1
|
Feinberg A, Selin NE, Braban CF, Chang KL, Custódio D, Jaffe DA, Kyllönen K, Landis MS, Leeson SR, Luke W, Molepo KM, Murovec M, Nerentorp Mastromonaco MG, Aspmo Pfaffhuber K, Rüdiger J, Sheu GR, St. Louis VL. Unexpected anthropogenic emission decreases explain recent atmospheric mercury concentration declines. Proc Natl Acad Sci U S A 2024; 121:e2401950121. [PMID: 39378086 PMCID: PMC11494326 DOI: 10.1073/pnas.2401950121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
Anthropogenic activities emit ~2,000 Mg y-1 of the toxic pollutant mercury (Hg) into the atmosphere, leading to long-range transport and deposition to remote ecosystems. Global anthropogenic emission inventories report increases in Northern Hemispheric (NH) Hg emissions during the last three decades, in contradiction with the observed decline in atmospheric Hg concentrations at NH measurement stations. Many factors can obscure the link between anthropogenic emissions and atmospheric Hg concentrations, including trends in the reemissions of previously released anthropogenic ("legacy") Hg, atmospheric sink variability, and spatial heterogeneity of monitoring data. Here, we assess the observed trends in gaseous elemental mercury (Hg0) in the NH and apply biogeochemical box modeling and chemical transport modeling to understand the trend drivers. Using linear mixed effects modeling of observational data from 51 stations, we find negative Hg0 trends in most NH regions, with an overall trend for 2005 to 2020 of -0.011 ± 0.006 ng m-3 y-1 (±2 SD). In contrast to existing emission inventories, our modeling analysis suggests that annual NH anthropogenic emissions must have declined by at least 140 Mg between the years 2005 and 2020 to be consistent with observed trends. Faster declines in 95th percentile Hg0 values than median values in Europe, North America, and East Asian measurement stations corroborate that the likely cause is a decline in nearby anthropogenic emissions rather than background legacy reemissions. Our results are relevant for evaluating the effectiveness of the Minamata Convention on Mercury, demonstrating that existing emission inventories are incompatible with the observed Hg0 declines.
Collapse
Affiliation(s)
- Aryeh Feinberg
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Noelle E. Selin
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Christine F. Braban
- United Kingdom Centre for Ecology and Hydrology, Penicuik, MidlothianEH26 0QB, United Kingdom
| | - Kai-Lan Chang
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO80309
- National Oceanic and Atmospheric Administration Chemical Sciences Laboratory, Boulder, CO80305
| | | | - Daniel A. Jaffe
- School of Science, Technology, Engineering & Mathematics, Physical Sciences Division, University of Washington Bothell, Bothell, WA98011
- Department of Atmospheric Sciences, University of Washington Seattle, Seattle, WA98195
| | - Katriina Kyllönen
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki00560, Finland
| | - Matthew S. Landis
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC27711
| | - Sarah R. Leeson
- United Kingdom Centre for Ecology and Hydrology, Penicuik, MidlothianEH26 0QB, United Kingdom
| | - Winston Luke
- National Oceanic and Atmospheric Administration/Air Resources Laboratory, College Park, MD20740
| | - Koketso M. Molepo
- Institute of Coastal Environmental Chemistry, Helmholtz Zentrum Hereon, Geesthacht21502, Germany
| | - Marijana Murovec
- Slovenian Environment Agency, Environment and Nature protection Office, Air Quality Division, Ljubljana1000, Slovenia
| | | | | | - Julian Rüdiger
- Air Monitoring Network, German Environment Agency, Langen63225, Germany
| | - Guey-Rong Sheu
- Department of Atmospheric Sciences, National Central University, Taoyuan320, Taiwan
| | - Vincent L. St. Louis
- Department of Biological Sciences, University of Alberta, Edmonton, ABT6G 2E9, Canada
| |
Collapse
|
2
|
Wang Y, Yin X, Kang S, Tong Y, Wang X, de Foy B, Schauer JJ, Zhang G, Wu K, Zhang Q. Atmospheric mercury species at Nam Co (4730 m a.s.l.), a highland background site in the inland Tibetan Plateau: implications of mercury potential sources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56363-56376. [PMID: 39271610 DOI: 10.1007/s11356-024-34879-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
A field survey was conducted in the central Tibetan Plateau (Nam Co) in China for high-time resolution measurements of gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particle-bound mercury (PBM). Average concentrations (± 1 SD) of GEM, PBM, and GOM from November 2014 to March 2015 were 1.11 ± 0.20 ng m-3, 50.8 ± 26.5 pg m-3, and 3.6 ± 3.2 pg m-3, respectively. During the monitoring period, both GEM and GOM exhibited relative stability in their monthly variations, whereas PBM concentrations were significantly higher in winter compared to those in later autumn and early spring. In terms of diurnal variations, the maximum concentration of GEM was typically observed after sunrise, while PBM reached its peak before sunrise, and the highest concentration of GOM was recorded in the afternoon. Vertical convection conditions, photochemical production, and gas-particle partitioning were responsible for the diurnal cycle of atmospheric mercury. Based on modeling results, it was determined that the air mass transported from South Asia significantly impacted atmospheric mercury levels at Nam Co Station. The regions of western and central Nepal, central and eastern Pakistan, and northern India were identified as potential sources of atmospheric mercury at Nam Co.
Collapse
Affiliation(s)
- Yuqing Wang
- Institute of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming, 650091, China
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China
| | - Xiufeng Yin
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China
| | - Shichang Kang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xuejun Wang
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Benjamin de Foy
- Department of Earth and Atmospheric Sciences, Saint Louis University, St. Louis, MO, 63108, USA
| | - James J Schauer
- Civil & Environmental Engineering, University of Wisconsin, Madison, WI, 53718, USA
| | - Guoshuai Zhang
- Chinese Academy of Environmental Planning, Beijing, 100012, China
| | - Kunpeng Wu
- Institute of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming, 650091, China
| | - Qianggong Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
3
|
Song Z, Huang S, Zhang P, Yuan T, Zhang Y. Isotope Data Constrains Redox Chemistry of Atmospheric Mercury. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38810222 DOI: 10.1021/acs.est.4c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The redox chemistry of mercury (Hg) in the atmosphere exerts a significant influence on its global cycle. However, our understanding of this important process remains shrouded in uncertainty. In this study, we utilize three-dimensional atmospheric Hg isotope modeling to evaluate the isotopic composition of particle-bound mercury [HgII(P)] in the global atmosphere. We investigate various chemistry mechanisms and find that they induce remarkably disparate odd-number mass-independent fractionation (odd-MIF) in HgII(P) on a global scale. The observed odd-MIF data identify the essential role of sea salt aerosol debromination in the redox chemistry of atmospheric Hg and underscore the predominant influence of Br oxidation in the marine boundary layer. The odd-MIF signatures significantly narrow the uncertainty range of redox chemistry rates and constrain the photoreduction of HgII(P) at a magnitude of 10-3 JNO2 (local photolysis frequency of NO2) in the global atmosphere. This study advances our understanding of atmospheric Hg chemistry processes and provides insights into the potential impacts of climate change on Hg cycling.
Collapse
Affiliation(s)
- Zhengcheng Song
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
- Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shaojian Huang
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Peng Zhang
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Tengfei Yuan
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yanxu Zhang
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
- Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
4
|
Missimer TM, MacDonald JH, Tsegaye S, Thomas S, Teaf CM, Covert D, Kassis ZR. Natural Background and the Anthropogenic Enrichment of Mercury in the Southern Florida Environment: A Review with a Discussion on Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:118. [PMID: 38276812 PMCID: PMC10815244 DOI: 10.3390/ijerph21010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Mercury (Hg) is a toxic metal that is easily released into the atmosphere as a gas or a particulate. Since Hg has serious health impacts based on human exposure, it is a major concern where it accumulates. Southern Florida is a region of high Hg deposition in the United States. It has entered the southern Florida environment for over 56 MY. For the past 3000 to 8000 years, Hg has accumulated in the Everglades peatlands, where approximately 42.3 metric tons of Hg was deposited. The pre-industrial source of mercury that was deposited into the Everglades was from the atmosphere, consisting of combined Saharan dust and marine evasion. Drainage and the development of the Everglades for agriculture, and other mixed land uses have caused a 65.7% reduction in the quantity of peat, therefore releasing approximately 28 metric tons of Hg into the southern Florida environment over a period of approximately 133 years. Both natural and man-made fires have facilitated the Hg release. The current range in mercury release into the southern Florida environment lies between 994.9 and 1249 kg/yr. The largest source of Hg currently entering the Florida environment is from combined atmospheric sources, including Saharan dust, aerosols, sea spray, and ocean flux/evasion at 257.1-514.2 kg/yr. The remobilization of Hg from the Everglades peatlands and fires is approximately 215 kg/yr. Other large contributors include waste to energy incinerators (204.1 kg/yr), medical waste and crematory incinerators (159.7+ kg/yr), and cement plant stack discharge (150.6 kg/yr). Minor emissions include fuel emissions from motorized vehicles, gas emissions from landfills, asphalt plants, and possible others. No data are available on controlled fires in the Everglades in sugar farming, which is lumped with the overall peatland loss of Hg to the environment. Hg has impacted wildlife in southern Florida with recorded excess concentrations in fish, birds, and apex predators. This bioaccumulation of Hg in animals led to the adoption of regulations (total maximum loads) to reduce the impacts on wildlife and warnings were given to consumers to avoid the consumption of fish that are considered to be contaminated. The deposition of atmospheric Hg in southern Florida has not been studied sufficiently to ascertain where it has had the greatest impacts. Hg has been found to accumulate on willow tree leaves in a natural environment in one recent study. No significant studies of the potential impacts on human health have been conducted in southern Florida, which should be started based on the high rates of Hg fallout in rainfall and known recycling for organic sediments containing high concentrations of Hg.
Collapse
Affiliation(s)
- Thomas M. Missimer
- U. A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - James H. MacDonald
- Environmental Geology Program & Honors College, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - Seneshaw Tsegaye
- Department of Bioengineering, Civil and Environmental Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - Serge Thomas
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - Christopher M. Teaf
- Institute for Science & Public Affairs, Florida State University, Tallahassee, FL 32310, USA;
| | - Douglas Covert
- Hazardous Substance & Waste Management Research, 2976 Wellington Circle West, Tallahassee, FL 32309, USA;
| | - Zoie R. Kassis
- U. A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| |
Collapse
|
5
|
Dack K, Bustamante M, Taylor CM, Llop S, Lozano M, Yousefi P, Gražulevičienė R, Gutzkow KB, Brantsæter AL, Mason D, Escaramís G, Lewis SJ. Genome-Wide Association Study of Blood Mercury in European Pregnant Women and Children. Genes (Basel) 2023; 14:2123. [PMID: 38136945 PMCID: PMC10742428 DOI: 10.3390/genes14122123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Mercury has high industrial utility and is present in many products, and environmental contamination and occupational exposure are widespread. There are numerous biological systems involved in the absorption, metabolism, and excretion of Hg, and it is possible that some systems may be impacted by genetic variation. If so, genotype may affect tissue concentrations of Hg and subsequent toxic effects. Genome-wide association testing was performed on blood Hg samples from pregnant women of the Avon Longitudinal Study of Parents and Children (n = 2893) and children of the Human Early Life Exposome (n = 1042). Directly-genotyped single-nucleotide polymorphisms (SNPs) were imputed to the Haplotype Reference Consortium r1.1 panel of whole genotypes and modelled againstlog-transformed Hg. Heritability was estimated using linkage disequilibrium score regression. The heritability of Hg was estimated as 24.0% (95% CI: 16.9% to 46.4%) in pregnant women, but could not be determined in children. There were 16 SNPs associated with Hg in pregnant women above a suggestive p-value threshold (p < 1 × 10-5), and 21 for children. However, no SNP passed this threshold in both studies, and none were genome-wide significant (p < 5 × 10-8). SNP-Hg associations were highly discordant between women and children, and this may reflect differences in metabolism, a gene-age interaction, or dose-response effects. Several suggestive variants had plausible links to Hg metabolism, such as rs146099921 in metal transporter SLC39A14, and two variants (rs28618224, rs7154700) in potassium voltage-gated channel genes. The findings would benefit from external validation, as suggestive results may contain both true associations and false positives.
Collapse
Affiliation(s)
- Kyle Dack
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1TH, UK; (K.D.)
| | - Mariona Bustamante
- ISGlobal, Institute for Global Health, 08036 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08018 Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain (G.E.)
| | - Caroline M. Taylor
- Centre for Academic Child Health, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK;
| | - Sabrina Llop
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain (G.E.)
- Epidemiology and Environmental Health Joint Research Unit, FISABIO- Universitat Jaume I - Universitat de València, 46020 Valencia, Spain
| | - Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO- Universitat Jaume I - Universitat de València, 46020 Valencia, Spain
- Department of Preventative Medicine, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, 46100 Valencia, Spain
| | - Paul Yousefi
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1TH, UK; (K.D.)
| | - Regina Gražulevičienė
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, 53361 Kaunas, Lithuania
| | - Kristine Bjerve Gutzkow
- Department of Air Quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, P.O. Box 222 Skoyen, NO-0213 Oslo, Norway;
| | - Anne Lise Brantsæter
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, P.O. Box 222 Skoyen, NO-0213 Oslo, Norway
| | - Dan Mason
- Bradford Teaching Hospitals NHS Foundation Trust, Duckworth Lane, Bradford BD9 6RJ, UK
| | - Georgia Escaramís
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain (G.E.)
- Department of Biomedical Sciences, Institute of Neuroscience, University of Barcelona, 08035 Barcelona, Spain
| | - Sarah J. Lewis
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1TH, UK; (K.D.)
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1TH, UK
| |
Collapse
|
6
|
Zhen J, Li T, Xu X, Du P, Song Y, Nie X, Liu X, Liu H, Bi Y, Wang X, Xue L, Wang Y. Changed mercury speciation in clouds driven by changing cloud water chemistry and impacts on photoreduction: Field evidence at Mt. Tai in eastern China. WATER RESEARCH 2023; 244:120402. [PMID: 37572460 DOI: 10.1016/j.watres.2023.120402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/14/2023]
Abstract
Chemical speciation of mercury (Hg) in clouds largely determines the photochemistry of Hg in the atmosphere and consequently influences Hg deposition on the surface through precipitation. Cloud water chemistry has notably changed over the last decade in response to global changes, however, the effects on Hg speciation remain poorly understood. During summer 2021, we collected sixty cloud water samples at Mt. Tai in eastern China and compared the cloud chemistry and Hg speciation with our previous findings during summer 2015. The results showed that although there were no statistically significant differences in the concentrations of total Hg (THg), dissolved Hg (DHg), and particulate Hg (PHg), there was a distinct shift in DHg species from the predominated Hg-DOM (78.6% in 2015 campaign) to the more homogeneously distributed Hg(OH)2 (28.4% in 2021 campaign), HgBr2 (26.5%), Hg-DOM (17.3%) and HgBrOH (17.0%). Changes in cloud water chemistry, particularly the significant increase in pH values to 6.49 ± 0.27 and unexpectedly high levels of bromide ions (Br-, 0.19 ± 0.22 mg L-1), were found to drive the changing of Hg speciation by enhancing Hg(II) hydrolysis and binding by Br-. Elevated Br- originating primarily from the continent likely caused noticeable differences in the dominating DHg species between cloud water sourced from marine and continental regions. The changes in chemical speciation of DHg were estimated to result in a 2.6-fold decrease in Hg(II) photoreduction rate between 2015 and 2021 campaigns (0.178 ± 0.054 h-1 vs. 0.067 ± 0.027 h-1), implying a shortened lifetime of atmospheric Hg and increased ecological risks associated with Hg wet deposition.
Collapse
Affiliation(s)
- Jiebo Zhen
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Tao Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.
| | - Xinmiao Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Ping Du
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yue Song
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xiaoling Nie
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xinghui Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Hengde Liu
- Taishan National Reference Climatological Station, Tai'an, 271000, China
| | - Yujian Bi
- Taishan National Reference Climatological Station, Tai'an, 271000, China
| | - Xinfeng Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Likun Xue
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Yan Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
7
|
Chen C, Qin X, Li H, Li H, Liu C, Fu M, Wang X, Huo J, Duan Y, Fu Q, Huang K, Deng C. Atmospheric mercury in a developed region of eastern China: Interannual variation and gas-particle partitioning. Heliyon 2023; 9:e19786. [PMID: 37771526 PMCID: PMC10522948 DOI: 10.1016/j.heliyon.2023.e19786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
Atmospheric mercury plays a crucial role in the biogeochemical cycle of mercury. This study conducted an intensive measurement of atmospheric mercury from 2015 to 2018 at a regional site in eastern China. During this period, the concentration of particle-bound mercury (PBM) decreased by 13%, which was much lower than those of gaseous elemenral mercury (GEM, 30%) and reactive gaseous mercury (GOM, 62%). The gradual decrease in the correlation between PBM and CO, K, and Pb indicates that the influence of primary emissions on PBM concentration was weakening. Moreover, the value of the partitioning coefficient (Kp) increased gradually from 0.05 ± 0.076 m3/μg in 2015 to 0.16 ± 0.37 m3/μg in 2018, indicating that GOM was increasingly inclined to adsorb onto particulate matter. Excluding the influence of meteorological conditions and the primary emissions, the change in aerosol composition is designated as the main trigger factor for the increasing gas-particle partitioning of reactive mercury (RM). The increasing ratio of Cl-, NO3-, and organics (Org) in the chemical composition of particle matters (PM2.5), as well as the decrease in the proportion of SO42-, NH4+, and K+, are conducive to the adsorption of GOM onto particles, forming PBM, which led to an increase of Kp and a lag of PBM reduction compared to GEM and GOM under the continuous control measures of anthropogenic mercury emissions. The evolution of aerosol compositions in recent years affects the migration and transformation of atmospheric mercury, which in turn can affect the biogeochemical cycle of mercury.
Collapse
Affiliation(s)
- Cheng Chen
- Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xiaofei Qin
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Hao Li
- Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Haiyan Li
- Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Chengfeng Liu
- Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Mengxin Fu
- Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xiaohao Wang
- State Ecologic Environmental Scientific Observation and Research Station for Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai, 200030, China
| | - Juntao Huo
- State Ecologic Environmental Scientific Observation and Research Station for Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai, 200030, China
| | - Yusen Duan
- State Ecologic Environmental Scientific Observation and Research Station for Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai, 200030, China
| | - Qingyan Fu
- State Ecologic Environmental Scientific Observation and Research Station for Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai, 200030, China
| | - Kan Huang
- Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Congrui Deng
- Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
- IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, 200433, China
- Institute of Eco-Chongming (IEC), Shanghai, 202162, China
| |
Collapse
|
8
|
Liu YR, Guo L, Yang Z, Xu Z, Zhao J, Wen SH, Delgado-Baquerizo M, Chen L. Multidimensional Drivers of Mercury Distribution in Global Surface Soils: Insights from a Global Standardized Field Survey. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12442-12452. [PMID: 37506289 DOI: 10.1021/acs.est.3c04313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Soil stores a large amount of mercury (Hg) that has adverse effects on human health and ecosystem safety. Significant uncertainties still exist in revealing environmental drivers of soil Hg accumulation and predicting global Hg distribution owing to the lack of field data from global standardized analyses. Here, we conducted a global standardized field survey and explored a holistic understanding of the multidimensional environmental drivers of Hg accumulation in global surface soils. Hg content in surface soils from our survey ranges from 3.8 to 618.2 μg kg-1 with an average of 74.0 μg kg-1 across the globe. Atmospheric Hg deposition, particularly vegetation-induced elemental Hg0 deposition, is the major source of surface soil Hg. Soil organic carbon serves as the major substrate for sequestering Hg in surface soils and is significantly influenced by agricultural management, litterfall, and elevation. For human activities, changing land-use could be a more important contributor than direct anthropogenic emissions. Our prediction of a new global Hg distribution highlights the hot spots (high Hg content) in East Asia, the Northern Hemispheric temperate/boreal regions, and tropical areas, while the cold spots (low Hg content) are in arid regions. The holistic understanding of multidimensional environmental drivers helps to predict the Hg distribution in global surface soils under a changing global environment.
Collapse
Affiliation(s)
- Yu-Rong Liu
- College of Resources and Environment and State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Long Guo
- College of Resources and Environment and State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziming Yang
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Zeng Xu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Jiating Zhao
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Shu-Hai Wen
- College of Resources and Environment and State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistemico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla 41012, Spain
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Sevilla 41013, Spain
| | - Long Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
9
|
Zhou Z, Wang H, Li Y. Mercury stable isotopes in the ocean: Analytical methods, cycling, and application as tracers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162485. [PMID: 36858226 DOI: 10.1016/j.scitotenv.2023.162485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Mercury (Hg) has seven stable isotopes that can be utilized to trace the sources of Hg and evaluate the importance of transport and transformation processes in the cycling of Hg in the environment. The ocean is an integral part of the Earth and plays an important role in the global mercury cycle. However, there is a lack of a systematic review of Hg stable isotopes in marine environments. This review is divided into four sections: a) advances in Hg stable isotope analysis, b) the isotope ratios of Hg in various marine environmental matrices (seawater, sediment, and organisms), c) processes governing stable Hg isotope ratios in the ocean, and d) application of Hg stable isotopes to understand biotic uptake and migration. Mercury isotopes have provided much useful information on marine Hg cycling that cannot be given by Hg concentrations alone. This includes (i) sources of Hg in coastal or estuarine environments, (ii) transformation pathways and mechanisms of different forms of Hg in marine environments, (iii) trophic levels and feeding guilds of marine fish, and (iv) migration/habitat changes of marine fish. With the improvement of methods for seawater Hg isotope analysis (especially species-specific methods) and the measurement of Hg isotope fractionation during natural biogeochemical processes in the ocean, Hg stable isotopes will advance our understanding of the marine Hg cycle in the future, e.g., mercury exchange at the sea-atmosphere interface and seawater-sediment interface, contributions of different water masses to Hg in the ocean, fractionation mechanisms of Hg and MeHg transformation in seawater.
Collapse
Affiliation(s)
- Zhengwen Zhou
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Huiling Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanbin Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
10
|
Zhang L, Zhang G, Zhou P, Zhao Y. A Review of Dry Deposition Schemes for Speciated Atmospheric Mercury. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 110:16. [PMID: 36525086 DOI: 10.1007/s00128-022-03641-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
This study reviewed the existing framework of dry deposition schemes for speciated atmospheric mercury. As the most commonly used methods for mercury dry deposition estimation, the big-leaf resistance scheme for gaseous oxidized mercury (GOM), the size distribution regarded resistance scheme for particulate bound mercury (PBM), and the bidirectional air-surface exchange scheme for gaseous elemental mercury (GEM) were introduced in detail. Sensitivity analysis were conducted to quantitatively identify the key parameters for the estimation of speciated mercury dry deposition velocities. The dry deposition velocity of GOM was found to be sensitive to the wind speed and some land use related parameters. The chemical forms of GOM could have a significant impact on the dry deposition velocity. The dry deposition velocity of PBM is sensitive to the mass fraction of PBM in coarse particles, while that of GEM is most sensitive to air temperature. Future research needs were proposed accordingly.
Collapse
Affiliation(s)
- Lei Zhang
- School of the Environment and State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, Jiangsu, China.
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu, China.
| | - Guichen Zhang
- School of the Environment and State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Peisheng Zhou
- School of the Environment and State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Yu Zhao
- School of the Environment and State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu, China
| |
Collapse
|
11
|
Martino M, Tassone A, Angiuli L, Naccarato A, Dambruoso PR, Mazzone F, Trizio L, Leonardi C, Petracchini F, Sprovieri F, Pirrone N, D'Amore F, Bencardino M. First atmospheric mercury measurements at a coastal site in the Apulia region: seasonal variability and source analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68460-68475. [PMID: 35543786 PMCID: PMC9508219 DOI: 10.1007/s11356-022-20505-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
In the framework of the Italian Special Network for Mercury (ISNM) "Reti Speciali", a sampling campaign to monitor atmospheric mercury (Hg) was carried out at Monte Sant'Angelo (MSA). This is a coastal monitoring station in the Apulia region, representative of the Southern Adriatic area, within the Mediterranean basin. This work presents continuous Gaseous Elemental Mercury (GEM) measurements over about three years at MSA, using the Lumex RA-915AM mercury analyzer. The aim was to obtain a dataset suitable for the analysis of Hg concentrations in terms of source and transport variation. Diurnal cycles of GEM were evaluated to observe the influence of local atmospheric temperature and wind speed on potential re-emissions from surrounding sea and soil surfaces. Data were also analyzed in terms of long-range transport, using backward trajectory cluster analysis. The spatial distribution of potential sources, contributing to higher measured GEM values, was obtained employing Potential Source Contribution Function (PSCF) statistics. The influence of major Hg anthropogenic point sources, such as mining activities and coal-fuel power plants, both regionally and continentally, from mainland Europe, was observed. The role of the vegetation GEM uptake in modulating the seasonal GEM variability was also investigated. The potential of wildfire influence over the highest detected GEM levels was further examined using active fire data and the evaluation of the vegetation dryness index during the selected episodes.
Collapse
Affiliation(s)
- Maria Martino
- CNR-Institute of Atmospheric Pollution Research, Rende, Italy
| | | | - Lorenzo Angiuli
- Apulia Region Environmental Protection Agency (ARPA Puglia), Bari, Italy
| | - Attilio Naccarato
- CNR-Institute of Atmospheric Pollution Research, Rende, Italy
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende, Italy
| | | | - Fiorella Mazzone
- Apulia Region Environmental Protection Agency (ARPA Puglia), Bari, Italy
| | - Livia Trizio
- Apulia Region Environmental Protection Agency (ARPA Puglia), Bari, Italy
| | | | | | | | - Nicola Pirrone
- CNR-Institute of Atmospheric Pollution Research, Rende, Italy
| | | | | |
Collapse
|
12
|
Gao Z, Zheng W, Li Y, Liu Y, Wu M, Li S, Li P, Liu G, Fu X, Wang S, Wang F, Cai Y, Feng X, Gu B, Zhong H, Yin Y. Mercury transformation processes in nature: Critical knowledge gaps and perspectives for moving forward. J Environ Sci (China) 2022; 119:152-165. [PMID: 35934460 DOI: 10.1016/j.jes.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The transformation of mercury (Hg) in the environment plays a vital role in the cycling of Hg and its risk to the ecosystem and human health. Of particular importance are Hg oxidation/reduction and methylation/demethylation processes driven or mediated by the dynamics of light, microorganisms, and organic carbon, among others. Advances in understanding those Hg transformation processes determine our capacity of projecting and mitigating Hg risk. Here, we provide a critical analysis of major knowledge gaps in our understanding of Hg transformation in nature, with perspectives on approaches moving forward. Our analysis focuses on Hg transformation processes in the environment, as well as emerging methodology in exploring these processes. Future avenues for improving the understanding of Hg transformation processes to protect ecosystem and human health are also explored.
Collapse
Affiliation(s)
- Zhiyuan Gao
- Centre for Earth Observation Science, and Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Wang Zheng
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300192, China
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yurong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengjie Wu
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Shouying Li
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Shuxiao Wang
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Feiyue Wang
- Centre for Earth Observation Science, and Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yong Cai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Huan Zhong
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China; Environmental and Life Sciences Program (EnLS), Trent University, Peterborough, Ontario K9L 0G2, Canada.
| | - Yongguang Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
13
|
Organomercurial lyase (MerB)-mediated demethylation decreases bacterial methylmercury resistance in the absence of mercuric reductase (MerA). Appl Environ Microbiol 2022; 88:e0001022. [PMID: 35138926 DOI: 10.1128/aem.00010-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mer operon encodes enzymes that transform and detoxify methylmercury (MeHg) and/or inorganic mercury (Hg(II)). Organomercurial lyase (MerB) and mercuric reductase (MerA) can act sequentially to demethylate MeHg to Hg(II) and reduce Hg(II) to volatile elemental mercury (Hg0) that can escape from the cell, conferring resistance to MeHg and Hg(II). Most identified mer operons encode either MerA and MerB in tandem or MerA alone, however, microbial genomes were recently identified that encode only MerB. Yet, the effects of potentially producing intracellular Hg(II) via demethylation of MeHg by MerB, independent of a mechanism to further detoxify or sequester the metal is not well understood. Here, we investigate MeHg biotransformation in Escherichia coli strains engineered to express MerA and MerB, together or separately, and characterize cell viability and Hg detoxification kinetics when these strains are grown in the presence of MeHg. Strains expressing only MerB are capable of demethylating MeHg to Hg(II). Compared to strains that express both MerA and MerB, strains expressing only MerB exhibit a lower minimum inhibitory concentration with MeHg exposure, which parallels a redistribution of Hg from the cell-associated fraction to the culture medium, consistent with cell lysis occurring. The data support a model whereby intracellular production of Hg(II), in the absence of reduction or other forms of demobilization, results in a greater cytotoxicity compared to the parent MeHg compound. Collectively, these results suggest that in the context of MeHg detoxification, MerB must be accompanied by an additional mechanism(s) to reduce, sequester, or re-distribute generated Hg(II). Importance: Mercury is a globally distributed pollutant that poses a risk to wildlife and human health. The toxicity of mercury is influenced largely by microbially mediated biotransformation between its organic (methylmercury) and inorganic (Hg(II) and Hg0) forms. Here we show in a relevant cellular context that the organomercurial lyase (MerB) enzyme is capable of MeHg demethylation without subsequent mercuric reductase (MerA)-mediated reduction of Hg(II). Demethylation of MeHg without subsequent Hg(II) reduction results in a greater cytotoxicity and increased cell lysis. Microbes carrying MerB alone have recently been identified but have yet to be characterized. Our results demonstrate that mer operons encoding MerB but not MerA put the cell at a disadvantage in the context of MeHg exposure, unless subsequent mechanisms of reduction or Hg(II) sequestration exist. These findings may help uncover the existence of alternative mechanisms of Hg(II) detoxification in addition to revealing the drivers of mer operon evolution.
Collapse
|
14
|
Wang ZX, Lian LL, Li JX, He J, Ma HB, Chen LL, Mao XX, Gao H, Ma JM, Huang T. The atmospheric lead emission, deposition, and environmental inequality driven by interprovincial trade in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149113. [PMID: 34303976 DOI: 10.1016/j.scitotenv.2021.149113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/20/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Lead (Pb) as a hazardous air pollutant has raised widespread concerns due to its adverse and toxic effects on the ecological environment and human health. Here we integrated the multi-regional input-output (MRIO) model and an atmospheric transport model to examine regional environmental inequality (REI) index induced by Pb emission transfers, and to evaluate the impacts of interprovincial trade on regional atmospheric Pb concentrations and dry deposition fluxes in China in 2012. In 2012, approximately 57.4% ~ 72.6% of Pb emissions in well-developed eastern regions (Beijing-Tianjin, Yangtze River Delta (YRD)) and the southern seaboard of China were embodied in other regions in China subject to the demands from these well-developed regions to industrial products and services. Our results, based on the net virtual flows of Pb emission and value-added, indicate that most provinces in the eastern seaboard of China outsource Pb emission and benefit from the interprovincial trade by reducing their Pb emissions. REI indexes show that the well-developed Guangdong province outsources its Pb emission but has low economic gains. Many less-developed provinces in central China enhance virtual Pb emission inflow but have high economic gains. Whereas, inland provinces in western China not only experience Pb emission increase, but also suffer from indirect economic loss due to trade with well-developed provinces to meet their increasing demands to Pb emission abundant industrial products from these provinces in eastern China which are mostly provided by less-developed but energy and mineral product abundant provinces in western China. For example, the province pair with highest REI index was Jiangsu-Inner Mongolia (REI = 2.47), which revealed that Jiangsu was the largest beneficiary which exported 37.2 t of net Pb emission and gained value-added of 521.4 billion RMB through trade with Inner Mongolia which suffered from both virtual Pb inflow and economic loss in 2012. As a result of interprovincial trade, Pb dry deposition in central and eastern China was decreased but increased in western China. Overall, interprovincial trade reduced 17.6% of atmospheric Pb dry deposition in China.
Collapse
Affiliation(s)
- Zhan-Xiang Wang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lu-Lu Lian
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ji-Xiang Li
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jian He
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hai-Bo Ma
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lu-Lu Chen
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Xuan Mao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hong Gao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Jian-Min Ma
- College of Urban and Environmental Science, Peking University, Beijing 100871, China
| | - Tao Huang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
15
|
Shah V, Jacob DJ, Thackray CP, Wang X, Sunderland EM, Dibble TS, Saiz-Lopez A, Černušák I, Kellö V, Castro PJ, Wu R, Wang C. Improved Mechanistic Model of the Atmospheric Redox Chemistry of Mercury. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14445-14456. [PMID: 34724789 DOI: 10.1021/acs.est.1c03160] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We present a new chemical mechanism for Hg0/HgI/HgII atmospheric cycling, including recent laboratory and computational data, and implement it in the GEOS-Chem global atmospheric chemistry model for comparison to observations. Our mechanism includes the oxidation of Hg0 by Br and OH, subsequent oxidation of HgI by ozone and radicals, respeciation of HgII in aerosols and cloud droplets, and speciated HgII photolysis in the gas and aqueous phases. The tropospheric Hg lifetime against deposition in the model is 5.5 months, consistent with observational constraints. The model reproduces the observed global surface Hg0 concentrations and HgII wet deposition fluxes. Br and OH make comparable contributions to global net oxidation of Hg0 to HgII. Ozone is the principal HgI oxidant, enabling the efficient oxidation of Hg0 to HgII by OH. BrHgIIOH and HgII(OH)2, the initial HgII products of Hg0 oxidation, respeciate in aerosols and clouds to organic and inorganic complexes, and volatilize to photostable forms. Reduction of HgII to Hg0 takes place largely through photolysis of aqueous HgII-organic complexes. 71% of model HgII deposition is to the oceans. Major uncertainties for atmospheric Hg chemistry modeling include Br concentrations, stability and reactions of HgI, and speciation and photoreduction of HgII in aerosols and clouds.
Collapse
Affiliation(s)
- Viral Shah
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Daniel J Jacob
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Colin P Thackray
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Xuan Wang
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Elsie M Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
| | - Theodore S Dibble
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, New York 13210, United States
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid 28006, Spain
| | - Ivan Černušák
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Vladimir Kellö
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Pedro J Castro
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, New York 13210, United States
| | - Rongrong Wu
- Department of Physics and Astronomy, Mississippi State University, Starkville, Mississippi 39759, United States
| | - Chuji Wang
- Department of Physics and Astronomy, Mississippi State University, Starkville, Mississippi 39759, United States
| |
Collapse
|
16
|
The Characteristics of Mercury Flux at the Interfaces between Two Typical Plants and the Air in Leymus chinensis Grasslands. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910115. [PMID: 34639417 PMCID: PMC8507851 DOI: 10.3390/ijerph181910115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/12/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022]
Abstract
Mercury is a global pollutant. The mercury exchanges between vegetation and the atmosphere are important for the global mercury cycle. Grassland ecosystems occupy more than 25% of the global land area and have different succession processes and ecological functions. The current research regarding mercury exchanges between forests and the atmosphere have attracted much attention, but the research regarding grasslands tends to be rare. To reveal the characteristics of mercury exchanges in grasslands, this study conducted field in-situ monitoring experiments in a Leymus meadow grassland regions of the Songnen Plains in northeastern China. The exchange flux values of the GEM (gaseous element mercury) between the plants and the atmosphere were measured using a dynamic flux bag method (DFB). The experiments were conducted for the purpose of assessing the mercury flux levels between the vegetation and the atmosphere in a typical Leymus chinensis meadow. The goal was to further the understanding of the change characteristics and influential factors and to describe the source and sink actions and dynamics between the grassland vegetation and the atmosphere. The diurnal variation characteristics were as follows: High during the day and low at night, with peaks generally appearing at noon. The growing period was characterized by absorption peaks of atmospheric mercury by the plants. The breeding period was characterized by the peak release of atmospheric mercury by the plants. The change characteristics were as follows: During the growing period, the duration of the plants in a mercury absorption state exceeded 96.5%, which was represented as the net sink of the atmospheric mercury. During the breeding period, the time of mercury release ranged between 46.4% and 66.8%, making the breeding period the net source of atmospheric mercury. The results of this study's analysis indicated that each environmental factor was correlated with the mercury flux, and the environmental factors had different effects on the mercury flux during the different stages of plant growth. The atmospheric mercury concentration levels were the main factor during the growing period. Atmospheric humidity was the main factor during the breeding period. Solar radiation was the decisive factor during the entire experimental period.
Collapse
|
17
|
Christakis CA, Barkay T, Boyd ES. Expanded Diversity and Phylogeny of mer Genes Broadens Mercury Resistance Paradigms and Reveals an Origin for MerA Among Thermophilic Archaea. Front Microbiol 2021; 12:682605. [PMID: 34248899 PMCID: PMC8261052 DOI: 10.3389/fmicb.2021.682605] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
Mercury (Hg) is a highly toxic element due to its high affinity for protein sulfhydryl groups, which upon binding, can destabilize protein structure and decrease enzyme activity. Prokaryotes have evolved enzymatic mechanisms to detoxify inorganic Hg and organic Hg (e.g., MeHg) through the activities of mercuric reductase (MerA) and organomercury lyase (MerB), respectively. Here, the taxonomic distribution and evolution of MerAB was examined in 84,032 archaeal and bacterial genomes, metagenome assembled genomes, and single-cell genomes. Homologs of MerA and MerB were identified in 7.8 and 2.1% percent of genomes, respectively. MerA was identified in the genomes of 10 archaeal and 28 bacterial phyla previously unknown to code for this functionality. Likewise, MerB was identified in 2 archaeal and 11 bacterial phyla previously unknown to encode this functionality. Surprisingly, homologs of MerB were identified in a number of genomes (∼50% of all MerB-encoding genomes) that did not encode MerA, suggesting alternative mechanisms to detoxify Hg(II) once it is generated in the cytoplasm. Phylogenetic reconstruction of MerA place its origin in thermophilic Thermoprotei (Crenarchaeota), consistent with high levels of Hg(II) in geothermal environments, the natural habitat of this archaeal class. MerB appears to have been recruited to the mer operon relatively recently and likely among a mesophilic ancestor of Euryarchaeota and Thaumarchaeota. This is consistent with the functional dependence of MerB on MerA and the widespread distribution of mesophilic microorganisms that methylate Hg(II) at lower temperature. Collectively, these results expand the taxonomic and ecological distribution of mer-encoded functionalities, and suggest that selection for Hg(II) and MeHg detoxification is dependent not only on the availability and type of mercury compounds in the environment but also the physiological potential of the microbes who inhabit these environments. The expanded diversity and environmental distribution of MerAB identify new targets to prioritize for future research.
Collapse
Affiliation(s)
- Christos A. Christakis
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Tamar Barkay
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Eric S. Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
18
|
Huang S, Zhang Y. Interannual Variability of Air-Sea Exchange of Mercury in the Global Ocean: The "Seesaw Effect" in the Equatorial Pacific and Contributions to the Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7145-7156. [PMID: 33929202 DOI: 10.1021/acs.est.1c00691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Air-sea exchange of gaseous elemental mercury (Hg(0)) is influenced by different meteorological factors and the availability of Hg in seawater. Here, we use the MITgcm ocean model to explore the interannual variability of this flux and the influence of oceanographic and atmospheric dynamics. We apply the GEOS-Chem model to further simulate the potential impact of the evasion variability on the atmospheric Hg levels. We find a latitudinal pattern in Hg(0) evasion with a relatively small variability in mid-latitudes (3.1-6.7%) and a large one in the high latitudes and Equator (>10%). Different factors dominate the patterns in the equatorial (wind speed), mid- (oceanic flow and temperature), and high-latitudinal (sea-ice, temperature, and dynamic processes) oceans. A seesaw pattern of Hg(0) evasion anomaly (±5-20%) in the equatorial Pacific is found from November to next January between El Niño and La Niña years, owing to the anomalies in wind speed, temperature, and vertical mixing. Higher atmospheric Hg level (2%-5%) are simulated for Hg(0) evasion fluxes with three-month lag, associated with the suppression of upwelling in the beginning of the El Niño event. Despite of the uncertainties, this study elucidates the spatial patterns of the interannual variability of the ocean Hg(0) evasion flux and its potential impact on atmospheric Hg levels.
Collapse
Affiliation(s)
- Shaojian Huang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Yanxu Zhang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
19
|
Mao N, Antley J, Cooper M, Shah N, Kadam A, Khalizov A. Heterogeneous Chemistry of Mercuric Chloride on Inorganic Salt Surfaces. J Phys Chem A 2021; 125:3943-3952. [PMID: 33914544 DOI: 10.1021/acs.jpca.1c02220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gaseous oxidized mercury (GOM) is a major chemical form responsible for deposition of atmospheric mercury, but its interaction with environmental surfaces is not well understood. To address this knowledge gap, we investigated the uptake of gaseous HgCl2, used as a GOM surrogate, by several inorganic salts representative of marine and urban aerosols. The process was studied in a fast flow reactor coupled to an ion drift-chemical ionization mass spectrometer, where gaseous HgCl2 was quantitatively detected as HgCl2·NO3-. Uptake curves showed a common behavior, where upon exposure of the salt surface to HgCl2, the gas-phase concentration of the latter dropped rapidly and then recovered gradually. None of the salts produced a full recovery of HgCl2, indicating the presence of an irreversible chemical reaction in addition to reversible adsorption, and all salts showed reactive behavior consistent with the presence of surface sites of a high and a low reactivity. On the basis of the decrease in the uptake coefficient with increasing concentration of gaseous HgCl2, we conclude that the interaction follows the Langmuir-Hinshelwood mechanism. The reactivity of a deactivated salt surface after uptake could be partially restored by cycling through an elevated relative humidity at atmospheric pressure. The overall surface reactivity decreased in the series Na2SO4 > NaCl > (NH4)2SO4 > NH4NO3. The uptake on NH4NO3 was nearly fully reversible, with low values of the initial (0.4 × 10-2) and steady-state (3.3 × 10-4) uptake coefficients, whereas Na2SO4 was significantly more reactive (3.1 × 10-2 and 1.7 × 10-3). Depending on the aerosol loading, the lifetimes of gaseous HgCl2 on dry urban and marine particles (as pure (NH4)2SO4 and NaCl, respectively) were estimated to range from half an hour to about a day.
Collapse
Affiliation(s)
- Na Mao
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - John Antley
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Matthew Cooper
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States.,Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Neil Shah
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Anuradha Kadam
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States.,New Jersey School of Architecture, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Alexei Khalizov
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States.,Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
20
|
Albert C, Helgason HH, Brault-Favrou M, Robertson GJ, Descamps S, Amélineau F, Danielsen J, Dietz R, Elliott K, Erikstad KE, Eulaers I, Ezhov A, Fitzsimmons MG, Gavrilo M, Golubova E, Grémillet D, Hatch S, Huffeldt NP, Jakubas D, Kitaysky A, Kolbeinsson Y, Krasnov Y, Lorentsen SH, Lorentzen E, Mallory ML, Merkel B, Merkel FR, Montevecchi W, Mosbech A, Olsen B, Orben RA, Patterson A, Provencher J, Plumejeaud C, Pratte I, Reiertsen TK, Renner H, Rojek N, Romano M, Strøm H, Systad GH, Takahashi A, Thiebot JB, Thórarinsson TL, Will AP, Wojczulanis-Jakubas K, Bustamante P, Fort J. Seasonal variation of mercury contamination in Arctic seabirds: A pan-Arctic assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:142201. [PMID: 33182207 DOI: 10.1016/j.scitotenv.2020.142201] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) is a natural trace element found in high concentrations in top predators, including Arctic seabirds. Most current knowledge about Hg concentrations in Arctic seabirds relates to exposure during the summer breeding period when researchers can easily access seabirds at colonies. However, the few studies focused on winter have shown higher Hg concentrations during the non-breeding period than breeding period in several tissues. Hence, improving knowledge about Hg exposure during the non-breeding period is crucial to understanding the threats and risks encountered by these species year-round. We used feathers of nine migratory alcid species occurring at high latitudes to study bird Hg exposure during both the breeding and non-breeding periods. Overall, Hg concentrations during the non-breeding period were ~3 times higher than during the breeding period. In addition, spatial differences were apparent within and between the Atlantic and Pacific regions. While Hg concentrations during the non-breeding period were ~9 times and ~3 times higher than during the breeding period for the West and East Atlantic respectively, Hg concentrations in the Pacific during the non-breeding period were only ~1.7 times higher than during the breeding period. In addition, individual Hg concentrations during the non-breeding period for most of the seabird colonies were above 5 μg g-1 dry weight (dw), which is considered to be the threshold at which deleterious effects are observed, suggesting that some breeding populations might be vulnerable to non-breeding Hg exposure. Since wintering area locations, and migration routes may influence seasonal Hg concentrations, it is crucial to improve our knowledge about spatial ecotoxicology to fully understand the risks associated with Hg contamination in Arctic seabirds.
Collapse
Affiliation(s)
- Céline Albert
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000 La Rochelle, France.
| | - Hálfdán Helgi Helgason
- Norwegian Polar Institute, Framcentre, Hjalmar Johansens Gate 14, NO-9296 Tromsø, Norway
| | - Maud Brault-Favrou
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000 La Rochelle, France
| | - Gregory J Robertson
- Wildlife Research Division, Environment Climate Change Canada, 6 Bruce Street, Mount Pearl, NL A1N 4T3, Canada
| | - Sébastien Descamps
- Norwegian Polar Institute, Framcentre, Hjalmar Johansens Gate 14, NO-9296 Tromsø, Norway
| | - Françoise Amélineau
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE) UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, Montpellier, France
| | - Jóhannis Danielsen
- The Faroese Marine Research Institute, Nóatún 1, FO-100 Tórshavn, Faroe Islands
| | - Rune Dietz
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Kyle Elliott
- Department of Natural Resource Sciences, McGill University, Ste Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Kjell Einar Erikstad
- Norwegian Institute for Nature Research (NINA), FRAM - High North Research Centre for Climate and the Environment, PO Box 6606, Langnes, NO-9296, Tromsø, Norway
| | - Igor Eulaers
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Alexey Ezhov
- Murmansk Marine Biological Institute, 17 Vladimirskaya street, 183010 Murmansk, Russia
| | - Michelle G Fitzsimmons
- Wildlife Research Division, Environment Climate Change Canada, 6 Bruce Street, Mount Pearl, NL A1N 4T3, Canada
| | - Maria Gavrilo
- Association Maritime Heritage, RU - 199106, Icebreaker "Krassin", The Lieutenant Schmidt emb., 23 Line, Saint-Petersburg, Russia; National Park Russian Arctic, RU-168000, Sovetskikh kosmonavtov ave., 57, Archangelsk, Russia
| | - Elena Golubova
- Laboratory of Ornithology, Institute of Biological Problems of the North, RU-685000 Magadan, Portovaya Str., 18, Russia
| | - David Grémillet
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE) UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, Montpellier, France; FitzPatrick Institute of African Ornithology, UCT, Rondebosch 7701, South Africa; Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372-CNRS, La Rochelle Université, France
| | - Scott Hatch
- Institute for Seabird Research and Conservation, Anchorage 99516-3185, AK, USA
| | - Nicholas P Huffeldt
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Dariusz Jakubas
- University of Gdańsk, Faculty of Biology, Dept. of Vertebrate Ecology and Zoology, Wita Stwosza 59, PL-80-308 Gdańsk, Poland
| | - Alexander Kitaysky
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Yann Kolbeinsson
- Northeast Iceland Nature Research Centre, Hafnarstétt 3, 640 Húsavík, Iceland
| | - Yuri Krasnov
- Murmansk Marine Biological Institute, 17 Vladimirskaya street, 183010 Murmansk, Russia
| | - Svein-Håkon Lorentsen
- Norwegian Institute for Nature Research (NINA), Høgskoleringen 9, NO-7034 Trondheim, Norway
| | - Erlend Lorentzen
- Norwegian Polar Institute, Framcentre, Hjalmar Johansens Gate 14, NO-9296 Tromsø, Norway
| | - Mark L Mallory
- Acadia University, 33 Westwood Avenue, Wolfville B4P 2R6, Nova Scotia, Canada
| | - Benjamin Merkel
- Norwegian Polar Institute, Framcentre, Hjalmar Johansens Gate 14, NO-9296 Tromsø, Norway
| | - Flemming Ravn Merkel
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Greenland Institute of Natural Resources, P.O. Box 570, 3900 Nuuk, Greenland
| | - William Montevecchi
- Psychology Department, Memorial University, St. John's, Newfoundland A1M 2Y8, Canada
| | - Anders Mosbech
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Bergur Olsen
- The Faroese Marine Research Institute, Nóatún 1, FO-100 Tórshavn, Faroe Islands
| | - Rachael A Orben
- Department of Fisheries and Wildlife, Oregon State University, Hatfield Marine Science Center, 2030 SE Marine Science Dr., Newport, OR 97365, USA
| | - Allison Patterson
- Department of Natural Resource Sciences, McGill University, Ste Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Jennifer Provencher
- Canadian Wildlife Service, Environment and Climate Change Canada, Place Vincent Massey, 351 St. Joseph Blvd, Hull, Quebec K1A 0H3, Canada
| | - Christine Plumejeaud
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000 La Rochelle, France
| | - Isabeau Pratte
- Acadia University, 33 Westwood Avenue, Wolfville B4P 2R6, Nova Scotia, Canada
| | - Tone Kristin Reiertsen
- Norwegian Institute for Nature Research (NINA), FRAM - High North Research Centre for Climate and the Environment, PO Box 6606, Langnes, NO-9296, Tromsø, Norway
| | - Heather Renner
- U.S. Fish and Wildlife Service, Alaska Maritime Wildlife Refuge, Homer, AK, USA
| | - Nora Rojek
- U.S. Fish and Wildlife Service, Alaska Maritime Wildlife Refuge, Homer, AK, USA
| | - Marc Romano
- U.S. Fish and Wildlife Service, Alaska Maritime Wildlife Refuge, Homer, AK, USA
| | - Hallvard Strøm
- Norwegian Polar Institute, Framcentre, Hjalmar Johansens Gate 14, NO-9296 Tromsø, Norway
| | - Geir Helge Systad
- Norwegian Institute for Nature Research (NINA), Thormøhlensgate 55, N0-5006 Bergen, Norway
| | - Akinori Takahashi
- National Institute of Polar Research, 10-3, Midori-cho, Tachikawa, Tokyo 190-8518, Japan
| | - Jean-Baptiste Thiebot
- National Institute of Polar Research, 10-3, Midori-cho, Tachikawa, Tokyo 190-8518, Japan
| | | | - Alexis P Will
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Katarzyna Wojczulanis-Jakubas
- University of Gdańsk, Faculty of Biology, Dept. of Vertebrate Ecology and Zoology, Wita Stwosza 59, PL-80-308 Gdańsk, Poland
| | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000 La Rochelle, France.
| |
Collapse
|
21
|
Médieu A, Point D, Receveur A, Gauthier O, Allain V, Pethybridge H, Menkes CE, Gillikin DP, Revill AT, Somes CJ, Collin J, Lorrain A. Stable mercury concentrations of tropical tuna in the south western Pacific ocean: An 18-year monitoring study. CHEMOSPHERE 2021; 263:128024. [PMID: 33297047 DOI: 10.1016/j.chemosphere.2020.128024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 06/12/2023]
Abstract
Global anthropogenic mercury (Hg) emissions to the atmosphere since industrialization are widely considered to be responsible for a significant increase in surface ocean Hg concentrations. Still unclear is how those inputs are converted into toxic methylmercury (MeHg) then transferred and biomagnified in oceanic food webs. We used a unique long-term and continuous dataset to explore the temporal Hg trend and variability of three tropical tuna species (yellowfin, bigeye, and skipjack) from the southwestern Pacific Ocean between 2001 and 2018 (n = 590). Temporal trends of muscle nitrogen (δ15N) and carbon (δ13C) stable isotope ratios, amino acid (AA) δ15N values and oceanographic variables were also investigated to examine the potential influence of trophic, biogeochemical and physical processes on the temporal variability of tuna Hg concentrations. For the three species, we detected significant inter-annual variability but no significant long-term trend for Hg concentrations. Inter-annual variability was related to the variability in tuna sampled lengths among years and to tuna muscle δ15N and δ13C values. Complementary AA- and model-estimated phytoplankton δ15N values suggested the influence of baseline processes with enhanced tuna Hg concentrations observed when dinitrogen fixers prevail, possibly fuelling baseline Hg methylation and/or MeHg bioavailability at the base of the food web. Our results show that MeHg trends in top predators do not necessary capture the increasing Hg concentrations in surface waters suspected at the global oceanic scale due to the complex and variable processes governing Hg deposition, methylation, bioavailability and biomagnification. This illustrates the need for long-term standardized monitoring programs of marine biota worldwide.
Collapse
Affiliation(s)
- Anaïs Médieu
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France.
| | - David Point
- Observatoire Midi-Pyrénées, GET, UMR CNRS 5563/IRD 234, Université Paul Sabatier Toulouse 3, Toulouse, France
| | - Aurore Receveur
- Pacific Community, Oceanic Fisheries Programme, Nouméa, France
| | - Olivier Gauthier
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Valérie Allain
- Pacific Community, Oceanic Fisheries Programme, Nouméa, France
| | | | | | - David P Gillikin
- Department of Geology, Union College, 807 Union St., Schenectady, NY, 12308, USA
| | | | - Christopher J Somes
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Jeremy Collin
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Anne Lorrain
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| |
Collapse
|
22
|
Cao F, Meng M, Shan B, Sun R. Source apportionment of mercury in surface soils near the Wuda coal fire area in Inner Mongolia, China. CHEMOSPHERE 2021; 263:128348. [PMID: 33297273 DOI: 10.1016/j.chemosphere.2020.128348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/07/2020] [Accepted: 09/12/2020] [Indexed: 06/12/2023]
Abstract
The Wuda coalfield, Inner Mongolia, China, has been suffering from serious coal fire disaster for more than half a century. In the past decade, the central and local governments have carried out many fire-fighting projects to put out the coal fires, but coal fires still sporadically occur in the coalfield. Previous studies showed that coal fires could release large amounts of mercury (Hg) into the environment. Meanwhile, the rapid industrial development in recent years in Wuda area has also discharged a certain amount of Hg. Identification and quantification of the Hg emitted from coal fires and industrial sources is critical to formulate appropriate environmental policies. This study determined Hg isotope compositions in different types of coals from Wuda coal fire area and surface soils with different distances to the coal fire area, with an aim of anchoring the potential Hg sources in soils. The results showed that the coals had moderately negative δ202Hg (-2.02∼-1.21‰) and slightly negative Δ199Hg (-0.14-0.00‰), while the soils generally had more positive δ202Hg (-1.97∼-0.26‰) and Δ199Hg (-0.07-0.04‰) with distinct isotope ranges among different sampling sites. According to characteristic Hg isotope compositions of different sources, we concluded that the Hg in Wuda soils mainly sourced from cement plants and coal fires, and coal fires were still an important Hg contamination source in Wuda area.
Collapse
Affiliation(s)
- Fei Cao
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Mei Meng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China.
| | - Bing Shan
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Ruoyu Sun
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
23
|
Schoch N, Yang Y, Yanai RD, Buxton VL, Evers DC, Driscoll CT. Spatial patterns and temporal trends in mercury concentrations in common loons (Gavia immer) from 1998 to 2016 in New York's Adirondack Park: has this top predator benefitted from mercury emission controls? ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1774-1785. [PMID: 31691909 DOI: 10.1007/s10646-019-02119-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Mercury (Hg), a neurotoxic pollutant, can be transported long distances through the atmosphere and deposited in remote areas, threatening aquatic wildlife through methylation and bioaccumulation. Over the last two decades, air quality management has resulted in decreases in Hg emissions from waste incinerators and coal-fired power plants across North America. The common loon (Gavia immer) is an apex predator of the aquatic food web. Long-term monitoring of Hg in loons can help track biological recovery in response to the declines in atmospheric Hg that have been documented in the northeastern USA. To assess spatial patterns and temporal trends in Hg exposure of the common loon in the Adirondack Park of New York State, we analyzed Hg concentrations in loon blood and egg samples from 116 lakes between 1998 and 2016. We found spatially variable Hg concentrations in adult loon blood and feathers across the Park. Loon Hg concentrations (converted to female loon units) increased 5.7% yr-1 from 1998 to 2010 (p = 0.04), and then stabilized at 1.70 mg kg-1 from 2010 to 2016 (p = 0.91), based on 760 observations. Concentrations of Hg in juvenile loons also increased in the early part of the record, stabilizing 2 years before Hg concentrations stabilized in adults. For 52 individual lakes with samples from at least 4 different years, loon Hg increased in 34 lakes and decreased in 18 lakes. Overall, we found a delayed recovery of Hg concentrations in loons, despite recent declines in atmospheric Hg.
Collapse
Affiliation(s)
- Nina Schoch
- Formerly of Biodiversity Research Institute, 276 Canco Rd., Portland, ME, 04103, USA
- Adirondack Center for Loon Conservation, PO Box 195, Ray Brook, NY, 12977, USA
| | - Yang Yang
- Department of Forest and Natural Resources Management, State University of New York College of Environmental Science and Forestry, Syracuse, NY, 13210, USA.
| | - Ruth D Yanai
- Department of Forest and Natural Resources Management, State University of New York College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Valerie L Buxton
- Adirondack Center for Loon Conservation, PO Box 195, Ray Brook, NY, 12977, USA
| | - David C Evers
- Biodiversity Research Institute, 276 Canco Rd., Portland, ME, 04103, USA
| | - Charles T Driscoll
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY, 13244, USA
| |
Collapse
|
24
|
Brown RJC, Goddard SL, Harris PM, Malcolm HM, Thacker SA, Lawlor AJ, Guyatt HJ. Consistency and uncertainty of UK measurements of mercury in precipitation. CHEMOSPHERE 2020; 258:127330. [PMID: 32540538 DOI: 10.1016/j.chemosphere.2020.127330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
A novel method to assess the uncertainty of measurement of mercury in precipitation for the UK's Heavy Metals Monitoring Network is presented. The method makes use of the fact that, because of the high risk of sample contamination, samples are taken in duplicate in order to ensure valid data is available for as many sampling periods as possible. Where both samples are valid a good opportunity is afforded to use the statistical differences in the rain volumes sampled and the mercury concentrations measured to assess the overall uncertainty of the measurement. This process has produced estimated uncertainties in good agreement with previous studies and well within the limits specified by European legislation. The work also highlighted an effective method to spot outliers in the paired samples at the data ratification stage.
Collapse
Affiliation(s)
- Richard J C Brown
- Environment Department, National Physical Laboratory, Teddington, TW11 0LW, UK.
| | - Sharon L Goddard
- Environment Department, National Physical Laboratory, Teddington, TW11 0LW, UK
| | - Peter M Harris
- Data Science Department, National Physical Laboratory, Teddington, TW11 0LW, UK
| | - Heath M Malcolm
- UK Centre for Ecology and Hydrology, Penicuik, Scotland, EH26 0QB, UK
| | - Sarah A Thacker
- UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP, UK
| | - Alan J Lawlor
- UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP, UK
| | - Hayley J Guyatt
- UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP, UK
| |
Collapse
|
25
|
Nie X, Wang Y, Mao H, Wang T, Li T, Wu Y, Li Y, Hou C, Qie G, Feng X, Shang Z, He H. Atmospheric mercury in an eastern Chinese metropolis (Jinan). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110541. [PMID: 32247960 DOI: 10.1016/j.ecoenv.2020.110541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/10/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Urban emissions are a major contributor to atmospheric Hg budgets. Continuous measurements of total gaseous mercury (TGM) and particulate-bound mercury (PHg) in PM2.5 were conducted from October 2015 to July 2016 in a metropolis, Jinan, in eastern China. Average TGM and PHg concentrations were 4.91 ± 3.66 ng m-3 and 451.9 ± 433.4 pg m-3, respectively, in the entire study period. During the winter heating period (HP), mean concentrations of TGM and PHg were 5.79 ng m-3 and 598.7 pg m-3, respectively, twice higher than those during the non-heating periods (NHPs). During the HP, TGM exhibited a distinct diurnal pattern with a peak in the morning and a minimum in the afternoon on less polluted days but a singular peak at midday on heavily polluted days. The diurnal variation of TGM during the NHPs was predominantly influenced by the variation in boundary layer height while during the HP by anthropogenic emissions. The ratio of PHg/PM2.5 in Jinan was one to two orders of magnitude larger than those elsewhere worldwide and those in soil and coal, which suggested the high enrichment of PHg in PM2.5 in Jinan. Correlation and principle component analysis results suggested that PHg and TGM had common combustion sources during the HP, whereas PHg resulted mainly from biomass burning and meteorological variations during the NHPs. High Hg concentrations in Jinan were mostly caused by emissions from coal-fired power plants, especially for those situated east of the sampling site. In addition, TGM and PHg concentrations significantly increased during haze and fog episodes, but decreased during a dust episode due possibly to strong ventilation conditions combined with partitioning of Hg between adsorption to PM2.5 and coarse dust particles.
Collapse
Affiliation(s)
- Xiaoling Nie
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yan Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Huiting Mao
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, 13210, USA.
| | - Tijian Wang
- School of Atmospheric Sciences, Nanjing University, Nanjing, 210093, China
| | - Tao Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yaxin Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Chenxiao Hou
- Environmental Monitoring Central Station of Shandong Province, Jinan, 250101, China
| | - Guanghao Qie
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xin Feng
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zhaohui Shang
- Gudong Petroleum Production Factory, Shengli Oilfield of Sinopec, Dongying, 257237, China
| | - Haifeng He
- Gudong Petroleum Production Factory, Shengli Oilfield of Sinopec, Dongying, 257237, China
| |
Collapse
|
26
|
Lyman SN, Cheng I, Gratz LE, Weiss-Penzias P, Zhang L. An updated review of atmospheric mercury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135575. [PMID: 31784172 DOI: 10.1016/j.scitotenv.2019.135575] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
The atmosphere is a key component of the biogeochemical cycle of mercury, acting as a reservoir, transport mechanism, and facilitator of chemical reactions. The chemical and physical behavior of atmospheric mercury determines how, when, and where emitted mercury pollution impacts ecosystems. In this review, we provide current information about what is known and what remains uncertain regarding mercury in the atmosphere. We discuss new ambient, laboratory, and theoretical information about the chemistry of mercury in various atmospheric media. We review what is known about mercury in and on solid- and liquid-phase aerosols. We present recent findings related to wet and dry deposition and spatial and temporal trends in atmospheric mercury concentrations. We also review atmospheric measurement methods that are in wide use and those that are currently under development.
Collapse
Affiliation(s)
- Seth N Lyman
- Bingham Research Center, Utah State University, 320 N Aggie Blvd., Vernal, UT, USA; Department of Chemistry and Biochemistry, Utah State University, 4820 Old Main Hill, Logan, UT, USA.
| | - Irene Cheng
- Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin St., Toronto, Ontario, Canada
| | - Lynne E Gratz
- Environmental Studies Program, Colorado College, 14 East Cache la Poudre St., Colorado Springs, CO, USA
| | - Peter Weiss-Penzias
- Chemistry and Biochemistry Department, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA, USA; Microbiology and Environmental Toxicology Department, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA, USA
| | - Leiming Zhang
- Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin St., Toronto, Ontario, Canada
| |
Collapse
|
27
|
Ao M, Xu X, Wu Y, Zhang C, Meng B, Shang L, Liang L, Qiu R, Wang S, Qian X, Zhao L, Qiu G. Newly deposited atmospheric mercury in a simulated rice ecosystem in an active mercury mining region: High loading, accumulation, and availability. CHEMOSPHERE 2020; 238:124630. [PMID: 31473530 DOI: 10.1016/j.chemosphere.2019.124630] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Mercury (Hg) mining activities are an important anthropogenic source of atmospheric Hg. The Xunyang Hg mine located in Shaanxi Province is the largest active Hg producing centre in China. To understand the biogeochemical processes of atmospheric Hg through Hg mining activities, six groups of experimental pots were carefully designed to investigate the effect of Hg mining activities on Hg contamination from atmospheric deposition in the local surface soils. Based on the variations of Hg in the soil from the experimental pots, the deposition flux and loading of Hg in the Xunyang Hg mining district were investigated. The results showed that the average concentration of total gaseous mercury (TGM) as high as 193 ± 122 ng m-3 was observed in the ambient air, which was orders of magnitude higher than that in remote areas. The average deposition flux and annual loading of atmospheric Hg were 72 mg m-2 y-1 and 10 t y-1, respectively. The dominant atmospheric Hg deposition is within a distance range of 6.0-12 km from the Hg retorting facility, accounting for approximately 85% of the total Hg loading. After 14 months of exposure, total mercury (THg) concentrations in the soil from the experimental pots increased 0.35-9.5 times, and the highest concentrations of methylmercury (MeHg) (3.7 ± 2.9 μg kg-1) in soil were observed in February. Concentrations as high as 643 μg kg-1 THg and 13 μg kg-1 MeHg in rice were observed in the second experimental year. Elevated concentrations of both THg and MeHg in rice indicated that the newly deposited atmospheric Hg was bioavailable, readily methylated, and taken up by rice, suggesting that the ongoing Hg mining activities cause serious Hg contamination in the soil-rice ecosystem and posed a threat to local residents in the Xunyang Hg mining area.
Collapse
Affiliation(s)
- Ming Ao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academic of Sciences, Guiyang, 550081, PR China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, PR China
| | - Xiaohang Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academic of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yonggui Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, PR China.
| | - Chao Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academic of Sciences, Guiyang, 550081, PR China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academic of Sciences, Guiyang, 550081, PR China
| | - Lihai Shang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academic of Sciences, Guiyang, 550081, PR China
| | - Longchao Liang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academic of Sciences, Guiyang, 550081, PR China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, PR China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Xiaoli Qian
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, PR China
| | - Lei Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academic of Sciences, Guiyang, 550081, PR China
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academic of Sciences, Guiyang, 550081, PR China.
| |
Collapse
|
28
|
Yang X, Jiskra M, Sonke JE. Experimental rainwater divalent mercury speciation and photoreduction rates in the presence of halides and organic carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:133821. [PMID: 32380590 DOI: 10.1016/j.scitotenv.2019.133821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/24/2019] [Accepted: 08/06/2019] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) photochemical redox reactions control atmospheric Hg lifetime and therefore play an important role in global Hg cycling. Oxidation of Hg(0) to Hg(II) is currently thought to be a Br-initiated two-stage reaction with end-products HgBr2, HgBrOH, HgBrONO, HgBrOHO. Atmospheric photoreduction of these Hg(II) compounds can take place in both the gas and aqueous phase. Here we present new experimental observations on aqueous Hg(II) photoreduction rates in the presence of dissolved organic carbon and halides and compare the findings to rainfall Hg(II) photoreduction rates. The pseudo first-order, gross photoreduction rate constant, kred, for 0.5 μM Hg(II) in the presence of 0.5 mg/ L of dissolved organic carbon (DOC) is 0.23 h-1, which is similar to the mean kred (0.15 ± 0.01 h-1(σ, n = 3)) in high altitude rainfall and at the lower end of the median kred (0.41 h-1, n = 24) in continental and marine waters. Addition of bromide (Br-) to experimental Hg(II)-DOC solutions progressively inhibits Hg(II) photoreduction to reach 0.001 h-1 at total Br- of 10 mM. Halide substitution experiments give Hg(II)Xn(n-2) photoreduction rate constants of 0.016, 0.004 h-1, and < detection limit for X = Cl-, Br-, and I- respectively and reflect increasing stability of the Hg(II)-halide complex. We calculate equilibrium Hg(II) speciation in urban and high-altitude rainfall using Visual Minteq, which indicates Hg(II)-DOC to be the dominant Hg species. The ensemble of observations suggests that atmospheric gaseous HgBr2, HgCl2, HgBrNO2, HgBrHO2 forms, scavenged by aqueous aerosols and cloud droplets, are converted to Hg(II)-DOC forms in rainfall due to abundant organic carbon in aerosols and cloud water. Eventual photoreduction of Hg(II)-DOC in aqueous aerosols and clouds is, however, too slow to be relevant in global atmospheric Hg cycling.
Collapse
Affiliation(s)
- Xu Yang
- Geosciences Environnement Toulouse, Observatoire Midi-Pyrénées, CNRS/IRD/Université Toulouse III-Paul Sabatier, 31400 Toulouse, France
| | - Martin Jiskra
- Geosciences Environnement Toulouse, Observatoire Midi-Pyrénées, CNRS/IRD/Université Toulouse III-Paul Sabatier, 31400 Toulouse, France; Environmental Geosciences, University of Switzerland Basel, Bernoullistrasse 30, 4056 Basel, Switzerland
| | - Jeroen E Sonke
- Geosciences Environnement Toulouse, Observatoire Midi-Pyrénées, CNRS/IRD/Université Toulouse III-Paul Sabatier, 31400 Toulouse, France.
| |
Collapse
|
29
|
Fu X, Zhang H, Liu C, Zhang H, Lin CJ, Feng X. Significant Seasonal Variations in Isotopic Composition of Atmospheric Total Gaseous Mercury at Forest Sites in China Caused by Vegetation and Mercury Sources. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13748-13756. [PMID: 31721564 DOI: 10.1021/acs.est.9b05016] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, isotopic compositions of atmospheric total gaseous mercury (TGM) were measured in the Mt. Changbai (MCB) temperate deciduous forest and the Mt. Ailao (MAL) subtropical evergreen forest over a 1-year period. Higher δ202HgTGM values were observed under the forest canopy than above the forest canopy in the MCB forest. The vertical gradients in δ202HgTGM and Δ199HgTGM are positively correlated with the satellite-based normalized difference vegetation index (NDVI, representing the vegetation photosynthetic activity), suggesting that a strong vegetation activity (high NDVI) induces both mass-dependent and mass-independent fractionation of TGM isotopes. The observed δ202HgTGM and Δ199HgTGM showed seasonal variations. Mean δ202HgTGM and Δ199HgTGM in summer were 0.35-0.99‰ and 0.06-0.09‰ higher than those in other seasons in the MCB forest. In contrast, the highest seasonal δ202HgTGM in the MAL forest was observed in winter at 0.07-0.40‰ higher than the values found in other seasons. The variability of δ202HgTGM and Δ199HgTGM in MCB was attributed to vegetation activities, whereas the seasonal δ202HgTGM in the MAL forest was driven by the exposure of air masses to anthropogenic emissions. Using the data in this study and in the literature, we concluded that vegetation activity and anthropogenic Hg release are the main drivers for the spatial variations in TGM isotopic compositions in the northern hemisphere.
Collapse
Affiliation(s)
- Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry , Chinese Academy of Sciences , Guiyang 550081 , China
- CAS Center for Excellence in Quaternary Science and Global Change , Xi'an , Shaanxi 710061 , China
| | - Hui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry , Chinese Academy of Sciences , Guiyang 550081 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chen Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry , Chinese Academy of Sciences , Guiyang 550081 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Hui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry , Chinese Academy of Sciences , Guiyang 550081 , China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality , Lamar University , Beaumont , Texas 77710-0024 , United States
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry , Chinese Academy of Sciences , Guiyang 550081 , China
- CAS Center for Excellence in Quaternary Science and Global Change , Xi'an , Shaanxi 710061 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
30
|
Weiss-Penzias PS, Bank MS, Clifford DL, Torregrosa A, Zheng B, Lin W, Wilmers CC. Marine fog inputs appear to increase methylmercury bioaccumulation in a coastal terrestrial food web. Sci Rep 2019; 9:17611. [PMID: 31772229 PMCID: PMC6879473 DOI: 10.1038/s41598-019-54056-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/04/2019] [Indexed: 11/08/2022] Open
Abstract
Coastal marine atmospheric fog has recently been implicated as a potential source of ocean-derived monomethylmercury (MMHg) to coastal terrestrial ecosystems through the process of sea-to-land advection of foggy air masses followed by wet deposition. This study examined whether pumas (Puma concolor) in coastal central California, USA, and their associated food web, have elevated concentrations of MMHg, which could be indicative of their habitat being in a region that is regularly inundated with marine fog. We found that adult puma fur and fur-normalized whiskers in our marine fog-influenced study region had a mean (±SE) total Hg (THg) (a convenient surrogate for MMHg) concentration of 1544 ± 151 ng g-1 (N = 94), which was three times higher (P < 0.01) than mean THg in comparable samples from inland areas of California (492 ± 119 ng g-1, N = 18). Pumas in California eat primarily black-tailed and/or mule deer (Odocoileus hemionus), and THg in deer fur from the two regions was also significantly different (coastal 28.1 ± 2.9, N = 55, vs. inland 15.5 ± 1.5 ng g-1, N = 40). We suggest that atmospheric deposition of MMHg through fog may be contributing to this pattern, as we also observed significantly higher MMHg concentrations in lace lichen (Ramalina menziesii), a deer food and a bioindicator of atmospheric deposition, at sites with the highest fog frequencies. At these ocean-facing sites, deer samples had significantly higher THg concentrations compared to those from more inland bay-facing sites. Our results suggest that fog-borne MMHg, while likely a small fraction of Hg in all atmospheric deposition, may contribute, disproportionately, to the bioaccumulation of Hg to levels that approach toxicological thresholds in at least one apex predator. As global mercury levels increase, coastal food webs may be at risk to the toxicological effects of increased methylmercury burdens.
Collapse
Affiliation(s)
- Peter S Weiss-Penzias
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA.
| | - Michael S Bank
- Institute of Marine Research, Department of Contaminants and Biohazards, Bergen, Norway
- University of Massachusetts, Department of Environmental Conservation, Amherst, MA, USA
| | - Deana L Clifford
- Wildlife Investigations Lab, California Department of Fish and Wildlife, Rancho Cordova, CA, USA
- University of California, School of Veterinary Medicine, Department of Medicine and Epidemiology, Davis, CA, USA
| | - Alicia Torregrosa
- United States Geological Survey, Western Geographic Science Center, Menlo Park, CA, USA
| | - Belle Zheng
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Wendy Lin
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | | |
Collapse
|
31
|
Kumar A, Wu S. Mercury Pollution in the Arctic from Wildfires: Source Attribution for the 2000s. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11269-11275. [PMID: 31479246 DOI: 10.1021/acs.est.9b01773] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Atmospheric mercury (Hg) is a global environmental pollutant, with wildfire emissions being an important source. There have been growing concerns on Hg contamination in the Arctic region, which is largely attributed to long-range transport from lower latitude regions. In this work, we estimate the contributions of wildfire emissions from various source regions to Hg pollution in the Arctic (66° N to 90° N) using a newly developed global Hg wildfire emissions inventory and an atmospheric chemical transport model (GEOS-Chem). Our results show that global wildfires contribute to about 10% (15 Mg year-1) of the total annual Hg deposition to the Arctic, with the most important source region being Eurasia, which contribute to 5.3% of the total annual Hg deposition followed by Africa (2.5%) and North America (1%). The substantial contributions from the Eurasia region are driven by the strong wildfire activity in the boreal forests. The total wildfire-induced Hg deposition to the Arctic amounts to about one-third of the deposition caused by present-day anthropogenic emissions. We also find that wildfires result in significant Hg deposition to the Arctic across all seasons (winter: 8.3%, spring: 7%, summer: 11%, and fall: 14.6%) with the largest deposition occurring during the boreal fire season. These findings indicate that wildfire is a significant source for Arctic Hg contamination and also demonstrate the importance of boreal forest in the global and regional Hg cycle through the mobilization of sequestered Hg reservoir.
Collapse
Affiliation(s)
- Aditya Kumar
- Now at Space Science and Engineering Center , University of Wisconsin , Madison , Wisconsin 53706 , United States
| | | |
Collapse
|
32
|
Janssen SE, Riva-Murray K, DeWild JF, Ogorek JM, Tate MT, Van Metre PC, Krabbenhoft DP, Coles JF. Chemical and Physical Controls on Mercury Source Signatures in Stream Fish from the Northeastern United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10110-10119. [PMID: 31390861 DOI: 10.1021/acs.est.9b03394] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Streams in the northeastern U.S. receive mercury (Hg) in varying proportions from atmospheric deposition and legacy point sources, making it difficult to attribute shifts in fish concentrations directly back to changes in Hg source management. Mercury stable isotope tracers were utilized to relate sources of Hg to co-located fish and bed sediments from 23 streams across a forested to urban-industrial land-use gradient within this region. Mass-dependent isotopes (δ202Hg) in prey and game fish at forested sites were depleted (medians -0.95 and -0.83 ‰, respectively) in comparison to fish from urban-industrial settings (medians -0.26 and -0.38 ‰, respectively); the forested site group also had higher prey fish Hg concentrations. The separation of Hg isotope signatures in fish was strongly related to in-stream and watershed land-use indicator variables. Fish isotopes were strongly correlated with bed sediment isotopes, but the isotopic offset between the two matrices was variable due to differing ecosystem-specific drivers controlling the extent of MeHg formation. The multivariable approach of analyzing watershed characteristics and stream chemistry reveals that the Hg isotope composition in fish is linked to current and historic Hg sources in the northeastern U.S. and can be used to trace bioaccumulated Hg.
Collapse
Affiliation(s)
- Sarah E Janssen
- United States Geological Survey, Upper Midwest Water Science Center , Middleton , Wisconsin 53562 , United States
| | - Karen Riva-Murray
- United States Geological Survey, New York Water Science Center , Troy , New York 12180 , United States
| | - John F DeWild
- United States Geological Survey, Upper Midwest Water Science Center , Middleton , Wisconsin 53562 , United States
| | - Jacob M Ogorek
- United States Geological Survey, Upper Midwest Water Science Center , Middleton , Wisconsin 53562 , United States
| | - Michael T Tate
- United States Geological Survey, Upper Midwest Water Science Center , Middleton , Wisconsin 53562 , United States
| | - Peter C Van Metre
- United States Geological Survey, Texas Water Science Center Austin , Texas 78754 , United States
| | - David P Krabbenhoft
- United States Geological Survey, Upper Midwest Water Science Center , Middleton , Wisconsin 53562 , United States
| | - James F Coles
- United States Geological Survey, New England Water Science Center Northborough , Massachusetts 01532 , United States
| |
Collapse
|
33
|
Xie H, Liu M, He Y, Lin H, Yu C, Deng C, Wang X. An experimental study of the impacts of solar radiation and temperature on mercury emission from different natural soils across China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:545. [PMID: 31392424 DOI: 10.1007/s10661-019-7717-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Mercury (Hg) emission from natural soil is one of the most important contributors to global Hg cycles. Research on Hg emission from soil to air has been carried out in China. Currently, most of the research focuses on contaminated sites in China, while research in other regions is rare. To provide more accurate information on Hg emissions from soil to air in China and obtain additional laboratory data to verify the role of solar radiation and temperature in this process, we sampled and measured Hg emission fluxes from various natural soils (range, 48-240 ng/g) across mainland China under different solar radiation (0-900 W·m-2) and temperature (15-45 °C) conditions in a laboratory. We found that in different places in China, Hg emissions from natural soils occurred more easily when the soil Hg concentration, temperature, and solar radiation were high, but the impacts were different among the regions due to different soil types. Hg emissions from natural soils (0.071-24 ng·m2·h-1) were typically lower than those from contaminated sites, suggesting that additional measurements in natural soils are desirable. The results of this study could provide more accurate information on Hg emission from natural soil to air and help establish a nationwide natural soil Hg emission inventory in China.
Collapse
Affiliation(s)
- Han Xie
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Maodian Liu
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| | - Yipeng He
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Huiming Lin
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Chenghao Yu
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Chunyan Deng
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xuejun Wang
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
34
|
Azaroff A, Tessier E, Deborde J, Guyoneaud R, Monperrus M. Mercury and methylmercury concentrations, sources and distribution in submarine canyon sediments (Capbreton, SW France): Implications for the net methylmercury production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 673:511-521. [PMID: 30995585 DOI: 10.1016/j.scitotenv.2019.04.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Submarine canyons are important stocks of commercial interest fish, whose consumption is one of the main monomethymercury (MeHg) exposure to humans. Currently, biogeochemistry of mercury in those biologically productive system is unknown. In this work, inorganic mercury (Hg(II)) and organic mercury (MeHg) distributions were measured in sedimentary accumulative zones (slopes and terraces) against adjacent continental shelf sediments. Hg compound concentrations in these sediments show a huge range of concentrations (Hg(II) ranging from 18 to 973 ng g-1 and MeHg ranging from 0.07 to 2.03 ng g-1) exhibiting factors 50 and 20 fold, respectively. Higher values of mercury compounds were observed in canyon locations suggesting a high accumulation of mercury associated with higher values of clay fraction and organic matter content. The reactivity of mercury was investigated in sediment of three locations along Capbreton submarine canyon axis using slurry incubations experiments and isotopic tracers. Specific methylation and demethylation rate constants (kM and kD) were calculated. Results clearly showed that MeHg concentrations in these sediments are controlled by competing and simultaneous methylation and demethylation reactions mainly mediated by biotic process. Mercury reactivity was found higher in coastal stations compared to the offshore station due to more labile organic matter which may stimulate microbial activities. However, higher net MeHg production was estimated for the offshore station due to high Hg(II) concentrations suggesting a potential MeHg source for such marine environments.
Collapse
Affiliation(s)
- Alyssa Azaroff
- CNRS/ UNIV PAU & PAYS ADOUR/ E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux - MIRA, UMR 5254, 64600 Anglet, France
| | - Emmanuel Tessier
- CNRS/ UNIV PAU & PAYS ADOUR/ E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux - MIRA, UMR 5254, 64000 Pau, France
| | - Jonathan Deborde
- CNRS/ UNIV PAU & PAYS ADOUR/ E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux - MIRA, UMR 5254, 64600 Anglet, France
| | - Rémy Guyoneaud
- CNRS/ UNIV PAU & PAYS ADOUR/ E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux - MIRA, UMR 5254, 64000 Pau, France
| | - Mathilde Monperrus
- CNRS/ UNIV PAU & PAYS ADOUR/ E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux - MIRA, UMR 5254, 64600 Anglet, France.
| |
Collapse
|
35
|
Zhang H, Wang Z, Wang C, Zhang X. Concentrations and gas-particle partitioning of atmospheric reactive mercury at an urban site in Beijing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:13-23. [PMID: 30877965 DOI: 10.1016/j.envpol.2019.02.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Measurements of speciated atmospheric mercury play a key role in identifying mercury behavior in the atmosphere. In this study, we measured speciated atmospheric mercury, including gaseous elemental mercury (GEM), reactive gaseous mercury (RGM), and particulate bound mercury (PBM) (<2.5 μm), in 2015 and 2016 at an urban site in Beijing, China. The mean concentrations of GEM, RGM, and PBM were 4.70 ± 3.53 ng m-3, 18.47 ± 22.27 pg m-3, and 85.18 ± 95.34 pg m-3, respectively. The concentration of PM2.5 significantly affected the distribution of reactive mercury between the gaseous and particulate phases. With the raising of PM2.5 levels, PBM concentrations increased, on the contrary, the concentrations of RGM decreased gradually. The mean concentration of PBM during air-pollution events was more than three times that during clear days. During days with air pollution, the relative humidity significantly affected the gas-particle partitioning of reactive mercury. The linear relationships between gas-particle partitioning coefficient and meteorological factors (air temperature and relative humidity) were obtained over the four seasons. The data also showed that the gas-particle partitioning coefficient of reactive mercury was related to particle composition (e.g., Cl-, BC). The data present in this paper suggested the influence of anthropogenic emissions on reactive mercury in Beijing urban. And the findings will contribute to understand the gas-particle partitioning of reactive mercury and its influencing factors with complex urban pollution.
Collapse
Affiliation(s)
- Huan Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhangwei Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunjie Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiaoshan Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
36
|
Sun R. Mercury Stable Isotope Fractionation During Coal Combustion in Coal-Fired Boilers: Reconciling Atmospheric Hg Isotope Observations with Hg Isotope Fractionation Theory. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:657-664. [PMID: 30603766 DOI: 10.1007/s00128-018-2531-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Mercury (Hg) stable isotope is a useful tool to understand the transformation of atmospheric Hg. The observation on the enrichment of heavier isotopes in gaseous elemental Hg (GEM) relative to oxidized HgII species in atmosphere cannot be convincingly explained by isotope fractionation of Hg redox processes. This review shows that the large Hg isotope mass dependent fractionation (MDF) in coal-fired boilers is one of the underlying reasons. The reported Hg isotope data of feed coals and their combustion products are first summarized to give a general overview of how Hg isotopes fractionate before Hg discharge from coal-fired boilers. Then, predictive MDF models are discussed to simulate δ202Hg values of different Hg species in coal combustion flue gases. The discharged GEM is predicted to have the highest δ202Hg followed by gaseous HgII and particulate-bound HgII, which is in consistent with the observed MDF pattern of atmospheric Hg species.
Collapse
Affiliation(s)
- Ruoyu Sun
- Institute of Surface-Earth System Sciences, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
37
|
Janssen S, Lepak R, Tate M, Ogorek J, DeWild J, Babiarz C, Hurley J, Krabbenhoft D. Rapid pre-concentration of mercury in solids and water for isotopic analysis. Anal Chim Acta 2019; 1054:95-103. [DOI: 10.1016/j.aca.2018.12.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/03/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022]
|
38
|
Wu P, Kainz MJ, Bravo AG, Åkerblom S, Sonesten L, Bishop K. The importance of bioconcentration into the pelagic food web base for methylmercury biomagnification: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:357-367. [PMID: 30055496 DOI: 10.1016/j.scitotenv.2018.07.328] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
Methylmercury (MeHg) transfer from water into the base of the food web (bioconcentration) and subsequent biomagnification in the aquatic food web leads to most of the MeHg in fish. But how important is bioconcentration compared to biomagnification in predicting MeHg in fish? To answer this question we reviewed articles in which MeHg concentrations in water, plankton (seston and/or zooplankton), as well as fish (planktivorous and small omnivorous fish) were reported. This yielded 32 journal articles with data from 59 aquatic ecosystems at 22 sites around the world. Although there are many case studies of particular aquatic habitats and specific geographic areas that have examined MeHg bioconcentration and biomagnification, we performed a meta-analysis of such studies. Aqueous MeHg was not a significant predictor of MeHg in fish, but MeHg in seston i.e., the base of the aquatic food web, predicted 63% of the variability in fish MeHg. The MeHg bioconcentration factors (i.e., transfer of MeHg from water to seston; BCFw-s) varied from 3 to 7 orders of magnitude across sites and correlated significantly with MeHg in fish. The MeHg biomagnification factors from zooplankton to fish varied much less (logBMFz-f, 0.75 ± 0.31), and did not significantly correlate with fish MeHg, suggesting that zooplanktivory is not as important as bioconcentration in the biomagnification of fish MeHg across the range of ecosystems represented in our meta-analysis. Partial least square (PLS) and linear regression analyses identified several environmental factors associated with increased BCF, including low dissolved organic carbon, low pH, and oligotrophy. Our study reveals the widespread importance of MeHg bioconcentration into the base of the aquatic food web for MeHg at higher trophic levels in aquatic food webs, as well as the major influences on the variability in this bioconcentration.
Collapse
Affiliation(s)
- Pianpian Wu
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Martin J Kainz
- WasserCluster - Biologische Station Lunz, Inter-University Center for Aquatic Ecosystems Research, Lunz am See, Austria
| | - Andrea G Bravo
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, SE-75236 Uppsala, Sweden
| | - Staffan Åkerblom
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lars Sonesten
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
39
|
Chen L, Liang S, Zhang Y, Liu M, Meng J, Zhang H, Tang X, Li Y, Tong Y, Zhang W, Wang X, Shu J. Atmospheric Mercury Outflow from China and Interprovincial Trade. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13792-13800. [PMID: 30372053 DOI: 10.1021/acs.est.8b03951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mercury (Hg) is characterized by its ability to migrate between continents and its adverse effects on human health, arousing great concern around the world. The transboundary transport of large anthropogenic Hg emissions from China has attracted particular attention, especially from neighboring countries. Here, we combine an atmospheric transport model, a mass budget analysis, and a multiregional input-output model to simulate the atmospheric Hg outflow from China and investigate the impacts of Chinese interprovincial trade on the outflow. The results show outflows of 423.0 Mg of anthropogenic Hg, consisting of 65.9% of the total Chinese anthropogenic emissions, from China in 2010. Chinese interprovincial trade promotes the transfer of atmospheric outflow from the eastern terrestrial boundary (-6.4 Mg year-1) to the western terrestrial boundary (+4.5 Mg year-1) and a net decrease in the atmospheric outflow for the whole boundary, reducing the chance of risks to foreign countries derived from transboundary Hg pollution from China. These impacts of interprovincial trade will be amplified due to the expected strengthened interprovincial trade in the future. The synergistic promotional effects of interprovincial trade versus Hg controls should be considered to reduce the transboundary Hg pollution from China.
Collapse
Affiliation(s)
- Long Chen
- Key Laboratory of Geographic Information Science (Ministry of Education) , East China Normal University , Shanghai 200241 , China
- School of Geographic Sciences , East China Normal University , Shanghai 200241 , China
| | - Sai Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Beijing Normal University , Beijing 100875 , China
| | - Yanxu Zhang
- School of Atmospheric Sciences , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Maodian Liu
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Jing Meng
- Department of Politics and International Studies, University of Cambridge , Cambridge CB3 9DT , U.K
| | - Haoran Zhang
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Xi Tang
- Key Laboratory of Geographic Information Science (Ministry of Education) , East China Normal University , Shanghai 200241 , China
- School of Geographic Sciences , East China Normal University , Shanghai 200241 , China
| | - Yumeng Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Beijing Normal University , Beijing 100875 , China
| | - Yindong Tong
- School of Environmental Science and Engineering , Tianjin University , Tianjin 300072 , China
| | - Wei Zhang
- School of Environment and Natural Resources , Renmin University of China , Beijing 100872 , China
| | - Xuejun Wang
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Jiong Shu
- Key Laboratory of Geographic Information Science (Ministry of Education) , East China Normal University , Shanghai 200241 , China
- School of Geographic Sciences , East China Normal University , Shanghai 200241 , China
| |
Collapse
|
40
|
Angot H, Hoffman N, Giang A, Thackray CP, Hendricks AN, Urban NR, Selin NE. Global and Local Impacts of Delayed Mercury Mitigation Efforts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12968-12977. [PMID: 30376303 PMCID: PMC6377800 DOI: 10.1021/acs.est.8b04542] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mercury (Hg) is emitted to air by natural and anthropogenic sources, transports and deposits globally, and bioaccumulates to toxic levels in food webs. It is addressed under the global 2017 Minamata Convention, for which periodic effectiveness evaluation is required. Previous analyses have estimated the impact of different regulatory strategies for future mercury deposition. However, analyses using atmospheric models traditionally hold legacy emissions (recycling of previously deposited Hg) constant, and do not account for their possible future growth. Here, using an integrated modeling approach, we investigate how delays in implementing emissions reductions and the associated growing legacy reservoir affect deposition fluxes to ecosystems in different global regions. Assuming nearly constant yearly emissions relative to 2010, each 5-year delay in peak emissions defers by additional extra ca. 4 years the return to year 2010 global deposition. On a global average, each 5-year delay leads to a 14% decrease in policy impacts on local-scale Hg deposition. We also investigate the response of fish contamination in remote lakes to delayed action. We quantify the consequences of delay for limiting the Hg burden of future generations and show that traditional analyses of policy impacts provide best-case estimates.
Collapse
Affiliation(s)
- Hélène Angot
- Institute for Data, Systems, and Society , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Nicholas Hoffman
- Department of Earth, Atmospheric, and Planetary Sciences , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Amanda Giang
- Institute for Data, Systems, and Society , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
- Institute for Resources, Environment and Sustainability , University of British Columbia , Vancouver , British Columbia Canada V6T 1Z4
| | - Colin P Thackray
- Harvard John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Ashley N Hendricks
- Civil and Environmental Engineering Department , Michigan Technological University , Houghton , Michigan 49931 , United States
| | - Noel R Urban
- Civil and Environmental Engineering Department , Michigan Technological University , Houghton , Michigan 49931 , United States
| | - Noelle E Selin
- Institute for Data, Systems, and Society , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
- Department of Earth, Atmospheric, and Planetary Sciences , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
41
|
Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition. Nat Commun 2018; 9:4796. [PMID: 30442890 PMCID: PMC6237998 DOI: 10.1038/s41467-018-07075-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/11/2018] [Indexed: 11/15/2022] Open
Abstract
Anthropogenic mercury (Hg(0)) emissions oxidize to gaseous Hg(II) compounds, before deposition to Earth surface ecosystems. Atmospheric reduction of Hg(II) competes with deposition, thereby modifying the magnitude and pattern of Hg deposition. Global Hg models have postulated that Hg(II) reduction in the atmosphere occurs through aqueous-phase photoreduction that may take place in clouds. Here we report that experimental rainfall Hg(II) photoreduction rates are much slower than modelled rates. We compute absorption cross sections of Hg(II) compounds and show that fast gas-phase Hg(II) photolysis can dominate atmospheric mercury reduction and lead to a substantial increase in the modelled, global atmospheric Hg lifetime by a factor two. Models with Hg(II) photolysis show enhanced Hg(0) deposition to land, which may prolong recovery of aquatic ecosystems long after Hg emissions are lowered, due to the longer residence time of Hg in soils compared with the ocean. Fast Hg(II) photolysis substantially changes atmospheric Hg dynamics and requires further assessment at regional and local scales. Reduction of gaseous Hg(II) compounds drives atmospheric mercury wet and dry deposition to Earth surface ecosystems. Global Hg models assume this reduction takes place in clouds. Here the authors report a new gas-phase Hg photochemical mechanism that changes atmospheric mercury lifetime and its deposition to the surface.
Collapse
|
42
|
Abstract
Mercury (Hg) is a global pollutant emitted primarily as gaseous Hg0 that is deposited in aquatic and terrestrial ecosystems following its oxidation to HgII. From that point, microbes play a key role in determining Hg’s fate in the environment by participating in sequestration, oxidation, reduction, and methylation reactions. A wide diversity of chemotrophic and phototrophic microbes occupying oxic and anoxic habitats are known to participate directly in Hg cycling. Over the last few years, new findings have come to light that have greatly improved our mechanistic understanding of microbe-mediated Hg cycling pathways in the environment. In this review, we summarize recent advances in microbially mediated Hg cycling and take the opportunity to compare the relatively well-studied chemotrophic pathways to poorly understood phototrophic pathways. We present how the use of genomic and analytical tools can be used to understand Hg transformations and the physiological context of recently discovered cometabolic Hg transformations supported in anaerobes and phototrophs. Finally, we propose a conceptual framework that emphasizes the role that phototrophs play in environmental Hg redox cycling and the importance of better characterizing such pathways in the face of the environmental changes currently underway.
Collapse
Affiliation(s)
- Daniel S. Grégoire
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Alexandre J. Poulain
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
43
|
Chen MM, Lopez L, Bhavsar SP, Sharma S. What's hot about mercury? Examining the influence of climate on mercury levels in Ontario top predator fishes. ENVIRONMENTAL RESEARCH 2018; 162:63-73. [PMID: 29287181 DOI: 10.1016/j.envres.2017.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/16/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
Mercury (Hg) levels in Ontario top predator fishes have been increasing in recent decades. These increases may be a result of many additive factors, including global climate change. Only recently has research been conducted on how climate change may impact Hg levels in freshwater fishes at large-scales. We examined the relationship between Hg trends and (1) local weather, (2) large-scale climate drivers, and (3) anthropogenic Hg emissions, in native cool water (walleye and northern pike) and warm water (smallmouth bass and largemouth bass) predatory fishes in Ontario, Canada, for historical (1970-1992) and recent (1993-2014) time periods. For each fish species studied, > 25% of Ontario's secondary watersheds shifted from historically declining to recently increasing fish Hg trends, and ≥ 50% of watersheds experienced increasing trends between 1993 and 2014. Recent fish Hg increased at up to 0.20µg/g/decade; which were significant (p < 0.05) for walleye, northern pike and smallmouth bass. Multiple linear regressions revealed a complex interplay of local weather, large-scale climate drivers, and anthropogenic Hg emissions influencing fish Hg levels. Recent Hg levels for walleye and largemouth bass increased with changes in global climate drivers, while higher precipitation influenced smallmouth bass Hg levels the most. Walleye Hg levels increased during the positive phases of global climate drivers, reflecting the local influence of local temperatures and precipitation indirectly. Differentiating the effects of climate-related parameters and emissions is increasingly crucial to assess how changing multiple environmental stressors may impact health of wildlife and humans consuming fish.
Collapse
Affiliation(s)
- Miranda M Chen
- Department of Biology, York University, 4700 Keele St, Toronto, ON, Canada M3J 1P3
| | - Lianna Lopez
- Department of Biology, York University, 4700 Keele St, Toronto, ON, Canada M3J 1P3
| | - Satyendra P Bhavsar
- Ontario Ministry of the Environment and Climate Change, 125 Resources Road, Toronto, ON, Canada M9P 3V6
| | - Sapna Sharma
- Department of Biology, York University, 4700 Keele St, Toronto, ON, Canada M3J 1P3.
| |
Collapse
|
44
|
Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. AMBIO 2018; 47:116-140. [PMID: 29388126 PMCID: PMC5794683 DOI: 10.1007/s13280-017-1004-9] [Citation(s) in RCA: 376] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We review recent progress in our understanding of the global cycling of mercury (Hg), including best estimates of Hg concentrations and pool sizes in major environmental compartments and exchange processes within and between these reservoirs. Recent advances include the availability of new global datasets covering areas of the world where environmental Hg data were previously lacking; integration of these data into global and regional models is continually improving estimates of global Hg cycling. New analytical techniques, such as Hg stable isotope characterization, provide novel constraints of sources and transformation processes. The major global Hg reservoirs that are, and continue to be, affected by anthropogenic activities include the atmosphere (4.4-5.3 Gt), terrestrial environments (particularly soils: 250-1000 Gg), and aquatic ecosystems (e.g., oceans: 270-450 Gg). Declines in anthropogenic Hg emissions between 1990 and 2010 have led to declines in atmospheric Hg0 concentrations and HgII wet deposition in Europe and the US (- 1.5 to - 2.2% per year). Smaller atmospheric Hg0 declines (- 0.2% per year) have been reported in high northern latitudes, but not in the southern hemisphere, while increasing atmospheric Hg loads are still reported in East Asia. New observations and updated models now suggest high concentrations of oxidized HgII in the tropical and subtropical free troposphere where deep convection can scavenge these HgII reservoirs. As a result, up to 50% of total global wet HgII deposition has been predicted to occur to tropical oceans. Ocean Hg0 evasion is a large source of present-day atmospheric Hg (approximately 2900 Mg/year; range 1900-4200 Mg/year). Enhanced seawater Hg0 levels suggest enhanced Hg0 ocean evasion in the intertropical convergence zone, which may be linked to high HgII deposition. Estimates of gaseous Hg0 emissions to the atmosphere over land, long considered a critical Hg source, have been revised downward, and most terrestrial environments now are considered net sinks of atmospheric Hg due to substantial Hg uptake by plants. Litterfall deposition by plants is now estimated at 1020-1230 Mg/year globally. Stable isotope analysis and direct flux measurements provide evidence that in many ecosystems Hg0 deposition via plant inputs dominates, accounting for 57-94% of Hg in soils. Of global aquatic Hg releases, around 50% are estimated to occur in China and India, where Hg drains into the West Pacific and North Indian Oceans. A first inventory of global freshwater Hg suggests that inland freshwater Hg releases may be dominated by artisanal and small-scale gold mining (ASGM; approximately 880 Mg/year), industrial and wastewater releases (220 Mg/year), and terrestrial mobilization (170-300 Mg/year). For pelagic ocean regions, the dominant source of Hg is atmospheric deposition; an exception is the Arctic Ocean, where riverine and coastal erosion is likely the dominant source. Ocean water Hg concentrations in the North Atlantic appear to have declined during the last several decades but have increased since the mid-1980s in the Pacific due to enhanced atmospheric deposition from the Asian continent. Finally, we provide examples of ongoing and anticipated changes in Hg cycling due to emission, climate, and land use changes. It is anticipated that future emissions changes will be strongly dependent on ASGM, as well as energy use scenarios and technology requirements implemented under the Minamata Convention. We predict that land use and climate change impacts on Hg cycling will be large and inherently linked to changes in ecosystem function and global atmospheric and ocean circulations. Our ability to predict multiple and simultaneous changes in future Hg global cycling and human exposure is rapidly developing but requires further enhancement.
Collapse
Affiliation(s)
- Daniel Obrist
- Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, One University Ave, Lowell, MA 01854 USA
| | - Jane L. Kirk
- Environment and Climate Change, Canada, 867 Lakeshore Road, Burlington, ON L7P 2X3 Canada
| | - Lei Zhang
- School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 Jiangsu China
| | - Elsie M. Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard T.H. Chan School of Public Health, Harvard University, 29 Oxford Street, Cambridge, MA 02138 USA
| | - Martin Jiskra
- Géosciences Environnement Toulouse, GET-CNRS, CNRS – OMP, 14 Avenue Edouard Belin, 31400 Toulouse, France
| | - Noelle E. Selin
- Institute for Data, Systems, and Society and Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| |
Collapse
|
45
|
|
46
|
Gao S, Luo T, Zhou Q, Luo W, Li H, Jing L. Surface sodium lignosulphonate-immobilized sawdust particle as an efficient adsorbent for capturing Hg 2+ from aqueous solution. J Colloid Interface Sci 2018; 517:9-17. [PMID: 29421685 DOI: 10.1016/j.jcis.2017.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/25/2017] [Accepted: 12/03/2017] [Indexed: 11/16/2022]
Abstract
In this work, the soluble sodium lignosulphonate (LSNa) molecules were successfully grafted onto the surface of pine sawdust (PSD) particles to obtain an efficient adsorbent (PSD-LS) for removing Hg2+ from wastewater. In advance, the surface of sawdust particles were carboxymethylated by chloroacetic acid, the LSNa would be anchored on the surface by a heterogeneous esterification reaction occurred between the hydroxyl of LSNa and carboxyl on PSD surface. The resultant product (PSD-LS) exhibited a good adsorption performance for Hg2+ with adsorption capacity up to 164.77 mg/g and it was characterized by scanning electron microscope (SEM), energy dispersive X-ray diffraction (EDX), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The effects of pH, contact time, adsorption temperature and initial concentration on the adsorption of Hg2+ were investigated. Results showed that the pseudo-second-order kinetics and Langmuir isotherm model could describe the adsorption process better. In addition, the composite adsorbent has outstanding reusability with high and stable desorption rates under several continuous cycle. These findings suggested that PSD-LS was a potential adsorbent to remove hazardous metal ions from wastewater.
Collapse
Affiliation(s)
- Shan Gao
- Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Tiantian Luo
- Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Qi Zhou
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
| | - Wenjun Luo
- Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China.
| | - Haifeng Li
- Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Luru Jing
- Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
47
|
Halbach K, Mikkelsen Ø, Berg T, Steinnes E. The presence of mercury and other trace metals in surface soils in the Norwegian Arctic. CHEMOSPHERE 2017; 188:567-574. [PMID: 28915375 DOI: 10.1016/j.chemosphere.2017.09.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/02/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
Svalbard is an important study area for investigating the long-range transport of mercury (Hg) and other trace elements to the Arctic. Few studies have focused on their concentrations in Arctic soils. With ongoing climate change leading to thawing permafrost ground the soil compartment is of increasing importance in the Arctic. In this study, elemental composition and soil organic matter (SOM) content of surface and mineral soils in Svalbard are presented. The aim is to provide new data on soils in the Arctic and to gain more knowledge about the role of the soil in the biogeochemical cycle of mercury (Hg). Concentrations are reported for Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, S and Zn. Samples were taken in Adventdalen and in the area near Ny-Ålesund. We obtained a mean Hg concentration of 0.111 ± 0.036 μg/g in surface soils (range 0.041-0.254 μg/g). Hg levels in mineral soils (mean: 0.025 ± 0.013 μg/g; range: 0.004-0.060 μg/g) were substantially lower than in the corresponding surface soils. Hg strongly accumulates in the surface soil layer (upper 3 cm) and is associated with SOM (surface soil: 59 ± 14%). Hg concentrations in the surface soil were slightly lower than those in the humus layer in mainland Norway and were comparable to levels in soils elsewhere in the Arctic. An inverse association of Hg was found with elements attributed to the mineral soil, indicating that Hg is predominantly derived from atmospheric deposition.
Collapse
Affiliation(s)
- Katharina Halbach
- Helmholtz-Centre for Environmental Research (UFZ), Department of Analytical Chemistry, 04318 Leipzig, Germany.
| | - Øyvind Mikkelsen
- Norwegian University of Science and Technology, Department of Chemistry, 7491 Trondheim, Norway
| | - Torunn Berg
- Norwegian University of Science and Technology, Department of Chemistry, 7491 Trondheim, Norway
| | - Eiliv Steinnes
- Norwegian University of Science and Technology, Department of Chemistry, 7491 Trondheim, Norway
| |
Collapse
|
48
|
Vermilyea AW, Nagorski SA, Lamborg CH, Hood EW, Scott D, Swarr GJ. Continuous proxy measurements reveal large mercury fluxes from glacial and forested watersheds in Alaska. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:145-155. [PMID: 28475908 DOI: 10.1016/j.scitotenv.2017.03.297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 06/07/2023]
Abstract
In this study, a stream from a glacially dominated watershed and one from a wetland, temperate forest dominated watershed in southeast Alaska were continuously monitored for turbidity and fluorescence from dissolved organic matter (FDOM) while grab samples for unfiltered (UTHg), particulate (PTHg), and filtered mercury (FTHg) where taken over three 4-day periods (May snowmelt, July glacial melt, and September rainy season) during 2010. Strong correlations were found between FDOM and UTHg concentrations in the wetland, temperate forest watershed (r2=0.81), while turbidity and UTHg were highly correlated in the glacially dominated watershed (r2=0.82). Both of these parameters (FDOM and turbidity) showed stronger correlations than concentration-discharge relationships for UTHg (r2=0.55 for glacial stream, r2=0.38 for wetland/forest stream), thus allowing for a more precise determination of temporal variability in UTHg concentrations and fluxes. The association of mercury with particles and dissolved organic matter (DOM) appears to depend on the watershed characteristics, such as physical weathering and biogeochemical processes regulating mercury transport. Thus employing watershed-specific proxies for UTHg (such as FDOM and turbidity) can be effective for quantifying mercury export from watersheds with variable landcover. The UTHg concentration in the forest/wetland stream was consistently higher than in the glacial stream, in which most of the mercury was associated with particles; however, due to the high specific discharge from the glacial stream during the melt season, the watershed area normalized flux of mercury from the glacial stream was 3-6 times greater than the wetland/forest stream for the three sampling campaigns. The annual specific flux for the glacial watershed was 19.9gUTHgkm-2y-1, which is higher than any non-mining impacted stream measured to date. This finding indicates that glacial watersheds of southeast Alaska may be important conduits of total mercury to the Gulf of Alaska.
Collapse
Affiliation(s)
- Andrew W Vermilyea
- Castleton University, Natural Sciences Department, Castleton, VT, United States.
| | - Sonia A Nagorski
- University of Alaska Southeast, Department of Natural Sciences, Juneau, AK, United States
| | - Carl H Lamborg
- Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Eran W Hood
- University of Alaska Southeast, Department of Natural Sciences, Juneau, AK, United States
| | - Durelle Scott
- Virginia Tech, Biological Systems Engineering, Blacksburg, VT, United States
| | - Gretchen J Swarr
- Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| |
Collapse
|
49
|
Estimating Uncertainty in Global Mercury Emission Source and Deposition Receptor Relationships. ATMOSPHERE 2017. [DOI: 10.3390/atmos8120236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Abu Bakar N, Mohd Sata NSA, Ramlan NF, Wan Ibrahim WN, Zulkifli SZ, Che Abdullah CA, Ahmad S, Amal MNA. Evaluation of the neurotoxic effects of chronic embryonic exposure with inorganic mercury on motor and anxiety-like responses in zebrafish (Danio rerio) larvae. Neurotoxicol Teratol 2017; 59:53-61. [DOI: 10.1016/j.ntt.2016.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 01/12/2023]
|