1
|
Dutta S, Ghosh A, Spakowitz AJ. Effect of local active fluctuations on structure and dynamics of flexible biopolymers. SOFT MATTER 2024; 20:1694-1701. [PMID: 38226903 DOI: 10.1039/d3sm01491f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Active fluctuations play a significant role in the structure and dynamics of biopolymers (e.g. chromatin and cytoskeletal proteins) that are instrumental in the functioning of living cells. For a large range of experimentally accessible length and time scales, these polymers can be represented as flexible chains that are subjected to spatially and temporally varying fluctuating forces. In this work, we introduce a mathematical framework that correlates the spatial and temporal patterns of the fluctuations to different observables that describe the dynamics and conformations of the polymer. We demonstrate the power of this approach by analyzing the case of a point fluctuation on the polymer with an exponential decay of correlation in time with a finite time constant. Specifically, we identify the length and time scale over which the behavior of the polymer exhibits a significant departure from the behavior of a Rouse chain and the range of impact of the fluctuation along the chain. Furthermore, we show that the conformation of the polymer retains the memory of the active fluctuation from earlier times. Altogether, this work sets the basis for understanding and interpreting the role of spatio-temporal patterns of fluctuations in the dynamics, conformation, and functionality of biopolymers in living cells.
Collapse
Affiliation(s)
- Sayantan Dutta
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Ashesh Ghosh
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Andrew J Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
- Department of Material Science and Engineering, Stanford University, Stanford, California 94305, USA
- Biophysics Program, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
2
|
Zhang W, Wu Y, J Gunst S. Membrane adhesion junctions regulate airway smooth muscle phenotype and function. Physiol Rev 2023; 103:2321-2347. [PMID: 36796098 PMCID: PMC10243546 DOI: 10.1152/physrev.00020.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
The local environment surrounding airway smooth muscle (ASM) cells has profound effects on the physiological and phenotypic properties of ASM tissues. ASM is continually subjected to the mechanical forces generated during breathing and to the constituents of its surrounding extracellular milieu. The smooth muscle cells within the airways continually modulate their properties to adapt to these changing environmental influences. Smooth muscle cells connect to the extracellular cell matrix (ECM) at membrane adhesion junctions that provide mechanical coupling between smooth muscle cells within the tissue. Membrane adhesion junctions also sense local environmental signals and transduce them to cytoplasmic and nuclear signaling pathways in the ASM cell. Adhesion junctions are composed of clusters of transmembrane integrin proteins that bind to ECM proteins outside the cell and to large multiprotein complexes in the submembranous cytoplasm. Physiological conditions and stimuli from the surrounding ECM are sensed by integrin proteins and transduced by submembranous adhesion complexes to signaling pathways to the cytoskeleton and nucleus. The transmission of information between the local environment of the cells and intracellular processes enables ASM cells to rapidly adapt their physiological properties to modulating influences in their extracellular environment: mechanical and physical forces that impinge on the cell, ECM constituents, local mediators, and metabolites. The structure and molecular organization of adhesion junction complexes and the actin cytoskeleton are dynamic and constantly changing in response to environmental influences. The ability of ASM to rapidly accommodate to the ever-changing conditions and fluctuating physical forces within its local environment is essential for its normal physiological function.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Yidi Wu
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Susan J Gunst
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
3
|
Joseph C, Tatler AL. Pathobiology of Airway Remodeling in Asthma: The Emerging Role of Integrins. J Asthma Allergy 2022; 15:595-610. [PMID: 35592385 PMCID: PMC9112045 DOI: 10.2147/jaa.s267222] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/25/2022] [Indexed: 12/19/2022] Open
Abstract
Airway remodeling is a complex clinical feature of asthma that involves long-term disruption and modification of airway architecture, which contributes significantly to airway hyperresponsiveness (AHR) and lung function decline. It is characterized by thickening of the airway smooth muscle layer, deposition of a matrix below the airway epithelium, resulting in subepithelial fibrosis, changes within the airway epithelium, leading to disruption of the barrier, and excessive mucous production and angiogenesis within the airway wall. Airway remodeling contributes to stiffer and less compliant airways in asthma and leads to persistent, irreversible airflow obstruction. Current asthma treatments aim to reduce airway inflammation and exacerbations but none are targeted towards airway remodeling. Inhibiting the development of airway remodeling or reversing established remodeling has the potential to dramatically improve symptoms and disease burden in asthmatic patients. Integrins are a family of transmembrane heterodimeric proteins that serve as the primary receptors for extracellular matrix (ECM) components, mediating cell-cell and cell-ECM interactions to initiate intracellular signaling cascades. Cells present within the lungs, including structural and inflammatory cells, express a wide and varying range of integrin heterodimer combinations and permutations. Integrins are emerging as an important regulator of inflammation, repair, remodeling, and fibrosis in the lung, particularly in chronic lung diseases such as asthma. Here, we provide a comprehensive summary of the current state of knowledge on integrins in the asthmatic airway and how these integrins promote the remodeling process, and emphasize their potential involvement in airway disease.
Collapse
Affiliation(s)
- Chitra Joseph
- Centre for Respiratory Research, National Institute for Health Research Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Amanda L Tatler
- Centre for Respiratory Research, National Institute for Health Research Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
4
|
|
5
|
Han YS, Delmotte P, Sieck GC. Effects of TNFα on Dynamic Cytosolic Ca 2 + and Force Responses to Muscarinic Stimulation in Airway Smooth Muscle. Front Physiol 2021; 12:730333. [PMID: 34393833 PMCID: PMC8363307 DOI: 10.3389/fphys.2021.730333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022] Open
Abstract
Previously, we reported that in airway smooth muscle (ASM), the cytosolic Ca2+ ([Ca2+]cyt) and force response induced by acetyl choline (ACh) are increased by exposure to the pro-inflammatory cytokine tumor necrosis factor α (TNFα). The increase in ASM force induced by TNFα was not associated with an increase in regulatory myosin light chain (rMLC20) phosphorylation but was associated with an increase in contractile protein (actin and myosin) concentration and an enhancement of Ca2+ dependent actin polymerization. The sensitivity of ASM force generation to elevated [Ca2+]cyt (Ca2+ sensitivity) is dynamic involving both the shorter-term canonical calmodulin-myosin light chain kinase (MLCK) signaling cascade that regulates rMLC20 phosphorylation and cross-bridge recruitment as well as the longer-term regulation of actin polymerization that regulates contractile unit recruitment and actin tethering to the cortical cytoskeleton. In this study, we simultaneously measured [Ca2+]cyt and force responses to ACh and explored the impact of 24-h TNFα on the dynamic relationship between [Ca2+]cyt and force responses. The temporal delay between the onset of [Ca2+]cyt and force responses was not affected by TNFα. Similarly, the rates of rise of [Ca2+]cyt and force responses were not affected by TNFα. The absence of an impact of TNFα on the short delay relationships between [Ca2+]cyt and force was consistent with the absence of an effect of [Ca2+]cyt and force on rMLC20 phosphorylation. However, the integral of the phase-loop plot of [Ca2+]cyt and force increased with TNFα, consistent with an impact on actin polymerization and, contractile unit recruitment and actin tethering to the cortical cytoskeleton.
Collapse
Affiliation(s)
- Young-Soo Han
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
6
|
LIMK2 is required for membrane cytoskeleton reorganization of contracting airway smooth muscle. J Genet Genomics 2021; 48:452-462. [PMID: 34353741 DOI: 10.1016/j.jgg.2021.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 11/23/2022]
Abstract
Airway smooth muscle (ASM) has developed a mechanical adaption mechanism by which it transduces force and responds to environmental forces, which is essential for periodic breathing. Cytoskeletal reorganization has been implicated in this process, but the regulatory mechanism remains to be determined. We here observe that ASM abundantly expresses cytoskeleton regulators Limk1 and Limk2, and their expression levels are further upregulated in chronic obstructive pulmonary disease (COPD) animals. By establishing mouse lines with deletions of Limk1 or Limk2, we analyse the length-sensitive contraction, F/G-actin dynamics, and F-actin pool of mutant ASM cells. As LIMK1 phosphorylation does not respond to the contractile stimulation, LIMK1-deficient ASM develops normal maximal force, while LIMK2 or LIMK1/LIMK2 deficient ASMs show approximately 30% inhibition. LIMK2 deletion causes a significant decrease in cofilin phosphorylation along with a reduced F/G-actin ratio. As LIMK2 functions independently of cross-bridge movement, this observation indicates that LIMK2 is necessary for F-actin dynamics and hence force transduction. Moreover, LIMK2-deficient ASMs display abolishes stretching-induced suppression of 5-hydroxytryptamine (5-HT) but not acetylcholine-evoks force, which is due to the differential contraction mechanisms adopted by the agonists. We propose that LIMK2-mediated cofilin phosphorylation is required for membrane cytoskeleton reorganization that is necessary for ASM mechanical adaption including the 5-HT-evoked length-sensitive effect.
Collapse
|
7
|
Han YS, Delmotte PF, Arteaga GM, Sieck GC. Dynamic cytosolic Ca 2+ and force responses to muscarinic stimulation in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2021; 321:L91-L101. [PMID: 33908264 DOI: 10.1152/ajplung.00596.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
During agonist stimulation of airway smooth muscle (ASM), agonists such as ACh induce a transient increase in cytosolic Ca2+ concentration ([Ca2+]cyt), which leads to a contractile response [excitation-contraction (E-C) coupling]. Previously, the sensitivity of the contractile response of ASM to elevated [Ca2+]cyt (Ca2+ sensitivity) was assessed as the ratio of maximum force to maximum [Ca2+]cyt. However, this static assessment of Ca2+ sensitivity overlooks the dynamic nature of E-C coupling in ASM. In this study, we simultaneously measured [Ca2+]cyt and isometric force responses to three concentrations of ACh (1, 2.6, and 10 μM). Both maximum [Ca2+]cyt and maximum force responses were ACh concentration dependent, but force increased disproportionately, thereby increasing static Ca2+ sensitivity. The dynamic properties of E-C coupling were assessed in several ways. The temporal delay between the onset of ACh-induced [Ca2+]cyt and onset force responses was not affected by ACh concentration. The rates of rise of the ACh-induced [Ca2+]cyt and force responses increased with increasing ACh concentration. The integral of the phase-loop plot of [Ca2+]cyt and force from onset to steady state also increased with increasing ACh concentration, whereas the rate of relaxation remained unchanged. Although these results suggest an ACh concentration-dependent increase in the rate of cross-bridge recruitment and in the rate of rise of [Ca2+]cyt, the extent of regulatory myosin light-chain (rMLC20) phosphorylation was not dependent on ACh concentration. We conclude that the dynamic properties of [Ca2+]cyt and force responses in ASM are dependent on ACh concentration but reflect more than changes in the extent of rMLC20 phosphorylation.
Collapse
Affiliation(s)
- Young-Soo Han
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Philippe F Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Grace M Arteaga
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
8
|
Singh K, Randhwa G, Salloum FN, Grider JR, Murthy KS. Decreased smooth muscle function, peristaltic activity, and gastrointestinal transit in dystrophic (mdx) mice. Neurogastroenterol Motil 2021; 33:e13968. [PMID: 32789934 DOI: 10.1111/nmo.13968] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/21/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is characterized by the lack of dystrophin in skeletal, cardiac, and smooth muscle. Slow colonic transit and constipation are common in DMD patients and animal models of DMD. However, the cause of this hypocontractility and the expression of contractile proteins in smooth muscle are unknown. The aim of the study was to investigate the expression of contractile proteins in the colonic smooth muscle and the function of the colon in control and mdx mice. METHODS Muscle contraction was measured in muscle strips and isolated muscle cells. Peristaltic activity was measured in ex vivo preparations by spatiotemporal mapping, and gastrointestinal (GI) transit in vivo was measured by the distribution of fluorescent marker along the intestine and colon. mRNA expression of contractile proteins smoothelin, caldesmon, calponin, and tropomyosin was measured by qRT-PCR. RESULTS Expression of mRNA for contractile proteins was decreased in colonic smooth muscle of mdx mice compared with control. Contraction in response to acetylcholine and KCl was decreased in colonic muscle strips and in isolated muscle cells of mdx mice. Distension of ex vivo colons with Krebs buffer induced peristalsis in both control and mdx mice; however, significantly fewer full peristaltic waves were recorded in the colons of mdx mice. GI transit was also inhibited in mdx mice. CONCLUSION AND INFERENCES The data indicate that the lack of dystrophin causes decrease in colonic smooth muscle contractility, peristalsis, and GI transit and provides the basis for analysis of mechanisms involved in smooth muscle dysfunction in DMD.
Collapse
Affiliation(s)
- Kulpreet Singh
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Gurpreet Randhwa
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Fadi N Salloum
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - John R Grider
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Karnam S Murthy
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
9
|
Delmotte P, Han Y, Sieck GC. Cytoskeletal remodeling slows cross-bridge cycling and ATP hydrolysis rates in airway smooth muscle. Physiol Rep 2020; 8:e14561. [PMID: 32812390 PMCID: PMC7435030 DOI: 10.14814/phy2.14561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
During isometric activation of airway smooth muscle (ASM), cross-bridge cycling and ATP hydrolysis rates decline across time even though isometric force is sustained. Thus, tension cost (i.e., ATP hydrolysis rate per unit of force during activation) decreases with time. The "latch-state" hypothesis attributes the dynamic change in cross-bridge cycling and ATP hydrolysis rates to changes in phosphorylation of the regulatory myosin light chain (rMLC20 ). However, we previously showed that in ASM, the extent of rMLC20 phosphorylation remains unchanged during sustained isometric force. As an alternative, we hypothesized that cytoskeletal remodeling within ASM cells results in increased internal loading of contractile proteins that slows cross-bridge cycling and ATP hydrolysis rates. To test this hypothesis, we simultaneously measured isometric force and ATP hydrolysis rate in permeabilized porcine ASM strips activated by Ca2+ (pCa 4.0). The extent of rMLC20 phosphorylation remained unchanged during isometric activation, even though ATP hydrolysis rate (tension cost) declined with time. The effect of cytoskeletal remodeling was assessed by inhibiting actin polymerization using Cytochalasin D (Cyto-D). In Cyto-D treated ASM, isometric force was reduced while ATP hydrolysis rate increased compared to untreated ASM strips. These results indicate that external transmission of force, cross-bridge cycling and ATP hydrolysis rates are affected by internal loading of contractile proteins.
Collapse
Affiliation(s)
- Philippe Delmotte
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| | - Young‐soo Han
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| | - Gary C. Sieck
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| |
Collapse
|
10
|
Lu RA, Zeki AA, Ram-Mohan S, Nguyen N, Bai Y, Chmiel K, Pecic S, Ai X, Krishnan R, Ghosh CC. Inhibiting Airway Smooth Muscle Contraction Using Pitavastatin: A Role for the Mevalonate Pathway in Regulating Cytoskeletal Proteins. Front Pharmacol 2020; 11:469. [PMID: 32435188 PMCID: PMC7218099 DOI: 10.3389/fphar.2020.00469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
Despite maximal use of currently available therapies, a significant number of asthma patients continue to experience severe, and sometimes life-threatening bronchoconstriction. To fill this therapeutic gap, we examined a potential role for the 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) inhibitor, pitavastatin. Using human airway smooth muscle (ASM) cells and murine precision-cut lung slices, we discovered that pitavastatin significantly inhibited basal-, histamine-, and methacholine (MCh)-induced ASM contraction. This occurred via reduction of myosin light chain 2 (MLC2) phosphorylation, and F-actin stress fiber density and distribution, in a mevalonate (MA)- and geranylgeranyl pyrophosphate (GGPP)-dependent manner. Pitavastatin also potentiated the ASM relaxing effect of a simulated deep breath, a beneficial effect that is notably absent with the β2-agonist, isoproterenol. Finally, pitavastatin attenuated ASM pro-inflammatory cytokine production in a GGPP-dependent manner. By targeting all three hallmark features of ASM dysfunction in asthma—contraction, failure to adequately relax in response to a deep breath, and inflammation—pitavastatin may represent a unique asthma therapeutic.
Collapse
Affiliation(s)
- Robin A Lu
- Department of Emergency Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Amir A Zeki
- Division of Pulmonary, Critical Care, and Sleep Medicine, U.C. Davis Lung Center, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Sumati Ram-Mohan
- Department of Emergency Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Nhan Nguyen
- Department of Emergency Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Yan Bai
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kenneth Chmiel
- Division of Pulmonary, Critical Care, and Sleep Medicine, U.C. Davis Lung Center, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, CA, United States
| | - Xingbin Ai
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ramaswamy Krishnan
- Department of Emergency Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Chandra C Ghosh
- Department of Emergency Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Stewart TA, Davis FM. Formation and Function of Mammalian Epithelia: Roles for Mechanosensitive PIEZO1 Ion Channels. Front Cell Dev Biol 2019; 7:260. [PMID: 31750303 PMCID: PMC6843007 DOI: 10.3389/fcell.2019.00260] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/17/2019] [Indexed: 11/17/2022] Open
Abstract
Mechanical forces play important roles in shaping mammalian development. In the embryo, cells experience force both during the formation of the mammalian body plan and in the ensuing phase of organogenesis. Physical forces - including fluid flow, compression, radial pressure, contraction, and osmotic pressure - continue to play central roles as organs mature, function, and ultimately dysfunction. Multiple mechanisms exist to receive, transduce, and transmit mechanical forces in mammalian epithelial tissues and to integrate these cues, which can both fluctuate and coincide, with local and systemic chemical signals. Drawing near a decade since the discovery of the bona fide mechanically activated ion channel, PIEZO1, we discuss in this mini-review established and emerging roles for this protein in the form and function of mammalian epithelia.
Collapse
Affiliation(s)
- Teneale A. Stewart
- Faculty of Medicine, Mater Research-The University of Queensland, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Felicity M. Davis
- Faculty of Medicine, Mater Research-The University of Queensland, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Rampadarath AK, Donovan GM. An in silico study examining the role of airway smooth muscle dynamics and airway compliance on the rate of airway re-narrowing after deep inspiration. Respir Physiol Neurobiol 2019; 271:103257. [PMID: 31542658 DOI: 10.1016/j.resp.2019.103257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 11/15/2022]
Abstract
Deep inspirations are a widely studied topic due to their varied effectiveness as a bronchodilator in asthmatic and non-asthmatic patients. Specifically, they are known to be effective at reversing bronchoconstriction in non-asthmatic patients but may fail to prevent bronchoconstriction in asthmatic patients. Inspired by a recent study on the effect of deep inspirations on the rate of re-narrowing of an isolated airway, we investigate whether the latch-bridge dynamics of smooth muscle cross-bridge theory, coupled with non-linear compliance of the airway wall, can account for the reported results: namely that only the rate of renarrowing after DI is sensitive to the interval between deep inspirations, while other measures are unaffected. We develop and present length- and pressure-controlled protocols which mimic both the experiments performed in the study, as well as simulate in vivo conditions respectively. Both protocols are simulated and show qualitative agreement with the results reported by the experiments, suggesting that latch-bridge dynamics coupled with airway wall non-compliance may be sufficient to explain these results. Moreover pressure- and length-controlled protocols show important differences which should be considered when designing in vitro experiments to mimic in vivo conditions.
Collapse
Affiliation(s)
- A K Rampadarath
- Department of Mathematics, University of Auckland, New Zealand; Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - G M Donovan
- Department of Mathematics, University of Auckland, New Zealand
| |
Collapse
|
13
|
Pan S, Shah SD, Panettieri RA, Deshpande DA. Bnip3 regulates airway smooth muscle cell focal adhesion and proliferation. Am J Physiol Lung Cell Mol Physiol 2019; 317:L758-L767. [PMID: 31509440 DOI: 10.1152/ajplung.00224.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Increased airway smooth muscle (ASM) mass is a key contributor to airway narrowing and airway hyperresponsiveness in asthma. Besides conventional pathways and regulators of ASM proliferation, recent studies suggest that changes in mitochondrial morphology and function play a role in airway remodeling in asthma. In this study, we aimed at determining the role of mitochondrial Bcl-2 adenovirus E1B 19 kDa-interacting protein, Bnip3, in the regulation of ASM proliferation. Bnip3 is a member of the Bcl-2 family of proteins critical for mitochondrial health, mitophagy, and cell survival/death. We found that Bnip3 expression is upregulated in ASM cells from asthmatic donors compared with that in ASM cells from healthy donors and transient downregulation of Bnip3 expression in primary human ASM cells using an siRNA approach decreased cell adhesion, migration, and proliferation. Furthermore, Bnip3 downregulation altered the structure (electron density) and function (cellular ATP levels, membrane potential, and reacitve oxygen species generation) of mitochondria and decreased expression of cytoskeleton proteins vinculin, paxillin, and actinin. These findings suggest that Bnip3 via regulation of mitochondria functions and expression of adhesion proteins regulates ASM adhesion, migration, and proliferation. This study reveals a novel role for Bnip3 in ASM functions and establishes Bnip3 as a potential target in mitigating ASM remodeling in asthma.
Collapse
Affiliation(s)
- Shi Pan
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sushrut D Shah
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Deepak A Deshpande
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Sieck GC, Dogan M, Young‐Soo H, Osorio Valencia S, Delmotte P. Mechanisms underlying TNFα-induced enhancement of force generation in airway smooth muscle. Physiol Rep 2019; 7:e14220. [PMID: 31512410 PMCID: PMC6739507 DOI: 10.14814/phy2.14220] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 11/24/2022] Open
Abstract
Airway diseases such as asthma are triggered by inflammation and mediated by proinflammatory cytokines such as tumor necrosis factor alpha (TNFα). Our goal was to systematically examine the potential mechanisms underlying the effect of TNFα on airway smooth muscle (ASM) contractility. Porcine ASM strips were incubated for 24 h with and without TNFα. Exposure to TNFα increased maximum ASM force in response to acetylcholine (Ach), with an increase in ACh sensitivity (hyperreactivity), as reflected by a leftward shift in the dose-response curve (EC50 ). At the EC50 , the [Ca2+ ]cyt response to ACh was similar between TNFα and control ASM, while force increased; thus, Ca2+ sensitivity appeared to increase. Exposure to TNFα increased the basal level of regulatory myosin light chain (rMLC) phosphorylation in ASM; however, the ACh-dependent increase in rMLC phosphorylation was blunted by TNFα with no difference in the extent of rMLC phosphorylation at the EC50 ACh concentration. In TNFα-treated ASM, total actin and myosin heavy chain concentrations increased. TNFα exposure also enhanced the ACh-dependent polymerization of G- to F-actin. The results of this study confirm TNFα-induced hyperreactivity to ACh in porcine ASM. We conclude that the TNFα-induced increase in ASM force, cannot be attributed to an enhanced [Ca2+ ]cyt response or to an increase in rMLC phosphorylation. Instead, TNFα increases Ca2+ sensitivity of ASM force generation due to increased contractile protein content (greater number of contractile units) and enhanced cytoskeletal remodeling (actin polymerization) resulting in increased tethering of contractile elements to the cortical cytoskeleton and force translation to the extracellular matrix.
Collapse
Affiliation(s)
- Gary C. Sieck
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesota
| | - Murat Dogan
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesota
| | - Han Young‐Soo
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesota
| | - Sara Osorio Valencia
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesota
| | - Philippe Delmotte
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesota
| |
Collapse
|
15
|
Sit B, Gutmann D, Iskratsch T. Costameres, dense plaques and podosomes: the cell matrix adhesions in cardiovascular mechanosensing. J Muscle Res Cell Motil 2019; 40:197-209. [PMID: 31214894 PMCID: PMC6726830 DOI: 10.1007/s10974-019-09529-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/15/2019] [Indexed: 12/12/2022]
Abstract
The stiffness of the cardiovascular environment changes during ageing and in disease and contributes to disease incidence and progression. For instance, increased arterial stiffness can lead to atherosclerosis, while stiffening of the heart due to fibrosis can increase the chances of heart failure. Cells can sense the stiffness of the extracellular matrix through integrin adhesions and other mechanosensitive structures and in response to this initiate mechanosignalling pathways that ultimately change the cellular behaviour. Over the past decades, interest in mechanobiology has steadily increased and with this also our understanding of the molecular basis of mechanosensing and transduction. However, much of our knowledge about the mechanisms is derived from studies investigating focal adhesions in non-muscle cells, which are distinct in several regards from the cell-matrix adhesions in cardiomyocytes (costameres) or vascular smooth muscle cells (dense plaques or podosomes). Therefore, we will look here first at the evidence for mechanical sensing in the cardiovascular system, before comparing the different cytoskeletal arrangements and adhesion sites in cardiomyocytes and vascular smooth muscle cells and what is known about mechanical sensing through the various structures.
Collapse
Affiliation(s)
- Brian Sit
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, London, UK
| | - Daniel Gutmann
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, London, UK
| | - Thomas Iskratsch
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, London, UK.
| |
Collapse
|
16
|
Phung TKN, Sinclair SE, Makena P, Molthen RC, Waters CM. Dynamic airway constriction in rats: heterogeneity and response to deep inspiration. Am J Physiol Lung Cell Mol Physiol 2019; 317:L39-L48. [PMID: 31017015 DOI: 10.1152/ajplung.00050.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Airway narrowing due to hyperresponsiveness severely limits gas exchange in patients with asthma. Imaging studies in humans and animals have shown that bronchoconstriction causes patchy patterns of ventilation defects throughout the lungs, and several computational models have predicted that these regions are due to constriction of smaller airways. However, these imaging approaches are often limited in their ability to capture dynamic changes in small airways, and the patterns of constriction are heterogeneous. To directly investigate regional variations in airway narrowing and the response to deep inspirations (DIs), we utilized tantalum dust and microfocal X-ray imaging of rat lungs to obtain dynamic images of airways in an intact animal model. Airway resistance was simultaneously measured using the flexiVent system. Custom-developed software was used to track changes in airway diameters up to generation 19 (~0.3-3 mm). Changes in diameter during bronchoconstriction were then measured in response to methacholine (MCh) challenge. In contrast with the model predictions, we observed significantly greater percent constriction in larger airways in response to MCh challenge. Although there was a dose-dependent increase in total respiratory resistance with MCh, the percent change in airway diameters was similar for increasing doses. A single DI following MCh caused a significant reduction in resistance but did not cause a significant increase in airway diameters. Multiple DIs did, however, cause significant increases in airway diameters. These measurements allowed us to directly quantify dynamic changes in airways during bronchoconstriction and demonstrated greater constriction in larger airways.
Collapse
Affiliation(s)
- Thien-Khoi N Phung
- Department of Physiology, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Scott E Sinclair
- Department of Physiology, University of Tennessee Health Science Center , Memphis, Tennessee.,Department of Medicine, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Patrudu Makena
- Department of Medicine, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Robert C Molthen
- Department of Medicine, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Christopher M Waters
- Department of Physiology, University of Tennessee Health Science Center , Memphis, Tennessee.,Department of Medicine, University of Tennessee Health Science Center , Memphis, Tennessee.,Department of Physiology and Saha Cardiovascular Research Center, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
17
|
Zhang W, Gunst SJ. Molecular Mechanisms for the Mechanical Modulation of Airway Responsiveness. ACTA ACUST UNITED AC 2019; 2. [PMID: 32270135 PMCID: PMC7141576 DOI: 10.1115/1.4042775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The smooth muscle of the airways is exposed to continuously changing mechanical
forces during normal breathing. The mechanical oscillations that occur during
breathing have profound effects on airway tone and airway responsiveness both in
experimental animals and humans in vivo and in isolated airway tissues in vitro.
Experimental evidence suggests that alterations in the contractile and
mechanical properties of airway smooth muscle tissues caused by mechanical
perturbations result from adaptive changes in the organization of the
cytoskeletal architecture of the smooth muscle cell. The cytoskeleton is a
dynamic structure that undergoes rapid reorganization in response to external
mechanical and pharmacologic stimuli. Contractile stimulation initiates the
assembly of cytoskeletal/extracellular matrix adhesion complex proteins into
large macromolecular signaling complexes (adhesomes) that undergo activation to
mediate the polymerization and reorganization of a submembranous network of
actin filaments at the cortex of the cell. Cortical actin polymerization is
catalyzed by Neuronal-Wiskott–Aldrich syndrome protein (N-WASP) and the
Arp2/3 complex, which are activated by pathways regulated by paxillin and the
small GTPase, cdc42. These processes create a strong and rigid cytoskeletal
framework that may serve to strengthen the membrane for the transmission of
force generated by the contractile apparatus to the extracellular matrix, and to
enable the adaptation of smooth muscle cells to mechanical stresses. This model
for the regulation of airway smooth muscle function can provide novel
perspectives to explain the normal physiologic behavior of the airways and
pathophysiologic properties of the airways in asthma.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Susan J Gunst
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
18
|
O’Shaughnessy B, Thiyagarajan S. Mechanisms of contractile ring tension production and constriction. Biophys Rev 2018; 10:1667-1681. [PMID: 30456601 PMCID: PMC6297097 DOI: 10.1007/s12551-018-0476-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 12/24/2022] Open
Abstract
The contractile ring is a remarkable tension-generating cellular machine that constricts and divides cells into two during cytokinesis, the final stage of the cell cycle. Since the ring's discovery, the parallels with muscle have been emphasized. Both are contractile actomyosin machineries, and long ago, a muscle-like sliding filament mechanism was proposed for the ring. This review focuses on the mechanisms that generate ring tension and constrict contractile rings. The emphasis is on fission yeast, whose contractile ring is sufficiently well characterized that realistic mathematical models are feasible, and possible lessons from fission yeast that may apply to animal cells are discussed. Recent discoveries relevant to the organization in fission yeast rings suggest a stochastic steady-state version of the classic sliding filament mechanism for tension. The importance of different modes of anchoring for tension production and for organizational stability of constricting rings is discussed. Possible mechanisms are discussed that set the constriction rate and enable the contractile ring to meet the technical challenge of maintaining structural integrity and tension-generating capacity while continuously disassembling throughout constriction.
Collapse
Affiliation(s)
- Ben O’Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY 10027 USA
| | | |
Collapse
|
19
|
Langton D, Ing A, Bennetts K, Wang W, Farah C, Peters M, Plummer V, Thien F. Bronchial thermoplasty reduces gas trapping in severe asthma. BMC Pulm Med 2018; 18:155. [PMID: 30249234 PMCID: PMC6154954 DOI: 10.1186/s12890-018-0721-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/10/2018] [Indexed: 11/25/2022] Open
Abstract
Background In randomized controlled trials, bronchial thermoplasty (BT) has been proven to reduce symptoms in severe asthma, but the mechanisms by which this is achieved are uncertain as most studies have shown no improvement in spirometry. We postulated that BT might improve lung mechanics by altering airway resistance in the small airways of the lung in ways not measured by FEV1. This study aimed to evaluate changes in measures of gas trapping by body plethysmography. Methods A prospective cohort of 32 consecutive patients with severe asthma who were listed for BT at two Australian university hospitals were evaluated at three time points, namely baseline, and then 6 weeks and 6 months post completion of all procedures. At each evaluation, medication usage, symptom scores (Asthma Control Questionnaire, ACQ-5) and exacerbation history were obtained, and lung function was evaluated by (i) spirometry (ii) gas diffusion (KCO) and (iii) static lung volumes by body plethysmography. Results ACQ-5 improved from 3.0 ± 0.8 at baseline to 1.5 ± 0.9 at 6 months (mean ± SD, p < 0.001, paired t-test). Daily salbutamol usage improved from 8.3 ± 5.6 to 3.5 ± 4.3 puffs per day (p < 0.001). Oral corticosteroid requiring exacerbations reduced from 2.5 ± 2.0 in the 6 months prior to BT, to 0.6 ± 1.3 in the 6 months after BT (p < 0.001). The mean baseline FEV1 was 57.8 ± 18.9%predicted, but no changes in any spirometric parameter were observed after BT. KCO was also unaltered by BT. A significant reduction in gas trapping was observed with Residual Volume (RV) falling from 146 ± 37% predicted at baseline to 136 ± 29%predicted 6 months after BT (p < 0.005). Significant improvements in TLC and FRC were also observed. These changes were evident at the 6 week time period and maintained at 6 months. The change in RV was inversely correlated with the baseline FEV1 (r = 0.572, p = 0.001), and in patients with a baseline FEV1 of < 60%predicted, the RV/TLC ratio fell by 6.5 ± 8.9%. Conclusion Bronchial thermoplasty improves gas trapping and this effect is greatest in the most severely obstructed patients. The improvement may relate to changes in the mechanical properties of small airways that are not measured with spirometry.
Collapse
Affiliation(s)
- David Langton
- Department of Thoracic Medicine, Frankston Hospital, Peninsula Health, 2 Hastings Road, Frankston, VIC, 3199, Australia. .,Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic, Australia.
| | - Alvin Ing
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Thoracic Medicine, Concord Hospital, Concord, NSW, Australia
| | - Kim Bennetts
- Department of Thoracic Medicine, Frankston Hospital, Peninsula Health, 2 Hastings Road, Frankston, VIC, 3199, Australia
| | - Wei Wang
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic, Australia
| | - Claude Farah
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Matthew Peters
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Thoracic Medicine, Concord Hospital, Concord, NSW, Australia
| | - Virginia Plummer
- Department of Thoracic Medicine, Frankston Hospital, Peninsula Health, 2 Hastings Road, Frankston, VIC, 3199, Australia.,Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic, Australia
| | - Francis Thien
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic, Australia.,Department of Respiratory Medicine, Eastern Health, Vic, Boxhill, Australia
| |
Collapse
|
20
|
Role of Polyamines in Asthma Pathophysiology. Med Sci (Basel) 2018; 6:medsci6010004. [PMID: 29316647 PMCID: PMC5872161 DOI: 10.3390/medsci6010004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 12/31/2017] [Accepted: 01/02/2018] [Indexed: 12/14/2022] Open
Abstract
Asthma is a complex disease of airways, where the interactions of immune and structural cells result in disease outcomes with airway remodeling and airway hyper-responsiveness. Polyamines, which are small-sized, natural super-cations, interact with negatively charged intracellular macromolecules, and altered levels of polyamines and their interactions have been associated with different pathological conditions including asthma. Elevated levels of polyamines have been reported in the circulation of asthmatic patients as well as in the lungs of a murine model of asthma. In various studies, polyamines were found to potentiate the pathogenic potential of inflammatory cells, such as mast cells and granulocytes (eosinophils and neutrophils), by either inducing the release of their pro-inflammatory mediators or prolonging their life span. Additionally, polyamines were crucial in the differentiation and alternative activation of macrophages, which play an important role in asthma pathology. Importantly, polyamines cause airway smooth muscle contraction and thus airway hyper-responsiveness, which is the key feature in asthma pathophysiology. High levels of polyamines in asthma and their active cellular and macromolecular interactions indicate the importance of the polyamine pathway in asthma pathogenesis; therefore, modulation of polyamine levels could be a suitable approach in acute and severe asthma management. This review summarizes the possible roles of polyamines in different pathophysiological features of asthma.
Collapse
|
21
|
Wang Y, Rezey AC, Wang R, Tang DD. Role and regulation of Abelson tyrosine kinase in Crk-associated substrate/profilin-1 interaction and airway smooth muscle contraction. Respir Res 2018; 19:4. [PMID: 29304860 PMCID: PMC5756382 DOI: 10.1186/s12931-017-0709-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Airway smooth muscle contraction is critical for maintenance of appropriate airway tone, and has been implicated in asthma pathogenesis. Smooth muscle contraction requires an "engine" (myosin activation) and a "transmission system" (actin cytoskeletal remodeling). However, the mechanisms that control actin remodeling in smooth muscle are not fully elucidated. The adapter protein Crk-associated substrate (CAS) regulates actin dynamics and the contraction in smooth muscle. In addition, profilin-1 (Pfn-1) and Abelson tyrosine kinase (c-Abl) are also involved in smooth muscle contraction. The interplays among CAS, Pfn-1 and c-Abl in smooth muscle have not been previously investigated. METHODS The association of CAS with Pfn-1 in mouse tracheal rings was evaluated by co-immunoprecipitation. Tracheal rings from c-Abl conditional knockout mice were used to assess the roles of c-Abl in the protein-protein interaction and smooth muscle contraction. Decoy peptides were utilized to evaluate the importance of CAS/Pfn-1 coupling in smooth muscle contraction. RESULTS Stimulation with acetylcholine (ACh) increased the interaction of CAS with Pfn-1 in smooth muscle, which was regulated by CAS tyrosine phosphorylation and c-Abl. The CAS/Pfn-1 coupling was also modified by the phosphorylation of cortactin (a protein implicated in Pfn-1 activation). In addition, ACh activation promoted the spatial redistribution of CAS and Pfn-1 in smooth muscle cells, which was reduced by c-Abl knockdown. Inhibition of CAS/Pfn-1 interaction by a decoy peptide attenuated the ACh-induced actin polymerization and contraction without affecting myosin light chain phosphorylation. Furthermore, treatment with the Src inhibitor PP2 and the actin polymerization inhibitor latrunculin A attenuated the ACh-induced c-Abl tyrosine phosphorylation (an indication of c-Abl activation). CONCLUSIONS Our results suggest a novel activation loop in airway smooth muscle: c-Abl promotes the CAS/Pfn-1 coupling and actin polymerization, which conversely facilitates c-Abl activation. The positive feedback may render c-Abl in active state after contractile stimulation.
Collapse
Affiliation(s)
- Yinna Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA
| | - Alyssa C Rezey
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA
| | - Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA.
| |
Collapse
|
22
|
Abstract
Smooth muscle contraction requires both myosin activation and actin cytoskeletal remodeling. Actin cytoskeletal reorganization facilitates smooth muscle contraction by promoting force transmission between the contractile unit and the extracellular matrix (ECM), and by enhancing intercellular mechanical transduction. Myosin may be viewed to serve as an "engine" for smooth muscle contraction whereas the actin cytoskeleton may function as a "transmission system" in smooth muscle. The actin cytoskeleton in smooth muscle also undergoes restructuring upon activation with growth factors or the ECM, which controls smooth muscle cell proliferation and migration. Abnormal smooth muscle contraction, cell proliferation, and motility contribute to the development of vascular and pulmonary diseases. A number of actin-regulatory proteins including protein kinases have been discovered to orchestrate actin dynamics in smooth muscle. In particular, Abelson tyrosine kinase (c-Abl) is an important molecule that controls actin dynamics, contraction, growth, and motility in smooth muscle. Moreover, c-Abl coordinates the regulation of blood pressure and contributes to the pathogenesis of airway hyperresponsiveness and vascular/airway remodeling in vivo. Thus, c-Abl may be a novel pharmacological target for the development of new therapy to treat smooth muscle diseases such as hypertension and asthma.
Collapse
Affiliation(s)
- Dale D Tang
- Albany Medical College, Albany, NY, United States.
| |
Collapse
|
23
|
Dogan M, Han YS, Delmotte P, Sieck GC. TNFα enhances force generation in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2017; 312:L994-L1002. [PMID: 28385814 PMCID: PMC5495949 DOI: 10.1152/ajplung.00550.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/15/2017] [Accepted: 04/03/2017] [Indexed: 11/22/2022] Open
Abstract
Airway inflammation is a hallmark of asthma, triggering airway smooth muscle (ASM) hyperreactivity and airway remodeling. TNFα increases both agonist-induced cytosolic Ca2+ concentration ([Ca2+]cyt) and force in ASM. The effects of TNFα on ASM force may also be due to an increase in Ca2+ sensitivity, cytoskeletal remodeling, and/or changes in contractile protein content. We hypothesized that 24 h of exposure to TNFα increases ASM force by changing actin and myosin heavy chain (MyHC) content and/or polymerization. Porcine ASM strips were permeabilized with 10% Triton X-100, and force was measured in response to increasing concentrations of Ca2+ (pCa 9.0 to 4.0) in control and TNFα-treated groups. Relative phosphorylation of the regulatory myosin light chain (p-MLC) and total actin, MLC, and MyHC concentrations were quantified at pCa 9.0, 6.1, and 4.0. Actin polymerization was quantified by the ratio of filamentous to globular actin at pCa 9.0 and 4.0. For determination of total cross-bridge formation, isometric ATP hydrolysis rate at pCa 4.0 was measured using an enzyme-coupled NADH-linked fluorometric technique. Exposure to TNFα significantly increased force across the range of Ca2+ activation but did not affect the intrinsic Ca2+ sensitivity of force generation. The TNFα-induced increase in ASM force was associated with an increase in total actin, MLC, and MyHC content, as well as an increase in actin polymerization and an increase in maximum isometric ATP hydrolysis rate. The results of this study support our hypothesis that TNFα increases force generation in ASM by increasing the number of contractile units (actin-myosin content) contributing to force generation.
Collapse
Affiliation(s)
- Murat Dogan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Young-Soo Han
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
24
|
Sundaram A, Chen C, Khalifeh-Soltani A, Atakilit A, Ren X, Qiu W, Jo H, DeGrado W, Huang X, Sheppard D. Targeting integrin α5β1 ameliorates severe airway hyperresponsiveness in experimental asthma. J Clin Invest 2016; 127:365-374. [PMID: 27918306 DOI: 10.1172/jci88555] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022] Open
Abstract
Treatment options are limited for severe asthma, and the need for additional therapies remains great. Previously, we demonstrated that integrin αvβ6-deficient mice are protected from airway hyperresponsiveness, due in part to increased expression of the murine ortholog of human chymase. Here, we determined that chymase protects against cytokine-enhanced bronchoconstriction by cleaving fibronectin to impair tension transmission in airway smooth muscle (ASM). Additionally, we identified a pathway that can be therapeutically targeted to mitigate the effects of airway hyperresponsiveness. Administration of chymase to human bronchial rings abrogated IL-13-enhanced contraction, and this effect was not due to alterations in calcium homeostasis or myosin light chain phosphorylation. Rather, chymase cleaved fibronectin, inhibited ASM adhesion, and attenuated focal adhesion phosphorylation. Disruption of integrin ligation with an RGD-containing peptide abrogated IL-13-enhanced contraction, with no further effect from chymase. We identified α5β1 as the primary fibronectin-binding integrin in ASM, and α5β1-specific blockade inhibited focal adhesion phosphorylation and IL-13-enhanced contraction, with no additional effect from chymase. Delivery of an α5β1 inhibitor into murine airways abrogated the exaggerated bronchoconstriction induced by allergen sensitization and challenge. Finally, α5β1 blockade enhanced the effect of the bronchodilator isoproterenol on airway relaxation. Our data identify the α5β1 integrin as a potential therapeutic target to mitigate the severity of airway contraction in asthma.
Collapse
|
25
|
Kim RY, Rae B, Neal R, Donovan C, Pinkerton J, Balachandran L, Starkey MR, Knight DA, Horvat JC, Hansbro PM. Elucidating novel disease mechanisms in severe asthma. Clin Transl Immunology 2016; 5:e91. [PMID: 27525064 PMCID: PMC4973321 DOI: 10.1038/cti.2016.37] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 02/06/2023] Open
Abstract
Corticosteroids are broadly active and potent anti-inflammatory agents that, despite the introduction of biologics, remain as the mainstay therapy for many chronic inflammatory diseases, including inflammatory bowel diseases, nephrotic syndrome, rheumatoid arthritis, chronic obstructive pulmonary disease and asthma. Significantly, there are cohorts of these patients with poor sensitivity to steroid treatment even with high doses, which can lead to many iatrogenic side effects. The dose-limiting toxicity of corticosteroids, and the lack of effective therapeutic alternatives, leads to substantial excess morbidity and healthcare expenditure. We have developed novel murine models of respiratory infection-induced, severe, steroid-resistant asthma that recapitulate the hallmark features of the human disease. These models can be used to elucidate novel disease mechanisms and identify new therapeutic targets in severe asthma. Hypothesis-driven studies can elucidate the roles of specific factors and pathways. Alternatively, 'Omics approaches can be used to rapidly generate new targets. Similar approaches can be used in other diseases.
Collapse
Affiliation(s)
- Richard Y Kim
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Brittany Rae
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Rachel Neal
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - James Pinkerton
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Lohis Balachandran
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| |
Collapse
|
26
|
Dileepan M, Sarver AE, Rao SP, Panettieri RA, Subramanian S, Kannan MS. MicroRNA Mediated Chemokine Responses in Human Airway Smooth Muscle Cells. PLoS One 2016; 11:e0150842. [PMID: 26998837 PMCID: PMC4801396 DOI: 10.1371/journal.pone.0150842] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/19/2016] [Indexed: 01/25/2023] Open
Abstract
Airway smooth muscle (ASM) cells play a critical role in the pathophysiology of asthma due to their hypercontractility and their ability to proliferate and secrete inflammatory mediators. microRNAs (miRNAs) are gene regulators that control many signaling pathways and thus serve as potential therapeutic alternatives for many diseases. We have previously shown that miR-708 and miR-140-3p regulate the MAPK and PI3K signaling pathways in human ASM (HASM) cells following TNF-α exposure. In this study, we investigated the regulatory effect of these miRNAs on other asthma-related genes. Microarray analysis using the Illumina platform was performed with total RNA extracted from miR-708 (or control miR)-transfected HASM cells. Inhibition of candidate inflammation-associated gene expression was further validated by qPCR and ELISA. The most significant biologic functions for the differentially expressed gene set included decreased inflammatory response, cytokine expression and signaling. qPCR revealed inhibition of expression of CCL11, CXCL10, CCL2 and CXCL8, while the release of CCL11 was inhibited in miR-708-transfected cells. Transfection of cells with miR-140-3p resulted in inhibition of expression of CCL11, CXCL12, CXCL10, CCL5 and CXCL8 and of TNF-α-induced CXCL12 release. In addition, expression of RARRES2, CD44 and ADAM33, genes known to contribute to the pathophysiology of asthma, were found to be inhibited in miR-708-transfected cells. These results demonstrate that miR-708 and miR-140-3p exert distinct effects on inflammation-associated gene expression and biological function of ASM cells. Targeting these miRNA networks may provide a novel therapeutic mechanism to down-regulate airway inflammation and ASM proliferation in asthma.
Collapse
Affiliation(s)
- Mythili Dileepan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Anne E. Sarver
- Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Savita P. Rao
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Reynold A. Panettieri
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Subbaya Subramanian
- Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mathur S. Kannan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
27
|
Tang DD. Critical role of actin-associated proteins in smooth muscle contraction, cell proliferation, airway hyperresponsiveness and airway remodeling. Respir Res 2015; 16:134. [PMID: 26517982 PMCID: PMC4628321 DOI: 10.1186/s12931-015-0296-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/22/2015] [Indexed: 01/16/2023] Open
Abstract
Asthma is characterized by airway hyperresponsiveness and airway remodeling, which are largely attributed to increased airway smooth muscle contractility and cell proliferation. It is known that both chemical and mechanical stimulation regulates smooth muscle contraction. Recent studies suggest that contractile activation and mechanical stretch induce actin cytoskeletal remodeling in smooth muscle. However, the mechanisms that control actin cytoskeletal reorganization are not completely elucidated. This review summarizes our current understanding regarding how actin-associated proteins may regulate remodeling of the actin cytoskeleton in airway smooth muscle. In particular, there is accumulating evidence to suggest that Abelson tyrosine kinase (Abl) plays a critical role in regulating airway smooth muscle contraction and cell proliferation in vitro, and airway hyperresponsiveness and remodeling in vivo. These studies indicate that Abl may be a novel target for the development of new therapy to treat asthma.
Collapse
Affiliation(s)
- Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA.
| |
Collapse
|
28
|
Wang T, Wang R, Cleary RA, Gannon OJ, Tang DD. Recruitment of β-catenin to N-cadherin is necessary for smooth muscle contraction. J Biol Chem 2015; 290:8913-24. [PMID: 25713069 DOI: 10.1074/jbc.m114.621003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 01/26/2023] Open
Abstract
β-Catenin is a key component that connects transmembrane cadherin with the actin cytoskeleton at the cell-cell interface. However, the role of the β-catenin/cadherin interaction in smooth muscle has not been well characterized. Here stimulation with acetylcholine promoted the recruitment of β-catenin to N-cadherin in smooth muscle cells/tissues. Knockdown of β-catenin by lentivirus-mediated shRNA attenuated smooth muscle contraction. Nevertheless, myosin light chain phosphorylation at Ser-19 and actin polymerization in response to contractile activation were not reduced by β-catenin knockdown. In addition, the expression of the β-catenin armadillo domain disrupted the recruitment of β-catenin to N-cadherin. Force development, but not myosin light chain phosphorylation and actin polymerization, was reduced by the expression of the β-catenin armadillo domain. Furthermore, actin polymerization and microtubules have been implicated in intracellular trafficking. In this study, the treatment with the inhibitor latrunculin A diminished the interaction of β-catenin with N-cadherin in smooth muscle. In contrast, the exposure of smooth muscle to the microtubule depolymerizer nocodazole did not affect the protein-protein interaction. Together, these findings suggest that smooth muscle contraction is mediated by the recruitment of β-catenin to N-cadherin, which may facilitate intercellular mechanotransduction. The association of β-catenin with N-cadherin is regulated by actin polymerization during contractile activation.
Collapse
Affiliation(s)
- Tao Wang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Ruping Wang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Rachel A Cleary
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Olivia J Gannon
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Dale D Tang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| |
Collapse
|
29
|
Wang T, Cleary RA, Wang R, Tang DD. Glia maturation factor-γ phosphorylation at Tyr-104 regulates actin dynamics and contraction in human airway smooth muscle. Am J Respir Cell Mol Biol 2015; 51:652-9. [PMID: 24818551 DOI: 10.1165/rcmb.2014-0125oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Actin dynamics plays an essential role in regulating airway smooth muscle contraction. The mechanisms that regulate actin dynamics in smooth muscle are not completely understood. Glia maturation factor (GMF) is a protein that has been reported to inhibit actin nucleation and to induce actin network debranching in vitro. The role of GMF in human smooth muscle cells and tissues has not been investigated. In this study, knockdown of GMF-γ by RNA interference enhanced actin polymerization and contraction in human airway smooth muscle (HASM) cells and tissues without affecting myosin phosphorylation (another important biochemical change during contractile activation). Activation of HASM cells and tissues with acetylcholine induced dissociation of GMF-γ from Arp2 of the Arp2/3 complex. Acetylcholine stimulation also increased GMF-γ phosphorylation at Tyr-104. GMF-γ phosphorylation at this residue was mediated by c-Abl tyrosine kinase. The GMF-γ mutant Y104F (phenylalanine substitution at Tyr-104) had higher association with Arp2 in HASM cells upon contractile activation. Furthermore, expression of mutant Y104F GMF-γ attenuated actin polymerization and contraction in smooth muscle. Thus, we propose a novel mechanism for the regulation of actin dynamics and smooth muscle contraction. In unstimulated smooth muscle, GMF-γ binds to the Arp2/3 complex, which induces actin disassembly and retains lower levels of F-actin. Upon contractile stimulation, phosphorylation at Tyr-104 mediated by c-Abl tyrosine kinase leads to the dissociation of GMF-γ from Arp2/3, by which GMF-γ no longer induces actin disassembly. Reduced actin disassembly renders F-actin in higher level, which facilitates smooth muscle contraction.
Collapse
Affiliation(s)
- Tao Wang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| | | | | | | |
Collapse
|
30
|
Jo-Avila M, Al-Jumaily AM, Lu J. Relaxant effect of superimposed length oscillation on sensitized airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2014; 308:L479-84. [PMID: 25480332 DOI: 10.1152/ajplung.00218.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Asthma is associated with reductions in the airway lumen and breathing difficulties that are attributed to airway smooth muscles (ASM) hyperconstriction. Pharmaceutical bronchodilators such as salbutamol and isoproterenol are normally used to alleviate this constriction. Deep inspirations and tidal oscillations (TO) have also been reported to relax ASM in healthy airways with less response in asthmatics. Little information is available on the effect of other forms of oscillation on asthmatic airways. This study investigates the effect of length oscillations (LO), with amplitude 1 and 1.5% in the frequency range 5-20 Hz superimposed on breathing equivalent LO, on contracted ASM dissected from sensitized mice. These mice are believed to show some symptoms such as airway hyperreactivity similar to those associated with asthma in humans. In the frequency range used in this work, this study shows an increase in ASM relaxation of an average of 10% for 1.5% amplitude when compared with TO, ISO, or the combination of both. No similar finding is observed with 1% amplitude. This suggests that superimposed length oscillation acting over the interaction of myosin and actin during contraction may lead to temporal rearrangement and disturbance of the cross-bridge process in asthmatic airways.
Collapse
Affiliation(s)
- Miguel Jo-Avila
- Institute of Biomedical Technologies, Auckland University of Technology, Auckland, New Zealand
| | - Ahmed M Al-Jumaily
- Institute of Biomedical Technologies, Auckland University of Technology, Auckland, New Zealand
| | - Jun Lu
- Institute of Biomedical Technologies, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
31
|
Delmotte P, Sieck GC. Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca(2+) regulation in airway smooth muscle (ASM). Can J Physiol Pharmacol 2014; 93:97-110. [PMID: 25506723 DOI: 10.1139/cjpp-2014-0361] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca(2+) ([Ca(2+)]cyt) responses to agonist stimulation and Ca(2+) sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca(2+)]cyt induced by agonists leads to a transient increase in mitochondrial Ca(2+) ([Ca(2+)]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca(2+)]mito is blunted despite enhanced [Ca(2+)]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion-ER/SR coupling, decreased mitochondrial Ca(2+) buffering, mitochondrial fragmentation, and increased cell proliferation.
Collapse
Affiliation(s)
- Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, 4-184 West Joseph SMH, 200 First Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
32
|
Jacob AS, Simon OR, Wheatle D, Ruddock P, McCook K. Antihistamine Effect of a Pure Bioactive Compound Isolated from Slug (Diplosolenodes occidentalis) Material. W INDIAN MED J 2014; 63:401-7. [PMID: 25781274 PMCID: PMC4655704 DOI: 10.7727/wimj.2013.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/24/2014] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Folklore claims of the therapeutic effect of garden slug (Diplosolenodes occidentalis) extract used to relieve bronchoconstriction in asthmatic individuals were never validated scientifically. The aim of this study was to isolate the pure bioactive compound from slug extract causing this effect. METHODS The crude ground material was prepared in ethanol and after filtration, separation by flash column chromatography method was done. The structure was elucidated by data from hydrogen and carbon nuclear magnetic resonance (NMR) profiles. The bioactive compound was assessed for dose-dependent response effects on guinea pig tracheal smooth muscle pre-contracted with histamine. Receptor specificity studies were done by using HTMT dimaleate (H1 agonist). The type of antagonism was also identified. RESULTS The pure component isolated from garden slug material was identified by spectral studies as glyceryl trilinolenate (GT). It caused dose-dependent relaxation in guinea pig tracheal smooth muscle strips pre-contracted with histamine, it acted via H1 type receptors and showed non-competitive antagonism. CONCLUSION Glyceryl trilinolenate produced dose-dependent relaxation in tracheal smooth muscle strips in the presence of the agonist histamine. Glyceryl trilinolenate displayed non-competitive antagonism at H1 receptors in the trachea. This agent was able to alleviate bronchoconstriction in individuals presenting with atopic asthma in rural agricultural areas in Jamaica (verbal communications). It is possible that GT can be useful therapeutically to produce tracheal smooth muscle relaxation in individuals presenting with atopic asthma.
Collapse
Affiliation(s)
- A S Jacob
- Department of Basic Medical Sciences, Pharmacology Section, The University of the West Indies, Kingston 7, Jamaica.
| | - O R Simon
- Department of Basic Medical Sciences, Pharmacology Section, The University of the West Indies, Kingston 7, Jamaica
| | - D Wheatle
- Department of Chemistry, The University of the West Indies, Kingston 7, Jamaica
| | - P Ruddock
- Department of Chemistry, The University of the West Indies, Kingston 7, Jamaica
| | - K McCook
- Department of Chemistry, The University of the West Indies, Kingston 7, Jamaica
| |
Collapse
|
33
|
Dowell ML, Lavoie TL, Solway J, Krishnan R. Airway smooth muscle: a potential target for asthma therapy. Curr Opin Pulm Med 2014; 20:66-72. [PMID: 24247041 DOI: 10.1097/mcp.0000000000000011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Asthma is a major public health problem that afflicts nearly one in 20 people worldwide. Despite available treatments, asthma symptoms remain poorly controlled in a significant minority of asthma patients, especially those with severe disease. Accordingly, much ongoing effort has been directed at developing new therapeutic strategies; these efforts are described in detail below. RECENT FINDINGS Although mucus hypersecretion is an important component of asthma pathobiology, the primary mechanism of morbidity and mortality in asthma is excessive narrowing of the airway. The key end- effector of excessive airway narrowing is airway smooth muscle (ASM) contraction; overcoming ASM contraction is therefore a prominent therapeutic strategy. Here, we review exciting new advances aimed at ASM relaxation. SUMMARY Exciting advances in ASM biology have identified new therapeutic targets for the prevention or reversal of bronchoconstriction in asthma.
Collapse
Affiliation(s)
- Maria L Dowell
- aDepartment of Medicine bDepartment of Pediatrics, University of Chicago, Chicago, Illinois, USA cCenter for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
34
|
Li J, Chen S, Cleary RA, Wang R, Gannon OJ, Seto E, Tang DD. Histone deacetylase 8 regulates cortactin deacetylation and contraction in smooth muscle tissues. Am J Physiol Cell Physiol 2014; 307:C288-95. [PMID: 24920679 DOI: 10.1152/ajpcell.00102.2014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Histone deacetylases (HDACs) are a family of enzymes that mediate nucleosomal histone deacetylation and gene expression. Some members of the HDAC family have also been implicated in nonhistone protein deacetylation, which modulates cell-cycle control, differentiation, and cell migration. However, the role of HDACs in smooth muscle contraction is largely unknown. Here, HDAC8 was localized both in the cytoplasm and the nucleus of mouse and human smooth muscle cells. Knockdown of HDAC8 by lentivirus-encoding HDAC8 shRNA inhibited force development in response to acetylcholine. Treatment of smooth muscle tissues with HDAC8 inhibitor XXIV (OSU-HDAC-44) induced relaxation of precontracted smooth muscle tissues. In addition, cortactin is an actin-regulatory protein that undergoes deacetylation during migration of NIH 3T3 cells. In this study, acetylcholine stimulation induced cortactin deacetylation in mouse and human smooth muscle tissues, as evidenced by immunoblot analysis using antibody against acetylated lysine. Knockdown of HDAC8 by RNAi or treatment with the inhibitor attenuated cortactin deacetylation and actin polymerization without affecting myosin activation. Furthermore, expression of a charge-neutralizing cortactin mutant inhibited contraction and actin dynamics during contractile activation. These results suggest a novel mechanism for the regulation of smooth muscle contraction. In response to contractile stimulation, HDAC8 may mediate cortactin deacetylation, which subsequently promotes actin filament polymerization and smooth muscle contraction.
Collapse
Affiliation(s)
- Jia Li
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York; and
| | - Shu Chen
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York; and
| | - Rachel A Cleary
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York; and
| | - Ruping Wang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York; and
| | - Olivia J Gannon
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York; and
| | - Edward Seto
- Molecular Oncology Department, Moffitt Cancer Center, Tampa, Florida
| | - Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York; and
| |
Collapse
|
35
|
Wang R, Cleary RA, Wang T, Li J, Tang DD. The association of cortactin with profilin-1 is critical for smooth muscle contraction. J Biol Chem 2014; 289:14157-69. [PMID: 24700464 DOI: 10.1074/jbc.m114.548099] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Profilin-1 (Pfn-1) is an actin-regulatory protein that has a role in modulating smooth muscle contraction. However, the mechanisms that regulate Pfn-1 in smooth muscle are not fully understood. Here, stimulation with acetylcholine induced an increase in the association of the adapter protein cortactin with Pfn-1 in smooth muscle cells/tissues. Furthermore, disruption of the protein/protein interaction by a cell-permeable peptide (CTTN-I peptide) attenuated actin polymerization and smooth muscle contraction without affecting myosin light chain phosphorylation at Ser-19. Knockdown of cortactin by lentivirus-mediated RNAi also diminished actin polymerization and smooth muscle force development. However, cortactin knockdown did not affect myosin activation. In addition, cortactin phosphorylation has been implicated in nonmuscle cell migration. In this study, acetylcholine stimulation induced cortactin phosphorylation at Tyr-421 in smooth muscle cells. Phenylalanine substitution at this position impaired cortactin/Pfn-1 interaction in response to contractile activation. c-Abl is a tyrosine kinase that is necessary for actin dynamics and contraction in smooth muscle. Here, c-Abl silencing inhibited the agonist-induced cortactin phosphorylation and the association of cortactin with Pfn-1. Finally, treatment with CTTN-I peptide reduced airway resistance and smooth muscle hyperreactivity in a murine model of asthma. These results suggest that the interaction of cortactin with Pfn-1 plays a pivotal role in regulating actin dynamics, smooth muscle contraction, and airway hyperresponsiveness in asthma. The association of cortactin with Pfn-1 is regulated by c-Abl-mediated cortactin phosphorylation.
Collapse
Affiliation(s)
- Ruping Wang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Rachel A Cleary
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Tao Wang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Jia Li
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Dale D Tang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| |
Collapse
|
36
|
|
37
|
Kudo M, Ishigatsubo Y, Aoki I. Pathology of asthma. Front Microbiol 2013; 4:263. [PMID: 24032029 PMCID: PMC3768124 DOI: 10.3389/fmicb.2013.00263] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/16/2013] [Indexed: 12/14/2022] Open
Abstract
Asthma is a serious health and socioeconomic issue all over the world, affecting more than 300 million individuals. The disease is considered as an inflammatory disease in the airway, leading to airway hyperresponsiveness, obstruction, mucus hyper-production and airway wall remodeling. The presence of airway inflammation in asthmatic patients has been found in the nineteenth century. As the information in patients with asthma increase, paradigm change in immunology and molecular biology have resulted in an extensive evaluation of inflammatory cells and mediators involved in the pathophysiology of asthma. Moreover, it is recognized that airway remodeling into detail, characterized by thickening of the airway wall, can be profound consequences on the mechanics of airway narrowing and contribute to the chronic progression of the disease. Epithelial to mesenchymal transition plays an important role in airway remodeling. These epithelial and mesenchymal cells cause persistence of the inflammatory infiltration and induce histological changes in the airway wall, increasing thickness of the basement membrane, collagen deposition and smooth muscle hypertrophy and hyperplasia. Resulting of airway inflammation, airway remodeling leads to the airway wall thickening and induces increased airway smooth muscle mass, which generate asthmatic symptoms. Asthma is classically recognized as the typical Th2 disease, with increased IgE levels and eosinophilic inflammation in the airway. Emerging Th2 cytokines modulates the airway inflammation, which induces airway remodeling. Biological agents, which have specific molecular targets for these Th2 cytokines, are available and clinical trials for asthma are ongoing. However, the relatively simple paradigm has been doubted because of the realization that strategies designed to suppress Th2 function are not effective enough for all patients in the clinical trials. In the future, it is required to understand more details for phenotypes of asthma.
Collapse
Affiliation(s)
- Makoto Kudo
- Department of Clinical Immunology and Internal medicine, Graduate School of Medicine, Yokohama City University Yokohama, Japan
| | | | | |
Collapse
|
38
|
Wang T, Cleary RA, Wang R, Tang DD. Role of the adapter protein Abi1 in actin-associated signaling and smooth muscle contraction. J Biol Chem 2013; 288:20713-22. [PMID: 23740246 DOI: 10.1074/jbc.m112.439877] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actin filament polymerization plays a critical role in the regulation of smooth muscle contraction. However, our knowledge regarding modulation of the actin cytoskeleton in smooth muscle just begins to accumulate. In this study, stimulation with acetylcholine (ACh) induced an increase in the association of the adapter protein c-Abl interactor 1 (Abi1) with neuronal Wiskott-Aldrich syndrome protein (N-WASP) (an actin-regulatory protein) in smooth muscle cells/tissues. Furthermore, contractile stimulation activated N-WASP in live smooth muscle cells as evidenced by changes in fluorescence resonance energy transfer efficiency of an N-WASP sensor. Abi1 knockdown by lentivirus-mediated RNAi inhibited N-WASP activation, actin polymerization, and contraction in smooth muscle. However, Abi1 silencing did not affect myosin regulatory light chain phosphorylation at Ser-19 in smooth muscle. In addition, c-Abl tyrosine kinase and Crk-associated substrate (CAS) have been shown to regulate smooth muscle contraction. The interaction of Abi1 with c-Abl and CAS has not been investigated. Here, contractile activation induced formation of a multiprotein complex including c-Abl, CAS, and Abi1. Knockdown of c-Abl and CAS attenuated the activation of Abi1 during contractile activation. More importantly, Abi1 knockdown inhibited c-Abl phosphorylation at Tyr-412 and the interaction of c-Abl with CAS. These results suggest that Abi1 is an important component of the cellular process that regulates N-WASP activation, actin dynamics, and contraction in smooth muscle. Abi1 is activated by the c-Abl-CAS pathway, and Abi1 reciprocally controls the activation of its upstream regulator c-Abl.
Collapse
Affiliation(s)
- Tao Wang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA
| | | | | | | |
Collapse
|
39
|
Ansell TK, McFawn PK, Mitchell HW, Noble PB. Bronchodilatory response to deep inspiration in bronchial segments: the effects of stress vs. strain. J Appl Physiol (1985) 2013; 115:505-13. [PMID: 23722712 DOI: 10.1152/japplphysiol.01286.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During deep inspirations (DI), a distending force is applied to airway smooth muscle (ASM; i.e., stress) and the muscle is lengthened (i.e., strain), which produces a transient reversal of bronchoconstriction (i.e., bronchodilation). The aim of the present study was to determine whether an increase in ASM stress or the accompanying increase in strain mediates the bronchodilatory response to DI. We used whole porcine bronchial segments in vitro and a servo-controlled syringe pump that applied fixed-transmural pressure (Ptm) or fixed-volume oscillations, simulating tidal breathing and DI. The relationship between ASM stress and strain during oscillation was altered by increasing doses of acetylcholine, which stiffened the airway wall, or by changing the rate of inflation during DI, which utilized the viscous properties of the intact airway. Bronchodilation to DI was positively correlated with ASM strain (range of r values from 0.81 to 0.95) and negatively correlated with stress (range of r values from -0.42 to -0.98). Fast fixed-Ptm DI produced greater bronchodilation than slow DI, despite less ASM strain. Fast fixed-volume DI produced greater bronchodilation than slow DI, despite identical ASM strain. We show that ASM strain, rather than stress, is the critical determinant of bronchodilation and, unexpectedly, that the rate of inflation during DI also impacts on bronchodilation, independent of the magnitudes of either stress or strain.
Collapse
Affiliation(s)
- Thomas K Ansell
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Australia.
| | | | | | | |
Collapse
|
40
|
Airway smooth muscle hypercontractility in asthma. J Allergy (Cairo) 2013; 2013:185971. [PMID: 23577039 PMCID: PMC3613096 DOI: 10.1155/2013/185971] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 01/28/2013] [Indexed: 01/22/2023] Open
Abstract
In recent years, asthma has been defined primarily as an inflammatory disorder with emphasis on inflammation being the principle underlying pathophysiological characteristic driving airway obstruction and remodelling. Morphological abnormalities of asthmatic airway smooth muscle (ASM), the primary structure responsible for airway obstruction seen in asthma, have long been described, but surprisingly, until recently, relatively small number of studies investigated whether asthmatic ASM was also fundamentally different in its functional properties. Evidence from recent studies done on single ASM cells and on ASM-impregnated gel cultures have shown that asthmatic ASM is intrinsically hypercontractile. Several elements of the ASM contraction apparatus in asthmatics and in animal models of asthma have been found to be different from nonasthmatics. These differences include some regulatory contractile proteins and also some components of both the calcium-dependent and calcium-independent contraction signalling pathways. Furthermore, oxidative stress was also found to be heightened in asthmatic ASM and contributes to hypercontractility. Understanding the abnormalities and mechanisms driving asthmatic ASM hypercontractility provides a great potential for the development of new targeted drugs, other than the conventional current anti-inflammatory and bronchodilator therapies, to address the desperate unmet need especially in patients with severe and persistent asthma.
Collapse
|
41
|
Schuliga M, Javeed A, Harris T, Xia Y, Qin C, Wang Z, Zhang X, Lee PVS, Camoretti-Mercado B, Stewart AG. Transforming growth factor-β-induced differentiation of airway smooth muscle cells is inhibited by fibroblast growth factor-2. Am J Respir Cell Mol Biol 2013; 48:346-53. [PMID: 23239497 PMCID: PMC3604085 DOI: 10.1165/rcmb.2012-0151oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 10/15/2012] [Indexed: 11/24/2022] Open
Abstract
In asthma, basic fibroblast growth factor (FGF-2) plays an important (patho)physiological role. This study examines the effects of FGF-2 on the transforming growth factor-β (TGF-β)-stimulated differentiation of airway smooth muscle (ASM) cells in vitro. The differentiation of human ASM cells after incubation with TGF-β (100 pM) and/or FGF-2 (300 pM) for 48 hours was assessed by increases in contractile protein expression, actin-cytoskeleton reorganization, enhancements in cell stiffness, and collagen remodeling. FGF-2 inhibited TGF-β-stimulated increases in transgelin (SM22) and calponin gene expression (n = 15, P < 0.01) in an extracellular signal-regulated kinase 1/2 (ERK1/2) signal transduction-dependent manner. The abundance of ordered α-smooth muscle actin (α-SMA) filaments formed in the presence of TGF-β were also reduced by FGF-2, as was the ratio of F-actin to G-actin (n = 8, P < 0.01). Furthermore, FGF-2 attenuated TGF-β-stimulated increases in ASM cell stiffness and the ASM-mediated contraction of lattices, composed of collagen fibrils (n = 5, P < 0.01). However, the TGF-β-stimulated production of IL-6 was not influenced by FGF-2 (n = 4, P > 0.05), suggesting that FGF-2 antagonism is selective for the regulation of ASM cell contractile protein expression, organization, and function. Another mitogen, thrombin (0.3 U ml(-1)), exerted no effect on TGF-β-regulated contractile protein expression (n = 8, P > 0.05), α-SMA organization, or the ratio of F-actin to G-actin (n = 4, P > 0.05), suggesting that the inhibitory effect of FGF-2 is dissociated from its mitogenic actions. The addition of FGF-2, 24 hours after TGF-β treatment, still reduced contractile protein expression, even when the TGF-β-receptor kinase inhibitor, SB431542 (10 μM), was added 1 hour before FGF-2. We conclude that the ASM cell differentiation promoted by TGF-β is antagonized by FGF-2. A better understanding of the mechanism of action for FGF-2 is necessary to develop a strategy for therapeutic exploitation in the treatment of asthma.
Collapse
Affiliation(s)
| | - Aqeel Javeed
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore, Pakistan; and
| | | | | | | | - Zhexing Wang
- Department of Chemical and Biomolecular Engineering, and
| | - Xuehua Zhang
- Department of Chemical and Biomolecular Engineering, and
| | - Peter V. S. Lee
- Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
42
|
Integrin and GPCR Crosstalk in the Regulation of ASM Contraction Signaling in Asthma. J Allergy (Cairo) 2012; 2012:341282. [PMID: 23056062 PMCID: PMC3465959 DOI: 10.1155/2012/341282] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 07/24/2012] [Indexed: 12/15/2022] Open
Abstract
Airway hyperresponsiveness (AHR) is one of the cardinal features of asthma. Contraction of airway smooth muscle (ASM) cells that line the airway wall is thought to influence aspects of AHR, resulting in excessive narrowing or occlusion of the airway. ASM contraction is primarily controlled by agonists that bind G protein-coupled receptor (GPCR), which are expressed on ASM. Integrins also play a role in regulating ASM contraction signaling. As therapies for asthma are based on symptom relief, better understanding of the crosstalk between GPCRs and integrins holds good promise for the design of more effective therapies that target the underlying cellular and molecular mechanism that governs AHR. In this paper, we will review current knowledge about integrins and GPCRs in their regulation of ASM contraction signaling and discuss the emerging concept of crosstalk between the two and the implication of this crosstalk on the development of agents that target AHR.
Collapse
|
43
|
Lauzon AM, Bates JHT, Donovan G, Tawhai M, Sneyd J, Sanderson MJ. A multi-scale approach to airway hyperresponsiveness: from molecule to organ. Front Physiol 2012; 3:191. [PMID: 22701430 PMCID: PMC3371674 DOI: 10.3389/fphys.2012.00191] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/21/2012] [Indexed: 12/13/2022] Open
Abstract
Airway hyperresponsiveness (AHR), a characteristic of asthma that involves an excessive reduction in airway caliber, is a complex mechanism reflecting multiple processes that manifest over a large range of length and time scales. At one extreme, molecular interactions determine the force generated by airway smooth muscle (ASM). At the other, the spatially distributed constriction of the branching airways leads to breathing difficulties. Similarly, asthma therapies act at the molecular scale while clinical outcomes are determined by lung function. These extremes are linked by events operating over intermediate scales of length and time. Thus, AHR is an emergent phenomenon that limits our understanding of asthma and confounds the interpretation of studies that address physiological mechanisms over a limited range of scales. A solution is a modular computational model that integrates experimental and mathematical data from multiple scales. This includes, at the molecular scale, kinetics, and force production of actin-myosin contractile proteins during cross-bridge and latch-state cycling; at the cellular scale, Ca2+ signaling mechanisms that regulate ASM force production; at the tissue scale, forces acting between contracting ASM and opposing viscoelastic tissue that determine airway narrowing; at the organ scale, the topographic distribution of ASM contraction dynamics that determine mechanical impedance of the lung. At each scale, models are constructed with iterations between theory and experimentation to identify the parameters that link adjacent scales. This modular model establishes algorithms for modeling over a wide range of scales and provides a framework for the inclusion of other responses such as inflammation or therapeutic regimes. The goal is to develop this lung model so that it can make predictions about bronchoconstriction and identify the pathophysiologic mechanisms having the greatest impact on AHR and its therapy.
Collapse
Affiliation(s)
- Anne-Marie Lauzon
- Meakins-Christie Laboratories, Department of Medicine, McGill University Montreal, QC, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Schwarz Henriques S, Sandmann R, Strate A, Köster S. Force field evolution during human blood platelet activation. J Cell Sci 2012; 125:3914-20. [PMID: 22582082 DOI: 10.1242/jcs.108126] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Contraction at the cellular level is vital for living organisms. The most prominent type of contractile cells are heart muscle cells, a less-well-known example is blood platelets. Blood platelets activate and interlink at injured blood vessel sites, finally contracting to form a compact blood clot. They are ideal model cells to study the mechanisms of cellular contraction, as they are simple, having no nucleus, and their activation can be triggered and synchronized by the addition of thrombin. We have studied contraction using human blood platelets, employing traction force microscopy, a single-cell technique that enables time-resolved measurements of cellular forces on soft substrates with elasticities in the physiological range (∼4 kPa). We found that platelet contraction reaches a steady state after 25 min with total forces of ∼34 nN. These forces are considerably larger than what was previously reported for platelets in aggregates, demonstrating the importance of a single-cell approach for studies of platelet contraction. Compared with other contractile cells, we find that platelets are unique, because force fields are nearly isotropic, with forces pointing toward the center of the cell area.
Collapse
Affiliation(s)
- Sarah Schwarz Henriques
- University of Göttingen, Department of X-Ray Physics and Courant Research Centre Nano-Spectroscopy and X-Ray Imaging, 37077 Göttingen, Germany
| | | | | | | |
Collapse
|
45
|
Ferreira CM, Chen JL, Li J, Shimomura K, Yang X, Lussier YA, Pinto LH, Solway J. Genetic interactions between chromosomes 11 and 18 contribute to airway hyperresponsiveness in mice. PLoS One 2012; 7:e29579. [PMID: 22253740 PMCID: PMC3254621 DOI: 10.1371/journal.pone.0029579] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 11/30/2011] [Indexed: 01/28/2023] Open
Abstract
We used two-dimensional quantitative trait locus analysis to identify interacting genetic loci that contribute to the native airway constrictor hyperresponsiveness to methacholine that characterizes A/J mice, relative to C57BL/6J mice. We quantified airway responsiveness to intravenous methacholine boluses in eighty-eight (C57BL/6J X A/J) F2 and twenty-seven (A/J X C57BL/6J) F2 mice as well as ten A/J mice and six C57BL/6J mice; all studies were performed in male mice. Mice were genotyped at 384 SNP markers, and from these data two-QTL analyses disclosed one pair of interacting loci on chromosomes 11 and 18; the homozygous A/J genotype at each locus constituted the genetic interaction linked to the hyperresponsive A/J phenotype. Bioinformatic network analysis of potential interactions among proteins encoded by genes in the linked regions disclosed two high priority subnetworks - Myl7, Rock1, Limk2; and Npc1, Npc1l1. Evidence in the literature supports the possibility that either or both networks could contribute to the regulation of airway constrictor responsiveness. Together, these results should stimulate evaluation of the genetic contribution of these networks in the regulation of airway responsiveness in humans.
Collapse
Affiliation(s)
- Caroline M. Ferreira
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - James L. Chen
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Jianrong Li
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Kazuhiro Shimomura
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Xinan Yang
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Yves A. Lussier
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Lawrence H. Pinto
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Julian Solway
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
46
|
Waters CM, Roan E, Navajas D. Mechanobiology in lung epithelial cells: measurements, perturbations, and responses. Compr Physiol 2012; 2:1-29. [PMID: 23728969 PMCID: PMC4457445 DOI: 10.1002/cphy.c100090] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelial cells of the lung are located at the interface between the environment and the organism and serve many important functions including barrier protection, fluid balance, clearance of particulate, initiation of immune responses, mucus and surfactant production, and repair following injury. Because of the complex structure of the lung and its cyclic deformation during the respiratory cycle, epithelial cells are exposed to continuously varying levels of mechanical stresses. While normal lung function is maintained under these conditions, changes in mechanical stresses can have profound effects on the function of epithelial cells and therefore the function of the organ. In this review, we will describe the types of stresses and strains in the lungs, how these are transmitted, and how these may vary in human disease or animal models. Many approaches have been developed to better understand how cells sense and respond to mechanical stresses, and we will discuss these approaches and how they have been used to study lung epithelial cells in culture. Understanding how cells sense and respond to changes in mechanical stresses will contribute to our understanding of the role of lung epithelial cells during normal function and development and how their function may change in diseases such as acute lung injury, asthma, emphysema, and fibrosis.
Collapse
|
47
|
Tuna BG, Bakker ENTP, VanBavel E. Smooth muscle biomechanics and plasticity: relevance for vascular calibre and remodelling. Basic Clin Pharmacol Toxicol 2011; 110:35-41. [PMID: 21902815 DOI: 10.1111/j.1742-7843.2011.00794.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Blood vessel structure and calibre are not static. Rather, vessels remodel continuously in response to their biomechanical environment. Vascular calibre is dictated by the amount, composition and organization of the elastic extracellular matrix. In addition, the amount and organization of contractile smooth muscle cell (SMC) also need to be regulated. The SMCs are organized such that maximum contractile force generally occurs at diameters slightly below the diameter at full dilation and physiological pressure. Thus, in a remodelling vessel, not only the matrix but also the SMCs need to undergo structural adaptation. Surprisingly little is known on the adaptation of SMC contractile properties in the vasculature. The purpose of this review is to explore this SMC plasticity in the context of vascular remodelling. While not much work on this has been carried out on blood vessels, SMC plasticity is more extensively studied on other hollow structures such as airway and bladder. We therefore include studies on bladder and airway SMCs because of their possible relevance for vascular SMC behaviour. Here, plasticity is thought to form an adaptation allowing maintained function despite large volume changes. In blood vessels, the general match of active and passive diameter-tension relations suggests that SMC plasticity is part of normal vascular physiological adaptation. Vascular SMCs display similar processes and forms of adaptation as seen in nonvascular SMCs. This may become particularly relevant under strong vasoconstriction, when inward cytoskeletal adaptation possibly prevents immediate full dilation. This may contribute to structural inward remodelling as seen in hypertension and flow reduction.
Collapse
Affiliation(s)
- Bilge Guvenc Tuna
- Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
48
|
Ijpma G, Al-Jumaily AM, Cairns SP, Sieck GC. Myosin filament polymerization and depolymerization in a model of partial length adaptation in airway smooth muscle. J Appl Physiol (1985) 2011; 111:735-42. [PMID: 21659490 PMCID: PMC3290098 DOI: 10.1152/japplphysiol.00114.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 06/07/2011] [Indexed: 11/22/2022] Open
Abstract
Length adaptation in airway smooth muscle (ASM) is attributed to reorganization of the cytoskeleton, and in particular the contractile elements. However, a constantly changing lung volume with tidal breathing (hence changing ASM length) is likely to restrict full adaptation of ASM for force generation. There is likely to be continuous length adaptation of ASM between states of incomplete or partial length adaption. We propose a new model that assimilates findings on myosin filament polymerization/depolymerization, partial length adaptation, isometric force, and shortening velocity to describe this continuous length adaptation process. In this model, the ASM adapts to an optimal force-generating capacity in a repeating cycle of events. Initially the myosin filament, shortened by prior length changes, associates with two longer actin filaments. The actin filaments are located adjacent to the myosin filaments, such that all myosin heads overlap with actin to permit maximal cross-bridge cycling. Since in this model the actin filaments are usually longer than myosin filaments, the excess length of the actin filament is located randomly with respect to the myosin filament. Once activated, the myosin filament elongates by polymerization along the actin filaments, with the growth limited by the overlap of the actin filaments. During relaxation, the myosin filaments dissociate from the actin filaments, and then the cycle repeats. This process causes a gradual adaptation of force and instantaneous adaptation of shortening velocity. Good agreement is found between model simulations and the experimental data depicting the relationship between force development, myosin filament density, or shortening velocity and length.
Collapse
Affiliation(s)
- Gijs Ijpma
- Institute of Biomedical Technologies, Auckland University of Technology, Auckland, New Zealand
| | | | | | | |
Collapse
|
49
|
|
50
|
Compalati E, Ridolo E, Passalacqua G, Braido F, Villa E, Canonica GW. The link between allergic rhinitis and asthma: the united airways disease. Expert Rev Clin Immunol 2010; 6:413-23. [PMID: 20441427 DOI: 10.1586/eci.10.15] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rhinitis and asthma are often associated and the two disorders interact at various levels. Rhinitis typically precedes the development of asthma and can contribute to unsatisfactory asthma control. The presence and type of asthma is influenced by sensitization, and the duration and severity of allergic rhinitis. Nasal symptoms, airflow and markers of inflammation directly correlate with lower airway involvement. Local tissue factors, such as microbial stimuli and systemic inflammatory mechanisms, play a role in the clinical expression of the allergic airway syndrome. There is increasing evidence that suggests a major involvement of airway epithelial cells in the pathogenesis of both asthma and allergic rhinitis. Even in patients with rhinitis who do not have asthma, subclinical changes in the lower airways and inflammatory mediators can be detected. The pathogenic role of paranasal sinus infections in respiratory allergy has been better elucidated but there remains a need for further research. Treatment of established rhinitis may affect asthma control and could have some impact on airway obstruction, but a direct effect of rhinitis therapy on lower airway inflammation remains to be clearly established.
Collapse
Affiliation(s)
- Enrico Compalati
- Allergy & Respiratory Diseases Clinic, Dept of Internal Medicine, University of Genova, Italy.
| | | | | | | | | | | |
Collapse
|