Iran
| | - Danial Kahrizi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Razi University, Kermanshah, Iran; Department of Biotechnology for Drought Resistance, Razi University, Kermanshah, Iran
| |
Collapse
|
8
|
Ryu H, Cho H, Bae W, Hwang I. Control of early seedling development by BES1/TPL/HDA19-mediated epigenetic regulation of ABI3. Nat Commun 2014; 5:4138. [PMID: 24938150 DOI: 10.1038/ncomms5138] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/16/2014] [Indexed: 12/23/2022] Open
Abstract
Seed germination and young seedling establishment should be tightly regulated to maximize plant survival and thereby enable successful propagation. Plants have evolved developmental signalling networks to integrate environmental cues for proper control of these critical processes, in which brassinosteroids are known to attenuate ABA-mediated arrest of early seedling development; however, the underlying regulatory mechanism remains elusive. Here we reveal that a BES1/TPL/HDA19 repressor complex mediates the inhibitory action of brassinosteroids on ABA responses during early seedling development. BR-activated BES1 forms a transcriptional repressor complex with TPL-HDA19, which directly facilitates the histone deacetylation of ABI3 chromatin. This event leads to the transcriptional repression of ABI3 and consequently ABI5, major ABA signalling regulators in early seedling development. Our data reveal that the BR-activated BES1-TPL-HDA19 repressor complex controls epigenetic silencing of ABI3 and thereby suppresses the ABA signalling output during early seedling development.
Collapse
Affiliation(s)
- Hojin Ryu
- 1] Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784, Korea [2] Division of Agricultural Microbiology, National Academy of Agricultural Science, RDA, Suwon 441-707, South Korea
| | - Hyunwoo Cho
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Wonsil Bae
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Ildoo Hwang
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
9
|
Gao DY, Xu ZS, He Y, Sun YW, Ma YZ, Xia LQ. Functional analyses of an E3 ligase gene AIP2 from wheat in Arabidopsis revealed its roles in seed germination and pre-harvest sprouting. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:480-91. [PMID: 24279988 DOI: 10.1111/jipb.12135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 11/16/2013] [Indexed: 05/10/2023]
Abstract
Pre-harvest sprouting (PHS) seriously affects wheat yield and quality of the grain. ABI3 is a key factor in the activation of seed development and repression of germination in Arabidopsis. An ABI3-interacting protein (AIP2) could polyubiquitinate ABI3, impair seed dormancy and promote seed germination in Arabidopsis. In this study, two wheat AIP2 genes, TaAIP2A and TaAIP2B, were isolated. Subcellular localization assay and yeast two-hybrid analysis revealed that TaAIP2A and TaAIP2B may function through interaction with wheat Viviporous-1 (TaVp1). The transcripts TaAIP2A and TaAIP2B were more abundant in wheat PHS susceptible cultivars than that of resistant ones, and decreased gradually following seed development. Expression of TaAIP2A and TaAIP2B in Arabidopsis aip2-1 mutant lines resulted in earlier flowering, promotion of seed germination, and reduced ABA sensitivity, respectively, somehow mimicking the phenotype of the wild type, with TaAIP2B having a stronger role in these aspects. Furthermore, the expression of upstream genes ABI1 and ABI2 were upregulated, whereas that of downstream genes ABI3 and ABI5 were downregulated in both TaAIP2A and TaAIP2B complemented lines upon ABA treatment. These results suggested that wheat AIP2s could negatively regulate the ABA signaling pathway and play important roles in seed germination, and thus wheat PHS resistance finally.
Collapse
Affiliation(s)
- Dong-Yao Gao
- Institute of Crop Sciences/The National Key Facility for Crop Gene Resources and Genetic Improvement, the Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China; Agricultural and Sideline Base, Unit 65426 of the People's Liberation Army, Hegang, 154107, China
| | | | | | | | | | | |
Collapse
|
10
|
von Arnim AG, Jia Q, Vaughn JN. Regulation of plant translation by upstream open reading frames. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 214:1-12. [PMID: 24268158 DOI: 10.1016/j.plantsci.2013.09.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/08/2013] [Accepted: 09/10/2013] [Indexed: 05/08/2023]
Abstract
We review the evidence that upstream open reading frames (uORFs) function as RNA sequence elements for post-transcriptional control of gene expression, specifically translation. uORFs are highly abundant in the genomes of angiosperms. Their negative effect on translation is often attenuated by ribosomal translation reinitiation, a process whose molecular biochemistry is still being investigated. Certain uORFs render translation responsive to small molecules, thus offering a path for metabolic control of gene expression in evolution and synthetic biology. In some cases, uORFs form modular logic gates in signal transduction. uORFs thus provide eukaryotes with a functionality analogous to, or comparable to, riboswitches and attenuators in prokaryotes. uORFs exist in many genes regulating development and point toward translational control of development. While many uORFs appear to be poorly conserved, and the number of genes with conserved-peptide uORFs is modest, many mRNAs have a conserved pattern of uORFs. Evolutionarily, the gain and loss of uORFs may be a widespread mechanism that diversifies gene expression patterns. Last but not least, this review includes a dedicated uORF database for Arabidopsis.
Collapse
Affiliation(s)
- Albrecht G von Arnim
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996-0840, USA; Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996-0840, USA.
| | | | | |
Collapse
|
11
|
Kim Y, Lee G, Jeon E, Sohn EJ, Lee Y, Kang H, Lee DW, Kim DH, Hwang I. The immediate upstream region of the 5'-UTR from the AUG start codon has a pronounced effect on the translational efficiency in Arabidopsis thaliana. Nucleic Acids Res 2013; 42:485-98. [PMID: 24084084 PMCID: PMC3874180 DOI: 10.1093/nar/gkt864] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The nucleotide sequence around the translational initiation site is an important cis-acting element for post-transcriptional regulation. However, it has not been fully understood how the sequence context at the 5′-untranslated region (5′-UTR) affects the translational efficiency of individual mRNAs. In this study, we provide evidence that the 5′-UTRs of Arabidopsis genes showing a great difference in the nucleotide sequence vary greatly in translational efficiency with more than a 200-fold difference. Of the four types of nucleotides, the A residue was the most favourable nucleotide from positions −1 to −21 of the 5′-UTRs in Arabidopsis genes. In particular, the A residue in the 5′-UTR from positions −1 to −5 was required for a high-level translational efficiency. In contrast, the T residue in the 5′-UTR from positions −1 to −5 was the least favourable nucleotide in translational efficiency. Furthermore, the effect of the sequence context in the −1 to −21 region of the 5′-UTR was conserved in different plant species. Based on these observations, we propose that the sequence context immediately upstream of the AUG initiation codon plays a crucial role in determining the translational efficiency of plant genes.
Collapse
Affiliation(s)
- Younghyun Kim
- Department of Life Sciences, School of Bioscience and Bioengineering and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jiang Y, Peng D, Bai LP, Ma H, Chen LJ, Zhao MH, Xu ZJ, Guo ZF. Molecular switch for cold acclimation — anatomy of the cold-inducible promoter in plants. BIOCHEMISTRY (MOSCOW) 2013; 78:342-54. [DOI: 10.1134/s0006297913040032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Zeng Y, Zhao T, Kermode AR. A conifer ABI3-interacting protein plays important roles during key transitions of the plant life cycle. PLANT PHYSIOLOGY 2013; 161:179-95. [PMID: 23144188 PMCID: PMC3532250 DOI: 10.1104/pp.112.206946] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
ABI3 (for ABSCISIC ACID INSENSITIVE3), a transcription factor of the abscisic acid signal transduction pathway, plays a major role during seed development, dormancy inception, and dormancy maintenance. This protein appears to also function in meristematic and vegetative plant tissues and under certain stress conditions. We have isolated the ABI3 gene ortholog (CnABI3) from yellow cedar (Callitropsis nootkatensis) and found that it was functionally similar to other ABI3 genes of angiosperms. Here, we report that using a yeast (Saccharomyces cerevisiae) two-hybrid approach, we have identified another protein of yellow cedar (CnAIP2; for CnABI3 INTERACTING PROTEIN2) that physically interacts with CnABI3. Functional analyses revealed that CnAIP2 plays important roles during key transitions in the plant life cycle: (1) CnAIP2 impaired seed development and reduced seed dormancy; (2) CnAIP2 promoted root development, particularly the initiation of lateral roots, and the CnAIP2 gene promoter was exquisitely auxin sensitive; and (3) CnAIP2 promoted the transition from vegetative growth to reproductive initiation (i.e. flowering). The nature of the effects of CnAIP2 on these processes and other evidence place CnAIP2 in the category of a "global" regulator, whose actions are antagonistic to those of ABI3.
Collapse
|
14
|
Horiguchi G, Van Lijsebettens M, Candela H, Micol JL, Tsukaya H. Ribosomes and translation in plant developmental control. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 191-192:24-34. [PMID: 22682562 DOI: 10.1016/j.plantsci.2012.04.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 05/06/2023]
Abstract
Ribosomes play a basic housekeeping role in global translation. However, a number of ribosomal-protein-defective mutants show common and rare developmental phenotypes including growth defects, changes in leaf development, and auxin-related phenotypes. This suggests that translational regulation may be occurring during development. In addition, proteomic and bioinformatic analyses have demonstrated a high heterogeneity in ribosome composition. Although this might be a sign of unequal roles of individual ribosomal proteins, it does not explain every ribosomal-protein-defective phenotype. Moreover, comprehensive interpretations concerning the relationship between ribosomal-protein-defective phenotypes and molecular changes in ribosome status are lacking. In this review, we address these phenotypes based on three models, ribosome insufficiency, heterogeneity, and aberrancy, to consider how ribosomes play developmental roles. We propose that the three models are not mutually exclusive, and ribosomal-protein-defective phenotypes can be explained with one or more of these models. The three models with reference to genetic, biochemical, and bioinformatic knowledge will serve as a foundation for future studies of translational regulation.
Collapse
Affiliation(s)
- Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan.
| | | | | | | | | |
Collapse
|
15
|
Mönke G, Seifert M, Keilwagen J, Mohr M, Grosse I, Hähnel U, Junker A, Weisshaar B, Conrad U, Bäumlein H, Altschmied L. Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon. Nucleic Acids Res 2012; 40:8240-54. [PMID: 22730287 PMCID: PMC3458547 DOI: 10.1093/nar/gks594] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The plant-specific, B3 domain-containing transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3) is an essential component of the regulatory network controlling the development and maturation of the Arabidopsis thaliana seed. Genome-wide chromatin immunoprecipitation (ChIP-chip), transcriptome analysis, quantitative reverse transcriptase–polymerase chain reaction and a transient promoter activation assay have been combined to identify a set of 98 ABI3 target genes. Most of these presumptive ABI3 targets require the presence of abscisic acid for their activation and are specifically expressed during seed maturation. ABI3 target promoters are enriched for G-box-like and RY-like elements. The general occurrence of these cis motifs in non-ABI3 target promoters suggests the existence of as yet unidentified regulatory signals, some of which may be associated with epigenetic control. Several members of the ABI3 regulon are also regulated by other transcription factors, including the seed-specific, B3 domain-containing FUS3 and LEC2. The data strengthen and extend the notion that ABI3 is essential for the protection of embryonic structures from desiccation and raise pertinent questions regarding the specificity of promoter recognition.
Collapse
Affiliation(s)
- Gudrun Mönke
- Department of Molecular Genetics, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK) Corrensstr. 3, D-06466 Gatersleben, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kamaladini H, Abdullah SNA, Aziz MA. Metal inducible activity of the oil palm metallothionein-like gene promoter (MT3-A) in prokaryotes. J Biosci Bioeng 2011; 111:217-25. [DOI: 10.1016/j.jbiosc.2010.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 09/16/2010] [Accepted: 09/21/2010] [Indexed: 10/18/2022]
|
17
|
Picot E, Krusche P, Tiskin A, Carré I, Ott S. Evolutionary analysis of regulatory sequences (EARS) in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:165-176. [PMID: 20659275 DOI: 10.1111/j.1365-313x.2010.04314.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Identification of regulatory sequences within non-coding regions of DNA is an essential step towards elucidation of gene networks. This approach constitutes a major challenge, however, as only a very small fraction of non-coding DNA is thought to contribute to gene regulation. The mapping of regulatory regions traditionally involves the laborious construction of promoter deletion series which are then fused to reporter genes and assayed in transgenic organisms. Bioinformatic methods can be used to scan sequences for matches for known regulatory motifs, however these methods are currently hampered by the relatively small amount of such motifs and by a high false-discovery rate. Here, we demonstrate a robust and highly sensitive, in silico method to identify evolutionarily conserved regions within non-coding DNA. Sequence conservation within these regions is taken as evidence for evolutionary pressure against mutations, which is suggestive of functional importance. We test this method on a small set of well characterised promoters, and show that it successfully identifies known regulatory regions. We further show that these evolutionarily conserved sequences contain clusters of transcription binding sites, often described as regulatory modules. A version of the tool optimised for the analysis of plant promoters is available online at http://wsbc.warwick.ac.uk/ears/main.php.
Collapse
Affiliation(s)
- Emma Picot
- Systems Biology Doctoral Training Centre, University of Warwick, Coventry CV47AL, UK
| | | | | | | | | |
Collapse
|
18
|
Park SH, Yi N, Kim YS, Jeong MH, Bang SW, Choi YD, Kim JK. Analysis of five novel putative constitutive gene promoters in transgenic rice plants. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2459-67. [PMID: 20363869 PMCID: PMC2877896 DOI: 10.1093/jxb/erq076] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 02/27/2010] [Accepted: 03/09/2010] [Indexed: 05/19/2023]
Abstract
Novel constitutive gene promoters are essential components of crop biotechnology. Our analysis of five such promoters, APX, SCP1, PGD1, R1G1B, and EIF5, in transgenic rice plants is reported here. The five promoter regions were linked to the gfp reporter gene and transformed into rice. Using fluorescent microscopy and q-RT-PCR, promoter activities were analysed in comparison with OsCc1, Act1, and ZmUbi1, previously characterized as strong constitutive promoters. The APX and PGD1 promoters direct high levels of gene expression in all tissues and stages, producing GFP at levels of up to 1.3% of the total soluble protein. PGD1 is particularly active in flowers and mature roots. The R1G1B is active in the whole grain including the embryo, endosperm, and aleurone layer, and thus represents a constitutive promoter with activity in whole seeds that has not been described previously. The ZmUbi1 and R1G1B promoters are markedly less active in young roots and mature leaves whilst the APX, PGD1, OsCc1, and Act1 promoters are highly active in both vegetative and reproductive tissues. Overall, our results demonstrate that APX, PGD1, and R1G1B are novel gene promoters that are highly active at all stages of plant growth with distinct levels of activity.
Collapse
Affiliation(s)
- Su-Hyun Park
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449-728, Korea
| | - Nari Yi
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449-728, Korea
- School of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
| | - Youn Shic Kim
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449-728, Korea
| | - Min-Ho Jeong
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449-728, Korea
| | - Seung-Woon Bang
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449-728, Korea
| | - Yang Do Choi
- School of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
| | - Ju-Kon Kim
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449-728, Korea
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
19
|
Olukolu BA, Trainin T, Fan S, Kole C, Bielenberg DG, Reighard GL, Abbott AG, Holland D. Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot (Prunus armeniaca L.). Genome 2010; 52:819-28. [PMID: 19935906 DOI: 10.1139/g09-050] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Commercial production of apricot is severely affected by sensitivity to climatic conditions, an adaptive feature essential for cycling between vegetative or floral growth and dormancy. Yield losses are due to late winter or early spring frosts and inhibited vegetative or floral growth caused by unfulfilled chilling requirement (CR). Two apricot cultivars, Perfection and A.1740, were selected for high and low CR, respectively, to develop a mapping population of F1 individuals using a two-way pseudo-testcross mapping strategy. High-density male and female maps were constructed using, respectively, 655 and 592 markers (SSR and AFLP) spanning 550.6 and 454.9 cM with average marker intervals of 0.84 and 0.77 cM. CR was evaluated in two seasons on potted trees forced to break buds after cold treatments ranging from 100 to 900 h. A total of 12 putative CR quantitative trait loci (QTLs) were detected on six linkage groups using composite interval mapping and a simultaneous multiple regression fit. QTL main effects of additive and additive x additive interactions accounted for 58.5% +/- 6.7% and 66.1% +/- 5.8% of the total phenotypic variance in the Perfection and A.1740 maps, respectively. We report two apricot high-density maps and QTLs corresponding to map positions of differentially expressed transcripts and suggested candidate genes controlling CR.
Collapse
Affiliation(s)
- Bode A Olukolu
- Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Saul H, Elharrar E, Gaash R, Eliaz D, Valenci M, Akua T, Avramov M, Frankel N, Berezin I, Gottlieb D, Elazar M, David-Assael O, Tcherkas V, Mizrachi K, Shaul O. The upstream open reading frame of the Arabidopsis AtMHX gene has a strong impact on transcript accumulation through the nonsense-mediated mRNA decay pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:1031-42. [PMID: 19754518 DOI: 10.1111/j.1365-313x.2009.04021.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Approximately 20% of plant genes possess upstream open-reading frames (uORFs). The effect of uORFs on gene expression has mainly been studied at the translational level. Very little is known about the impact of plant uORFs on transcript content through the nonsense-mediated mRNA decay (NMD) pathway, which degrades transcripts bearing premature termination codons (PTCs). Here we examine the impact of the uORF of the Arabidopsis AtMHX gene on transcript accumulation. The suggestion that this uORF exposes transcripts containing it to NMD is supported by (i) the increase in transcript levels upon eliminating the uORF from constructs containing it, (ii) experiments with a modified uORF-peptide, which excluded peptide-specific degradation mechanisms, (iii) the increase in levels of the native AtMHX transcript upon treatment with cycloheximide, which inhibits translation and blocks NMD, and (iv) the sensitivity of transcripts containing the uORF of AtMHX to the presence of introns. We also showed that introns can increase NMD efficiency not only in transcripts having relatively short 3' untranslated regions (UTRs), but also in uORF-containing transcripts. AtMHX transcript levels were almost unaltered in mutants of the NMD factors UPF3 and UPF1. Possible reasons, including the existence of a NMD-compensatory mechanism, are discussed. Interestingly, the levels of UPF3 transcript were higher in upf1 mutants, suggesting a compensatory mechanism that links weak function of the NMD machinery to increased expression of UPF3. Our findings highlight that uORFs, which are abundant in plants, can not only inhibit translation but also strongly affect transcript accumulation.
Collapse
Affiliation(s)
- Helen Saul
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yin T, Wu H, Zhang S, Liu J, Lu H, Zhang L, Xu Y, Chen D. Two negative cis-regulatory regions involved in fruit-specific promoter activity from watermelon (Citrullus vulgaris S.). JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:169-85. [PMID: 19073962 PMCID: PMC3071764 DOI: 10.1093/jxb/ern273] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 07/29/2008] [Accepted: 10/09/2008] [Indexed: 05/19/2023]
Abstract
A 1.8 kb 5'-flanking region of the large subunit of ADP-glucose pyrophosphorylase, isolated from watermelon (Citrullus vulgaris S.), has fruit-specific promoter activity in transgenic tomato plants. Two negative regulatory regions, from -986 to -959 and from -472 to -424, were identified in this promoter region by fine deletion analyses. Removal of both regions led to constitutive expression in epidermal cells. Gain-of-function experiments showed that these two regions were sufficient to inhibit RFP (red fluorescent protein) expression in transformed epidermal cells when fused to the cauliflower mosaic virus (CaMV) 35S minimal promoter. Gel mobility shift experiments demonstrated the presence of leaf nuclear factors that interact with these two elements. A TCCAAAA motif was identified in these two regions, as well as one in the reverse orientation, which was confirmed to be a novel specific cis-element. A quantitative beta-glucuronidase (GUS) activity assay of stable transgenic tomato plants showed that the activities of chimeric promoters harbouring only one of the two cis-elements, or both, were approximately 10-fold higher in fruits than in leaves. These data confirm that the TCCAAAA motif functions as a fruit-specific element by inhibiting gene expression in leaves.
Collapse
Affiliation(s)
- Tao Yin
- College of Agriculture and Biotechnology, Zhejiang University, PR China
| | - Hanying Wu
- National Engineering Research Center for Vegetable, PR China
| | - Shanglong Zhang
- College of Agriculture and Biotechnology, Zhejiang University, PR China
- To whom correspondence should be addressed. E-mail: ,
| | - Jingmei Liu
- National Engineering Research Center for Vegetable, PR China
- To whom correspondence should be addressed. E-mail: ,
| | - Hongyu Lu
- Department of Breeding and Genetics, China Pharmaceutical University, PR China
| | - Lingxiao Zhang
- Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
| | - Yong Xu
- National Engineering Research Center for Vegetable, PR China
| | - Daming Chen
- College of Agriculture and Biotechnology, Zhejiang University, PR China
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Tran MK, Schultz CJ, Baumann U. Conserved upstream open reading frames in higher plants. BMC Genomics 2008; 9:361. [PMID: 18667093 PMCID: PMC2527020 DOI: 10.1186/1471-2164-9-361] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 07/31/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Upstream open reading frames (uORFs) can down-regulate the translation of the main open reading frame (mORF) through two broad mechanisms: ribosomal stalling and reducing reinitiation efficiency. In distantly related plants, such as rice and Arabidopsis, it has been found that conserved uORFs are rare in these transcriptomes with approximately 100 loci. It is unclear how prevalent conserved uORFs are in closely related plants. RESULTS We used a homology-based approach to identify conserved uORFs in five cereals (monocots) that could potentially regulate translation. Our approach used a modified reciprocal best hit method to identify putative orthologous sequences that were then analysed by a comparative R-nomics program called uORFSCAN to find conserved uORFs. CONCLUSION This research identified new genes that may be controlled at the level of translation by conserved uORFs. We report that conserved uORFs are rare (<150 loci contain them) in cereal transcriptomes, are generally short (less than 100 nt), highly conserved (50% median amino acid sequence similarity), position independent in their 5'-UTRs, and their start codon context and the usage of rare codons for translation does not appear to be important.
Collapse
Affiliation(s)
- Michael K Tran
- Australian Centre for Plant Functional Genomics PMB 1 Glen Osmond SA 5064, Australia.
| | | | | |
Collapse
|
23
|
García-Estrada C, Pérez-Pertejo Y, Ordóñez D, Balaña-Fouce R, Reguera RM. Characterization of the 5' region of the Leishmania infantum LORIEN/MAT2 gene cluster and role of LORIEN flanking regions in post-transcriptional regulation. Biochimie 2008; 90:1325-36. [PMID: 18420039 DOI: 10.1016/j.biochi.2008.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 03/18/2008] [Indexed: 11/19/2022]
Abstract
LORIEN (encoding a protein that contains a SP-RING/Miz zinc-finger motif present in a group of proteins involved in the Small Ubiquitin-related Modifier -SUMO- conjugation pathway) and MAT2 (encoding the methionine adenosyltransferase -MAT-) genes are arranged as two alternating copies in a head-to-tail configuration, with the LORIEN gene as the first copy of the cluster. The 5880bp preceding the first LORIEN gene copy were compared to the same region of L. major, showing a 93% identity between them. Bioinformatic analysis of this region predicted the presence of a 747-bp ORF encoding a hypothetical protein of 248 amino acids. Transcription of this ORF was confirmed by run-on assays and RT-PCR. Expression of the LORIEN gene was tested in both the promastigote and amastigote stages. Transcription arrest evidenced that LORIEN mRNA stability was very similar in both stages of the parasite life cycle. Protein synthesis inhibition by cycloheximide led to an increase in the steady-state levels of LORIEN transcripts only during the promastigote stage, pointing out to the existence of different stage-dependent mechanisms operating on the post-transcriptional regulation of this gene. The role of the LORIEN untranslated regions (5'UTR and 3'UTR) in post-transcriptional regulation was analysed using the luciferase (luc) reporter gene. Results evidenced that the 5'UTR was responsible for a low reporter gene expression, whereas the intergenic region (IR) between LORIEN and MAT2 genes provided high luc levels. However, the 3'UTR seemed to lack regulatory elements. Basing on these results, a model of regulation for the LORIEN gene is proposed.
Collapse
Affiliation(s)
- Carlos García-Estrada
- Departamento de Farmacología y Toxicología (INTOXCAL), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | | | | | | | | |
Collapse
|
24
|
Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frei dit Frey N, Leung J. An update on abscisic acid signaling in plants and more... MOLECULAR PLANT 2008; 1:198-217. [PMID: 19825533 DOI: 10.1093/mp/ssm022] [Citation(s) in RCA: 247] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The mode of abscisic acid (ABA) action, and its relations to drought adaptive responses in particular, has been a captivating area of plant hormone research for much over a decade. The hormone triggers stomatal closure to limit water loss through transpiration, as well as mobilizes a battery of genes that presumably serve to protect the cells from the ensuing oxidative damage in prolonged stress. The signaling network orchestrating these various responses is, however, highly complex. This review summarizes several significant advances made within the last few years. The biosynthetic pathway of the hormone is now almost completely elucidated, with the latest identification of the ABA4 gene encoding a neoxanthin synthase, which seems essential for de novo ABA biosynthesis during water stress. This leads to the interesting question on how ABA is then delivered to perception sites. In this respect, regulated transport has attracted renewed focus by the unexpected finding of a shoot-to-root translocation of ABA during drought response, and at the cellular level, by the identification of a beta-galactosidase that releases biologically active ABA from inactive ABA-glucose ester. Surprising candidate ABA receptors were also identified in the form of the Flowering Time Control Protein A (FCA) and the Chloroplastic Magnesium Protoporphyrin-IX Chelatase H subunit (CHLH) in chloroplast-nucleus communication, both of which have been shown to bind ABA in vitro. On the other hand, the protein(s) corresponding to the physiologically detectable cell-surface ABA receptor(s) is (are) still not known with certainty. Genetic and physiological studies based on the guard cell have reinforced the central importance of reversible phosphorylation in modulating rapid ABA responses. Sucrose Non-Fermenting Related Kinases (SnRK), Calcium-Dependent Protein Kinases (CDPK), Protein Phosphatases (PP) of the 2C and 2A classes figure as prominent regulators in this single-cell model. Identifying their direct in vivo targets of regulation, which may include H(+)-ATPases, ion channels, 14-3-3 proteins and transcription factors, will logically be the next major challenge. Emerging evidence also implicates ABA as a repressor of innate immune response, as hinted by the highly similar roster of genes elicited by certain pathogens and ABA. Undoubtedly, the most astonishing revelation is that ABA is not restricted to plants and mosses, but overwhelming evidence now indicates that it also exists in metazoans ranging from the most primitive to the most advance on the evolution scale (sponges to humans). In metazoans, ABA has healing properties, and plays protective roles against both environmental and pathogen related injuries. These cross-kingdom comparisons have shed light on the surprising ancient origin of ABA and its attendant mechanisms of signal transduction.
Collapse
Affiliation(s)
- Aleksandra Wasilewska
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, UPR 2355, 1 Avenue de la Terrasse, Bât. 23, 91190 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Gutierrez L, Van Wuytswinkel O, Castelain M, Bellini C. Combined networks regulating seed maturation. TRENDS IN PLANT SCIENCE 2007; 12:294-300. [PMID: 17588801 DOI: 10.1016/j.tplants.2007.06.003] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 03/22/2007] [Accepted: 06/06/2007] [Indexed: 05/16/2023]
Abstract
Seed maturation is an important phase of seed development during which embryo growth ceases, storage products accumulate, the protective tegument differentiates and tolerance to desiccation develops, leading to seed dormancy. The spatial and temporal regulation of all these processes requires the concerted action of several signaling pathways that integrate information from genetic programs, and both hormonal and metabolic signals. Recent genetic studies have identified some of the interactions that occur between four master regulators in Arabidopsis, increasing our knowledge of the control of the transcriptional program involved in seed maturation. Moreover, several recent breakthroughs have led to a better understanding of the role of abscisic acid signal modulation and the importance of metabolic regulation in the maternal to filial switch leading to the maturation phase.
Collapse
Affiliation(s)
- Laurent Gutierrez
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences SLU, 901 83 Umeå, Sweden.
| | | | | | | |
Collapse
|
26
|
Ng DWK, Wang T, Chandrasekharan MB, Aramayo R, Kertbundit S, Hall TC. Plant SET domain-containing proteins: structure, function and regulation. ACTA ACUST UNITED AC 2007; 1769:316-29. [PMID: 17512990 PMCID: PMC2794661 DOI: 10.1016/j.bbaexp.2007.04.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 04/03/2007] [Accepted: 04/04/2007] [Indexed: 01/01/2023]
Abstract
Modification of the histone proteins that form the core around which chromosomal DNA is looped has profound epigenetic effects on the accessibility of the associated DNA for transcription, replication and repair. The SET domain is now recognized as generally having methyltransferase activity targeted to specific lysine residues of histone H3 or H4. There is considerable sequence conservation within the SET domain and within its flanking regions. Previous reviews have shown that SET proteins from Arabidopsis and maize fall into five classes according to their sequence and domain architectures. These classes generally reflect specificity for a particular substrate. SET proteins from rice were found to fall into similar groupings, strengthening the merit of the approach taken. Two additional classes, VI and VII, were established that include proteins with truncated/interrupted SET domains. Diverse mechanisms are involved in shaping the function and regulation of SET proteins. These include protein-protein interactions through both intra- and inter-molecular associations that are important in plant developmental processes, such as flowering time control and embryogenesis. Alternative splicing that can result in the generation of two to several different transcript isoforms is now known to be widespread. An exciting and tantalizing question is whether, or how, this alternative splicing affects gene function. For example, it is conceivable that one isoform may debilitate methyltransferase function whereas the other may enhance it, providing an opportunity for differential regulation. The review concludes with the speculation that modulation of SET protein function is mediated by antisense or sense-antisense RNA.
Collapse
Affiliation(s)
| | | | | | | | | | - Timothy C. Hall
- Corresponding author. Tel: 1-979-845-7728; fax: 1-979-862-4098,
| |
Collapse
|
27
|
Cao X, Costa LM, Biderre-Petit C, Kbhaya B, Dey N, Perez P, McCarty DR, Gutierrez-Marcos JF, Becraft PW. Abscisic acid and stress signals induce Viviparous1 expression in seed and vegetative tissues of maize. PLANT PHYSIOLOGY 2007; 143:720-31. [PMID: 17208960 PMCID: PMC1803740 DOI: 10.1104/pp.106.091454] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Viviparous1 (Vp1) encodes a B3 domain-containing transcription factor that is a key regulator of seed maturation in maize (Zea mays). However, the mechanisms of Vp1 regulation are not well understood. To examine physiological factors that may regulate Vp1 expression, transcript levels were monitored in maturing embryos placed in culture under different conditions. Expression of Vp1 decreased after culture in hormone-free medium, but was induced by salinity or osmotic stress. Application of exogenous abscisic acid (ABA) also induced transcript levels within 1 h in a dose-dependent manner. The Vp1 promoter fused to beta-glucuronidase or green fluorescent protein reproduced the endogenous Vp1 expression patterns in transgenic maize plants and also revealed previously unknown expression domains of Vp1. The Vp1 promoter is active in the embryo and aleurone cells of developing seeds and, upon drought stress, was also found in phloem cells of vegetative tissues, including cobs, leaves, and stems. Sequence analysis of the Vp1 promoter identified a potential ABA-responsive complex, consisting of an ACGT-containing ABA response element (ABRE) and a coupling element 1-like motif. Electrophoretic mobility shift assay confirmed that the ABRE and putative coupling element 1 components specifically bound proteins in embryo nuclear protein extracts. Treatment of embryos in hormone-free Murashige and Skoog medium blocked the ABRE-protein interaction, whereas exogenous ABA or mannitol treatment restored this interaction. Our data support a model for a VP1-dependent positive feedback mechanism regulating Vp1 expression during seed maturation.
Collapse
Affiliation(s)
- Xueyuan Cao
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chan J, Peter Pauls K. Brassica napus Rop GTPases and their expression in microspore cultures. PLANTA 2007; 225:469-84. [PMID: 16896789 DOI: 10.1007/s00425-006-0362-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 07/13/2006] [Indexed: 05/08/2023]
Abstract
Androgenesis in plants involves a shift in development that causes cultured microspore cells to form embryos rather than continue to develop pollen. In Brassica napus microspore culture a mild heat stress is used to switch on embryo development. An early hallmark of embryogenesis in this system is a symmetrical division of the nucleus instead of the asymmetric division that occurs during pollen formation. ROP GTPases act as molecular switches in a variety of developmental processes; therefore, the current study was initiated to examine whether they might be involved in androgenesis. Five distinct Rop genes with nucleic acid similarities ranging from 82 to 93% to Arabidopsis Rop1 were isolated from B. napus cv Topas. A Southern blot hybridization with a BnRop sequence probe suggested that there are 11-15 ROP gene family members in B. napus. RT-PCR reactions with PCR primers specific to BnRop5, BnRop6, BnRop9 and BnRop10 showed that expression of the BnRop5 was restricted to pollen but the others were detected in leaf, root, stem and pollen tissue. Pollen-like cells obtained from 3-day-old cultures by flow cytometric sorting had BnRop5 transcript levels that were 2.8 times higher than in flow sorted embryogenic microspores. Conversely, the BnRop9 transcript levels were 2.5-fold higher in the embryogenic cells than in the pollen-like cells. The potential involvement of specific ROPs in early stage microspore culture responses is discussed.
Collapse
Affiliation(s)
- John Chan
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
29
|
Harris LJ, Saparno A, Johnston A, Prisic S, Xu M, Allard S, Kathiresan A, Ouellet T, Peters RJ. The maize An2 gene is induced by Fusarium attack and encodes an ent-copalyl diphosphate synthase. PLANT MOLECULAR BIOLOGY 2005; 59:881-94. [PMID: 16307364 DOI: 10.1007/s11103-005-1674-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Accepted: 08/01/2005] [Indexed: 05/05/2023]
Abstract
Using the technique of differential display, a maize transcript was identified whose silk tissue expression is induced in the presence of the ear rot pathogen Fusarium graminearum. The 3445 nt transcript includes a 727 nt 5' untranslated leader with the potential for extensive secondary structure and represents the maize gene An2. An2 encodes a copalyl diphosphate synthase (CPS)-like protein with 60% amino acid sequence identity with the maize An1 gene product involved in gibberellin (GA) biosynthesis. Recombinant expression and functional analysis demonstrated that both AN1 and AN2 are ent-copalyl diphosphate (ent-CPP) synthases (ent-CPS). Notably, the presence of an additional ent-CPS gene is consistent with previous reports that maize GA biosynthesis can proceed in the absence of An1. In addition, northern blot analysis showed that An2 transcript levels were strongly up-regulated by Fusarium attack, with an increase in silk, husk and ear tip tissues as early as 6 h after inoculation of silk channels with spore suspensions of various Fusarium sp. Gene expression of a third maize CPS-like gene, Cpsl1, is not affected by Fusarium infection. The Fusarium-inducible nature of An2 is also consistent with a previous report that cell-free extracts from maize seedlings produce ent-CPP derived diterpenes in response to Fusarium infection. However, it is not known whether An2 is involved in defense-related secondary metabolism in addition to GA synthesis.
Collapse
Affiliation(s)
- L J Harris
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Building #21, Central Experimental Farm, K1A 0C6, Ottawa, Ont, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhang X, Garreton V, Chua NH. The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev 2005; 19:1532-43. [PMID: 15998807 PMCID: PMC1172060 DOI: 10.1101/gad.1318705] [Citation(s) in RCA: 297] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Accepted: 05/16/2005] [Indexed: 11/25/2022]
Abstract
The phytohormone abscisic acid (ABA) mediates many complex aspects of plant development including seed maturation, dormancy, and germination as well as root growth. The B3-domain transcription factor abscisic acid-insensitive 3 (ABI3) is a central regulator in ABA signaling, but little is known of how this factor is regulated. Here, we show that ABI3 is an unstable protein and that an ABI3-interacting protein (AIP2), which contains a RING motif, can polyubiquitinate ABI3 in vitro. The AIP2 E3 ligase activity is abolished by mutations (C230S; C231S) in the RING motif and the AIP2 (C/S) mutant functions in a dominant-negative manner. AIP2 has a stronger binding affinity for the B2 + B3 domain of ABI3 than the A1 + B1 domain, but only ubiquitinates the latter. In double-transgenic plants, induced AIP2 expression leads to a decrease in ABI3 protein levels. In contrast, ABI3 levels are elevated upon induced expression of the AIP2 RING mutant, which interferes with the endogenous AIP2 E3 activity. An aip2-1-null mutant shows higher ABI3 protein levels compared with wild type after seed stratification, and is hypersensitive to ABA, mimicking the ABI3-overexpression phenotype, whereas AIP2-overexpression plants contain lower levels of ABI3 protein than wild type and are more resistant to ABA, phenocopying abi3. Our results indicate that AIP2 negatively regulates ABA signaling by targeting ABI3 for post-translational destruction.
Collapse
Affiliation(s)
- Xiuren Zhang
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|