1
|
Jiang Y, Zhang A, Zou Q, Zhang L, Zuo H, Ding J, Wang Z, Li Z, Jin L, Xu D, Sun X, Zhao W, Xu B, Li X. Long-Term Halocarbon Observations in an Urban Area of the YRD Region, China: Characteristic, Sources Apportionment and Health Risk Assessment. TOXICS 2024; 12:738. [PMID: 39453158 PMCID: PMC11511214 DOI: 10.3390/toxics12100738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
To observe the long-term variations in halocarbons in the Yangtze River Delta (YRD) region, this study analyzes halocarbon concentrations and composition characteristics in Shanxi from 2018 to 2020, exploring their origins and the health effects. The total concentration of halocarbons has shown an overall increasing trend, which is driven by both regulated substances (CFC-11 and CFC-113) and unregulated substances, such as dichloromethane, chloromethane and chloroform. The results of the study also reveal that dichloromethane (1.194 ± 1.003 to 1.424 ± 1.004 ppbv) and chloromethane (0.205 ± 0.185 to 0.666 ± 0.323 ppbv) are the predominant halocarbons in Shanxi, influenced by local and northwestern emissions. Next, this study identifies that neighboring cities in Zhejiang Province and other YRD areas are potentially affected by backward trajectory models. Notably, chloroform and 1,2-dichloroethane have consistently surpassed acceptable thresholds, indicating a significant carcinogenic risk associated with solvent usage. This research sheds light on the evolution of halocarbons in the YRD region, offering valuable data for the control and reduction in halocarbon emissions.
Collapse
Affiliation(s)
- Yuchun Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Anqi Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiaoli Zou
- Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Hangzhou 310012, China
| | - Lu Zhang
- Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Hangzhou 310012, China
| | - Hanfei Zuo
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Jinmei Ding
- Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Hangzhou 310012, China
| | - Zhanshan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lingling Jin
- Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Hangzhou 310012, China
| | - Da Xu
- Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Hangzhou 310012, China
| | - Xin Sun
- Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Hangzhou 310012, China
| | - Wenlong Zhao
- Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Hangzhou 310012, China
| | - Bingye Xu
- Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Hangzhou 310012, China
| | - Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
2
|
Cao L, Men Q, Zhang Z, Yue H, Cui S, Huang X, Zhang Y, Wang J, Chen M, Li H. Significance of Volatile Organic Compounds to Secondary Pollution Formation and Health Risks Observed during a Summer Campaign in an Industrial Urban Area. TOXICS 2024; 12:34. [PMID: 38250990 PMCID: PMC10820161 DOI: 10.3390/toxics12010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
The chemical complexity and toxicity of volatile organic compounds (VOCs) are primarily encountered through intensive anthropogenic emissions in suburban areas. Here, pollution characteristics, impacts on secondary pollution formation, and health risks were investigated through continuous in-field measurements from 1-30 June 2020 in suburban Nanjing, adjacent to national petrochemical industrial parks in China. On average, the total VOCs concentration was 34.47 ± 16.08 ppb, which was comprised mostly by alkanes (41.8%) and halogenated hydrocarbons (29.4%). In contrast, aromatics (17.4%) dominated the ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAFP) with 59.6% and 58.3%, respectively. Approximately 63.5% of VOCs were emitted from the petrochemical industry and from solvent usage based on source apportionment results, followed by biogenic emissions of 22.3% and vehicle emissions of 14.2%. Of the observed 46 VOC species, hexachlorobutadiene, dibromoethane, butadiene, tetrachloroethane, and vinyl chloride contributed as high as 98.8% of total carcinogenic risk, a large fraction of which was ascribed to the high-level emissions during ozone pollution episodes and nighttime. Therefore, the mitigation of VOC emissions from petrochemical industries would be an effective way to reduce secondary pollution and potential health risks in conurbation areas.
Collapse
Affiliation(s)
- Li Cao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Qihui Men
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zihao Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Hao Yue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Shijie Cui
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xiangpeng Huang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yunjiang Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Junfeng Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Mindong Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Haiwei Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environment Sciences, Shanghai 200233, China
| |
Collapse
|
3
|
Yi L, An M, Yu H, Ma Z, Xu L, O'Doherty S, Rigby M, Western LM, Ganesan AL, Zhou L, Shi Q, Hu Y, Yao B, Xu W, Hu J. In Situ Observations of Halogenated Gases at the Shangdianzi Background Station and Emission Estimates for Northern China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7217-7229. [PMID: 37126109 DOI: 10.1021/acs.est.3c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Halogenated gases include ozone-depleting substances and greenhouse gases, such as chlorofluorocarbons, halons, hydrochlorofluorocarbons, hydrofluorocarbons, and perfluorinated gases. In situ atmospheric observations of major halogenated gases were conducted at the Shangdianzi (SDZ) background station, China, from October 2020 to September 2021 using ODS5-pro, a newly developed measurement system. The measurement time series of 36 halogenated gases showed occasional pollution events, where background conditions represented 25% (CH2Cl2) to 81% (CF3Cl, CFC-13) of the measurements. The annual mean background mole fractions of most species at SDZ were consistent with those obtained at the Mace Head station in Ireland. The background conditions were distinguished from pollution events, and the enhanced mole fractions were used to estimate the emissions of four categories of fluorinated gases (F-gases) from northern China using a tracer ratio method. The CO2-equivalent (CO2-equiv) emission of F-gases from northern China reached 181 ± 18 Tg year-1 during 2020-2021. Among the four categories of F-gases estimated, SF6 accounted for the highest proportion of CO2-equiv emissions (24%), followed by HFC-23 (22%), HFC-125 (17%), HFC-134a (13%), NF3 (10%), CF4 (5.9%), HFC-143a (3.9%), HFC-32 (3.4%), and HFC-152a (0.2%).
Collapse
Affiliation(s)
- Liying Yi
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Minde An
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Haibo Yu
- Beijing Huanaco Innovation Co., Ltd., Beijing 102400, China
| | - Zhiqiang Ma
- Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
| | - Lin Xu
- Beijing Huanaco Innovation Co., Ltd., Beijing 102400, China
| | - Simon O'Doherty
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Matthew Rigby
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Luke M Western
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
- Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado 80305, United States
| | - Anita L Ganesan
- School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, U.K
| | - Liyan Zhou
- Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
| | - Qingfeng Shi
- Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
| | - Yunxing Hu
- Beijing Huanaco Innovation Co., Ltd., Beijing 102400, China
| | - Bo Yao
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
- Meteorological Observation Centre of China Meteorological Administration (MOC/CMA), Beijing 100081, China
| | - Weiguang Xu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jianxin Hu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Stari L, Tusher TR, Inoue C, Chien MF. A microbial consortium led by a novel Pseudomonas species enables degradation of carbon tetrachloride under aerobic conditions. CHEMOSPHERE 2023; 319:137988. [PMID: 36724852 DOI: 10.1016/j.chemosphere.2023.137988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/04/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Carbon tetrachloride (CT) is a recalcitrant and high priority pollutant known for its toxicity, environmental prevalence, and inhibitory activities. Although much is known about anaerobic CT biodegradation, microbial degradation of CT under aerobic conditions has not yet been reported. This study reports for the first time the enrichment of a stable aerobic CT-degrading bacterial consortium, from a CT-contaminated groundwater sample, capable of co-metabolically degrading 30 μM of CT within a week. A Pseudomonas strain (designated as Stari2) that is the predominant bacterium in this consortium was isolated, and further characterization showed that this bacterium can tolerate and co-metabolically degrade up to 5 mM of CT under aerobic conditions in the presence of different carbon/energy sources. The CT biodegradation profiles of strain Stari2 and the consortium were found to be identical, while no significant positive correlation between strain Stari2 and other bacteria was observed in the consortium during the period of higher CT biodegradation. These results confirmed that the isolated Pseudomonas strain Stari2 is the key player in the consortium catalyzing the biodegradation of CT. No chloroform (CF) or other chlorinated compound was detected during the cometabolism of CT. The whole genome sequencing of strain Stari2 showed that it is a novel Pseudomonas species. The findings demonstrated that biodegradation of CT under aerobic conditions is feasible, and the isolated CT-degrader Pseudomonas sp. strain Stari2 has a great potential for in-situ bioremediation of CT-contaminated environments.
Collapse
Affiliation(s)
- Leonardo Stari
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai, 980-8579, Japan; Graduate School of Life Science, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Tanmoy Roy Tusher
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai, 980-8579, Japan; Department of Biological Sciences, Marquette University, Milwaukee, WI, 53233, USA; Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Mei-Fang Chien
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai, 980-8579, Japan.
| |
Collapse
|
5
|
Li X, Li B, Yang Y, Hu L, Chen D, Hu X, Feng R, Fang X. Characteristics and source apportionment of some halocarbons in Hangzhou, eastern China during 2021. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:160894. [PMID: 36563752 DOI: 10.1016/j.scitotenv.2022.160894] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/25/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
In recent years, eastern China has been identified as an important contributor to national and global emissions of halocarbons, some of which are ozone depletion substances (ODSs) that delay the recovery of the stratospheric ozone layer. However, the most recent characteristics and sources of halocarbons in eastern China remain unclear. Thus, hourly atmospheric observations of halocarbons were conducted in Hangzhou throughout 2021. The results showed that methylene chloride (CH2Cl2) was the most abundant halocarbon (2207 (25 %-75 % quantile: 1116-2848) ppt; parts per trillion) followed by chloromethane (CH3Cl) (912 (683-1043) ppt), and 1,2-dichloroethane (CH2ClCH2Cl) (596 (292-763) ppt). Then, backward trajectory and potential source contribution function (PSCF) analysis show that the emission hot spots of halocarbons were concentrated in adjacent cities in Zhejiang and neighboring provinces in eastern China. Moreover, based on positive matrix factorization (PMF) analysis, industrial emission (38.7 %), solvent usage (32.6 %), and the refrigeration sector and biomass burning (23.7 %) were the main sources of halocarbons (observed in this study). This study reveals high concentrations and potential sources of halocarbons in eastern China, which are important for studying the recovery of the ozone layer.
Collapse
Affiliation(s)
- Xinhe Li
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Bowei Li
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Yang Yang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Liting Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Di Chen
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Xiaoyi Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Rui Feng
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Xuekun Fang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
6
|
Cao X, Gu D, Li X, Leung KF, Sun H, Mai Y, Chan WM, Liang Z. Characteristics and source origin analysis of halogenated hydrocarbons in Hong Kong. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160504. [PMID: 36464056 DOI: 10.1016/j.scitotenv.2022.160504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Despite being regulated globally for almost three decades, halocarbon continues to play a vital role in climate change and ozone layer because of its long lifetime in the ambient air. In recent years, unexpected halocarbon emissions have been found in Asia, raising concerns about ozone recovery. As a number of studies focused on halocarbon variations and source profiles, there is an increasing need to identify halocarbon source origins. In this study, an eight-month regular air sampling was conducted at a coastal site in Hong Kong from November 2020 to June 2021, and seventeen halocarbon species were selected for extensive investigation after advanced sample analysis in our laboratory. The temporal variations of halocarbon mixing ratio enhancements were analyzed, and the spatial variations of source origins were investigated by wind sectors and backward trajectory statistics. Our results indicate lower enhancements beyond the background values for major regulated CFCs and CCl4 than later controlled HCFCs and HFCs, suggesting the greater progress of Montreal Protocol implementation for the former species. The notable high enhancement values of non-regulated halocarbons from the north direction indicate their widespread usage in China. The source apportionment analysis estimates the contributions from six emission sectors on measured halocarbons, including solvent usage (43.57 ± 4.08 %), refrigerant residues (17.05 ± 5.71 %), cleaning agent/chemical production (13.18 ± 4.76 %), refrigerant replacements (13.06 ± 2.13 %), solvent residues (8.65 ± 3.28 %), and foaming agent (4.49 ± 1.08 %). Trajectories statistical analysis suggests that industrial solvent was mainly contributed by eastern China (i.e., Shandong and YRD), cleaning agent/chemical production was spread over southeast China (i.e., YRD and Fujian), and refrigeration replacements were dominant in Hong Kong surrounding regions. This work provides insight into the progress made in implementing the Montreal Protocol in Hong Kong and the surrounding region and the importance of continuous emission control.
Collapse
Affiliation(s)
- Xiangyunong Cao
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Dasa Gu
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | - Xin Li
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ka Fung Leung
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hao Sun
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yuchen Mai
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wai Ming Chan
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhenxing Liang
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
7
|
Chen R, Li T, Huang C, Yu Y, Zhou L, Hu G, Yang F, Zhang L. Characteristics and health risks of benzene series and halocarbons near a typical chemical industrial park. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117893. [PMID: 34385133 DOI: 10.1016/j.envpol.2021.117893] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Health risks of typical benzene series and halocarbons (BSHs) in a densely populated area near a large-scale chemical industrial park were investigated. Ambient and indoor air and tap water samples were collected in summer and winter; and the concentration characteristics, sources, and exposure risks of typical BSH species, including five benzene series (benzene, toluene, ethylbenzene, o-xylene, m,p-xylene) and five halocarbons (dichloromethane, trichloromethane, trichloroethylene, tetrachloromethane, and tetrachloroethylene), were analysed. The total mean concentrations of BSHs were 53.32 μg m-3, 36.29 μg m-3, and 26.88 μg L-1 in indoor air, ambient air, and tap water, respectively. Halocarbons dominated the total BSHs with concentrations relatively higher than those in many other industrial areas. Industrial solvent use, industrial processes, and vehicle exhaust emissions were the principal sources of BSHs in ambient air. The use of household products (e.g., detergents and pesticides) was the principal source of indoor BSHs. Inhalation is the primary human exposure route. Ingestion of drinking water was also an important exposure route but had less impact than inhalation. Lifetime non-cancer risks of individual and cumulative BSHs were below the threshold (HQ = 1), indicating no significant lifetime non-cancer risks in the study area. However, tetrachloromethane, benzene, trichloromethane, ethylbenzene, and trichloroethylene showed potential lifetime cancer risk. The cumulative lifetime cancer risks exceeded the tolerable benchmark (1 × 10-4), indicating a lifetime cancer risk of BSHs to residents near the chemical industry park. This study provides valuable information for the management of public health in chemical industrial parks.
Collapse
Affiliation(s)
- Ruonan Chen
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, 404000, China
| | - Tingzhen Li
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, 404000, China
| | - Chengtao Huang
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, 404000, China
| | - Yunjiang Yu
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, 404000, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Li Zhou
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
| | - Guocheng Hu
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, 404000, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Fumo Yang
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, 404000, China; National Engineering Research Center for Flue Gas Desulfurization, Department of Environmental Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Liuyi Zhang
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, 404000, China.
| |
Collapse
|
8
|
Wang J, Cao Y, Wang J. Land-atmosphere fluxes and concentrations of CFC-11 and CFC-12 based on in situ observations from a coastal salt marsh in eastern China: Implications for CFC remediation. MARINE POLLUTION BULLETIN 2021; 172:112848. [PMID: 34403926 DOI: 10.1016/j.marpolbul.2021.112848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Regional- and national-scale emissions of chlorofluorocarbons (CFCs), especially in Eastern China, are of great concern to environmentalists and policy makers. To determine the source-sink dynamics of coastal salt marshes for CFC-11 and CFC-12 in the local atmosphere, we studied a coastal salt marsh in Northern Jiangsu Province, taking measurements of the atmospheric concentrations and fluxes of CFC-11 and CFC-12 using static flux chambers in August (growing season) and December (non-growing season) of 2013, and along both creek-side and vegetated transects. We observed unexpectedly high concentrations of CFC-11 (676.5 × 10-12) and CFC-12 (794.6 × 10-12) in the salt marsh in 2013, with predominantly non-local emissions. Overall, the study salt marsh acted as a net sink for CFC-11 and CFC-12, with the average flux ranging from -11.4 μg m-2 h-1 to 5.0 μg m-2 h-1 for CFC-11 and from -7.4 μg m-2 h-1 to 0.7 μg m-2 h-1 for CFC-12. This clearly indicates that the high concentrations of CFC-11 and CFC-12 measured in the atmosphere were not caused by local emissions; terrigenous sources most likely act as the main exogenous input pathway. Our study suggests that salt marsh ecosystems may be worthy of attention as sinks for CFC-11 and CFC-12; as such, the ecological restoration of salt marshes is critical to better offset increasing CFC-11 and CFC-12 emissions.
Collapse
Affiliation(s)
- Jinshu Wang
- School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou 221009, China
| | - Yingjia Cao
- School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou 221009, China
| | - Jinxin Wang
- School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou 221009, China.
| |
Collapse
|
9
|
Pollution Characteristics and Health Risk Assessment of Summertime Atmospheric Volatile Halogenated Hydrocarbons in a Typical Urban Area of Beijing, China. ATMOSPHERE 2020. [DOI: 10.3390/atmos11101021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Twenty-three atmospheric volatile halogenated hydrocarbons (VHHs) were detected in a typical urban area of Beijing, China from 24 August to 4 September, 2012. The mean and range in daily mass concentrations of the 23 VHHs were 30.53 and 13.45–76.33 µg/m3, respectively. Seven of those VHHs were controlled ozone-depleting substances in China, with a mean of 12.95 µg/m3, accounting for 42.43% of the total. Compared with other national and international cities, the concentrations of the selected 11 VHHs in this study were relatively higher. Dichloroethane had the highest mass concentration, followed by difluorochloromethane. Maxima of total VHHs occurred within the period 8:30–9:00 a.m., while minima occurred during 1:30–2:00 p.m. Source apportionment suggested that the main sources of VHHs in the study area were solvents usage and industrial processes, leakage of chlorofluorocarbons banks, refrigerants, and fumigant usage. Among the selected 7 VHHs, trichloromethane, tetrachloromethane, 1,2-dichloroethane, and 1,4-dichlorobenzene posed potential carcinogenic risks to exposed populations, while none of the selected 11 VHHs posed appreciable non-carcinogenic risks to exposed populations. The carcinogenic risks from atmospheric VHHs in Beijing are higher than in other Chinese cities, indicating that it is necessary to implement immediate control measures for atmospheric VHHs in Beijing.
Collapse
|
10
|
Lyu X, Guo H, Wang Y, Zhang F, Nie K, Dang J, Liang Z, Dong S, Zeren Y, Zhou B, Gao W, Zhao S, Zhang G. Hazardous volatile organic compounds in ambient air of China. CHEMOSPHERE 2020; 246:125731. [PMID: 31918083 DOI: 10.1016/j.chemosphere.2019.125731] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/13/2019] [Accepted: 12/22/2019] [Indexed: 05/22/2023]
Abstract
Volatile organic compounds (VOCs) are ubiquitous in the atmosphere and the majority of them have been proved to be detrimental to human health. The hazardous VOCs were studied very insufficiently in China, despite the enormous emissions of VOCs. In this study, the concentrations and sources of 17 hazardous VOCs reported in literature were reviewed, based on which the health effects were assessed. In-depth survey indicated that benzene and toluene had the highest concentrations in eastern China (confined to the study regions reviewed, same for the other geographic generalization), which however showed significant declines. The southern China featured high levels of trichloroethylene. Dichloromethane and chloroform were observed to be concentrated in northern China. The distributions of 1,2-dichloropropane and tetrachloroethylene were homogeneous across the country. Basically consistent with the spatial patterns of ozone, the summertime formaldehyde exhibited higher levels in eastern and northern China, and increased continuously. While transportation served as the largest source of benzene and toluene, industrial emissions and secondary formation were the predominant contributors of halogenated hydrocarbons and aldehydes (formaldehyde and acetaldehyde), respectively. The chronic non-cancer effects of inhalation exposure to the hazardous VOCs were insignificant, however the probabilities of developing cancers by inhaling the hazardous VOCs in ambient air of China were quite high. Formaldehyde was identified as the primary carcinogenic VOC in the atmosphere of most regions. The striking results, especially the high inhalation cancer risks, alerted us that the emission controls of hazardous VOCs were urgent in China, which must be grounded upon full understanding of their occurrence, presence and health effects.
Collapse
Affiliation(s)
- Xiaopu Lyu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hai Guo
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Yu Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Fan Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kun Nie
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Juan Dang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhirong Liang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shuhao Dong
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yangzong Zeren
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Beining Zhou
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wei Gao
- Shanghai Meteorological Service, Shanghai, China
| | - Shizhen Zhao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
11
|
Aromatic Hydrocarbons in Urban and Suburban Atmospheres in Central China: Spatiotemporal Patterns, Source Implications, and Health Risk Assessment. ATMOSPHERE 2019. [DOI: 10.3390/atmos10100565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
: Ambient aromatic hydrocarbons (AHs) are hazardous air pollutants and the main precursors of ozone (O3). In this study, the characteristics of ambient AHs were investigated at an urban site (Ziyang, ZY) and a suburban site (Jiangxia, JX) in Wuhan, Central China, in 2017. The positive matrix factorization (PMF) model was used to investigate the sources of AHs, and a health risk assessment was applied to estimate the effects of AHs on human health. The concentrations of total AHs at ZY (2048 ± 1364 pptv) were comparable (p > 0.05) to that (2023 ± 1015 pptv) at JX. Source apportionment results revealed that vehicle exhaust was the dominant source of both, total AHs, and toluene, contributing 51.9 ± 13.1% and 49.3 ± 9.5% at ZY, and 44.7 ± 12.6% and 43.2 ± 10.2% at JX, respectively. Benzene was mainly emitted from vehicle exhaust at ZY (50.2 ± 15.5%), while it was mainly released from biomass and coal burning sources at JX (50.6 ± 16.7%). The health risk assessment results indicated that AHs did not have a significant non-carcinogenic risk, while the carcinogenic risks of benzene exceeded the regulatory limits set by the USEPA for adults (1 × 10−6) at both sites. Hence, controlling the emissions of vehicular and biomass/coal burning sources will be an effective way to reduce ambient AHs and the health risk of benzene exposure in this region. These findings will enhance our knowledge of ambient AHs in Central China and be helpful for local governments to formulate air pollution control strategies.
Collapse
|
12
|
Sarkar S, Fan WH, Jia S, Blake DR, Reid JS, Lestari P, Yu LE. A quantitative assessment of distributions and sources of tropospheric halocarbons measured in Singapore. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:528-544. [PMID: 29156272 DOI: 10.1016/j.scitotenv.2017.11.087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/19/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
This work reports the first ground-based atmospheric measurements of 26 halocarbons in Singapore, an urban-industrial city-state in Southeast (SE) Asia. A total of 166 whole air canister samples collected during two intensive 7 Southeast Asian Studies (7SEAS) campaigns (August-October 2011 and 2012) were analyzed for C1-C2 halocarbons using gas chromatography-electron capture/mass spectrometric detection. The halocarbon dataset was supplemented with measurements of selected non-methane hydrocarbons (NMHCs), C1-C5 alkyl nitrates, sulfur gases and carbon monoxide to better understand sources and atmospheric processes. The median observed atmospheric mixing ratios of CFCs, halons, CCl4 and CH3CCl3 were close to global tropospheric background levels, with enhancements in the 1-17% range. This provided the first measurement evidence from SE Asia of the effectiveness of Montreal Protocol and related national-scale regulations instituted in the 1990s to phase-out ozone depleting substances (ODS). First- and second-generation CFC replacements (HCFCs and HFCs) dominated the atmospheric halocarbon burden with HFC-134a, HCFC-22 and HCFC-141b exhibiting enhancements of 39-67%. By combining near-source measurements in Indonesia with receptor data in Singapore, regionally transported peat-forest burning smoke was found to impact levels of several NMHCs (ethane, ethyne, benzene, and propane) and short-lived halocarbons (CH3I, CH3Cl, and CH3Br) in a subset of the receptor samples. The strong signatures of these species near peat-forest fires were potentially affected by atmospheric dilution/mixing during transport and by mixing with substantial urban/regional backgrounds at the receptor. Quantitative source apportionment was carried out using positive matrix factorization (PMF), which identified industrial emissions related to refrigeration, foam blowing, and solvent use in chemical, pharmaceutical and electronics industries as the major source of halocarbons (34%) in Singapore. This was followed by marine and terrestrial biogenic activity (28%), residual levels of ODS from pre-Montreal Protocol operations (16%), seasonal incidences of peat-forest smoke (13%), and fumigation related to quarantine and pre-shipment (QPS) applications (7%).
Collapse
Affiliation(s)
- Sayantan Sarkar
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore.
| | - Wei Hong Fan
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Shiguo Jia
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Donald R Blake
- Department of Chemistry, University of California, 1102 Natural Sciences 2, Irvine, CA 92697-2025, USA
| | - Jeffrey S Reid
- Naval Research Laboratory, Marine Meteorology Division, 7 Grace Hopper Avenue Stop 2, Monterey, CA 93943-5502, USA
| | - Puji Lestari
- Environmental Engineering Department, Institut Teknologi Bandung, JL. Ganesha No. 10, Bandung 40132, Indonesia
| | - Liya E Yu
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| |
Collapse
|
13
|
Yan HH, Guo H, Ou JM. Emissions of halocarbons from mobile vehicle air conditioning system in Hong Kong. JOURNAL OF HAZARDOUS MATERIALS 2014; 278:401-408. [PMID: 24997256 DOI: 10.1016/j.jhazmat.2014.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/26/2014] [Accepted: 06/15/2014] [Indexed: 06/03/2023]
Abstract
During the implementation of Montreal Protocol, emission inventories of halocarbons in different sectors at regional scale are fundamental to the formulation of relevant management strategy and inspection of the implementation efficiency. This study investigated the emission profile of halocarbons used in the mobile vehicle air conditioning system, the leading sector of refrigeration industry in terms of the refrigerant bank, market and emission, in the Hong Kong Special Administrative Region, using a bottom-up approach developed by 2006 IPCC Good Practice Guidance. The results showed that emissions of CFC-12 peaked at 53 tons ODP (Ozone Depletion Potential) in 1992 and then gradually diminished, whereas HFC-134a presented an increasing emission trend since 1990s and the emissions of HFC-134a reached 65,000 tons CO2-equivelant (CO2-eq) by the end of 2011. Uncertainty analysis revealed relatively high levels of uncertainties for special-purpose vehicles and government vehicles. Moreover, greenhouse gas (GHG) abatements under different scenarios indicated that potential emission reduction of HFC-134a ranged from 4.1 to 8.4 × 10(5)tons CO2-eq. The findings in this study advance our knowledge of halocarbon emissions from mobile vehicle air conditioning system in Hong Kong.
Collapse
Affiliation(s)
- H H Yan
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - H Guo
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong.
| | - J M Ou
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
14
|
Wu J, Fang X, Martin JW, Zhai Z, Su S, Hu X, Han J, Lu S, Wang C, Zhang J, Hu J. Estimated emissions of chlorofluorocarbons, hydrochlorofluorocarbons, and hydrofluorocarbons based on an interspecies correlation method in the Pearl River Delta region, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 470-471:829-834. [PMID: 24189105 DOI: 10.1016/j.scitotenv.2013.09.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/19/2013] [Accepted: 09/22/2013] [Indexed: 06/02/2023]
Abstract
Although many studies have been conducted in recent years on the emissions of chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs) at the large regional (such as East Asia) and national scales, relatively few studies have been conducted for cities or metropolitan areas. In this study, 192 air samples were collected in the Pearl River Delta (PRD) region of China in November 2010. The atmospheric mixing ratios of six halocarbons were analyzed, including trichlorofluoromethane (CFC-11, CCl3F), dichlorodifluoromethane (CFC-12, CCl2F2), monochlorodifluoromethane (HCFC-22, CHClF2), 1,1-dichloro-1-fluoroethane (HCFC-141b, CH3CCl2F), 1-dichloro-1,1-fluoroethane (HCFC-142b, CH3CClF2), and 1,1,1,2-tetrafluoroethane (HFC-134a, CH2FCF3), and their emissions were estimated based on an interspecies correlation method using HCFC-22 as the reference species. The results showed no significant change in the regional concentration and emission of CFC in the past 10years, suggesting that the continuous regional emission of CFC has had no significant effect on the CFC regional concentration in the PRD region. Concentrations and emissions of HCFCs and HFCs are significantly higher compared to previous research in the PRD region (P<0.05). The largest emission was for HCFC-22, most likely due to its substitution for CFC-12 in the industrial and commercial refrigeration subsector, and the rapid development of the room air-conditioner and extruded polystyrene subsectors. The PRD's ODP-weighted emissions of the target HCFCs provided 9% (7-12%) of the national emissions for the corresponding species. The PRD's GWP-weighted emissions of the target HCFCs and HFC-134a account for 10% (7-12%) and 8% (7-9%), respectively, of the national emissions for the corresponding species, and thus are important contributions to China's total emissions.
Collapse
Affiliation(s)
- Jing Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Xuekun Fang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Jonathan W Martin
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Zihan Zhai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Shenshen Su
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Xia Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Jiarui Han
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Sihua Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Chen Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Jianbo Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Jianxin Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| |
Collapse
|
15
|
Li S, Kim J, Park S, Kim SK, Park MK, Mühle J, Lee G, Lee M, Jo CO, Kim KR. Source identification and apportionment of halogenated compounds observed at a remote site in East Asia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 48:491-498. [PMID: 24298975 DOI: 10.1021/es402776w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The sources of halogenated compounds in East Asia associated with stratospheric ozone depletion and climate change are relatively poorly understood. High-precision in situ measurements of 18 halogenated compounds and carbonyl sulfide (COS) made at Gosan, Jeju Island, Korea, from November 2007 to December 2011 were analyzed by a positive matrix factorization (PMF). Seven major industrial sources were identified from the enhanced concentrations of halogenated compounds observed at Gosan and corresponding concentration-based source contributions were also suggested: primary aluminum production explaining 37% of total concentration enhancements, solvent usage of which source apportionment is 25%, fugitive emissions from HCFC/HFC production with 11%, refrigerant replacements (9%), semiconductor/electronics industry (9%), foam blowing agents (6%), and fumigation (3%). Statistical trajectory analysis was applied to specify the potential emission regions for seven sources using back trajectories. Primary aluminum production, solvent usage and fugitive emission sources were mainly contributed by China. Semiconductor/electronics sources were dominantly located in Korea. Refrigerant replacement, fumigation and foam blowing agent sources were spread throughout East Asian countries. The specified potential source regions are consistent with country-based consumptions and emission patterns, verifying the PMF analysis results. The industry-based emission sources of halogenated compounds identified in this study help improve our understanding of the East Asian countries' industrial contributions to halogenated compound emissions.
Collapse
Affiliation(s)
- Shanlan Li
- School of Earth and Environmental Sciences/Research Institute of Oceanography, Seoul National University , Seoul 151-742, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gao B, Guo H, Wang XM, Zhao XY, Ling ZH, Zhang Z, Liu TY. Polycyclic aromatic hydrocarbons in PM2.5 in Guangzhou, southern China: spatiotemporal patterns and emission sources. JOURNAL OF HAZARDOUS MATERIALS 2012; 239-240:78-87. [PMID: 23021315 DOI: 10.1016/j.jhazmat.2012.07.068] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 07/18/2012] [Accepted: 07/22/2012] [Indexed: 06/01/2023]
Abstract
Fine particulate samples were simultaneously collected at six sites in Guangzhou in November-December 2009. Eighteen polycyclic aromatic hydrocarbons (PAHs) and tracers, i.e. hopanes, elemental carbon, picene and levoglucosan were measured. Three high level episodes were observed during the sampling period, likely due to accumulation effects. Back trajectory analysis revealed that the air masses for the three episodes were from eastern inland Pearl River Delta (PRD) region. There was no obvious concentration gradient for total and 5-6 ring PAHs such as benzo[g,h,i]perylene (BghiP) from urban to rural sites. However, 4-ring PAHs such as pyrene (Pyr) exhibited significantly higher levels at rural site than that at urban/suburban sites (p<0.01). BghiP correlated well with hopanes, elemental carbon and picene, indicating vehicular emissions and coal combustion were the sources of 5-6 ring PAHs, which were further confirmed by comparing the four tracers/BghiP ratios and IcdP/BghiP ratios in ambient samples with those from source profiles. Results indicated that vehicular emissions were no longer the dominant sources in winter season in Guangzhou.
Collapse
Affiliation(s)
- Bo Gao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Li S, Kim J, Kim KR, Mühle J, Kim SK, Park MK, Stohl A, Kang DJ, Arnold T, Harth CM, Salameh PK, Weiss RF. Emissions of halogenated compounds in East Asia determined from measurements at Jeju Island, Korea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:5668-5675. [PMID: 21649439 DOI: 10.1021/es104124k] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
High-frequency in situ measurements at Gosan (Jeju Island, Korea) during November 2007 to December 2008 have been combined with interspecies correlation analysis to estimate national emissions of halogenated compounds (HCs) in East Asia, including the chlorofluorocarbons (CFCs), halons, hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF(6)), and other chlorinated and brominated compounds. Our results suggest that overall China is the dominant emitter of HCs in East Asia, however significant emissions are also found in South Korea, Japan and Taiwan for HFC-134a, HFC-143a, C(2)F(6), SF(6), CH(3)CCl(3), and HFC-365mfc. The combined emissions of CFCs, halon-1211, HCFCs, HFCs, PFCs, and SF(6) from all four countries in 2008 are 25.3, 1.6, 135, 42.6, 3.6, and 2.0 kt/a, respectively. They account for approximately 15%, 26%, 29%, 16%, 32%, and 26.5% of global emissions, respectively. Our results show signs that Japan has successfully phased out CFCs and HCFCs in compliance with the Montreal Protocol (MP), Korea has started transitioning from HCFCs to HFCs, while China still significantly consumes HCFCs. Taiwan, while not directly regulated under the MP, is shown to have adapted the use of HFCs. Combined analysis of emission rates and the interspecies correlation matrix presented in this study proves to be a powerful tool for monitoring and diagnosing changes in consumption of HCs in East Asia.
Collapse
Affiliation(s)
- Shanlan Li
- School of Earth and Environmental Sciences, and South Korea Research Institute of Oceanography, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Guo H, Cheng HR, Ling ZH, Louie PKK, Ayoko GA. Which emission sources are responsible for the volatile organic compounds in the atmosphere of Pearl River Delta? JOURNAL OF HAZARDOUS MATERIALS 2011; 188:116-124. [PMID: 21316844 DOI: 10.1016/j.jhazmat.2011.01.081] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 01/17/2011] [Accepted: 01/18/2011] [Indexed: 05/30/2023]
Abstract
A field measurement study of volatile organic compounds (VOCs) was simultaneously carried out in October-December 2007 at an inland Pearl River Delta (PRD) site and a Hong Kong urban site. A receptor model i.e. positive matrix factorization (PMF) was applied to the data for the apportionment of pollution sources in the region. Five and six sources were identified in Hong Kong and the inland PRD region, respectively. The major sources identified in the region were vehicular emissions, solvent use and biomass burning, whereas extra sources found in inland PRD included liquefied petroleum gas and gasoline evaporation. In Hong Kong, the vehicular emissions made the most significant contribution to ambient VOCs (48 ± 4%), followed by solvent use (43 ± 2%) and biomass burning (9 ± 2%). In inland PRD, the largest contributor to ambient VOCs was solvent use (46 ± 1%), and vehicular emissions contributed 26 ± 1% to ambient VOCs. The percentage contribution of vehicular emission in Hong Kong in 2007 is close to that obtained in 2001-2003, whereas in inland PRD the contribution of solvent use to ambient VOCs in 2007 was at the upper range of the results obtained in previous studies and twice the 2006 PRD emission inventory. The findings advance our knowledge of ozone precursors in the PRD region.
Collapse
Affiliation(s)
- H Guo
- Air Quality Studies, Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hong Kong.
| | | | | | | | | |
Collapse
|
19
|
Zhang YL, Guo H, Wang XM, Simpson IJ, Barletta B, Blake DR, Meinardi S, Rowland FS, Cheng HR, Saunders SM, Lam SHM. Emission patterns and spatiotemporal variations of halocarbons in the Pearl River Delta region, southern China. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013726] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|