1
|
Blanchard D, Gordon M, Dang DH, Makar PA, Kirk JL, Aherne J. Atmospheric deposition of chromophoric dissolved organic matter in the Athabasca Oil Sands Region, Canada, is strongly influenced by industrial sources during the winter months. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125936. [PMID: 40020904 DOI: 10.1016/j.envpol.2025.125936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/05/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
There is growing interest in the atmospheric deposition of chromophoric dissolved organic matter (CDOM) owing to its impact on aquatic processes and surface albedo. Industrial operations in the Athabasca Oil Sands Region (AOSR), Canada, are a major source of emissions of organic gases and particulate matter, which likely contribute to regional CDOM deposition. Here we investigated the composition and spatiotemporal variation of CDOM within regional snowpack (45 sites, collected March of 2023) and weekly precipitation samples (three monitoring stations between January 2021-December 2021) using ultraviolet-visible and fluorescence spectroscopy. Spectroscopic analysis identified three distinct fluorescent compounds (fluorophores) in both snowpack and precipitation. Elevated absorbance and fluorescence intensity among near-field samples demonstrated that industrial emissions influenced CDOM deposition in the AOSR. Fluorescent compounds linked to wildfire emissions (indicated by positive associations with pyrogenic indicators) were the dominant source of fluorescence during the summer while an industrial-sourced fluorophore (indicated by high near-field emission intensity and positive associations with continuous air quality monitoring data) was most prominent (absolute and relative emission intensity) during the cold season, possibly due to enhanced atmospheric stability and lower photolysis rates favouring fluorophore formation. Our results suggested that elevated wintertime CDOM deposition associated with oil sands operations will potentially alter snowpack albedo throughout the region.
Collapse
Affiliation(s)
- Dane Blanchard
- Environmental & Life Sciences, Trent University, Ontario, K9L 0G2, Canada.
| | - Mark Gordon
- Earth and Space Sciences, York University, Ontario, M3J 1P3, Canada
| | - Duc Huy Dang
- Environmental & Life Sciences, Trent University, Ontario, K9L 0G2, Canada; Department of Chemistry, Trent University, Peterborough, Ontario, K9L 0G2, Canada
| | - Paul Andrew Makar
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
| | - Jane L Kirk
- Aquatic Contaminants Research Division, Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, L7S 1A1, Canada
| | - Julian Aherne
- Environmental & Life Sciences, Trent University, Ontario, K9L 0G2, Canada
| |
Collapse
|
2
|
Liao K, Cheng YY, Yea SS, Chen LWA, Seinfeld JH, Yu JZ. New Analytical Paradigm to Determine Concentration of Brown Carbon and Its Sample-by-Sample Mass Absorption Efficiency. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17386-17395. [PMID: 39298651 DOI: 10.1021/acs.est.4c06831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Brown carbon (BrC) has a substantial direct radiative effect, but current estimates of its impact on radiative balance are highly uncertain due to a lack of measurements of its light-absorbing properties, such as mass absorption efficiency (MAE). Here, we present a new analytical paradigm based on a Bayesian inference (BI) model that takes multiwavelength aethalometer measurements and total carbon data to resolve the concentrations of black carbon and BrC, and MAEs of BrC on a sample-by-sample basis. Hourly MAEs, unattainable in previous studies, can now be calculated, enabling the first-time observation of the darkening-bleaching dynamics of BrC in response to photochemical transformation. We demonstrate the application of this BI model to analyze measurements collected over one year (2021-2022) in Hong Kong. Diel variations in MAE370 nm of BrC reveal a darkening-to-bleaching transition occurring between 8 and 10 O'clock when the solar irradiance ranges from 30 to 400 W m-2. Furthermore, we consistently observe an increase in MAE370 nm of BrC with nitrogen oxide concentrations, suggesting the enhanced formation of nitrogenous organics. This BI model-based data analysis would bring forth a breakthrough in amassing observation data of BrC and its MAEs in diverse ambient environments and with high time resolution.
Collapse
Affiliation(s)
- Kezheng Liao
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Yuk Ying Cheng
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Sui Shing Yea
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - L-W Antony Chen
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
- Division of Atmospheric Sciences, Desert Research Institute, Reno, Nevada 89512, United States
| | - John H Seinfeld
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jian Zhen Yu
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| |
Collapse
|
3
|
Choudhary V, Mandariya AK, Zhao R, Gupta T. Field evidence of brown carbon absorption enhancement linked to organic nitrogen formation in Indo-Gangetic Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172506. [PMID: 38636862 DOI: 10.1016/j.scitotenv.2024.172506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
Atmospheric brown carbon (BrC), a short-lived climate forcer, absorbs solar radiation and is a substantial contributor to the warming of the Earth's atmosphere. BrC composition, its absorption properties, and their evolution are poorly represented in climate models, especially during atmospheric aqueous events such as fog and clouds. These aqueous events, especially fog, are quite prevalent during wintertime in Indo-Gangetic Plain (IGP) and involve several stages (e.g., activation, formation, and dissipation, etc.), resulting in a large variation of relative humidity (RH) in the atmosphere. The huge RH variability allowed us to examine the evolution of water-soluble brown carbon (WS-BrC) diurnally and as a function of aerosol liquid water content (ALWC) and RH in this study. We explored links between the evolution of WS-BrC mass absorption efficiency at 365 nm (MAEWS-BrC-365) and chemical characteristics, viz., low-volatility organics and water-soluble organic nitrogen (WSON) to water-soluble organic carbon (WSOC) ratio (org-N/C), in the field (at Kanpur in central IGP) for the first time worldwide. We observed that WSON formation governed enhancement in MAEWS-BrC-365 diurnally (except during the afternoon) in the IGP. During the afternoon, the WS-BrC photochemical bleaching dwarfed the absorption enhancement caused by WSON formation. Further, both MAEWS-BrC-365 and org-N/C ratio increased with a decrease in ALWC and RH in this study, signifying that evaporation of fog droplets or bulk aerosol particles accelerated the formation of nitrogen-containing organic chromophores, resulting in the enhancement of WS-BrC absorptivity. The direct radiative forcing of WS-BrC relative to that of elemental carbon (EC) was ∼19 % during wintertime in Kanpur, and ∼ 40 % of this contribution was in the UV-region. These findings highlight the importance of further examining the links between the evolution of BrC absorption behavior and chemical composition in the field and incorporating it in the BrC framework of climate models to constrain the predictions.
Collapse
Affiliation(s)
- Vikram Choudhary
- Department of Civil Engineering and APTL at Center for Environmental Science and Engineering (CESE), Indian Institute of Technology Kanpur, Kanpur 208 016, India; Department of Chemistry, University of Alberta, Edmonton T6G 2R2, Alberta, Canada
| | - Anil Kumar Mandariya
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
| | - Ran Zhao
- Department of Chemistry, University of Alberta, Edmonton T6G 2R2, Alberta, Canada.
| | - Tarun Gupta
- Department of Civil Engineering and APTL at Center for Environmental Science and Engineering (CESE), Indian Institute of Technology Kanpur, Kanpur 208 016, India.
| |
Collapse
|
4
|
Li C, Zhou B, Zhang J, Jiao L, Cheng K, Chen L, Li Y, Li Y, Ho SSH, Wen Z. Optical properties and radiative forcing of carbonaceous aerosols in a valley city under persistent high temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172462. [PMID: 38615761 DOI: 10.1016/j.scitotenv.2024.172462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/06/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Carbonaceous aerosols were collected in the valley city of Baoji city in Northern China in August 2022. The light absorption characteristics and influencing factors of black carbon (BC) and brown carbon (BrC) were analyzed, and their radiative forcing was estimated. The results showed that the light absorption of secondary brown carbon [AbsBrC,sec (370)] was 7.5 ± 2.4 Mm-1, which was 2.5 times that of primary brown carbon [AbsBrC,pri (370), 3.0 ± 1.2 Mm-1]. During the study period, the absorption Ångström exponent (AAE) of aerosol was 1.6, indicating that there was obvious secondary aerosol formation or carbonaceous aerosol aging in the valley city of Baoji. Except for secondary BrC (BrCsec), the light absorption coefficient (Abs) and mass absorption efficiency (MAE) of BC and primary BrC (BrCpri) during the persistent high temperature period (PHT) were higher than those during the normal temperature period (NT) and the precipitation period (PP), which indicated that the light absorption capacity of black carbon and primary brown carbon increased, while the light absorption capacity of secondary brown carbon decreased under persistent high temperature period. Secondary aerosols sulfide (SO42-), nitrate (NO3-) and secondary organic carbon (SOC) are important factors for promoting the light absorption enhancemen of BC and BrCpri and photobleaching of BrCsec during persistent high temperature period. The Principal Component Analysis-Multiple Linear Regression (PCA-MLR) model showed that traffic emissions was the most important source of pollution in Baoji City. Based on this, the secondary source accelerates the aging of BC and BrC, causing changes in light absorption. During PHT, the radiative forcing of BC and BrCpri were enhanced, while the radiative forcing of BrCsec was weakened, but the positive radiative forcing generated by them may aggravate the high-temperature disaster.
Collapse
Affiliation(s)
- Chunyan Li
- College of Geography and Environment, Baoji University of Arts and Sciences, Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation, Baoji 721013, China
| | - Bianhong Zhou
- College of Geography and Environment, Baoji University of Arts and Sciences, Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation, Baoji 721013, China; State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China.
| | - Junhui Zhang
- College of Geography and Environment, Baoji University of Arts and Sciences, Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation, Baoji 721013, China
| | - Lihua Jiao
- College of Geography and Environment, Baoji University of Arts and Sciences, Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation, Baoji 721013, China
| | - Kaijing Cheng
- College of Geography and Environment, Baoji University of Arts and Sciences, Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation, Baoji 721013, China
| | - Long Chen
- College of Geography and Environment, Baoji University of Arts and Sciences, Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation, Baoji 721013, China
| | - Yu Li
- College of Geography and Environment, Baoji University of Arts and Sciences, Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation, Baoji 721013, China
| | - Yongqiang Li
- College of Geography and Environment, Baoji University of Arts and Sciences, Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation, Baoji 721013, China
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, United States
| | - Zhongtao Wen
- Baoji Ecological Environment Science and Technology Service Center, Baoji 721000, China
| |
Collapse
|
5
|
Li C, Zhang C, Kang S, Xu Y, Yan F, Liu Y, Rai M, Zhang H, Chen P, Wang P, He C, Gao S, Wang S. Weak transport of atmospheric water-insoluble particulate carbon from South Asia to the inner Tibetan Plateau in the monsoon season. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171321. [PMID: 38423306 DOI: 10.1016/j.scitotenv.2024.171321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Carbonaceous particles play a crucial role in atmospheric radiative forcing. However, our understanding of the behavior and sources of carbonaceous particles in remote regions remains limited. The Tibetan Plateau (TP) is a typical remote region that receives long-range transport of carbonaceous particles from severely polluted areas such as South Asia. Based on carbon isotopic compositions (Δ14C/δ13C) of water-insoluble particulate carbon (IPC) in total suspended particle (TSP), PM2.5, and precipitation samples collected during 2020-22 at the Nam Co Station, a remote site in the inner TP, the following results were achieved: First, fossil fuel contributions (ffossil) to IPC in TSP samples (28.60 ± 9.52 %) were higher than that of precipitation samples (23.11 ± 8.60 %), and it is estimated that the scavenging ratio of IPC from non-fossil fuel sources was around 2 times that from fossil fuel combustion during the monsoon season. The ffossil of IPC in both TSP and PM2.5 samples peaked during the monsoon season. Because heavy precipitation during the monsoon season scavenges large amounts of long-range transported carbonaceous particles, the contribution of local emissions from the TP largely outweighs that from South Asia during this season. The results of the IPC source apportionment based on Δ14C and δ13C in PM2.5 samples showed that the highest contribution of liquid fossil fuel combustion also occurred in the monsoon season, reflecting increased human activities (e.g., tourism) on the TP during this period. The results of this study highlight the longer lifetime of fossil fuel-sourced IPC in the atmosphere than that of non-fossil fuel sources in the inner TP and the importance of local emissions from the TP during the monsoon season. The findings provide new knowledge for model improvement and mitigation of carbonaceous particles.
Collapse
Affiliation(s)
- Chaoliu Li
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Chao Zhang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinbo Xu
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangping Yan
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yixi Liu
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Hongbo Zhang
- College of Water Resources & Civil Engineering, China Agricultural University, Beijing, China
| | - Pengfei Chen
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Pengling Wang
- National Climate Center, China Meteorological Administration, Beijing 100081, China
| | - Cenlin He
- Research Applications Laboratory, National Center for Atmospheric Research, Boulder, CO 80301, USA
| | - Shaopeng Gao
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
6
|
Rawat B, Sharma CM, Tripathee L, Wan X, Cong Z, Paudyal R, Pandey A, Kandel K, Kang S, Zhang Q. Concentration, seasonality, and sources of trace elements in atmospheric aerosols from Godavari in the southern Himalayas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123359. [PMID: 38228261 DOI: 10.1016/j.envpol.2024.123359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/14/2023] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
Atmospheric pollution has detrimental effects on human health and ecosystems. The southern region of the Himalayas, undergoing rapid urbanization and intense human activities, faces poor air quality marked by high aerosol loadings. In this study, we conducted a two-year PM10 sampling in the suburban area (Godavari) of Kathmandu, a representative metropolis situated in the southern part of the central Himalayas. The trace elements were measured to depict aerosol-bound element loadings, seasonality, and potential sources. The mean concentrations of trace elements varied considerably, ranging from 0.27 ± 0.19 ng m-3 for Tl to 1252.78 ng m-3 for Zn. The average concentration of Co and Ni was 1.2 and 22.4 times higher, respectively, than those in Lhasa city in Tibet in the northern Himalayas. The concentration of Pb was 38 times lower than that in Lahore, Pakistan, and 9 times lower than urban sites in India. For the seasonality, the trace element concentrations displayed remarkable variation, with higher concentrations during the non-monsoon seasons and lower concentrations during the monsoon season. This trend was primarily influenced by anthropogenic activities such as low-grade fuel combustion in vehicles, coal combustion in brick kilns, and biomass burning, along with seasonal rainfall that induced aerosol washout. The enrichment factors (EFs) analysis revealed that Cd, Zn, Sb, Ni, Cu, Cr, and Pb had higher EFs, indicating their significant contributions from anthropogenic sources. In contrast, elements like Tl, Co, V, Cs, U, Ba, Th, and Sr, characterized by lower EFs, were mainly associated with natural sources. The Pb isotopic ratio profiles exhibited the Pb in PM10 are derived major contribution from legacy lead. Biomass burning contributed to the Pb source in winter. These findings provide policymakers with valuable insights to develop guidelines and strategies aimed at improving air quality and mitigating the impact of aerosol pollution on human health in the Himalayan region.
Collapse
Affiliation(s)
- Bakhat Rawat
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Centre for Atmospheric Chemistry, University of Wollongong (UOW), NSW, 2522, Australia
| | - Chhatra Mani Sharma
- Central Department of Environmental Science, Tribhuvan University, Kritipur, Kathmandu, Nepal
| | - Lekhendra Tripathee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xin Wan
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiyuan Cong
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China; School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Rukumesh Paudyal
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Aastha Pandey
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kshitiz Kandel
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shichang Kang
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Qianggong Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Haque MM, Zhang YL, Deshmukh DK, Lee M, Kawamura K. Anthropogenic emission controls organic aerosols at Gosan background site in the outflow from northeast Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168590. [PMID: 37979875 DOI: 10.1016/j.scitotenv.2023.168590] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Anthropogenic activities release substantial amounts of organic components into the atmosphere. In this study, eight groups of organic compounds such as polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes, n-alkanes, fatty acids, fatty alcohols, phthalate esters, and lignin and resin acids were identified in the ambient aerosol samples collected from a regional background site in the Korean Climate Observatory at Gosan (KCOG), South Korea. The total identified organics were most abundant in winter (220 ± 60.3 ng m-3), followed by spring, autumn, and summer, with the predominance of n-fatty acids. All classes of aliphatic lipid components showed a significant positive correlation with fossil fuel-derived organic carbon (OC-FF) and biomass burning-derived organic carbon (OC-BB), indicating that they were abundantly emitted from anthropogenic sources such as fossil fuel combustion and biomass burning. The composition profiles and diagnostic ratios of PAHs indicate that they were largely derived from coal and/or biomass combustion in the continent. In contrast, hopanes are predominantly emitted from gasoline or diesel engines, particularly in the summer, from commercial ships. The high concentration of phthalates in the summer suggested that plastic emissions from the open ocean substantially contributed to the Gosan aerosols. The low ratios of unsaturated/saturated fatty acids indicate that Gosan organic aerosols were photochemically aged during atmospheric transport. The temporal and seasonal variations of organic species over KCOG provide crucial information on the emission strengths of different contributing sources in the East Asian outflow. Positive Matrix Factorization (PMF) results and 14C-based source apportionment studies demonstrated that anthropogenically derived organic aerosols largely contributed to the aerosol mass over KCOG. Thus, the East Asian continent might be the major source region for organic aerosols over the western North Pacific, except in the summer.
Collapse
Affiliation(s)
- Md Mozammel Haque
- Atmospheric Environment Center, Joint Laboratory for International Cooperation on Climate and Environmental Change, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China; School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China; Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Yan-Lin Zhang
- Atmospheric Environment Center, Joint Laboratory for International Cooperation on Climate and Environmental Change, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China; School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Dhananjay K Deshmukh
- Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695022, India
| | - Meehye Lee
- Department of Earth and Environmental Sciences, Korea University, Anam-dong, Sungbuk-gu, Seoul 136-701, South Korea
| | - Kimitaka Kawamura
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan; Chubu Institute for Advanced Studies, Chubu University, Kasugai 487-8501, Japan.
| |
Collapse
|
8
|
Sharma BR, Kuttippurath J, Patel VK. A gradual increase of aerosol pollution in the Third Pole during the past four decades: Implication for regional climate change. ENVIRONMENTAL RESEARCH 2023; 238:117105. [PMID: 37689338 DOI: 10.1016/j.envres.2023.117105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
We analyse the long-term (1980-2020) changes in aerosols over the Third Pole (TP) and assess the changes in radiative forcing (RF) using satellite, ground-based and reanalysis data. The annual mean aerosol optical depth (AOD) varies from 0.06 to 0.24, with the highest values of around 0.2 in the north and southwest TP, which are dominated by dust from Taklimakan and Thar deserts, respectively. However, Organic Carbon (OC), Black Carbon (BC) and sulphate aerosols have significant contributions to the total AOD in the south and east TP. High amounts of dust are observed in spring and summer, but BC in winter. Trajectory analysis reveals that the air mass originated from East and South Asia carries BC and OC, whereas the air from South Asia, Central Asia and Middle East brings dust to TP. Significant positive trends in AOD is found in TP, with high values of about 0.002/yr in the eastern and southern TP. There is a gradual increase in BC and OC concentrations during 1980-2020, but the change from 2000 is phenomenal. The RF at the top of the atmosphere varies from -10 to 2 W/m2 in TP, and high positive RF of about 2 W/m2 is estimated in Pamir, Karakoram and Nyainquentanglha mountains, where the massive glacier mass exists. The RF has increased in much of TP during recent decades (2001-2020) with respect to previous decades (1981-2000), which can be due to the rise in BC and dust during the latter period. Therefore, the positive trend in BC and its associated change in RF can amplify the regional warming, and thus, the melting of glaciers or ice in TP. This is a great concern as it is directly connected to the water security of many South Asian countries.
Collapse
Affiliation(s)
- B R Sharma
- CORAL, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India; Department of Physics, Prithvinarayan Campus, Tribhuvan University, Pokhara, Nepal
| | - J Kuttippurath
- CORAL, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - V K Patel
- CORAL, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
9
|
Lu QB. Critical Review on Radiative Forcing and Climate Models for Global Climate Change since 1970. ATMOSPHERE 2023; 14:1232. [DOI: 10.3390/atmos14081232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This review identifies a critical problem in the fundamental physics of current climate models. The large greenhouse effect of rising CO2 assumed in climate models is assessed by six key observations from ground- and satellite-based measurements. This assessment is enhanced by statistical analyses and model calculations of global or regional mean surface temperature changes by conventional climate models and by a conceptual quantum physical model of global warming due to halogen-containing greenhouse gases (halo-GHGs). The postulated large radiative forcing of CO2 in conventional climate models does not agree with satellite observations. Satellite-observed warming pattern resembles closely the atmospheric distribution of chlorofluorocarbons (CFCs). This review helps understand recent remarkable observations of reversals from cooling to warming in the lower stratosphere over most continents and in the upper stratosphere at high latitudes, surface warming cessations in the Antarctic, North America, UK, and Northern-Hemisphere (NH) extratropics, and the stabilization in NH or North America snow cover, since the turn of the century. The complementary observation of surface temperature changes in 3 representative regions (Central England, the Antarctic, and the Arctic) sheds new light on the primary mechanism of global warming. These observations agree well with not CO2-based climate models but the CFC-warming quantum physical model. The latter offers parameter-free analytical calculations of surface temperature changes, exhibiting remarkable agreement with observations. These observations overwhelmingly support an emerging picture that halo-GHGs made the dominant contribution to global warming in the late 20th century and that a gradual reversal in warming has occurred since ~2005 due to the phasing out of halo-GHGs. Advances and insights from this review may help humans make rational policies to reverse the past warming and maintain a healthy economy and ecosystem.
Collapse
Affiliation(s)
- Qing-Bin Lu
- Department of Physics and Astronomy, Department of Biology and Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
10
|
Yu F, Li X, Zhang R, Guo J, Yang W, Tripathee L, Liu L, Wang Y, Kang S, Cao J. Insights into dissolved organics in non-urban areas - Optical properties and sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121641. [PMID: 37100371 DOI: 10.1016/j.envpol.2023.121641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023]
Abstract
Brown carbon aerosols show obvious light absorption properties in the ultraviolet-visible (UV-Vis) range, which has an important impact on photochemistry and climate. In this study, experimental samples originated from the North slope of the Qinling Mountains (at two remote suburb sites) to study the optical properties of water-soluble brown carbon (WS-BrC) in PM2.5. The WS-BrC of TY (a sampling site on the edge of Tangyu of Mei county) has a stronger light absorption ability than CH (a rural sampling site, near the Cuihua Mountains scenic spot). The direct radiation effect of WS-BrC relative to elemental carbon (EC) is 6.67 ± 1.36% in TY and 24.13 ± 10.84% in CH in the UV range, respectively. In addition, two humic-like and one protein-like fluorophore components in WS-BrC were identified by fluorescence spectrum and parallel factor (EEMs-PARAFAC). Humification index (HIX), biological index (BIX) and fluorescence index (FI) together showed that the WS-BrC in the two sites may originate from fresh aerosol emissions. Potential source analysis of Positive Matrix Factorization (PMF) model show that the combustion process, vehicle, secondary formation and road dust are the main contributors to WS-BrC.
Collapse
Affiliation(s)
- Feng Yu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Xiaofei Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China; Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Rui Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jingning Guo
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wen Yang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Lekhendra Tripathee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Lang Liu
- School of Public Policy and Administration, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yuqin Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| |
Collapse
|
11
|
Singh GK, Qadri AM, Paul D, Gupta T, Mukherjee S, Chatterjee A. Investigation of sources and atmospheric transformation of carbonaceous aerosols from Shyamnagar, eastern Indo-Gangetic Plains: Insights from δ 13C and carbon fractions. CHEMOSPHERE 2023; 326:138422. [PMID: 36925018 DOI: 10.1016/j.chemosphere.2023.138422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
This study reports the chemical characterization of the carbonaceous component of PM2.5 (particulate matter with aerodynamic diameter ≤2.5 μm) collected over a year-long campaign from a regional site in Shyamnagar, West Bengal, in the Indo-Gangetic Plains (IGP), India. The carbonaceous fractions (elemental and organic carbon), mass concentrations, and stable carbon isotopic composition (δ13C value) of aerosols were measured and utilized to characterize the sources and understand the atmospheric processing of aerosols. Cluster analysis, Potential Source Contribution Function (PSCF) modeling, and fire count data were analyzed to decipher the pattern of air masses, source contributions, and extent of burning activities. The PM2.5 mass concentrations were significantly higher during winter (168.3 ± 56.3 μg m-3) and post-monsoon (109.8 ± 59.1 μg m-3) compared to the monsoon (29.8 ± 10.7 μg m-3) and pre-monsoon (55.1 ± 23.0 μg m-3). Organic carbon (OC), elemental carbon (EC), and total carbon (TC) concentrations were also several factors higher during winter and post-monsoon compared to monsoon and pre-monsoon. The winter and post-monsoon experienced the impact of air masses from upwind IGP. On the other hand, long-range transported air masses from the South-West direction dominated during monsoon and pre-monsoon, which are also relatively cleaner periods. The average δ13C during post-monsoon and winter was ∼1‰ higher compared to monsoon and pre-monsoon. The vehicular exhaust and biomass/biofuel burning contributed dominantly in winter and post-monsoon. In comparison, lower δ13C in pre-monsoon and monsoon might be attributed to the dominance of biomass/biofuel combustion. Photochemical-induced aging of the anthropogenic aerosols resulted in a higher δ13C of TC in winter and post-monsoon, whereas the mixing of different local sources in pre-monsoon and monsoon resulted in lower δ13C values. These findings benefit policymakers in strategizing proper and effective management of biomass/biofuel burning in the IGP to minimize air pollution.
Collapse
Affiliation(s)
- Gyanesh Kumar Singh
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Adnan Mateen Qadri
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Debajyoti Paul
- Department of Earth Sciences, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| | - Tarun Gupta
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Sauryadeep Mukherjee
- Environmental Sciences Section, Bose Institute, P 1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Abhijit Chatterjee
- Environmental Sciences Section, Bose Institute, P 1/12 CIT Scheme VIIM, Kolkata, 700054, India
| |
Collapse
|
12
|
Rashid I, Abdullah T, Romshoo SA. Explaining the natural and anthropogenic factors driving glacier recession in Kashmir Himalaya, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:29942-29960. [PMID: 36418815 DOI: 10.1007/s11356-022-24243-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Glaciers across the Kashmir Himalayan region are melting at an accelerated pace compared to other regions across the Himalayan arc. This study analyzed the recession patterns of nine glaciers in the Kashmir Himalaya region over 28 years between 1992 and 2020 using satellite images and field measurements. The recession patterns were correlated with debris cover, topographic factors, and ambient black carbon (BC) concentration at glacier sites. HYSPLIT model was used to track the air mass sources at a 7-day time-step from September 1, 2014, to September 28, 2014, over the selected region. All nine glaciers revealed high recession as indicated by changes in the area (average recession: 20.8%) and snout position (~ 14 m a-1). The relative percentage of debris on each glacier varied between ~ 0% (clean glacier) and 43%. Although the investigated glaciers lie in the same climatological regime, their topographical behavior is dissimilar with mean altitude ranging between 4000 and ~ 4700 m asl and the average slope varying from 17 to 24°. All the investigated glaciers are north-facing except G3 (southerly aspect). Our results indicate anomalously high ambient BC concentrations, ranging from 500 to 1364 ng m-3, at the glacier sites, higher than previously studied for glaciers in the Himalayas and neighboring Tibetan Plateau. The backward air-mass trajectory modeling indicated both local and global sources of particulate matter in the study area. A comparative analysis of BC measurements and glacier recession with the studies conducted across high Asia indicated the influence of BC in accelerating the melting of glaciers in the Kashmir region.
Collapse
Affiliation(s)
- Irfan Rashid
- Department of Geoinformatics, University of Kashmir, Hazratbal, Srinagar, 190006, India.
| | - Tariq Abdullah
- Department of Geoinformatics, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Shakil Ahmad Romshoo
- Department of Geoinformatics, University of Kashmir, Hazratbal, Srinagar, 190006, India
- Islamic University of Science and Technology, 1-University Avenue Awantipora, Pulwama, 192122, India
| |
Collapse
|
13
|
Chen SP, Lu CHS, Davies JE, Ou-Yang CF, Lin NH, Huff AK, Pierce BR, Kondragunta S, Wang JL. Infusing satellite data into aerosol forecast for near real-time episode detection and diagnosis in East Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158797. [PMID: 36116651 DOI: 10.1016/j.scitotenv.2022.158797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
A near-real-time (NRT) aerosol forecast and diagnostic approach is developed based on the system of Infusing satellite Data into Environmental Applications for East Asia, herein denoted as IDEA-EA. The design incorporates a 0.5-degree Global Forecast System (GFS) and Visible Infrared Imaging Radiometer Suite (VIIRS) aerosol and cloud retrievals for meteorological and remote sensing inputs. The primary output of IDEA-EA includes aerosol forward and backward air mass trajectory forecasts, migration visualization, and data synthesis purposed for NRT aerosol detection, monitoring, and source tracing in East Asia. Two aerosol episodes of Southeast Asia (SEA) biomass burning and Chinese haze infusion with Gobi dust are illustrated by IDEA-EA to demonstrate its forecast and source tracing capabilities. In the case of SEA biomass burning (late March 2021), forward trajectories of IDEA-EA forecasted air masses with high aerosol optical depth (AOD) from SEA affecting Taiwan. The IDEA-EA forecasts were verified by increased AOD and surface PM2.5 observations at a mountain site. In the case of the Chinese haze (October 30, 2019), backward trajectories from the northern tip of Taiwan traced air masses back to the east coast of mainland China and possibly further to the Gobi Desert. Compared with conventional numerical model simulations, the combination of the state-of-the-art aerosol remote sensing and trajectory modeling in IDEA-EA provides a cost-effective alternative for air quality management.
Collapse
Affiliation(s)
- Sheng-Po Chen
- Center for Environmental Monitoring and Technology, National Central University, Taoyuan, Taiwan; Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY, USA.
| | - Cheng-Hsuan Sarah Lu
- Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY, USA; Joint Center for Satellite Data Assimilation, Boulder, CO, USA
| | - James E Davies
- Space Science and Engineering Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Chang-Feng Ou-Yang
- Department of Atmospheric Sciences, National Central University, Taoyuan, Taiwan
| | - Neng-Huei Lin
- Center for Environmental Monitoring and Technology, National Central University, Taoyuan, Taiwan; Department of Atmospheric Sciences, National Central University, Taoyuan, Taiwan
| | - Amy K Huff
- I.M. Systems Group, College Park, MD, USA
| | - Bradley R Pierce
- Space Science and Engineering Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Shobha Kondragunta
- National Environmental Satellite, Data, and Information Service, NOAA, USA
| | - Jia-Lin Wang
- Center for Environmental Monitoring and Technology, National Central University, Taoyuan, Taiwan; Department of Chemistry, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
14
|
Rupakheti D, Rupakheti M, Rai M, Yu X, Yin X, Kang S, Orozaliev MD, Sinyakov VP, Abdullaev SF, Sulaymon ID, Hu J. Characterization of columnar aerosol over a background site in Central Asia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120501. [PMID: 36283470 DOI: 10.1016/j.envpol.2022.120501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/01/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Ground-based observational characterization of atmosphere aerosols over Central Asia is very limited. This study investigated the columnar aerosol characteristics over Issyk-Kul, Kyrgyzstan, a background site in Central Asia using the long-term (∼14 years: August 2007-November 2021) data acquired with the Cimel sunphotometer. The mean aerosol optical depth (AOD) and Ångström exponent (AE) during the observation period were 0.14 ± 0.10 and 1.19 ± 0.41, respectively. Both AOD and AE varied across seasons, with highest AOD in spring (0.17 ± 0.17). Regarding the aerosol types, clean continental aerosols were dominant type (65%), followed by mixed aerosols (∼19%), clean marine aerosols (∼14%), dust (0.8%), and urban/industrial and biomass burning aerosol (0.7%). The aerosol volume size distribution was bimodal indicating the influence of both anthropogenic and natural aerosols with clear dominance of coarse mode during the spring season. Mainly dust and mixed aerosols were present during high aerosol episodes while the coarse mode aerosol volume concentration was 7.5 (strong episodes) and ∼19 (extreme episodes) times higher than the whole period average. Aerosol over this background sites were from local and regional sources with some contribution of long-range transport.
Collapse
Affiliation(s)
- Dipesh Rupakheti
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Institute of Fundamental Research and Studies, Kathmandu 44600, Nepal.
| | | | - Mukesh Rai
- International Centre for Integrated Mountain Development, Lalitpur, Nepal
| | - Xingna Yu
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xiufeng Yin
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Musapar D Orozaliev
- Institute of Innovative Professions, Kyrgyz State University of Construction, Transport and Architecture Named After N Isanov, Bishkek, Kyrgyzstan
| | - Valery P Sinyakov
- Institute of Innovative Professions, Kyrgyz State University of Construction, Transport and Architecture Named After N Isanov, Bishkek, Kyrgyzstan
| | - Sabur F Abdullaev
- Physical Technical Institute of the Academy of Sciences of Tajikistan, Dushanbe, Tajikistan
| | - Ishaq Dimeji Sulaymon
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jianlin Hu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
15
|
Gorkowski K, Benedict KB, Carrico CM, Dubey MK. Complexities in Modeling Organic Aerosol Light Absorption. J Phys Chem A 2022; 126:4827-4833. [PMID: 35834798 PMCID: PMC9340763 DOI: 10.1021/acs.jpca.2c02236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/04/2022] [Indexed: 11/29/2022]
Abstract
Aerosol particles dynamically evolve in the atmosphere by physicochemical interactions with sunlight, trace chemical species, and water. Current modeling approaches fix properties such as aerosol refractive index, introducing spatial and temporal errors in the radiative impacts. Further progress requires a process-level description of the refractive indices as the particles age and experience physicochemical transformations. We present two multivariate modeling approaches of light absorption by brown carbon (BrC). The initial approach was to extend the modeling framework of the refractive index at 589 nm (nD), but that result was insufficient. We developed a second multivariate model using aromatic rings and functional groups to predict the imaginary part of the complex refractive index. This second model agreed better with measured spectral absorption peaks, showing promise for a simplified treatment of BrC optics. In addition to absorption, organic functionalities also alter the water affinity of the molecules, leading to a hygroscopic uptake and increased light absorption, which we show through measurements and modeling.
Collapse
Affiliation(s)
- Kyle Gorkowski
- Earth
and Environmental Science, Los Alamos National
Laboratory, Los Alamos, New Mexico 87545, United States
| | - Katherine B. Benedict
- Earth
and Environmental Science, Los Alamos National
Laboratory, Los Alamos, New Mexico 87545, United States
| | - Christian M. Carrico
- New
Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| | - Manvendra K. Dubey
- Earth
and Environmental Science, Los Alamos National
Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
16
|
Kumar R, Kumar R, Singh A, Arif M, Kumar P, Kumari A. Chemometric approach to evaluate the chemical behavior of rainwater at high altitude in Shaune Garang catchment, Western Himalaya. Sci Rep 2022; 12:12774. [PMID: 35896609 PMCID: PMC9329433 DOI: 10.1038/s41598-022-15422-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022] Open
Abstract
The present research has been performed to analyze the chemical behavior of rainwater of the Shaune Garang catchment (32.19° N, 78.20° E) in the Baspa basin, located at a high elevation (4221 m above mean sea level) in the Himachal Himalaya, India. During the study period, sixteen rainwater samples were collected from the Shaune Garang catchment at five different sites. The volume-weighted mean (VWM) pH value of rainwater ranged between 4.59 and 6.73, with an average value of 5.47 ± 0.69, indicating the alkaline nature of rainfall. The total ionic strength in the rainwater ranged from 113.4 to 263.3 µeq/l with an average value of 169.1 ± 40.4 µeq/l. The major dominant cations were Ca2+ (43.10%) and Na+ (31.97%) and anions were Cl− (37.68%), SO42− (28.71%) and NO3− (23.85%) in rainwater. The ionic ratios were calculated among all the ions. The fraction of (NO3− +Cl−) with SO42− was measured as 2.3, which specifies sour faces of rainwater due to HNO3, H2SO4, and HCl. A multivariate statistical assessment of rainwater chemistry through Principal Component Analysis (PCA) shows the significance of four factors controlling 78.37% of the total variance, including four-component (PC1 explained 27.89%, PC2 explained 24.98%, PC3 explained 14.64%, PC4 explained 10.85%). However, the individual contribution of Factor 1(PC1) explains 27.89% of the total variance (78.37%) and displays a strong optimistic loading for Ca2+ and Cl−. Further, high loading of Ca2+ and NO3− and moderate loading of SO42− signify the contribution of burning fossil fuel and soil dust. Anthropogenic and natural pollutants influence the composition of rainwater in the pristine Himalayas due to local and long-distance transportation. The study area receives precipitation from the West and North-West, transporting dust and fossil fuel emissions from the Thar Desert and Northwestern countries.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Bandar Sindri, Ajmer, Rajasthan, India
| | - Rajesh Kumar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Bandar Sindri, Ajmer, Rajasthan, India.
| | - Atar Singh
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Bandar Sindri, Ajmer, Rajasthan, India
| | - Mohammad Arif
- National Institute of Urban Affairs, Ministry of Housing and Urban Affairs, Delhi, India
| | - Pankaj Kumar
- Integrated Regional Office, Ministry of Environment, Forest and Climate Change (MoEFCC), Government of India, Saifabad, Hyderabad, Telangana, India
| | - Anupma Kumari
- Environmental Biology Laboratory, Department of Zoology, Patna University, Patna, Bihar, India
| |
Collapse
|
17
|
Sai Krishna SVS, Prijith SS, Kumar R, Sesha Sai MVR, Ramana MV. Planetary albedo decline over Northwest India contributing to near surface warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151607. [PMID: 34798084 DOI: 10.1016/j.scitotenv.2021.151607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/21/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
The increase in frequency and severity of heat waves during the pre-monsoon season (March-May) over Northwest India in recent decades is alarming. This study investigates the causative mechanism for warming through the forcing induced by planetary albedo changes over Northwest India, a hotspot for land-cover change. We use satellite-measured planetary albedo (α) and satellite-derived land-use-land-cover (LULC) data to estimate the impact of LULC changes from 2001 to 2018 on α and the associated radiative forcing. Over Northwest India, significant area under native land-cover, viz., barren, shrub and grass-lands, has been converted to cropland. The associated land-cover-induced changes have perturbed the radiation-budget by modifying the absorption of shortwave radiation, thereby contributing to the pronounced reduction of α as observed over this region. The diurnal-mean α has decreased by 0.016 ± 0.001 from 2001 to 2018 during pre-monsoon season which dominates α-decrease during the annual cycle over this region and contributes to the overall decreasing trend over India. Conversion of barren and shrub-lands to cropland is observed to be the greatest contributor to the α-decrease as compared to other land-cover changes. The radiative forcing due to decline in diurnal-mean α over Northwest India from 2001 to 2018 is highest during pre-monsoon at 5.99 ± 0.34 W/m2. This α-induced forcing averaged over the global land surface (0.02 W/m2) is equivalent to the corresponding direct forcing from rise in atmospheric methane concentrations during this period. We find an enhancement in near-surface heating to be associated with change in α; the decreasing trend in α during pre-monsoon has substantially enhanced near-surface extreme effective temperatures by 3.15 ± 2.61 K thus far and may further lead to more extreme heatwaves in future. Further, our findings highlight a decreasing (warming) and increasing (cooling) trend in clear-sky planetary albedo respectively over Northwest India and coastal regions, suggesting that sudden climate change could occur if one forcing dominates over the other.
Collapse
Affiliation(s)
- S V S Sai Krishna
- National Remote Sensing Centre (NRSC), Indian Space Research Organization (ISRO), Hyderabad 500037, Telangana State, India.
| | - S S Prijith
- National Remote Sensing Centre (NRSC), Indian Space Research Organization (ISRO), Hyderabad 500037, Telangana State, India
| | - Raj Kumar
- National Remote Sensing Centre (NRSC), Indian Space Research Organization (ISRO), Hyderabad 500037, Telangana State, India
| | - M V R Sesha Sai
- National Remote Sensing Centre (NRSC), Indian Space Research Organization (ISRO), Hyderabad 500037, Telangana State, India
| | - M V Ramana
- National Remote Sensing Centre (NRSC), Indian Space Research Organization (ISRO), Hyderabad 500037, Telangana State, India.
| |
Collapse
|
18
|
GONÇALVES JR SÉRGIOJ, MAGALHÃES NEWTON, CHARELLO RENATAC, EVANGELISTA HEITOR, GODOI RICARDOH. Relative contributions of fossil fuel and biomass burning sources to black carbon aerosol on the Southern Atlantic Ocean Coast and King George Island (Antarctic Peninsula). AN ACAD BRAS CIENC 2022; 94:e20210805. [DOI: 10.1590/0001-3765202220210805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/30/2021] [Indexed: 11/21/2022] Open
Affiliation(s)
- SÉRGIO J. GONÇALVES JR
- Universidade Federal do Paraná, Brazil; Universidade do Estado do Rio de Janeiro (UERJ), Brazil
| | - NEWTON MAGALHÃES
- Universidade do Estado do Rio de Janeiro (UERJ), Brazil; Universidade do Estado do Rio de Janeiro (UERJ), Brazil
| | | | | | | |
Collapse
|
19
|
Ding K, Huang X, Ding A, Wang M, Su H, Kerminen VM, Petäjä T, Tan Z, Wang Z, Zhou D, Sun J, Liao H, Wang H, Carslaw K, Wood R, Zuidema P, Rosenfeld D, Kulmala M, Fu C, Pöschl U, Cheng Y, Andreae MO. Aerosol-boundary-layer-monsoon interactions amplify semi-direct effect of biomass smoke on low cloud formation in Southeast Asia. Nat Commun 2021; 12:6416. [PMID: 34741045 PMCID: PMC8571318 DOI: 10.1038/s41467-021-26728-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/13/2021] [Indexed: 11/23/2022] Open
Abstract
Low clouds play a key role in the Earth-atmosphere energy balance and influence agricultural production and solar-power generation. Smoke aloft has been found to enhance marine stratocumulus through aerosol-cloud interactions, but its role in regions with strong human activities and complex monsoon circulation remains unclear. Here we show that biomass burning aerosols aloft strongly increase the low cloud coverage over both land and ocean in subtropical southeastern Asia. The degree of this enhancement and its spatial extent are comparable to that in the Southeast Atlantic, even though the total biomass burning emissions in Southeast Asia are only one-fifth of those in Southern Africa. We find that a synergetic effect of aerosol-cloud-boundary layer interaction with the monsoon is the main reason for the strong semi-direct effect and enhanced low cloud formation in southeastern Asia.
Collapse
Affiliation(s)
- Ke Ding
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
- Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing, China
- Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Xin Huang
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
- Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing, China
- Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Aijun Ding
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China.
- Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing, China.
- Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China.
| | - Minghuai Wang
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
- Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing, China
| | - Hang Su
- Max Planck Institute for Chemistry, Mainz, Germany
| | - Veli-Matti Kerminen
- Institute for Atmospheric and Earth System Research (INAR)/Physics, University of Helsinki, Helsinki, Finland
| | - Tuukka Petäjä
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
- Institute for Atmospheric and Earth System Research (INAR)/Physics, University of Helsinki, Helsinki, Finland
| | - Zhemin Tan
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
- Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing, China
| | - Zilin Wang
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
| | - Derong Zhou
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
- Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing, China
| | - Jianning Sun
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
- Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing, China
| | - Hong Liao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Huijun Wang
- School of Atmospheric Sciences, Nanjing University of Information and Science Technology, Nanjing, 210044, China
| | - Ken Carslaw
- Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, UK
| | - Robert Wood
- Department of Atmospheric Sciences, University of Washington, Seattle, USA
| | - Paquita Zuidema
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
| | - Daniel Rosenfeld
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
- Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Markku Kulmala
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
- Institute for Atmospheric and Earth System Research (INAR)/Physics, University of Helsinki, Helsinki, Finland
| | - Congbin Fu
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
- Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing, China
| | | | - Yafang Cheng
- Max Planck Institute for Chemistry, Mainz, Germany.
| | - Meinrat O Andreae
- Max Planck Institute for Chemistry, Mainz, Germany
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Department of Geology and Geophysics, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Yadav K, Rao VD, Sridevi B, Sarma VVSS. Decadal variations in natural and anthropogenic aerosol optical depth over the Bay of Bengal: the influence of pollutants from Indo-GangeticPlain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55202-55219. [PMID: 34129167 DOI: 10.1007/s11356-021-14703-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Perennial increase in atmospheric pollution over the Bay of Bengal (BoB) and South China Sea is reported due to increase in human population and industrial activity in South and Southeast Asia. Based on total aerosol optical depth (AOD) derived from MODIS (moderate resolution imaging resolution imaging spectroradiometer), natural and anthropogenic fractions were derived. The seasonality and spatial variability in rate of increase in total, natural, and anthropogenic AOD fractions were examined over the BoB using data collected between 2001 and 2019. Both total and anthropogenic AOD displayed statistically significant rate of increase in the northwest BoB (NWB) and western coastal BoB (WCB) regions during 2001 to 2019 whereas the long-term changes are insignificant in the other regions of BoB. Significant increase in AOD in the NWB and WCB regions is mainly contributed by dominant outflow of anthropogenic emissions from Indo-Gangetic Plain (IGP) area of Indian subcontinent. The magnitude of AOD decreased by half from northern BoB to equatorial region due to increase in distance from the source region. The contribution of anthropogenic AOD was >70% to total AOD with higher contribution during winter and lower during summer. The rate of increase in both total and anthropogenic AOD was close to 0.104 and 0.099 per decade in the NWB and 0.069 and 0.059 per decade in the WCB region between 2001 and 2019. The rate of increase in total and anthropogenic AOD decreased from 2001-2009 (0.164 and 0.115 per decade respectively) to 2010-2019 (0.068 and 0.076 per decade respectively) in the NWB region. Significant increase in anthropogenic AOD by 50 and 30% was observed during El Niño and La Niña periods respectively than normal year in both northwest BoB (NWB) and western coastal (WCB) regions due to change in strength and direction of winds. Although some fraction of anthropogenic AOD is found over the entire BoB, significant rate of increase in anthropogenic AOD is found only about 23% of the area of BoB than hitherto reported as entire BoB. The impact of atmospheric deposition of anthropogenic aerosols on biogeochemical processes, such as primary production and ocean acidification, needs further evaluation.
Collapse
Affiliation(s)
- K Yadav
- CSIR-National Institute of Oceanography, 176 Lawsons Bay Colony, Visakhapatnam, 530017, India
| | - V D Rao
- ESSO-National Centre for Coastal Research, Chennai, India
| | - B Sridevi
- CSIR-National Institute of Oceanography, 176 Lawsons Bay Colony, Visakhapatnam, 530017, India
| | - V V S S Sarma
- CSIR-National Institute of Oceanography, 176 Lawsons Bay Colony, Visakhapatnam, 530017, India.
- Academy of Scientific and Innovative Research, Dona Paula, Goa, India.
| |
Collapse
|
21
|
Zhao S, Yin D, Yu Y, Kang S, Ren X, Zhang J, Zou Y, Qin D. PM 1 chemical composition and light absorption properties in urban and rural areas within Sichuan Basin, southwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116970. [PMID: 33780845 DOI: 10.1016/j.envpol.2021.116970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Sichuan Basin is encircled by high mountains and plateaus with the heights ranging from 1 km to 3 km, and is one of the most polluted regions in China. However, the dominant chemical species and light absorption properties of aerosol particles is still not clear in rural areas. Chemical composition in PM1 (airborne particulate matter with an aerodynamic diameter less than 1 μm) and light-absorbing properties were determined in Chengdu (urban) and Sanbacun (rural) in western Sichuan Basin (WSB), Southwest China. Carbonaceous aerosols and secondary inorganic ions (NH4+, NO3- and SO42-) dominate PM1 pollution, contributing more than 85% to PM1 mass at WSB. The mean concentrations of organic and elemental carbon (OC, EC), K+ and Cl- are 19.69 μg m-3, 8.00 μg m-3, 1.32 μg m-3, 1.16 μg m-3 at the rural site, which are 26.2%, 65.3%, 34.7% and 48.7% higher than those at the urban site, respectively. BrC (brown carbon) light absorption coefficient at 405 nm is 63.90 ± 27.81 M m-1 at the rural site, contributing more than half of total absorption, which is about five times higher than that at urban site (10.43 ± 4.74 M m-1). Compared with secondary OC, rural BrC light absorption more depends on primary OC from biomass and coal burning. The rural MAEBrC (BrC mass absorption efficiency) at 405 nm ranges from 0.6 to 5.1 m2 g-1 with mean value of 3.5 ± 0.8 m2 g-1, which is about three times higher than the urban site.
Collapse
Affiliation(s)
- Suping Zhao
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Pingliang Land Surface Process & Severe Weather Research Station, Pingliang, 744015, China
| | - Daiying Yin
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ye Yu
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Pingliang Land Surface Process & Severe Weather Research Station, Pingliang, 744015, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; CAS Centre for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101, China
| | - Xiaolin Ren
- Maerkang Meteorological Bureau, Maerkang, 624000, China
| | - Jing Zhang
- Maerkang Meteorological Bureau, Maerkang, 624000, China
| | - Yong Zou
- Lixian Meteorological Bureau, Lixian, 624000, China
| | - Dahe Qin
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
22
|
Zhang C, Chen M, Kang S, Yan F, Han X, Gautam S, Hu Z, Zheng H, Chen P, Gao S, Wang P, Li C. Light absorption and fluorescence characteristics of water-soluble organic compounds in carbonaceous particles at a typical remote site in the southeastern Himalayas and Tibetan Plateau. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116000. [PMID: 33199066 DOI: 10.1016/j.envpol.2020.116000] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 05/25/2023]
Abstract
Carbonaceous particles play an important role in climate change, and an increase in their emission and deposition causes glacier melting in the Himalayas and the Tibetan Plateau (HTP). This implies that studying their basic characteristics is crucial for a better understanding of the climate forcing observed in this area. Thus, we investigated characteristics of carbonaceous particles at a typical remote site of southeastern HTP. Organic carbon and elemental carbon concentrations at this study site were 1.86 ± 0.84 and 0.18 ± 0.09 μg m-3, respectively, which are much lower than those reported for other frequently monitored stations in the same region. Thus, these values reflect the background characteristics of the study site. Additionally, the absorption coefficient per mass (α/ρ) of water-soluble organic carbon (WSOC) at 365 nm was 0.60 ± 0.19 m2 g-1, with the highest and lowest values corresponding to the winter and monsoon seasons, respectively. Multi-dimensional fluorescence analysis showed that the WSOC consisted of approximately 37% and 63% protein and humic-like components, respectively, and the latter was identified as the component that primarily determined the light absorption ability of the WSOC, which also showed a significant relationship with some major ions, including SO2-4, K+, and Ca2+, indicating that combustion activities as well as mineral dust were two important contributors to WSOC at the study site.
Collapse
Affiliation(s)
- Chao Zhang
- CAS Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meilian Chen
- Environmental Program, Guangdong Technion-Israel Institute of Technology, Shantou, 515063, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangping Yan
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; LUT School of Engineering Science, Lappeenranta University of Technology, P.O. Box 20, 53851, Lappeenranta, Finland
| | - Xiaowen Han
- CAS Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Geomatics and Geoinformation, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, China
| | - Sangita Gautam
- CAS Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaofu Hu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huijun Zheng
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengfei Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shaopeng Gao
- CAS Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pengling Wang
- National Climate Center, China Meteorological Administration, Beijing, 100081, China
| | - Chaoliu Li
- CAS Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, PR China.
| |
Collapse
|
23
|
Choudhary V, Rajput P, Gupta T. Absorption properties and forcing efficiency of light-absorbing water-soluble organic aerosols: Seasonal and spatial variability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115932. [PMID: 33248827 DOI: 10.1016/j.envpol.2020.115932] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
Light-absorbing organic aerosols, also known as brown carbon (BrC), enhance the warming effect of the Earth's atmosphere. The seasonal and spatial variability of BrC absorption properties is poorly constrained and accounted for in the climate models resulting in a substantial underestimation of their radiative forcing estimates. This study reports seasonal and spatial variability of absorption properties and simple forcing efficiency of light-absorbing water-soluble organic carbon (WSOC, SFEWSOC) by utilizing current and previous field-based measurements reported mostly from Asia along with a few observations from Europe, the USA, and the Amazon rainforest. The absorption coefficient of WSOC at 365 nm (babs-365) and the concentrations of carbonaceous species at Kanpur were about an order of magnitude higher during winter than in the monsoon season owing to differences in the boundary layer height, active sources and their strengths, and amount of seasonal wet precipitation. The WSOC aerosols during winter exhibited ∼1.6 times higher light absorption capacity than in the monsoon season at Kanpur site. The assessment of spatial variability of the imaginary component of the refractive index spectrum (kλ) across South Asia has revealed that it varies from ∼1 to 2 orders of magnitude and light absorption capacity of WSOC ranges from 3 to 21 W/g. The light absorption capacity of WSOC aerosols exhibited less spatial variability across East Asia (5-13 W/g) when compared to that in the South Asia. The photochemical aging of WSOC aerosols, indicated by the enhancement in WSOC/OC ratio, was linked to degradation in their light absorption capacity, whereas the absorption Ångström exponent (AAE) remained unaffected. This study recommends the adoption of refined climate models where sampling regime specific absorption properties are calculated separately, such that these inputs can better constrain the model estimates of the global effects of BrC.
Collapse
Affiliation(s)
- Vikram Choudhary
- Department of Civil Engineering and APTL at Center for Environmental Science and Engineering (CESE), Indian Institute of Technology Kanpur, Kanpur, 208 016, India.
| | - Prashant Rajput
- Centre for Environmental Health (CEH), Public Health Foundation of India, Gurugram, Haryana, 122002, India
| | - Tarun Gupta
- Department of Civil Engineering and APTL at Center for Environmental Science and Engineering (CESE), Indian Institute of Technology Kanpur, Kanpur, 208 016, India
| |
Collapse
|
24
|
Sanap SD. Global and regional variations in aerosol loading during COVID-19 imposed lockdown. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2021; 246:118132. [PMID: 33318725 PMCID: PMC7722495 DOI: 10.1016/j.atmosenv.2020.118132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 05/22/2023]
Abstract
In the backdrop of upward trend in anthropogenic aerosols over global hotspot regions, the air quality had improved worldwide post declaration of the Corona virus disease-2019 (COVID-19) as a global pandemic in mid-March-2020. Present study using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite derived aerosol optical depth (AOD) and the Modern-Era Retrospective analysis for Research and Applications (MERRA) version-2 datasets however, demonstrates the regional variation in aerosol loading during peak of the lockdown period. Reduction in aerosol loading over majority of the aerosol hotspots is observed from mid-March/April-2020 with highest percentage reduction in the month of May. Reduction in aerosol loading over global hotspots resulted in positive surface aerosol radiative forcing (ARF, up to 6 Wm-2). Albeit reduction in aerosol loading observed worldwide, the considerable above normal aerosol burden was identified during April-May 2020 over the Amazon river basin, northern parts of the South America, Mexico region, South-West parts of the Africa and South East Asian region. Analysis revealed that the wildfire emission contributed significantly in anomalous aerosol burden over these regions during the lockdown period. An appropriate mitigation measures to reduce wildfire emissions is essential in addition to controlled anthropogenic emissions as far as air quality, deforestation and ecosystem is concerned.
Collapse
Affiliation(s)
- S D Sanap
- Climate Research and Services, India Meteorological Department, Ministry of Earth Sciences, Shivajinagar, Pune, 411005, India
| |
Collapse
|
25
|
Singh GK, Choudhary V, Rajeev P, Paul D, Gupta T. Understanding the origin of carbonaceous aerosols during periods of extensive biomass burning in northern India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116082. [PMID: 33272802 DOI: 10.1016/j.envpol.2020.116082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Post-harvest crop residue burning is extensively practiced in North India, which results in enhanced particulate matter (PM) concentrations. This study explores the PM2.5 (particulate matter with aerodynamic diameter ≤ 2.5 μm) emissions during various time periods (pre-monsoon, monsoon, and post-monsoon) over the biomass burning source region in Beas, Punjab. The PM2.5 concentrations during the pre-monsoon period (106-458 μg m-3) and the post-monsoon period (184-342 μg m-3) were similar but much higher than concentrations during the monsoon season (23-95 μg m-3) due to enhanced wet deposition. However, the carbonaceous aerosol fraction in PM2.5 was nearly double in the post-monsoon season (∼27%) than the pre-monsoon period (∼15%). A higher contribution of secondary organic carbon (SOC) observed during the pre-monsoon season can be attributed to enhanced photochemical activity in dry conditions. Stable carbon isotope ratio (δ13C value) of ambient PM allowed elucidation of contributing sources. δ13CTC correlation with SOC during post-monsoon and pre-monsoon periods suggests significant influence of secondary formation processes during both time periods. The concentrations of carbon fractions in sampled sources and aerosols suggests contribution of biofuels, resulting in enhanced PM concentration at this location. δ13CTC values of pre- and post-monsoon samples show dominance of freshly emitted aerosols from local sources. Impact of biomass and biofuel combustion was also confirmed by biomass burning K+BB tracer, indicating that major agriculture residue burning occurred primarily during nighttime. C3 plant derived aerosols dominated at the sampling location during the entire sampling duration and contributed significantly during the pre-monsoon season. Whereas, both fossil fuel and C3 plant combustion contributed to the total mass of carbonaceous aerosols during the post-monsoon and monsoon seasons.
Collapse
Affiliation(s)
- Gyanesh Kumar Singh
- Department of Civil Engineering and APTL at Center for Environmental Science and Engineering (CESE), Indian Institute of Technology Kanpur, Kanpur, 208 016, India.
| | - Vikram Choudhary
- Department of Civil Engineering and APTL at Center for Environmental Science and Engineering (CESE), Indian Institute of Technology Kanpur, Kanpur, 208 016, India
| | - Pradhi Rajeev
- Department of Civil Engineering and APTL at Center for Environmental Science and Engineering (CESE), Indian Institute of Technology Kanpur, Kanpur, 208 016, India
| | - Debajyoti Paul
- Department of Earth Sciences, Indian Institute of Technology Kanpur, Kanpur, 208 016, India
| | - Tarun Gupta
- Department of Civil Engineering and APTL at Center for Environmental Science and Engineering (CESE), Indian Institute of Technology Kanpur, Kanpur, 208 016, India
| |
Collapse
|
26
|
Jiang H, Li J, Chen D, Tang J, Cheng Z, Mo Y, Su T, Tian C, Jiang B, Liao Y, Zhang G. Biomass burning organic aerosols significantly influence the light absorption properties of polarity-dependent organic compounds in the Pearl River Delta Region, China. ENVIRONMENT INTERNATIONAL 2020; 144:106079. [PMID: 32866733 DOI: 10.1016/j.envint.2020.106079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Atmospheric brown carbon (BrC) is an important constituent of light-absorbing organic aerosols with many unclear issues. Here, the light-absorption properties of BrC with different polarity characteristics at a regional site of Pearl River Delta Region during 2016-2017, influenced by sources and molecular compositions, were revealed using radiocarbon analysis and Fourier transform ion cyclotron resonance mass spectrometry. Humic-like substance (HULIS), middle polar (MP), and low polar (LP) carbon fractions constitute 46 ± 17%, 30 ± 7%, and 7 ± 3% of total absorption coefficient from bulk extracts, respectively. Our results show that the absorption proportions of HULIS and MP to the total BrC absorption are higher than their mass proportions to organic carbon mass, indicating that HULIS and MP are the main light-absorbing components in water-soluble and water-insoluble organic carbon fractions, respectively. With decreases in non-fossil HULIS, MP, and LP carbon fractions (66 ± 2%, 52 ± 2%, and 36 ± 3%, respectively), the abundances of unsaturated compounds and mass absorption efficiency at 365 nm of three fractions decreased synchronously. Increases in both non-fossil carbon and levoglucosan in winter imply that the enhanced light-absorption could be attributed to elevated levels of biomass burning organic aerosols (BBOA), which increases the number of light-absorbing nitrogen-containing compounds. Moreover, the major type of potential BrC in HULIS and MP carbon fractions are oxidized BBOA, but the potential BrC chromophores in LP are mainly associated with primary BBOA. This study reveals that biomass burning has adverse effects on radiative forcing and air quality, and probably indicates the significant influences of atmospheric oxidation reactions on the forms of chromophores.
Collapse
Affiliation(s)
- Hongxing Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Duohong Chen
- Guangdong Environmental Monitoring Center, Guangzhou 510308, China.
| | - Jiao Tang
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhineng Cheng
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yangzhi Mo
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Tao Su
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chongguo Tian
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Bing Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yuhong Liao
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
27
|
Dumka UC, Ningombam SS, Kaskaoutis DG, Madhavan BL, Song HJ, Angchuk D, Jorphail S. Long-term (2008-2018) aerosol properties and radiative effect at high-altitude sites over western trans-Himalayas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139354. [PMID: 32470663 DOI: 10.1016/j.scitotenv.2020.139354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Analysis of the climatology of aerosol properties is performed over Hanle (4500 m) and Merak (4310 m), two remote-background sites in the western trans-Himalayas, based on eleven years (2008-2018) of sun/sky radiometer (POM-01, Prede) measurements. The two sites present very similar atmospheric conditions and aerosol properties allowing us to examine them as continuous single-data series. The annual average aerosol optical depth at 500 nm (AOD500) is 0.04 ± 0.03, associated with an Ångström exponent (AE440-870) of 0.58 ± 0.35 and a single scattering albedo (SSA500) of 0.95 ± 0.05. AOD500 exhibits higher values in May (~0.07) and lower in winter (~0.03), while AE400-870 minimizes in spring, indicating influence by coarse-mode dust aerosols, either emitted regionally or long-range transported. The de-convolution of AOD500 into fine and coarse modes justifies the aerosol seasonality and sources, while the marginal diurnal variation in all aerosol properties reveals a weak influence from local sources, except for some few aerosol episodes. The aerosol-volume size distribution presents a mode value at ~10 μm with secondary peaks at accumulation (~ 2 μm) and fine modes (~0.03 μm) and low variability between the seasons. A classification of the aerosol types based on the fine-mode fraction (FMF) vs. SSA500 relationship reveals the dominance of aerosols in the FMF range of 0.4-0.6, characterized as mixed (39%), followed by fine aerosols with high scattering efficiency (26%), while particles related to dust contribute ~21%, with low fractions of fine-absorbing aerosols (~13%). The aerosol radiative forcing (ARF) estimates reveal a small cooling effect at the top of the atmosphere (-1.3 Wm-2), while at the surface, the ARF ranges from -2 Wm-2 to -6 Wm-2 on monthly basis. The monthly-mean atmospheric radiative forcing (~1 to 4 Wm-2) leads to heating rates of 0.04 to 0.13 K day-1. These ARF values are higher than the global averages and may cause climate implications over the trans-Himalayan region.
Collapse
Affiliation(s)
- U C Dumka
- Aryabhatta Research Institute of observational Sciences, Nainital 263001, India.
| | | | - D G Kaskaoutis
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Palaia Penteli, 15236 Athens, Greece.
| | - B L Madhavan
- National Atmospheric Research Laboratory (NARL), Department of Space, Gadanki 517112, India
| | - H-J Song
- National Institute of Meteorological Sciences, Seogwipo, Jeju, South Korea
| | - Dorje Angchuk
- Indian Astronomical Observatory, Indian Institute of Astrophysics, Skara, Leh-Ladakh, 194101, India
| | - Sonam Jorphail
- Indian Astronomical Observatory, Indian Institute of Astrophysics, Skara, Leh-Ladakh, 194101, India
| |
Collapse
|
28
|
The Dark Target Algorithm for Observing the Global Aerosol System: Past, Present, and Future. REMOTE SENSING 2020. [DOI: 10.3390/rs12182900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Dark Target aerosol algorithm was developed to exploit the information content available from the observations of Moderate-Resolution Imaging Spectroradiometers (MODIS), to better characterize the global aerosol system. The algorithm is based on measurements of the light scattered by aerosols toward a space-borne sensor against the backdrop of relatively dark Earth scenes, thus giving rise to the name “Dark Target”. Development required nearly a decade of research that included application of MODIS airborne simulators to provide test beds for proto-algorithms and analysis of existing data to form realistic assumptions to constrain surface reflectance and aerosol optical properties. This research in itself played a significant role in expanding our understanding of aerosol properties, even before Terra MODIS launch. Contributing to that understanding were the observations and retrievals of the growing Aerosol Robotic Network (AERONET) of sun-sky radiometers, which has walked hand-in-hand with MODIS and the development of other aerosol algorithms, providing validation of the satellite-retrieved products after launch. The MODIS Dark Target products prompted advances in Earth science and applications across subdisciplines such as climate, transport of aerosols, air quality, and data assimilation systems. Then, as the Terra and Aqua MODIS sensors aged, the challenge was to monitor the effects of calibration drifts on the aerosol products and to differentiate physical trends in the aerosol system from artefacts introduced by instrument characterization. Our intention is to continue to adapt and apply the well-vetted Dark Target algorithms to new instruments, including both polar-orbiting and geosynchronous sensors. The goal is to produce an uninterrupted time series of an aerosol climate data record that begins at the dawn of the 21st century and continues indefinitely into the future.
Collapse
|
29
|
Ramachandran S, Rupakheti M. Inter-annual and seasonal variations in columnar aerosol characteristics and radiative effects over the Pokhara Valley in the Himalayan foothills - Composition, radiative forcing, and atmospheric heating. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114799. [PMID: 32559877 DOI: 10.1016/j.envpol.2020.114799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
This study reports comprehensive analysis of seasonal and inter-annual variations of aerosol properties (optical, physical and chemical) and radiative effects over Pokhara Valley in the foothills of central Himalayas in Nepal utilizing the high-quality multi-year columnar aerosol data observed recently from January 2010 to December 2017. This paper focusses on the seasonal and inter-annual variations of chemical (composition), and absorption properties of aerosols and their radiative effects. The single scattering albedo (SSA) either decreases as a function of wavelength or remains independent of wavelength. The seasonal mean aerosol absorption optical depth (AAOD) exhibits a behavior opposite to that of SSA. Carbonaceous aerosols (CA) dominate (≥60%) aerosol absorption during the whole year. Black carbon (BC) alone contributes >60% to AAODCA while brown carbon (BrC) shares the rest. The absorbing aerosol types are determined to be BC, and mixed (BC and dust) only. Dust as absorbing aerosol type is absent over the Himalayan foothills. The ARFSFC is ≥ -50 Wm-2 except in monsoon almost every year. The ARFATM is ≥ 50 Wm-2 during winter and pre-monsoon in all the years. ARFESFC, ARFETOA and ARFEATM follow a similar pattern as that of ARF. High values of ARFE at SFC, TOA and ATM (except during monsoon when values are slightly lower) suggest that aerosols are efficient in significantly modulating the incoming solar flux throughout the year. The annual average aerosol-induced atmospheric heating rate (HR) over Pokhara is nearly 1 K day-1 every year during 8-year observation, and is highest in 2015 (∼2.5 K day-1). The HR is about 1 K day-1 or more over all the locations in IGP during the year. These quantitative results can be used as inputs in global/regional climate models to assess the climate impact of aerosols, including on regional temperature, hydrological cycle and melting of glaciers and snowfields in the region.
Collapse
Affiliation(s)
- S Ramachandran
- Physical Research Laboratory, Ahmedabad, India; Institute for Advanced Sustainability Studies, Potsdam, Germany.
| | - M Rupakheti
- Institute for Advanced Sustainability Studies, Potsdam, Germany.
| |
Collapse
|
30
|
Kumar RR, Soni VK, Jain MK. Evaluation of spatial and temporal heterogeneity of black carbon aerosol mass concentration over India using three year measurements from IMD BC observation network. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138060. [PMID: 32217394 DOI: 10.1016/j.scitotenv.2020.138060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 05/17/2023]
Abstract
Extensive measurements of equivalent black carbon (EBC) aerosol mass concentration at fifteen stations of India Meteorological Department (IMD) BC observation network during the period 2016-2018 are used to study the spatial and temporal heterogeneity over India. The sampling sites represent different geographical region of India. Spatial distribution shows higher values of EBC over stations of north India and IGP. Highest annual mean EBC mass concentration during study period was reported at two mega cities New Delhi (13,575 ± 8401 ng/m3) followed by Kolkata (12,082 ± 6850 ng/m3) whereas lowest mean concentration was at Ranichauri (1737 ± 884 ng/m3) followed by Bhuj (2021 ± 1471 ng/m3). Stations located in coastal region of south India reported low concentration of EBC. In order to find out the quantitative contribution of biomass burning (EBCBB) and fossil fuel (EBCFF) in total mass concentration of EBC, source apportionment study has been carried out using Aethalometer model. The EBCFF is the dominant contributor to EBC mass concentration at all the sites in every season, while the highest seasonal biomass burning mass contribution (37%) was observed in the winter at a background site Ranichauri. Maximum concentration of EBCBB was observed at Srinagar (2671 ng/m3) where as EBCFF was maximum in Delhi (11,074 ng/m3). Seasonal and diurnal variation studies have also been carried out for all the stations. The EBC mass concentrations exhibited strong seasonality, with the highest values occurring in postmonsoon/winter and the lowest in monsoon season. The higher EBC concentration in postmonsoon/winter seasons was attributed to the increased use of fuel in seasonal emission sources, domestic heating and stagnant meteorological conditions, whereas the low levels in monsoon season were related to the precipitation scavenging. Maximum concentration of EBC (22,409 ± 10,510 ng/m3) was observed in winter season over Kolkata. Our study finds high spatial heterogeneity in EBC concentrations across the study area.
Collapse
Affiliation(s)
- Ravi Ranjan Kumar
- India Meteorological Department, New Delhi, India; Indian Institute of Technology (Indian School of Mines), Dhanbad, India.
| | | | - Manish Kumar Jain
- Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| |
Collapse
|
31
|
Peng C, Yang F, Tian M, Shi G, Li L, Huang RJ, Yao X, Luo B, Zhai C, Chen Y. Brown carbon aerosol in two megacities in the Sichuan Basin of southwestern China: Light absorption properties and implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137483. [PMID: 32120102 DOI: 10.1016/j.scitotenv.2020.137483] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 05/21/2023]
Abstract
The light absorption of brown carbon (BrC) makes a significant contribution to aerosol light absorption (Abs) and affects the radiative forcing. In this study, we analyzed and evaluated the light absorption and radiative forcing of BrC samples collected from December 2016 to January 2017 in Chongqing and Chengdu in the Sichuan Basin of Southwest China. Based on a two-component model, we estimated that BrC light absorption at 405 nm was 19.9 ± 17.1 Mm-1 and 19.2 ± 12.3 Mm-1 in Chongqing and Chengdu, contributing 19.0 ± 5.0% and 17.8 ± 3.7% to Abs respectively. Higher Abs405,BrC, MAE405,BrC, and AAE405-980 values were observed during the pollution period over the clean period in both cities. The major sources of BrC were biomass burning (BB) and secondary organic aerosol in Chongqing, and coal combustion (CC) and secondary organic aerosol in Chengdu. During the pollution period, aged BrC formed from anthropogenic precursors via its aqueous reactions with NH4+ and NOx had impacts on BrC absorption in both cities. BB led to higher Abs405,BrC, MAE405,BrC, and AAE405-980 values in Chongqing than Chengdu during the pollution period. The fractional contribution of radiation absorbed by BrC relative to BC in the wavelengths of 405-445 nm was 60.2 ± 17.0% and 64.2 ± 11.6% in Chongqing and Chengdu, significantly higher than that in the range of 405-980 nm (26.2 ± 6.7% and 27.7 ± 4.6% respectively) (p < 0.001). This study is useful for understanding the characterization, sources, and impacts of BrC in the Sichuan Basin.
Collapse
Affiliation(s)
- Chao Peng
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fumo Yang
- National Engineering Research Center for Flue Gas Desulfurization, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mi Tian
- School of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Guangming Shi
- National Engineering Research Center for Flue Gas Desulfurization, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Li Li
- College of Chemistry & Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Ru-Jin Huang
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Key Laboratory of Aerosol Chemistry and Physics (KLACP), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| | - Xiaojiang Yao
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Bin Luo
- Sichuan Environmental Monitoring Center, Chengdu 610041, China
| | - Chongzhi Zhai
- Chongqing Academy of Environmental Science, Chongqing 401147, China
| | - Yang Chen
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
32
|
Chen P, Kang S, Tripathee L, Panday AK, Rupakheti M, Rupakheti D, Zhang Q, Guo J, Li C, Pu T. Severe air pollution and characteristics of light-absorbing particles in a typical rural area of the Indo-Gangetic Plain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10617-10628. [PMID: 31940147 DOI: 10.1007/s11356-020-07618-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Total suspended particles (TSP) were collected in Lumbini from April 2013 to March 2016 to better understand the characteristics of carbonaceous aerosol (CA) concentrations, compositions and sources and their light absorption properties in rural region of severe polluted Indo-Gangetic Plain (IGP). Extremely high TSP (203.9 ± 109.6 μg m-3), organic carbon (OC 32.1 ± 21.7 μg m-3), elemental carbon (EC 6.44 ± 3.17 μg m-3) concentrations were observed in Lumbini particularly during winter and post-monsoon seasons, reflecting the combined influences of emission sources and weather conditions. SO42- (7.34 ± 4.39 μg m-3) and Ca2+ (5.46 ± 5.20 μg m-3) were the most dominant anion and cation in TSP. These components were comparable to those observed in urban areas in South and East Asia but significantly higher than those in remote regions over the Himalayas and Tibetan Plateau, suggesting severe air pollution in the study region. Various combustion activities including industry, vehicle emission, and biomass burning are the main reasons for high pollutant concentrations. The variation of OC/EC ratio further suggested that biomass such as agro-residue burning contributed a lot for CA, particularly during the non-monsoon season. The average mass absorption cross-section of EC (MACEC) and water-soluble organic carbon (MACWSOC) were 7.58 ± 3.39 and 1.52 ± 0.41 m2 g-1, respectively, indicating that CA in Lumbini was mainly affected by local emissions. Increased biomass burning decreased MACEC; whereas, it could result in high MACWSOC during the non-monsoon season. Furthermore, dust is one important factor causing higher MACWSOC during the pre-monsoon season.
Collapse
Affiliation(s)
- Pengfei Chen
- State Key Laboratory of Cryospheric Science, Chinese Academy of Sciences (CAS), Northwest Institute of Eco-Environment and Resources, CAS, DongGangXi Road, Chengguan District, Lanzhou, 730000, People's Republic of China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Chinese Academy of Sciences (CAS), Northwest Institute of Eco-Environment and Resources, CAS, DongGangXi Road, Chengguan District, Lanzhou, 730000, People's Republic of China.
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101, China.
- University of CAS, Beijing, 100049, China.
| | - Lekhendra Tripathee
- State Key Laboratory of Cryospheric Science, Chinese Academy of Sciences (CAS), Northwest Institute of Eco-Environment and Resources, CAS, DongGangXi Road, Chengguan District, Lanzhou, 730000, People's Republic of China
| | - Arnico K Panday
- International Centre for Integrated Mountain Development, Kathmandu, 44700, Nepal
| | | | - Dipesh Rupakheti
- State Key Laboratory of Cryospheric Science, Chinese Academy of Sciences (CAS), Northwest Institute of Eco-Environment and Resources, CAS, DongGangXi Road, Chengguan District, Lanzhou, 730000, People's Republic of China
| | - Qianggong Zhang
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101, China
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, CAS, Beijing, 100101, China
| | - Junming Guo
- State Key Laboratory of Cryospheric Science, Chinese Academy of Sciences (CAS), Northwest Institute of Eco-Environment and Resources, CAS, DongGangXi Road, Chengguan District, Lanzhou, 730000, People's Republic of China
| | - Chaoliu Li
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101, China
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, CAS, Beijing, 100101, China
| | - Tao Pu
- State Key Laboratory of Cryospheric Science, Chinese Academy of Sciences (CAS), Northwest Institute of Eco-Environment and Resources, CAS, DongGangXi Road, Chengguan District, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
33
|
Jackson B. On the Relationship between Dust Devil Radii and Heights. ICARUS 2020; 338:113523. [PMID: 31806915 PMCID: PMC6894178 DOI: 10.1016/j.icarus.2019.113523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The influence of dust devils on the martian atmosphere depends on their capacity to loft dust, which depends on their wind profiles and footprint on the martian surface, i.e., on their radii, R. Previous work suggests the wind profile depends on a devil's thermodynamic efficiency, which scales with its height, h. However, the precise mechanisms that set a dust devil's radius have remained unclear. Combining previous work with simple assumptions about angular momentum conservation in dust devils predicts that R ∝ h 1/2, and a model fit to observed radii and heights from a survey of martian dust devils using the Mars Express High Resolution Stereo Camera agrees reasonably well with this prediction. Other observational tests involving additional, statistically robust dust devil surveys and field measurements may further elucidate these relationships.
Collapse
Affiliation(s)
- Brian Jackson
- Boise State University, Dept. of Physics 1910 University Drive, Boise ID 83725-1570
| |
Collapse
|
34
|
Adam MG, Chiang AWJ, Balasubramanian R. Insights into characteristics of light absorbing carbonaceous aerosols over an urban location in Southeast Asia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113425. [PMID: 31676098 DOI: 10.1016/j.envpol.2019.113425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/12/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Light absorbing carbonaceous aerosols (LACA) consisting of black carbon (BC) and brown carbon (BrC) have received considerable attention because of their climate and health implications, but their sources, characteristics and fates remain unclear in Southeast Asia (SEA). In this study, we investigated spatio-temporal characteristics of LACA, their radiative properties and potential sources in Singapore under different weather conditions. Hourly BC concentrations, measured from May 2017 to March 2018, ranged from 0.31 μg/m3 to 14.37 μg/m3 with the mean value being 2.44 ± 1.51 μg/m3. High mass concentrations of BC were observed during the south-west monsoon (SWM, 2.60 ± 1.56 μg/m3) while relatively low mass concentrations were recorded during the north-east monsoon (NEM, 1.68 ± 0.96 μg/m3). There was a shift in the Absorption Ångström exponent (AAE) from 1.1 to 1.4 when the origin of LACA changed from fossil fuel (FF) to biomass burning (BB) combustion. This shift is attributed to the presence of secondary BrC in LACA, derived from transboundary BB emissions during the SWM. Lower AAE values were observed when local traffic emissions were dominant during the NEM. This explanation is supported by measurements of water-soluble organic carbon (WSOC) in LACA and the corresponding AAE values determined at 365 nm using a UV-vis spectrophotometer. The AAE values, indicative of the presence of brown carbon (BrC), showed that photochemically aged LACA contribute to an enhancement in the light absorption of aerosols. In addition, spatio-temporal characteristics of BC in the intra-urban environment of Singapore were investigated across diverse outdoor and indoor microenvironments. High variability of BC was evident across these microenvironments. Several air pollution hotspots with elevated BC concentrations were identified. Overall, the results stress a need to control anthropogenic emissions of BC and BrC in order to mitigate near-term climate change impacts and provide health benefits.
Collapse
Affiliation(s)
- Max Gerrit Adam
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Andrew Wei Jie Chiang
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | | |
Collapse
|
35
|
Chen P, Kang S, Li C, Zhang Q, Guo J, Tripathee L, Zhang Y, Li G, Gul C, Cong Z, Wan X, Niu H, Panday AK, Rupakheti M, Ji Z. Carbonaceous aerosol characteristics on the Third Pole: A primary study based on the Atmospheric Pollution and Cryospheric Change (APCC) network. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:49-60. [PMID: 31302402 DOI: 10.1016/j.envpol.2019.06.112] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
Carbonaceous aerosols (CAs) scatter and absorb incident solar radiation in the atmosphere, thereby influencing the regional climate and hydrological cycle, particularly in the Third Pole (TP). Here, we present the characteristics of CAs at 19 observation stations from the Atmospheric Pollution and Cryospheric Change network to obtain a deep understanding of pollutant status in the TP. The organic carbon (OC) and elemental carbon (EC) concentrations decreased noticeably inwards from outside to inland of the TP, consistent with their emission load and also affected by transport process and meteorological condition. Urban areas, such as Kathmandu, Karachi, and Mardan, exhibited extremely high OC and EC concentrations, with low and high values occurring in the monsoon and non-monsoon seasons, respectively. However, remote regions inland the TP (e.g., Nam Co and Ngari) demonstrated much lower OC and EC concentrations. Different seasonal variations were observed between the southern and northern parts of the TP, suggesting differences in the patterns of pollutant sources and in distance from the sources between the two regions. In addition to the influence of long-range transported pollutants from the Indo-Gangetic Plain (IGP), the TP was affected by local emissions (e.g., biomass burning). The OC/EC ratio also suggested that biomass burning was prevalent in the center TP, whereas the marginal sites (e.g., Jomsom, Dhunche, and Laohugou) were affected by fossil fuel combustion from the up-wind regions. The mass absorption cross-section of EC (MACEC) at 632 nm ranged from 6.56 to 14.7 m2 g-1, with an increasing trend from outside to inland of the TP. Urban areas had low MACEC values because such regions were mainly affected by local fresh emissions. In addition, large amount of brown carbon can decrease the MACEC values in cities of South Asia. Remote sites had high MACEC values because of the coating enhancement of aerosols. Influenced by emission, transport process, and weather condition, the CA concentrations and MACEC presented decreasing and increasing trends, respectively, from outside to inland of the TP.
Collapse
Affiliation(s)
- Pengfei Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Chaoliu Li
- Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qianggong Zhang
- Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Junming Guo
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Lekhendra Tripathee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yulan Zhang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Gang Li
- Arid Meteorological Research Institute, Lanzhou Meteorological Bureau, Lanzhou, Gansu, 730000, China
| | - Chaman Gul
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhiyuan Cong
- Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xin Wan
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hewen Niu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Arnico K Panday
- International Centre for Integrated Mountain Development, 44700, Kathmandu, Nepal
| | | | - Zhenming Ji
- School of Atmospheric Sciences, and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, 510275, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China
| |
Collapse
|
36
|
Gao Y, Zhang Y. Optical properties investigation of the reactions between methylglyoxal and glycine/ammonium sulfate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 215:112-121. [PMID: 30822732 DOI: 10.1016/j.saa.2019.02.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/19/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
In recent years, "brown carbon" (BrC), as an important contributor to light absorption and climate forcing as aerosols, has been one of the forefronts in the field of atmospheric research. Aqueous BrC aerosols can be formed through aqueous reactions of methylglyoxal (MG) with nitrogen compounds, such as glycine (Gly) and ammonium sulfate (AS). When exposed to nitrogen compounds for several days, aqueous carbonyl compound MG became absorbent and fluorescent in the ultraviolet and near visible regions, according to UV/Vis and fluorescence spectroscopies. Experiment results showed that optical absorption of two aqueous BrC solutions in the spectral range of 250-480 nm significantly increased with increasing reaction time. After the reactions of MG with Gly and AS, the product absorbance followed the order of MG-Gly>MG-AS. For H2O2 oxidation photolysis, the atmospheric aqueous BrC showed the dynamic nature. Reaction kinetic, effective quantum yields and size distribution studies were conducted in the paper. Fluorescence lifetime values of the two BrC solutions were calculated. LC/MS analysis results clearly indicated that complicated organic compounds were formed in the reactions of MG with Gly and AS.
Collapse
Affiliation(s)
- Yan Gao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; School of Materials and Chemical Engineering, Bengbu University, Bengbu 233030, China
| | - Yunhong Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
37
|
Wu G, Ram K, Fu P, Wang W, Zhang Y, Liu X, Stone EA, Pradhan BB, Dangol PM, Panday AK, Wan X, Bai Z, Kang S, Zhang Q, Cong Z. Water-Soluble Brown Carbon in Atmospheric Aerosols from Godavari (Nepal), a Regional Representative of South Asia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3471-3479. [PMID: 30848122 DOI: 10.1021/acs.est.9b00596] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Brown carbon (BrC) has recently emerged as an important light-absorbing aerosol. This study provides interannual and seasonal variations in light absorption properties, chemical composition, and sources of water-soluble BrC (WS-BrC) based on PM10 samples collected in Godavari, Nepal, from April 2012 to May 2014. The mass absorption efficiency of WS-BrC at 365 nm (MAE365) shows a clear seasonal variability, with the highest MAE365 of 1.05 ± 0.21 m2 g-1 in premonsoon season and the lowest in monsoon season (0.59 ± 0.16 m2 g-1). The higher MAE365 values in nonmonsoon seasons are associated with fresh biomass burning emissions. This is further substantiated by a strong correlation ( r = 0.79, P < 0.01) between Abs365 (light absorption coefficient at 365 nm) and levoglucosan. We found, using fluorescence techniques, that humic-like and protein-like substances are the main chromophores in WS-BrC and responsible for 80.2 ± 4.1% and 19.8 ± 4.1% of the total fluorescence intensity, respectively. BrC contributes to 8.78 ± 3.74% of total light absorption over the 300-700 nm wavelength range. Considering the dominant contribution of biomass burning to BrC over Godavari, this study suggests that reduction in biomass burning emission may be a practical method for climate change mitigation in South Asia.
Collapse
Affiliation(s)
- Guangming Wu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes , Institute of Tibetan Plateau Research, Chinese Academy of Sciences , Beijing 100101 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Kirpa Ram
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes , Institute of Tibetan Plateau Research, Chinese Academy of Sciences , Beijing 100101 , China
- Institute of Environment and Sustainable Development , Banaras Hindu University , Varanasi 221005 , India
| | - Pingqing Fu
- Institute of Surface-Earth System Science , Tianjin University , Tianjin 300072 , China
| | - Wan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment , Chinese Research Academy of Environmental Sciences , Beijing 100012 , China
| | - Yanlin Zhang
- Yale-NUIST Center on Atmospheric Environment , Nanjing University of Information Science and Technology , Nanjing 210044 , China
| | - Xiaoyan Liu
- Yale-NUIST Center on Atmospheric Environment , Nanjing University of Information Science and Technology , Nanjing 210044 , China
| | - Elizabeth A Stone
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52246 , United States
| | - Bidya Banmali Pradhan
- International Centre for Integrated Mountain Development , Khumaltar , Lalitpur 009771 , Nepal
| | - Pradeep Man Dangol
- International Centre for Integrated Mountain Development , Khumaltar , Lalitpur 009771 , Nepal
| | - Arnico K Panday
- International Centre for Integrated Mountain Development , Khumaltar , Lalitpur 009771 , Nepal
| | - Xin Wan
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes , Institute of Tibetan Plateau Research, Chinese Academy of Sciences , Beijing 100101 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment , Chinese Research Academy of Environmental Sciences , Beijing 100012 , China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources , Chinese Academy of Sciences , Lanzhou 730000 , China
- Center for Excellence in Tibetan Plateau Earth Sciences , Chinese Academy of Sciences , Beijing 100101 , China
| | - Qianggong Zhang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes , Institute of Tibetan Plateau Research, Chinese Academy of Sciences , Beijing 100101 , China
- Center for Excellence in Tibetan Plateau Earth Sciences , Chinese Academy of Sciences , Beijing 100101 , China
| | - Zhiyuan Cong
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes , Institute of Tibetan Plateau Research, Chinese Academy of Sciences , Beijing 100101 , China
- Center for Excellence in Tibetan Plateau Earth Sciences , Chinese Academy of Sciences , Beijing 100101 , China
| |
Collapse
|
38
|
Dong Z, Qin D, Li K, Kang S, Wei T, Lu J. Spatial variability, mixing states and composition of various haze particles in atmosphere during winter and summertime in northwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:79-88. [PMID: 30529944 DOI: 10.1016/j.envpol.2018.11.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Pollutants, which are usually transported from urban cities to remote glacier basins, and aerosol impurities affect the earth's temperature and climate by altering the radiative properties of the atmosphere. This work focused on the physicochemical properties of atmospheric pollutants across the urban and remote background sites in northwest China. Information on individual particles was obtained using transmission electron microscopy (TEM) and energy dispersive X-ray spectrometry (EDX). Particle size and age-dependent mixing structures of individual particles in clean and polluted air were investigated. Aerosols were classified into eight components: mineral dust, black carbon (soot)/fly ash, sulfates, nitrates, NaCl salt, ammonium, organic matter, and metals. Marked spatial and seasonal changes in individual particle components were observed in the study area. Aerosol particles were generally found to be in the mixing state. For example, salt-coated particles in summer accounted for 31.2-44.8% of the total particles in urban sites and 37.5-74.5% of the total particles in background sites, while in winter, almost all urban sites comprised >50%, which implies a significant effect on the radiative forcing in the study area. We found that in PM2.5 section, the internally mixed black carbon/organic matter particles clearly increased with diameter. Moreover, urban cities were characterized by atmospheric particles sourced from anthropogenic activities, whereas background locations exhibited much lower aerosol concentrations and increased particle density, originating from natural crustal sources (e.g., mineral dust and NaCl salt), which, together with air mass trajectory analysis, indicates a potential spatial transport process and routes of atmospheric transport from urban cities to background locations. Thus, this work is of importance in evaluating atmospheric conditions in northwest China and northeast Tibetan Plateau regions, to discover the transport processes and facilitate improvements in climatic patterns concerning atmospheric impurities.
Collapse
Affiliation(s)
- Zhiwen Dong
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Institute for Geophysics and Meteorology, University of Cologne, Cologne D, 50923, Germany.
| | - Dahe Qin
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Kaiming Li
- School of Geography and Environmental Engineering, Lanzhou City University, Lanzhou, 730000, China
| | - Shichang Kang
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Ting Wei
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Junfeng Lu
- Institute for Geophysics and Meteorology, University of Cologne, Cologne D, 50923, Germany; Key Laboratory of Desert and Desertification, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
39
|
Marrero-Ortiz W, Hu M, Du Z, Ji Y, Wang Y, Guo S, Lin Y, Gomez-Hermandez M, Peng J, Li Y, Secrest J, Zamora ML, Wang Y, An T, Zhang R. Formation and Optical Properties of Brown Carbon from Small α-Dicarbonyls and Amines. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:117-126. [PMID: 30499298 DOI: 10.1021/acs.est.8b03995] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Brown Carbon (BrC) aerosols scatter and absorb solar radiation, directly affecting the Earth's radiative budget. However, considerable uncertainty exists concerning the chemical mechanism leading to BrC formation and their optical properties. In this work, BrC particles were prepared from mixtures of small α-dicarbonyls (glyoxal and methylglyoxal) and amines (methylamine, dimethylamine, and trimethylamine). The absorption and scattering of BrC particles were measured using a photoacoustic extinctometer (405 and 532 nm), and the chemical composition of the α-dicarbonyl-amine mixtures was analyzed using orbitrap-mass spectrometry and thermal desorption-ion drift-chemical ionization mass spectrometry. The single scattering albedo for methylglyoxal-amine mixtures is smaller than that of glyoxal-amine mixtures and increases with the methyl substitution of amines. The mass absorption cross-section for methylglyoxal-amine mixtures is two times higher at 405 nm wavelength than that at 532 nm wavelength. The derived refractive indexes at the 405 nm wavelength are 1.40-1.64 for the real part and 0.002-0.195 for the imaginary part. Composition analysis in the α-dicarbonyl-amine mixtures reveals N-heterocycles as the dominant products, which are formed via multiple steps involving nucleophilic attack, steric hindrance, and dipole-dipole interaction between α-dicarbonyls and amines. BrC aerosols, if formed from the particle-phase reaction of methylglyoxal with methylamine, likely contribute to atmospheric warming.
Collapse
Affiliation(s)
- Wilmarie Marrero-Ortiz
- Department of Chemistry , Texas A&M University , College Station , Texas 77840 , United States
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Zhuofei Du
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Yuemeng Ji
- Center for Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering , Nankai University , Tianjin , 300071 , China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control , Guangdong University of Technology , Guangzhou 510006 , China
| | - Yujue Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Yun Lin
- Department of Atmospheric Sciences , Texas A&M University , College Station , Texas 77843 , United States
| | - Mario Gomez-Hermandez
- Department of Chemistry , Texas A&M University , College Station , Texas 77840 , United States
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Jianfei Peng
- Department of Atmospheric Sciences , Texas A&M University , College Station , Texas 77843 , United States
| | - Yixin Li
- Department of Chemistry , Texas A&M University , College Station , Texas 77840 , United States
| | - Jeremiah Secrest
- Department of Chemistry , Texas A&M University , College Station , Texas 77840 , United States
| | - Misti L Zamora
- Department of Atmospheric Sciences , Texas A&M University , College Station , Texas 77843 , United States
- Environmental Health & Engineering, Johns Hopkins School of Public Health , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Yuan Wang
- Division of Geological and Planetary Sciences , California Institute of Technology , Pasadena , California 91125 , United States
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control , Guangdong University of Technology , Guangzhou 510006 , China
| | - Renyi Zhang
- Department of Chemistry , Texas A&M University , College Station , Texas 77840 , United States
- Department of Atmospheric Sciences , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
40
|
Nath R, Luo Y, Chen W, Cui X. On the contribution of internal variability and external forcing factors to the Cooling trend over the Humid Subtropical Indo-Gangetic Plain in India. Sci Rep 2018; 8:18047. [PMID: 30575779 PMCID: PMC6303293 DOI: 10.1038/s41598-018-36311-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/03/2018] [Indexed: 11/24/2022] Open
Abstract
The summer surface air temperature (SAT) in the Humid Subtropical Climate Zone in India, exhibits a significant cooling trend (~−3 °C/40 yrs.) in CRU observational data during 1961–2000. Here we investigate the contribution of internal and external factors, which are driving this cooling trend. Using the Community Earth System Model-Large Ensemble (CESM-LE), we analyze the historical climate change in presence of internal climate variability. Most of the model ensemble members could reproduce this amplified cooling (<−3 °C) as shown from CRU data. Further analyses reveals that external forcing displays a strong cooling effect over this region, while internal variability displays mixed cooling (in most cases) and warming signals. The signal to noise ratio i.e. the ratio of external forcings and internal climatic variability is less than 1, which indicates that internal climatic variability dominates over the forced response. Furthermore, to quantify the role of different external forcing factors we used the CCSM4 single forcing simulations. The simulation results from CESM-LE and CCSM4 suggest that the cooling trend over the region is primarily due to the combined influence of internal variability (~73%) and partly due to aerosol (~10%) and ozone only forcing, which strongly mask the warming effect of GHG and solar forcing.
Collapse
Affiliation(s)
- Reshmita Nath
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China.,Joint Center for Global Change Studies, Beijing, 100875, China
| | - Yong Luo
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China. .,Joint Center for Global Change Studies, Beijing, 100875, China.
| | - Wen Chen
- Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xuefeng Cui
- School of System Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
41
|
Xu R, Tie X, Li G, Zhao S, Cao J, Feng T, Long X. Effect of biomass burning on black carbon (BC) in South Asia and Tibetan Plateau: The analysis of WRF-Chem modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:901-912. [PMID: 30032086 DOI: 10.1016/j.scitotenv.2018.07.165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
The focus of this study is to evaluate the impact of biomass burning (BB) from South Asia and Southeast Asia on the glaciers over the Tibetan Plateau. The seasonality and long-term trend of biomass fires measured by Terra and Aqua satellite data from 2010 to 2016 are used in this study. The analysis shows that the biomass burnings were widely dispersed in the continental of Indian and Southeast Asia and existed a strong seasonal variation. The biomass burnings in winter (January) were relatively weak and scattered and were significantly enhanced in spring (April). The highest biomass burnings located in two regions. One was along the foothill of Himalayas, where is a dense population area, and the second located in Southeast Asia. Because these two high biomass burning regions are close to the Tibetan Plateau, they could have important effects on the BC deposition over the glaciers of the Tibetan Plateau. In order to study the effect of BB emissions on the deposition over the glaciers in the Tibetan Plateau, a regional chemical model (WRF-Chem; Weather Research and Forecasting Chemical model) was applied to simulate the BC distributions and the transport from BB emission regions to the glaciers in Tibetan Plateau. The result shows that in winter (January), due to the relatively weak BB emissions, the effect of BB emissions on BC concentrations was not significant. The BC concentrations resulted from BB emissions ranged from 0.1 to 2.0 μg/m3, with high concentrations distributed along the foothill of Himalayas and the southeastern Asia region. Due to the relative low BC concentrations, there was insignificant effect of BB emissions on the deposition over the glaciers in the Tibetan Plateau in winter. However, the BB emissions were highest in spring (April), producing high BC concentrations. For example, along the Himalayas Mountain and in the southeastern Asia region, The BC concentrations ranged from 2.0 to 6.0 μg/m3. In addition to the high BC concentrations, there were also west and south prevailing winds in these regions. As a result, the BC particles were transported to the glaciers in the Tibetan Plateau, causing significant deposition of BC particles on the snow surface of the glaciers. This study suggests that the biomass burning emissions have important effects on the BC deposition over the glaciers in the Tibetan Plateau, and the contaminations of glaciers could have significant impact on the melting of snow in the Tibetan Plateau, causing some severe environmental problems, such as the water resources.
Collapse
Affiliation(s)
- Ruiguang Xu
- State Kay Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China; Postdoctoral Research Station of Xi'an Chan-Ba Ecological District(CBE) Management Committee, Xi'an 710024, China
| | - Xuexi Tie
- State Kay Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; National Center for Atmospheric Research (NCAR), Boulder, CO 80303, USA.
| | - Guohui Li
- State Kay Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Shuyu Zhao
- State Kay Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Junji Cao
- State Kay Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Tian Feng
- State Kay Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Xin Long
- State Kay Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|
42
|
Li S, Zhu M, Yang W, Tang M, Huang X, Yu Y, Fang H, Yu X, Yu Q, Fu X, Song W, Zhang Y, Bi X, Wang X. Filter-based measurement of light absorption by brown carbon in PM 2.5 in a megacity in South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:1360-1369. [PMID: 29758888 DOI: 10.1016/j.scitotenv.2018.03.235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
Carbonaceous aerosols represent an important nexus between air pollution and climate change. Here we collected filter-based PM2.5 samples during summer and autumn in 2015 at one urban and two rural sites in Guangzhou, a megacity in southern China, and got the light absorption by black carbon (BC) and brown carbon (BrC) resolved with a DRI Model 2015 multi-wavelength thermal/optical carbon analyzer apart from determining the organic carbon (OC) and elemental carbon (EC) contents. On average BrC contributed 12-15% of the measured absorption at 405nm (LA405) during summer and 15-19% during autumn with significant increase in the LA405 by BrC at the rural sites. Carbonaceous aerosols, identified as total carbon (TC), yielded average mass absorption efficiency at 405nm (MAE405) that were approximately 45% higher in autumn than in summer, an 83% increase was noted in the average MAE405 for OC, compared with an increase of only 14% in the average MAE405 for EC. The LA405 by BrC showed a good correlation (p<0.001) with the ratios of secondary OC to PM2.5 in summer. However, this correlation was poor (p>0.1) in autumn, implying greater secondary formation of BrC in summer. The correlations between levoglucosan (a marker of biomass burning) and the LA405 by BrC were significant during autumn but insignificant during summer, suggesting that the observed increase in the LA405 by BrC during autumn in rural areas was largely related to biomass burning. The measurements of light absorption at 550nm presented in this study indicated that the use of the IMPROVE algorithm with an MAE value of 10m2/g for EC to approximate light absorption may be appropriate in areas not strongly affected by fossil fuel combustion; however, this practice would underestimate the absorption of light by PM2.5 in areas heavily affected by vehicle exhausts and coal burning.
Collapse
Affiliation(s)
- Sheng Li
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Zhu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqiang Yang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingjin Tang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xueliang Huang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yuegang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Hua Fang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxin Fu
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yanli Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xinhui Bi
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
43
|
Gen M, Huang DD, Chan CK. Reactive Uptake of Glyoxal by Ammonium-Containing Salt Particles as a Function of Relative Humidity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6903-6911. [PMID: 29775291 DOI: 10.1021/acs.est.8b00606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Reactions between dissolved ammonia and carbonyls, which form light-absorbing species in atmospheric particles, can be accelerated by actively removing water from the reaction system. Here, we examine the effects of relative humidity (RH) on the reactive uptake of glyoxal (Gly) by aqueous particles of ammonium sulfate (AS), ammonium bisulfate, sodium sulfate, magnesium sulfate, ammonium nitrate (AN), and sodium nitrate. In situ Raman analysis was used to quantify particle-phase Gly and a colored product, 2,2'-biimidazole (BI), as a function of uptake time. Overall, the Gly uptake rate increases with decreasing RH, reflecting the "salting-in" effect. The BI formation rate increases significantly with decreasing RH or aerosol liquid water (ALW). Compared to that at 75% RH, the BI formation rate is enhanced by factors of 29 at 60% RH and 330 at 45% RH for AS particles and 65 at 60% RH, 210 at 45% RH, and 460 at 30% RH for AN particles. These enhancement factors are much larger than those estimated from increased reactant concentrations due to decreases in RH and ALW alone. We postulate that the reduction in ALW at low RH increases the Gly uptake rate via the "salting-in" effect and the BI formation rate by facilitating dehydration reactions.
Collapse
Affiliation(s)
- Masao Gen
- School of Energy and Environment , City University of Hong Kong , Tat Chee Avenue , Kowloon, Hong Kong , China
| | - Dan Dan Huang
- School of Energy and Environment , City University of Hong Kong , Tat Chee Avenue , Kowloon, Hong Kong , China
| | - Chak K Chan
- School of Energy and Environment , City University of Hong Kong , Tat Chee Avenue , Kowloon, Hong Kong , China
| |
Collapse
|
44
|
Zhu CS, Cao JJ, Huang RJ, Shen ZX, Wang QY, Zhang NN. Light absorption properties of brown carbon over the southeastern Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:246-251. [PMID: 29289772 DOI: 10.1016/j.scitotenv.2017.12.183] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/12/2017] [Accepted: 12/17/2017] [Indexed: 06/07/2023]
Abstract
We present a study of the light-absorbing properties of water-soluble brown carbon (WS-BrC) and methanol-soluble brown carbon (MeS-BrC) at a remote site (Lulang, 3326m above sea level) in the southeastern Tibetan Plateau during the period 2015-2016. The light absorption coefficients at 365nm (babs365) of WS-BrC and MeS-BrC were the highest during winter and the lowest during monsoon season. MeS-BrC absorbs about 1.5 times higher at 365nm compared to WS-BrC. The absorption at 550nm appears lower compared to that of 365nm for WS-BrC and MeS-BrC, respectively. Higher average value of the absorption Ångström exponent (AAE, 365-550nm) was obtained for MeS-BrC (8.2) than that for WS-BrC (6.9). The values of the mass absorption cross section at 365nm (MAC365) indicated that BrC in winter absorbs UV-visible light more efficiently than in monsoon. The results confirm the importance of BrC in contributing to light-absorbing aerosols in this region. The understanding of the light absorption properties of BrC is of great importance, especially in modeling studies for the climate effects and transport of BrC in the Tibetan Plateau.
Collapse
Affiliation(s)
- Chong-Shu Zhu
- Key Laboratory of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China.
| | - Jun-Ji Cao
- Key Laboratory of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Ru-Jin Huang
- Key Laboratory of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Zhen-Xing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qi-Yuan Wang
- Key Laboratory of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Ning-Ning Zhang
- Key Laboratory of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|
45
|
Trends and Variability in Aerosol Optical Depth over North China from MODIS C6 Aerosol Products during 2001–2016. ATMOSPHERE 2017. [DOI: 10.3390/atmos8110223] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Nagar PK, Singh D, Sharma M, Kumar A, Aneja VP, George MP, Agarwal N, Shukla SP. Characterization of PM 2.5 in Delhi: role and impact of secondary aerosol, burning of biomass, and municipal solid waste and crustal matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:25179-25189. [PMID: 28924742 DOI: 10.1007/s11356-017-0171-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/07/2017] [Indexed: 05/20/2023]
Abstract
Delhi is one among the highly air polluted cities in the world. Absence of causal relationship between emitting sources of PM2.5 and their impact has resulted in inadequate actions. This research combines a set of innovative and state-of-the-art analytical techniques to establish relative predominance of PM2.5 sources. Air quality sampling at six sites in summer and winter for 40 days (at each site) showed alarmingly high PM2.5 concentrations (340 ± 135 μg/m3). The collected PM2.5 was subjected to chemical speciation including ions, metals, organic and elemental carbons which followed application of chemical mass balance technique for source apportionment. The source apportionment results showed that secondary aerosols, biomass burning (BMB), vehicles, fugitive dust, coal and fly ash, and municipal solid waste burning were the important sources. It was observed that secondary aerosol and crustal matter accounted for over 50% of mass. The PM2.5 levels were not solely result of emissions from Delhi; it is a larger regional problem caused by contiguous urban agglomerations. It was argued that emission reduction of precursors of secondary aerosol, SO2, NOx, and volatile organic compounds, which are unabated, is essential. A substantial reduction in BMB and suspension of crustal dust is equally important to ensure compliance with air quality standards.
Collapse
Affiliation(s)
- Pavan K Nagar
- Department of Civil Engineering, Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Dhirendra Singh
- Department of Civil Engineering, Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Mukesh Sharma
- Department of Civil Engineering, Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
| | - Anil Kumar
- Department of Environment, Government of National Capital Territory of Delhi, New Delhi, 110002, India
| | - Viney P Aneja
- Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, 27695-8208, USA
| | - Mohan P George
- Delhi Pollution Control Committee, Government of National Capital Territory of Delhi, New Delhi, 110002, India
| | - Nigam Agarwal
- Department of Environment, Government of National Capital Territory of Delhi, New Delhi, 110002, India
| | - Sheo P Shukla
- Department of Civil Engineering, Institute of Engineering & Technology, Lucknow, Uttar Pradesh, 226021, India
| |
Collapse
|
47
|
Aiona PK, Lee HJ, Lin P, Heller F, Laskin A, Laskin J, Nizkorodov SA. A Role for 2-Methyl Pyrrole in the Browning of 4-Oxopentanal and Limonene Secondary Organic Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11048-11056. [PMID: 28858499 DOI: 10.1021/acs.est.7b02293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Reactions of ammonia or ammonium sulfate (AS) with carbonyls in secondary organic aerosol (SOA) produced from limonene are known to form brown carbon (BrC) with a distinctive absorption band at 505 nm. This study examined the browning processes in aqueous solutions of AS and 4-oxopentanal (4-OPA), which has a 1,4-dicarbonyl structural motif present in many limonene SOA compounds. Aqueous reactions of 4-OPA with AS were found to produce 2-methyl pyrrole (2-MP), which was detected by gas chromatography. While 2-MP does not absorb visible radiation, it can further react with 4-OPA eventually forming BrC compounds. This was demonstrated by reacting 2-MP with 4-OPA or limonene SOA, both of which produced BrC with absorption bands at 475 and 505 nm, respectively. The formation of BrC in the reaction of 4-OPA with AS and ammonium nitrate was greatly accelerated by evaporation of the solution suggesting an important role of the dehydration processes in BrC formation. 4-OPA was also found to produce BrC in aqueous reactions with a broad spectrum of amino acids and amines. These results suggest that 4-OPA may be the smallest atmospherically relevant compound capable of browning by the same mechanism as limonene SOA.
Collapse
Affiliation(s)
- Paige K Aiona
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | - Hyun Ji Lee
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | - Peng Lin
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | - Forrest Heller
- Environmental Molecular Science Laboratory, Energy and Environment Directorate, , Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Alexander Laskin
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | - Sergey A Nizkorodov
- Department of Chemistry, University of California , Irvine, California 92697, United States
| |
Collapse
|
48
|
Yadav IC, Linthoingambi Devi N, Li J, Syed JH, Zhang G, Watanabe H. Biomass burning in Indo-China peninsula and its impacts on regional air quality and global climate change-a review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 227:414-427. [PMID: 28486185 DOI: 10.1016/j.envpol.2017.04.085] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/27/2017] [Accepted: 04/29/2017] [Indexed: 05/22/2023]
Abstract
Although, many biomass burning (BB) emissions products (particulate matter and trace gases) are believed to be trans-boundary pollutants that originates from India and China (the two most populous countries in Asia), the information about BB emission and related contents is limited for Indo-China Peninsula (ICP) region. This motivated us to review this region pertaining to BB emission. The main objective of the review is to document the current status of BB emission in ICP region. In order to highlight the impact of BB on regional air quality and global climate change, the role of BB emission in ICP region is also discussed. Based on the available literature and modeling simulations studies, it is evidenced that ICP is one of the hotspot regional source for aerosols in terms of BB emissions. In addition, regional emissions through BB have significant implications for regional air quality especially in the neighboring countries such as China, Taiwan and India. Our assessment highlight that there is still a general lack of reliable data and research studies addressing BB related issues in context of environmental and human health. There is therefore a critical need to improve the current knowledge base, which should build upon the research experience and further research into these issues is considered vital to help inform future policies/control strategies.
Collapse
Affiliation(s)
- Ishwar Chandra Yadav
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Department of International Environmental and Agricultural Science (IEAS), Tokyo University of Agriculture and Technology (TUAT) 3-5-8, Saiwaicho, Fuchu, Tokyo 1838509, Japan.
| | | | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jabir Hussain Syed
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Hirozumi Watanabe
- Department of International Environmental and Agricultural Science (IEAS), Tokyo University of Agriculture and Technology (TUAT) 3-5-8, Saiwaicho, Fuchu, Tokyo 1838509, Japan
| |
Collapse
|
49
|
De Haan DO, Hawkins LN, Welsh HG, Pednekar R, Casar JR, Pennington EA, de Loera A, Jimenez NG, Symons MA, Zauscher M, Pajunoja A, Caponi L, Cazaunau M, Formenti P, Gratien A, Pangui E, Doussin JF. Brown Carbon Production in Ammonium- or Amine-Containing Aerosol Particles by Reactive Uptake of Methylglyoxal and Photolytic Cloud Cycling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7458-7466. [PMID: 28562016 DOI: 10.1021/acs.est.7b00159] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effects of methylglyoxal uptake on the physical and optical properties of aerosol containing amines or ammonium sulfate were determined before and after cloud processing in a temperature- and RH-controlled chamber. The formation of brown carbon was observed upon methylglyoxal addition, detected as an increase in water-soluble organic carbon mass absorption coefficients below 370 nm and as a drop in single-scattering albedo at 450 nm. The imaginary refractive index component k450 reached a maximum value of 0.03 ± 0.009 with aqueous glycine aerosol particles. Browning of solid particles occurred at rates limited by chamber mixing (<1 min), and in liquid particles occurred more gradually, but in all cases occurred much more rapidly than in bulk aqueous studies. Further browning in AS and methylammonium sulfate seeds was triggered by cloud events with chamber lights on, suggesting photosensitized brown carbon formation. Despite these changes in optical aerosol characteristics, increases in dried aerosol mass were rarely observed (<1 μg/m3 in all cases), consistent with previous experiments on methylglyoxal. Under dry, particle-free conditions, methylglyoxal reacted (presumably on chamber walls) with methylamine with a rate constant k = (9 ± 2) × 10-17 cm3 molecule-1 s-1 at 294 K and activation energy Ea = 64 ± 37 kJ/mol.
Collapse
Affiliation(s)
- David O De Haan
- Department of Chemistry and Biochemistry, University of San Diego , 5998 Alcala Park, San Diego, California 92110, United States
| | - Lelia N Hawkins
- Department of Chemistry, Harvey Mudd College , 301 Platt Blvd, Claremont, California 91711, United States
| | - Hannah G Welsh
- Department of Chemistry, Harvey Mudd College , 301 Platt Blvd, Claremont, California 91711, United States
| | - Raunak Pednekar
- Department of Chemistry, Harvey Mudd College , 301 Platt Blvd, Claremont, California 91711, United States
| | - Jason R Casar
- Department of Chemistry, Harvey Mudd College , 301 Platt Blvd, Claremont, California 91711, United States
| | - Elyse A Pennington
- Department of Chemistry, Harvey Mudd College , 301 Platt Blvd, Claremont, California 91711, United States
| | - Alexia de Loera
- Department of Chemistry and Biochemistry, University of San Diego , 5998 Alcala Park, San Diego, California 92110, United States
| | - Natalie G Jimenez
- Department of Chemistry and Biochemistry, University of San Diego , 5998 Alcala Park, San Diego, California 92110, United States
| | - Michael A Symons
- Department of Chemistry and Biochemistry, University of San Diego , 5998 Alcala Park, San Diego, California 92110, United States
| | - Melanie Zauscher
- Department of Chemistry and Biochemistry, University of San Diego , 5998 Alcala Park, San Diego, California 92110, United States
| | - Aki Pajunoja
- Department of Applied Physics, University of Eastern Finland , P.O. Box 1627, 70211 Kuopio, Finland
| | - Lorenzo Caponi
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR7583, CNRS, Université Paris-Est-Créteil (UPEC) et Université Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL), 94010 Créteil, France
| | - Mathieu Cazaunau
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR7583, CNRS, Université Paris-Est-Créteil (UPEC) et Université Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL), 94010 Créteil, France
| | - Paola Formenti
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR7583, CNRS, Université Paris-Est-Créteil (UPEC) et Université Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL), 94010 Créteil, France
| | - Aline Gratien
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR7583, CNRS, Université Paris-Est-Créteil (UPEC) et Université Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL), 94010 Créteil, France
| | - Edouard Pangui
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR7583, CNRS, Université Paris-Est-Créteil (UPEC) et Université Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL), 94010 Créteil, France
| | - Jean-François Doussin
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR7583, CNRS, Université Paris-Est-Créteil (UPEC) et Université Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL), 94010 Créteil, France
| |
Collapse
|
50
|
Yadav R, Sahu LK, Beig G, Tripathi N, Jaaffrey SNA. Ambient particulate matter and carbon monoxide at an urban site of India: Influence of anthropogenic emissions and dust storms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:291-303. [PMID: 28347611 DOI: 10.1016/j.envpol.2017.01.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/15/2017] [Accepted: 01/15/2017] [Indexed: 06/06/2023]
Abstract
Continuous measurements of PM2.5, PM10 and CO were conducted at an urban site of Udaipur in India from April 2011 to March 2012. The annual mean concentrations of PM2.5, PM10 and CO were 42 ± 17 μg m-3, 114 ± 31 μg m-3 and 343 ± 136 ppbv, respectively. Concentrations of both particulate and CO showed high values during winter/pre-monsoon (dry) period and lowest in the monsoon season (wet). Local anthropogenic emission and long-range transport from open biomass burning sources along with favourable synoptic meteorology led to elevated levels of pollutants in the dry season. However, higher values of PM10/PM2.5 ratio during pre-monsoon season were caused by the episodes of dust storm. In the monsoon season, flow of cleaner air, rainfall and negligible emissions from biomass burning resulted in the lowest levels of pollutants. The concentrations of PM2.5, PM10 and CO showed highest values during morning and evening rush hours, while lowest in the afternoon hours. In winter season, reductions of PM2.5, CO and PM10 during weekends were highest of 15%, 13% and 9%, respectively. In each season, the highest PM2.5/PM10 ratio coincided with the highest concentrations of pollutants (CO and NOX) indicating predominant emissions from anthropogenic sources. Exceptionally high concentrations of PM10 during the episode of dust storm were due to transport from the Arabian Peninsula and Thar Desert. Up to ∼32% enhancements of PM10 were observed during strong dust storms. Relatively low levels of O3 and NOx during the storm periods indicate the role of heterogeneous removal.
Collapse
Affiliation(s)
- Ravi Yadav
- Physical Research Laboratory, Ahmedabad, 380009, India.
| | - L K Sahu
- Physical Research Laboratory, Ahmedabad, 380009, India
| | - G Beig
- Indian Institute of Tropical Meteorology, Pune, 411008, India
| | | | - S N A Jaaffrey
- Department of Physics, Mohanlal Sukhadia University, Udaipur, 313001, India
| |
Collapse
|