1
|
Zhang M, Fang Y, Jiang F, Liao Y, Pan C, Li J, Wu J, Yang Q, Qin R, Bai S, Teng Y, Ni J. CRY1-GAIP1 complex mediates blue light to hinder the repression of PIF5 on AGL5 to promote carotenoid biosynthesis in mango fruit. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40263966 DOI: 10.1111/pbi.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025]
Abstract
Carotenoids are essential natural pigments that not only determine the commercial value of horticultural crops through colouration but also serve as vital antioxidants and provitamin A precursors in the human diet. Our previous research has demonstrated that blue light induces carotenoid biosynthesis in mango fruit. However, a critical knowledge gap remains regarding how blue light regulates carotenoid biosynthesis in fruit. In this study, blue light-induced MiAGL5 was identified to promote carotenoid biosynthesis by activating the promoters of MiBCH1 and MiZEP. Subsequently, MiPIF5, a phytochrome interacting factor, transcriptionally inhibited MiAGL5 expression. MiGAIP1, a DELLA protein, promoted carotenoid biosynthesis by interacting with MiPIF5 and preventing its repression of MiAGL5. Furthermore, blue light stabilized MiGAIP1 protein through MiCRY1-MiGAIP1 interaction and reduced MiGAIP1 degradation by decreasing GA content in mango fruit. Additionally, MiGAIP1 mediated the antagonistic effects between blue light and GA in regulating carotenoid biosynthesis. Collectively, these results demonstrate that blue light induces carotenoid biosynthesis through a mechanism involving MiCRY1-MiGAIP1 complex-mediated inhibition of MiPIF5 repression on MiAGL5. Our work provides solid evidence for CRY-DELLA-PIF-AGL cross-talk in plant metabolism and establishes a new paradigm for light-hormone antagonism in the regulation of specialized metabolites.
Collapse
Affiliation(s)
- Manman Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Yongchen Fang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Fan Jiang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Yifei Liao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Chen Pan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Jiage Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Jiahao Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Qinsong Yang
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, China
| | - Rongling Qin
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| |
Collapse
|
2
|
Auñón-Calles D, Pinciroli M, Nicolás E, Gil-Izquierdo A, Gabaldón JA, Sánchez-Iglesias MP, Carbonell-Barrachina AA, Ferreres F, García CJ, Romero-Trigueros C. Agronomic and Metabolic Responses of Citrus clementina to Long-Term Irrigation with Saline Reclaimed Water as Abiotic Factor. Int J Mol Sci 2025; 26:3450. [PMID: 40244385 PMCID: PMC11989240 DOI: 10.3390/ijms26073450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/25/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
The Panel on Climate Change has predicted an intensification of drought and heat waves. The aim of this study was to determine the physiological response of mandarin trees in a semi-arid area to the effects of a long period of irrigation with saline reclaimed water (RW) and freshwater (FW) in terms of leaf mineral constitution, free amino acids and phytohormone balance, and their influence on yield and fruit quality. Results showed that higher foliar levels of Cl-, B, Li+, and Br- were found in the RW treatment. In addition, fruit quality (juice content, soluble solid content, titratable acid, and maturity index) and yield (fruit weight and diameter) parameters and growth canopy were negatively affected by irrigation with RW. Regardless of the treatments, L-alanine (Ala) and proline were the most abundant amino acids, with Ala being described as a majority for the first time in the literature. Concretely, in FW, the total amino acid content was twice as high as the concentration in RW (51,359.46 and 23,833.31 ng g-1, respectively). The most abundant hormones were 1-Aminocyclopropane-1-carboxylic acid and trans-zeatin in both treatments. The saline stress response would be reflected in the higher concentration of salicylic and abscisic acids in the leaves of RW trees. In view of the high correlations found in a simplified correlation matrix of (i) Ala with the canopy growth and (ii) the salicylic acid (SA) with most of the evaluated agrometabolic parameters, it can be concluded that the exogenous application of the Ala and SA would increase tree size and could mitigate the effects of salt stress, respectively. However, these treatments could be completed with the external application of ACC since this phytohormone presents the lowest parameter during treatment with RW.
Collapse
Affiliation(s)
- David Auñón-Calles
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, 30107 Guadalupe, Spain; (D.A.-C.); (J.A.G.); (F.F.)
| | - María Pinciroli
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo–Edif. 25, 30100 Murcia, Spain; (M.P.); (M.P.S.-I.); (C.J.G.)
- Cátedra de Bioquímica y Fitoquímica, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de la Plata, Calle 60 y 119, La Plata 1900, Buenos Aires, Argentina
| | - Emilio Nicolás
- Department of Irrigation, CEBAS-CSIC, University Campus of Espinardo–Edif. 25, 30100 Murcia, Spain;
| | - Angel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo–Edif. 25, 30100 Murcia, Spain; (M.P.); (M.P.S.-I.); (C.J.G.)
| | - José Antonio Gabaldón
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, 30107 Guadalupe, Spain; (D.A.-C.); (J.A.G.); (F.F.)
| | - María Puerto Sánchez-Iglesias
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo–Edif. 25, 30100 Murcia, Spain; (M.P.); (M.P.S.-I.); (C.J.G.)
- Department of Irrigation, CEBAS-CSIC, University Campus of Espinardo–Edif. 25, 30100 Murcia, Spain;
| | | | - Federico Ferreres
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, 30107 Guadalupe, Spain; (D.A.-C.); (J.A.G.); (F.F.)
| | - Carlos J. García
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo–Edif. 25, 30100 Murcia, Spain; (M.P.); (M.P.S.-I.); (C.J.G.)
| | | |
Collapse
|
3
|
Wang Q, Nie X, Luo K, Chen H, Lu M, An H. PsbHLH58 positively regulates sucrose accumulation by modulating Sucrose synthase 4 in 'Fengtang' plum (Prunus salicina Lindl.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109435. [PMID: 39719773 DOI: 10.1016/j.plaphy.2024.109435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Sugar content is an important factor that largely determines fruit quality. 'Fengtang' plum (Prunus salicina Lindl.) is recognized for its high soluble sugar content, and the Sucrose synthase 4 (PsSUS4) functions as the controlling step in sucrose accumulation. Nevertheless, the transcriptional mechanism of PsSUS4 underlying sucrose production in this high-sugar plum remains unclear. In this work, a bHLH transcription factor PsbHLH58 was identified to be positively correlated with PsSUS4 expression and fruit sucrose content based on the transcriptome data and qRT-PCR validation. Further yeast one-hybrid and dual-luciferase assays confirmed that PsbHLH58 acts as a transcriptional activator of PsSUS4 via specifically binding to its promoter. Manipulation of the PsbHLH58 expression in fruits through transient overexpression and gene silencing resulted in significant corresponding changes in PsSUS4 expression and sucrose accumulation. In addition, it was also found that the expression levels of PsbHLH58 and PsSUS4 are positively regulated by ethylene, accompanied by an increased sugar accumulation in the fruits. Consequently, these results demonstrated a novel mechanism involving the PsbHLH58-PsSUS4 module that mediates the sugar accumulation in 'Fengtang' plum and provided a new insight into the future fruit quality improvement.
Collapse
Affiliation(s)
- Qiyu Wang
- Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Xiaoshuang Nie
- Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Kangze Luo
- Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Hong Chen
- Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Min Lu
- Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Huaming An
- Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
4
|
Villwock SS, Li L, Jannink JL. Carotenoid-carbohydrate crosstalk: evidence for genetic and physiological interactions in storage tissues across crop species. THE NEW PHYTOLOGIST 2024; 244:1709-1722. [PMID: 39400352 DOI: 10.1111/nph.20196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024]
Abstract
Carotenoids play essential roles in photosynthesis, photoprotection, and human health. Efforts to increase carotenoid content in several staple crops have been successful through both conventional selection and genetic engineering methods. Interestingly, in some cases, altering carotenoid content has had unexpected effects on other aspects of plant metabolism, impacting traits like sugar content, dry matter percentage, fatty acid content, stress tolerance, and phytohormone concentrations. Studies across several diverse crop species have identified negative correlations between carotenoid and starch contents, as well as positive correlations between carotenoids and soluble sugars. Collectively, these reports suggest a metabolic interaction between carotenoids and carbohydrates. We synthesize evidence pointing to four hypothesized mechanisms: (1) direct competition for precursors; (2) physical interactions in plastids; (3) influences of sugar or apocarotenoid signaling networks; and (4) nonmechanistic population or statistical sources of correlations. Though the carotenoid biosynthesis pathway is well understood, the regulation and interactions of carotenoids, especially in nonphotosynthetic tissues, remain unclear. This topic represents an underexplored interplay between primary and secondary metabolism where further research is needed.
Collapse
Affiliation(s)
- Seren S Villwock
- School of Integrative Plant Science, Section of Plant Breeding and Genetics, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
| | - Li Li
- School of Integrative Plant Science, Section of Plant Breeding and Genetics, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
- US Department of Agriculture-Agricultural Research Service, Plant, Soil and Nutrition Laboratory, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Jean-Luc Jannink
- School of Integrative Plant Science, Section of Plant Breeding and Genetics, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
- US Department of Agriculture-Agricultural Research Service, Plant, Soil and Nutrition Laboratory, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| |
Collapse
|
5
|
Wang C, Han Q, Li C, Zou T, Zou X. Fusion of fruit image processing and deep learning: a study on identification of citrus ripeness based on R-LBP algorithm and YOLO-CIT model. FRONTIERS IN PLANT SCIENCE 2024; 15:1397816. [PMID: 38903428 PMCID: PMC11188418 DOI: 10.3389/fpls.2024.1397816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/17/2024] [Indexed: 06/22/2024]
Abstract
Citrus fruits are extensively cultivated fruits with high nutritional value. The identification of distinct ripeness stages in citrus fruits plays a crucial role in guiding the planning of harvesting paths for citrus-picking robots and facilitating yield estimations in orchards. However, challenges arise in the identification of citrus fruit ripeness due to the similarity in color between green unripe citrus fruits and tree leaves, leading to an omission in identification. Additionally, the resemblance between partially ripe, orange-green interspersed fruits and fully ripe fruits poses a risk of misidentification, further complicating the identification of citrus fruit ripeness. This study proposed the YOLO-CIT (You Only Look Once-Citrus) model and integrated an innovative R-LBP (Roughness-Local Binary Pattern) method to accurately identify citrus fruits at distinct ripeness stages. The R-LBP algorithm, an extension of the LBP algorithm, enhances the texture features of citrus fruits at distinct ripeness stages by calculating the coefficient of variation in grayscale values of pixels within a certain range in different directions around the target pixel. The C3 model embedded by the CBAM (Convolutional Block Attention Module) replaced the original backbone network of the YOLOv5s model to form the backbone of the YOLO-CIT model. Instead of traditional convolution, Ghostconv is utilized by the neck network of the YOLO-CIT model. The fruit segment of citrus in the original citrus images processed by the R-LBP algorithm is combined with the background segment of the citrus images after grayscale processing to construct synthetic images, which are subsequently added to the training dataset. The experiment showed that the R-LBP algorithm is capable of amplifying the texture features among citrus fruits at distinct ripeness stages. The YOLO-CIT model combined with the R-LBP algorithm has a Precision of 88.13%, a Recall of 93.16%, an F1 score of 90.89, a mAP@0.5 of 85.88%, and 6.1ms of average detection speed for citrus fruit ripeness identification in complex environments. The model demonstrates the capability to accurately and swiftly identify citrus fruits at distinct ripeness stages in real-world environments, effectively guiding the determination of picking targets and path planning for harvesting robots.
Collapse
Affiliation(s)
- Chenglin Wang
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, China
| | - Qiyu Han
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, China
| | - Chunjiang Li
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, China
| | - Tianlong Zou
- Foshan-Zhongke Innovation Research Institute of Intelligent Agriculture and Robotics, Guangzhou, China
| | - Xiangjun Zou
- Foshan-Zhongke Innovation Research Institute of Intelligent Agriculture and Robotics, Guangzhou, China
- College of Intelligent Manufacturing and Modern Industry, Xinjiang University, Wulumuqi, China
| |
Collapse
|
6
|
Rossouw GC, Orr R, Bennett D, Bally ISE. The roles of non-structural carbohydrates in fruiting: a review focusing on mango ( Mangifera indica). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23195. [PMID: 38588720 DOI: 10.1071/fp23195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/17/2024] [Indexed: 04/10/2024]
Abstract
Reproductive development of fruiting trees, including mango (Mangifera indica L.), is limited by non-structural carbohydrates. Competition for sugars increases with cropping, and consequently, vegetative growth and replenishment of starch reserves may reduce with high yields, resulting in interannual production variability. While the effect of crop load on photosynthesis and the distribution of starch within the mango tree has been studied, the contribution of starch and sugars to different phases of reproductive development requires attention. This review focuses on mango and examines the roles of non-structural carbohydrates in fruiting trees to clarify the repercussions of crop load on reproductive development. Starch buffers the plant's carbon availability to regulate supply with demand, while sugars provide a direct resource for carbon translocation. Sugar signalling and interactions with phytohormones play a crucial role in flowering, fruit set, growth, ripening and retention, as well as regulating starch, sugar and secondary metabolites in fruit. The balance between the leaf and fruit biomass affects the availability and contributions of starch and sugars to fruiting. Crop load impacts photosynthesis and interactions between sources and sinks. As a result, the onset and rate of reproductive processes are affected, with repercussions for fruit size, composition, and the inter-annual bearing pattern.
Collapse
Affiliation(s)
- Gerhard C Rossouw
- Department of Agriculture and Fisheries, Mareeba Research Facility, Mareeba 4880, Qld, Australia
| | - Ryan Orr
- Department of Agriculture and Fisheries, Mareeba Research Facility, Mareeba 4880, Qld, Australia
| | - Dale Bennett
- Department of Agriculture and Fisheries, Mareeba Research Facility, Mareeba 4880, Qld, Australia
| | - Ian S E Bally
- Department of Agriculture and Fisheries, Mareeba Research Facility, Mareeba 4880, Qld, Australia
| |
Collapse
|
7
|
Lv Y, Ren S, Wu B, Jiang C, Jiang B, Zhou B, Zhong G, Zhong Y, Yan H. Transcriptomic and physiological comparison of Shatangju (Citrus reticulata) and its late-maturing mutant provides insights into auxin regulation of citrus fruit maturation. TREE PHYSIOLOGY 2023; 43:1841-1854. [PMID: 37462512 DOI: 10.1093/treephys/tpad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/09/2023] [Indexed: 10/12/2023]
Abstract
Previous studies have shown that abscisic acid (ABA) and ethylene are involved in pulp maturation and peel coloration in the nonclimacteric citrus fruits. There are also signs indicating that other plant hormones may play some roles in citrus fruit ripening. In this study, we compared profiles of genome-wide gene expression and changes in hormones and peel pigments between fruits of Shatangju mandarin (Citrus reticulata Blanco, designated WT) and its natural mutant, Yuenongwanju (designated MT). The MT fruit matures ~2 months later than the WT fruit. Significant differences in fruit diameter, total soluble solids, titratable acid content, chlorophylls and carotenoids were detected between the fruits of the two genotypes at the sampled time points. Genome-wide transcriptome profiling showed that many genes involved in auxin and ABA metabolism and/or signaling pathways were differentially expressed between the MT and the WT fruits. Importantly, the expression of CrYUCCA8 was significantly lower and the expression of CrNCED5 was significantly higher in WT than in MT fruits at 230 and 250 DPA, respectively. In addition, the indole-3-acetic acid (IAA) level in the MT fruit was significantly higher than that in the WT counterpart, whereas a significantly lower level of ABA was detected in the mutant. Treatment of the WT fruit with exogenous IAA significantly delayed fruit maturation. Our results provide experimental evidence supporting the notion that auxin is a negative regulator of fruit maturation in citrus.
Collapse
Affiliation(s)
- Yuanda Lv
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, No. 80, Dafeng No. 2 street, Tianhe District, Guangzhou 510650, Guangdong Province, China
| | - Shuang Ren
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, No. 80, Dafeng No. 2 street, Tianhe District, Guangzhou 510650, Guangdong Province, China
| | - Bo Wu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, No. 80, Dafeng No. 2 street, Tianhe District, Guangzhou 510650, Guangdong Province, China
| | - Caizhong Jiang
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Bo Jiang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, No. 80, Dafeng No. 2 street, Tianhe District, Guangzhou 510650, Guangdong Province, China
| | - Birong Zhou
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, No. 80, Dafeng No. 2 street, Tianhe District, Guangzhou 510650, Guangdong Province, China
| | - Guangyan Zhong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, No. 80, Dafeng No. 2 street, Tianhe District, Guangzhou 510650, Guangdong Province, China
| | - Yun Zhong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, No. 80, Dafeng No. 2 street, Tianhe District, Guangzhou 510650, Guangdong Province, China
| | - Huaxue Yan
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, No. 80, Dafeng No. 2 street, Tianhe District, Guangzhou 510650, Guangdong Province, China
| |
Collapse
|
8
|
Zhu K, Chen H, Mei X, Lu S, Xie H, Liu J, Chai L, Xu Q, Wurtzel ET, Ye J, Deng X. Transcription factor CsMADS3 coordinately regulates chlorophyll and carotenoid pools in Citrus hesperidium. PLANT PHYSIOLOGY 2023; 193:519-536. [PMID: 37224514 DOI: 10.1093/plphys/kiad300] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Citrus, 1 of the largest fruit crops with global economic and nutritional importance, contains fruit known as hesperidium with unique morphological types. Citrus fruit ripening is accompanied by chlorophyll degradation and carotenoid biosynthesis, which are indispensably linked to color formation and the external appearance of citrus fruits. However, the transcriptional coordination of these metabolites during citrus fruit ripening remains unknown. Here, we identified the MADS-box transcription factor CsMADS3 in Citrus hesperidium that coordinates chlorophyll and carotenoid pools during fruit ripening. CsMADS3 is a nucleus-localized transcriptional activator, and its expression is induced during fruit development and coloration. Overexpression of CsMADS3 in citrus calli, tomato (Solanum lycopersicum), and citrus fruits enhanced carotenoid biosynthesis and upregulated carotenogenic genes while accelerating chlorophyll degradation and upregulating chlorophyll degradation genes. Conversely, the interference of CsMADS3 expression in citrus calli and fruits inhibited carotenoid biosynthesis and chlorophyll degradation and downregulated the transcription of related genes. Further assays confirmed that CsMADS3 directly binds and activates the promoters of phytoene synthase 1 (CsPSY1) and chromoplast-specific lycopene β-cyclase (CsLCYb2), 2 key genes in the carotenoid biosynthetic pathway, and STAY-GREEN (CsSGR), a critical chlorophyll degradation gene, which explained the expression alterations of CsPSY1, CsLCYb2, and CsSGR in the above transgenic lines. These findings reveal the transcriptional coordination of chlorophyll and carotenoid pools in the unique hesperidium of Citrus and may contribute to citrus crop improvement.
Collapse
Affiliation(s)
- Kaijie Zhu
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Hongyan Chen
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Xuehan Mei
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Suwen Lu
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Heping Xie
- The Experimental Station of Loose-skin Mandarins in Yichang, Agricultural Technical Service Center of Yiling District, Yichang, Hubei 443100, China
| | - Junwei Liu
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lijun Chai
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qiang Xu
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Eleanore T Wurtzel
- Department of Biological Sciences, Lehman College, The City University of New York, Bronx, NY 10468, USA
- The Graduate Center, The City University of New York, New York, NY 10016-16 4309, USA
| | - Junli Ye
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiuxin Deng
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| |
Collapse
|
9
|
Zhang YL, Yang Y, Saurer M, Schaub M, Gessler A, Lehmann MM, Rigling A, Walser M, Stierli B, Hajjar N, Christen D, Li MH. Sugar infusion into trees: A novel method to study tree carbon relations and its regulations. FRONTIERS IN PLANT SCIENCE 2023; 14:1142595. [PMID: 36909442 PMCID: PMC9996627 DOI: 10.3389/fpls.2023.1142595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Many carbon-related physiological questions in plants such as carbon (C) limitation or starvation have not yet been resolved thoroughly due to the lack of suitable experimental methodology. As a first step towards resolving these problems, we conducted infusion experiments with bonsai trees (Ficus microcarpa) and young maple trees (Acer pseudoplatanus) in greenhouse, and with adult Scots pine trees (Pinus sylvestris) in the field, that were "fed" with 13C-labelled glucose either through the phloem or the xylem. We then traced the 13C-signal in plant organic matter and respiration to test whether trees can take up and metabolize exogenous sugars infused. Ten weeks after infusion started, xylem but not phloem infusion significantly increased the δ13C values in both aboveground and belowground tissues of the bonsai trees in the greenhouse, whereas xylem infusion significantly increased xylem δ13C values and phloem infusion significantly increased phloem δ13C values of the adult pines in the field experiment, compared to the corresponding controls. The respiration measurement experiment with young maple trees showed significantly increased δ13C-values in shoot respired CO2 at the time of four weeks after xylem infusion started. Our results clearly indicate that trees do translocate and metabolize exogenous sugars infused, and because the phloem layer is too thin, and thus xylem infusion can be better operated than phloem infusion. This tree infusion method developed here opens up new avenues and has great potential to be used for research on the whole plant C balance and its regulation in response to environmental factors and extreme stress conditions.
Collapse
Affiliation(s)
- Yan-Li Zhang
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland
| | - Yue Yang
- College of Ecology and Environment, Hainan University, Haikou, China
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Marcus Schaub
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland
| | - Marco M. Lehmann
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Andreas Rigling
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland
| | - Marco Walser
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Beat Stierli
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Noureddine Hajjar
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Daniel Christen
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Mai-He Li
- College of Ecology and Environment, Hainan University, Haikou, China
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, Jilin, China
- College of Life Science, Hebei University, Baoding, Hebei, China
| |
Collapse
|
10
|
Mo X, Chen C, Riaz M, Moussa MG, Chen X, Wu S, Tan Q, Sun X, Zhao X, Shi L, Hu C. Fruit Characteristics of Citrus Trees Grown under Different Soil Cu Levels. PLANTS (BASEL, SWITZERLAND) 2022; 11:2943. [PMID: 36365397 PMCID: PMC9657546 DOI: 10.3390/plants11212943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The effects of the increased soil copper (Cu) on fruit quality due to the overuse of Cu agents have been a hot social issue. Seven representative citrus orchards in Guangxi province, China, were investigated to explore the fruit quality characteristics under different soil Cu levels and the relationship between soil-tree Cu and fruit quality. These results showed that pericarp color a value, titratable acid (TA), and vitamin C (Vc) were higher by 90.0, 166.6, and 22.4% in high Cu orchards and by 50.5, 204.2, and 55.3% in excess Cu orchards, compared with optimum Cu orchards. However, the ratio of total soluble solids (TSS)/TA was lower by 68.7% in high Cu orchards and by 61.6% in excess Cu orchards. With the increase of soil Cu concentrations, pericarp color a value and Vc were improved, TA with a trend of rising first then falling, and TSS/TA with a trend of falling first then rising were recorded. As fruit Cu increased, pericarp color a value and TSS reduced and as leaf Cu increased, TSS/TA decreased while Vc was improved. Moreover, a rise in soil Cu enhanced leaf Cu accumulation, and a rise in leaf Cu improved fruit Cu accumulation. Fruit Cu accumulation reduced fruit quality by direct effects, leaf Cu improved fruit quality by direct and indirect effects. Soil Cu affected fruit quality by indirect effects by regulating leaf Cu and fruit Cu. Therefore, reasonable regulation and control of soil Cu concentrations can effectively increase pericarp color, sugar, and acid accumulation in citrus fruit.
Collapse
Affiliation(s)
- Xiaorong Mo
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Beibu Gulf University, Qinzhou 535011, China
| | - Chuanwu Chen
- Guangxi Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Mohamed G. Moussa
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
| | - Xiangling Chen
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Songwei Wu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiling Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohu Zhao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Libiao Shi
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Liu Y, Lv G, Chai J, Yang Y, Ma F, Liu Z. The Effect of 1-MCP on the Expression of Carotenoid, Chlorophyll Degradation, and Ethylene Response Factors in 'Qihong' Kiwifruit. Foods 2021; 10:foods10123017. [PMID: 34945569 PMCID: PMC8701096 DOI: 10.3390/foods10123017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
The development of yellow color is an important aspect of fruit quality in yellow fleshed kiwifruit during fruit ripening, and it has a large influence on consumer preference. The yellow color is determined by carotenoid accumulation and chlorophyll degradation and is likely affected by ethylene production. This study investigates the expression of carotenoid, chlorophyll degradation, and ethylene response factors in ‘Qihong’ fruit, which had reached the near ripening stage (firmness ≈ 20 N) and were either left untreated (controls) or treated with 0.5 μL L−1 of 1-MCP for 12 h. Both the accumulation of β-carotene (not lutein) and degradation of chlorophyll a and b increased in response to the 1-MCP treatment, resulting in more yellow colored flesh in the 1-MCP treated fruit with higher carotenoid and lower chlorophyll contents. 1-MCP up-regulated AcLCY-β, AcSGR1, and AcPAO2, but reduced the expression of AcCCD1. These four genes were correlated with the concentrations of β-carotene and the chlorophylls. The expression of three ethylene response factors, including Acc29730, Acc25620, and Acc23763 were delayed and down-regulated in 1-MCP treated fruit, showing the highest correlation with the expression of AcLCY-β, AcSGR1, AcPAO2, and AcCCD1. Dual-Luciferase assays showed that 1-MCP treatment not only eliminated the inhibition of Acc23763 on the promoters of both AcPAO2 and AcLCY-β, but also reduced the activation of Acc29730 and Acc25620 on the AcCCD1 promoter. Our findings indicate that Acc29730, Acc25620, and Acc23763 may play an important role in the response to 1-MCP treatment during the fruit eating ripe stage, which likely altered the promoter activities of carotenoid and chlorophyll-related genes (AcPAO2, AcLCY-β and AcCCD1) to regulate their transcripts, resulting in more yellow color in the fruit flesh of ‘Qihong’.
Collapse
Affiliation(s)
- Yanfei Liu
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
- College of Life Science, Northwest A&F University, Xianyang 712100, China
| | - Guowen Lv
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
| | - Jiaxin Chai
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
| | - Yaqi Yang
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
| | - Fengwang Ma
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
| | - Zhande Liu
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (Y.L.); (G.L.); (J.C.); (Y.Y.); (F.M.)
- Correspondence:
| |
Collapse
|
12
|
Morales Alfaro J, Bermejo A, Navarro P, Quiñones A, Salvador A. Effect of Rootstock on Citrus Fruit Quality: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1978093] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Julia Morales Alfaro
- Center of Sustainable Agricultural Development, Instituto Valenciano De Investigaciones Agrarias, Moncada, Spain
| | - Almudena Bermejo
- Citriculture Center, Instituto Valenciano De Investigaciones Agrarias, Moncada, Spain
| | - Pilar Navarro
- Center of Sustainable Agricultural Development, Instituto Valenciano De Investigaciones Agrarias, Moncada, Spain
- Postharvest Center, Instituto Valenciano De Investigaciones Agrarias, Moncada, Spain
| | - Ana Quiñones
- Center of Sustainable Agricultural Development, Instituto Valenciano De Investigaciones Agrarias, Moncada, Spain
| | - Alejandra Salvador
- Center of Sustainable Agricultural Development, Instituto Valenciano De Investigaciones Agrarias, Moncada, Spain
| |
Collapse
|
13
|
Durán-Soria S, Pott DM, Osorio S, Vallarino JG. Sugar Signaling During Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2020; 11:564917. [PMID: 32983216 PMCID: PMC7485278 DOI: 10.3389/fpls.2020.564917] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/13/2020] [Indexed: 05/14/2023]
Abstract
Sugars play a key role in fruit quality, as they directly influence taste, and thus consumer acceptance. Carbohydrates are the main resources needed by the plant for carbon and energy supply and have been suggested to be involved in all the important developmental processes, including embryogenesis, seed germination, stress responses, and vegetative and reproductive growth. Recently, considerable progresses have been made in understanding regulation of fruit ripening mechanisms, based on the role of ethylene, auxins, abscisic acid, gibberellins, or jasmonic acid, in both climacteric and non-climacteric fruits. However, the role of sugar and its associated molecular network with hormones in the control of fruit development and ripening is still poorly understood. In this review, we focus on sugar signaling mechanisms described up to date in fruits, describing their involvement in ripening-associated processes, such as pigments accumulation, and their association with hormone transduction pathways, as well as their role in stress-related responses.
Collapse
Affiliation(s)
| | | | - Sonia Osorio
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - José G. Vallarino
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| |
Collapse
|
14
|
Comparative Metabolites and Citrate-Degrading Enzymes Activities in Citrus Fruits Reveal the Role of Balance between ACL and Cyt-ACO in Metabolite Conversions. PLANTS 2020; 9:plants9030350. [PMID: 32164290 PMCID: PMC7154853 DOI: 10.3390/plants9030350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/28/2022]
Abstract
Citric acid metabolism is considered to be the central cellular process of metabolite conversions. ATP-citrate lyase (ACL) and cytosolic aconitase (cyt-ACO) are the two citrate-degrading enzymes that decide the carbon flux towards different metabolite biosynthesis pathways. However, the correlation of their activities with metabolite concentrations in citrus fruits is still unclear. Here, the concentrations of soluble sugars, organic acids, acetyl-CoA, flavonoids, carotenoids, and γ-aminobutyric acid, as well as the activities of ACL, cyt-ACO, acetyl-CoA C-acetyltransferase, and acetyl-CoA carboxylase, were compared among the fruits of six citrus cultivars during fruit development and ripening. The results showed that the correlation between citrate concentration and cyt-ACO or ACL activity varied greatly among cultivars, while the activities of cyt-ACO and ACL had a significantly negative correlation (r = −0.4431). Moreover, ACL overexpression and RNA interference in the Citrus callus indicated that increasing and decreasing the ACL activity could reduce and induce cyt-ACO activity, respectively. In addition, significant correlation was only observed between the ACL activity and the concentration of acetyl-CoA (r = 0.4333). Taken together, the present study suggested that ACL and cyt-ACO synergistically control the citrate fate for the biosynthesis of other metabolites, but they are not the key determinants for the accumulation of citrate, as well as other metabolites in citrus fruits.
Collapse
|
15
|
Sadali NM, Sowden RG, Ling Q, Jarvis RP. Differentiation of chromoplasts and other plastids in plants. PLANT CELL REPORTS 2019; 38:803-818. [PMID: 31079194 PMCID: PMC6584231 DOI: 10.1007/s00299-019-02420-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/29/2019] [Indexed: 05/17/2023]
Abstract
Plant cells are characterized by a unique group of interconvertible organelles called plastids, which are descended from prokaryotic endosymbionts. The most studied plastid type is the chloroplast, which carries out the ancestral plastid function of photosynthesis. During the course of evolution, plastid activities were increasingly integrated with cellular metabolism and functions, and plant developmental processes, and this led to the creation of new types of non-photosynthetic plastids. These include the chromoplast, a carotenoid-rich organelle typically found in flowers and fruits. Here, we provide an introduction to non-photosynthetic plastids, and then review the structures and functions of chromoplasts in detail. The role of chromoplast differentiation in fruit ripening in particular is explored, and the factors that govern plastid development are examined, including hormonal regulation, gene expression, and plastid protein import. In the latter process, nucleus-encoded preproteins must pass through two successive protein translocons in the outer and inner envelope membranes of the plastid; these are known as TOC and TIC (translocon at the outer/inner chloroplast envelope), respectively. The discovery of SP1 (suppressor of ppi1 locus1), which encodes a RING-type ubiquitin E3 ligase localized in the plastid outer envelope membrane, revealed that plastid protein import is regulated through the selective targeting of TOC complexes for degradation by the ubiquitin-proteasome system. This suggests the possibility of engineering plastid protein import in novel crop improvement strategies.
Collapse
Affiliation(s)
- Najiah M Sadali
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Robert G Sowden
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Qihua Ling
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - R Paul Jarvis
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK.
| |
Collapse
|
16
|
Julhia L, Belmin R, Meynard JM, Pailly O, Casabianca F. Acidity Drop and Coloration in Clementine: Implications for Fruit Quality and Harvesting Practices. FRONTIERS IN PLANT SCIENCE 2019; 10:754. [PMID: 31231415 PMCID: PMC6566537 DOI: 10.3389/fpls.2019.00754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/24/2019] [Indexed: 06/01/2023]
Abstract
The commercial quality of fruit is the result of a combination of internal (acidity, sugars, juice, etc.) and external characteristics (shape, size, color, visual defects, etc.). On citrus, the internal maturity of fruit is often reached prior and independently to their external maturity, inducing the use of degreening practices to artificially color fruit. However, for some sectors where degreening is not authorized, such as organic farming or up-market, it is important to understand the co-occurrence between fruit coloration and internal ripening, and its impact on fruit quality and harvesting management. Our study was based on a monitoring of the color and acidity of Protected Geographical Indication "Clémentine de Corse" orchards of producers in 2013 and 2014. Our results show that: (i) the dynamics of acidity drop during maturation are similar from one plot to another but staggered in time; (ii) fruit coloring occurs at different times during acidity drop; (iii) the synchronization between the coloring process and acidity drop determines both the quality of harvested fruit and the period during which orchards are harvestable, which we called the "harvestability window." This study sheds new light on the quality of citrus harvested without fruit degreening and leads to propose actions to anticipate internal maturity evolution according to the coloring and spreading of the harvest period. The fruit acidity model obtained in this study will be extended to a practical application tool to predict fruit acidity and quality for a better-controlled harvest management.
Collapse
Affiliation(s)
- Laurent Julhia
- UE Citrus, French National Institute for Agricultural Research, San-Giuliano, France
| | - Raphaël Belmin
- Research Laboratory on Livestock Development, National Institute for Agricultural Research, Corte, France
| | - Jean-Marc Meynard
- UMR SADAPT, National Institute for Agricultural Research, AgroParisTech, Thiverval-Grignon, France
| | - Olivier Pailly
- UE Citrus, French National Institute for Agricultural Research, San-Giuliano, France
| | - François Casabianca
- Research Laboratory on Livestock Development, National Institute for Agricultural Research, Corte, France
| |
Collapse
|
17
|
Chen Y, Grimplet J, David K, Castellarin SD, Terol J, Wong DCJ, Luo Z, Schaffer R, Celton JM, Talon M, Gambetta GA, Chervin C. Ethylene receptors and related proteins in climacteric and non-climacteric fruits. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:63-72. [PMID: 30348329 DOI: 10.1016/j.plantsci.2018.07.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 05/10/2023]
Abstract
Fruits have been traditionally classified into two categories based on their capacity to produce and respond to ethylene during ripening. Fruits whose ripening is associated to a peak of ethylene production and a respiration burst are referred to as climacteric, while those that are not are referred to as non-climacteric. However, an increasing body of literature supports an important role for ethylene in the ripening of both climacteric and non-climacteric fruits. Genome and transcriptomic data have become available across a variety of fruits and we leverage these data to compare the structure and transcriptional regulation of the ethylene receptors and related proteins. Through the analysis of four economically important fruits, two climacteric (tomato and apple), and two non-climacteric (grape and citrus), this review compares the structure and transcriptional regulation of the ethylene receptors and related proteins in both types of fruit, establishing a basis for the annotation of ethylene-related genes. This analysis reveals two interesting differences between climacteric and non-climacteric fruit: i) a higher number of ETR genes are found in climacteric fruits, and ii) non-climacteric fruits are characterized by an earlier ETR expression peak relative to sugar accumulation.
Collapse
Affiliation(s)
- Yi Chen
- Université de Toulouse, Genomics & Biotechnology of Fruits, INRA, Toulouse INP, ENSAT, BP 32607, F-31326 Castanet-Tolosan, France.
| | - Jérôme Grimplet
- Departamento de Viticultura, Instituto de Ciencias de la Vid y del Vino, CSIC, Universidad de La Rioja, Gobierno de la Rioja, Logroño, Spain.
| | - Karine David
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand.
| | - Simone Diego Castellarin
- University of British Columbia, Wine Research Centre, 2205 East Mall, Vancouver, BC, V6T1Z4, Canada.
| | - Javier Terol
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Carretera CV-315, km 10,7, Moncada, Valencia, Spain.
| | - Darren C J Wong
- Ecology and Evolution, Research School of Biology, Australian National University, Acton, ACT 2601, Australia.
| | - Zhiwei Luo
- Plant & Food Research, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand.
| | - Robert Schaffer
- Plant & Food Research, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand.
| | - Jean-Marc Celton
- Institut de Recherche en Horticulture et Semences, INRA, BP 60057, 49071 Beaucouze Cedex, France.
| | - Manuel Talon
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Carretera CV-315, km 10,7, Moncada, Valencia, Spain.
| | - Gregory Alan Gambetta
- Bordeaux Science Agro, Institut des Sciences de la Vigne et du Vin, Ecophysiologie et Génomique Fonctionnelle de la Vigne, UMR 1287, 33140 Villenave d'Ornon, France.
| | - Christian Chervin
- Université de Toulouse, Genomics & Biotechnology of Fruits, INRA, Toulouse INP, ENSAT, BP 32607, F-31326 Castanet-Tolosan, France.
| |
Collapse
|
18
|
Slugina MA, Shchennikova AV, Kochieva EZ. TAI vacuolar invertase orthologs: the interspecific variability in tomato plants (Solanum section Lycopersicon). Mol Genet Genomics 2017. [PMID: 28634826 DOI: 10.1007/s00438-017-1336-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Understanding the genetic mechanisms underlying carbohydrate metabolism can promote the development of biotechnological advances in fruit plants. The flesh tomato fruit represents an ideal system for examining the role of sucrose cleavage enzymes in fruit development, and wild tomato species differing in storage sugars serve as an excellent research material for this purpose. Plant vacuolar invertase is a key enzyme of sucrose metabolism in the sink organs. In the present study, we identified complete gene sequences encoding the TAI vacuolar invertase in 11 wild and one cultivated tomato accessions of the Solanum section Lycopersicon. The average level of interspecific polymorphism in TAI genes was 8.58%; however, in the green-fruited tomatoes, the TAI genes contained 100 times more SNPs than those in the red-fruited accessions. The TAI proteins demonstrated 8% variability, whereas the red-fruited species had none. A TAI-based phylogenetic tree revealed two main clusters containing self-compatible and self-incompatible species, which concurs with the previous crossability-based division and demonstrates that the TAI genes reflect the evolutionary relationships between the red- and green-fruited tomatoes. Furthermore, we detected differential expression patterns of the TAI genes in the fruits of wild and cultivated tomatoes, which corresponded to sugar composition. The polymorphism analysis of the TAI acid invertases of Solanum section Lycopersicon species will contribute to the understanding of the genetic potential of TAI genes to impact tomato breeding through genetic engineering of the carbohydrate composition in the fruit.
Collapse
Affiliation(s)
- M A Slugina
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, 119071, Russia. .,Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russia.
| | - A V Shchennikova
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, 119071, Russia
| | - E Z Kochieva
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, 119071, Russia.,Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russia
| |
Collapse
|
19
|
|
20
|
Tu B, Liu C, Tian B, Zhang Q, Liu X, Herbert SJ. Reduced abscisic acid content is responsible for enhanced sucrose accumulation by potassium nutrition in vegetable soybean seeds. JOURNAL OF PLANT RESEARCH 2017; 130:551-558. [PMID: 28247062 DOI: 10.1007/s10265-017-0912-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/11/2016] [Indexed: 05/16/2023]
Abstract
In order to understand the physiological mechanism of potassium (K) application in enhancing sugar content of vegetable soybean seeds, pot experiments were conducted in 2014 and 2015 with two vegetable soybean (Glycine max L. Merr.) cultivars (c.v. Zhongkemaodou 1 and c.v. 121) under normal rate of nitrogen and phosphorus application. Three potassium (K) fertilization treatments were imposed: No K application (K0), 120 kg K2SO4 ha-1 at seeding (K1), and 120 kg K2SO4 ha-1 at seedling + 1% K2SO4 foliar application at flowering (K2). Contents of indole-3-acetic acid (IAA), gibberellins (GA), cytokinins (ZR) and abscisic acid (ABA) in seeds were determined from 4 to 8 weeks after flowering. K fertilization increased the contents of IAA, GA, ZR, soluble sugar, sucrose and fresh pod yield, but reduced ABA content consistently. When the contents of soluble sugar and sucrose reached the highest level at 7 weeks after flowering for the 2 cultivars, the contents of IAA、GA、ZR all reached the lowest level in general. The content of ABA in seed was negatively correlated with the sucrose content (P < 0.01, r = -0.749**, -0.768** in 2014 and -0.535**, -0.791** in 2015 for c.v.121 and c.v. Zhongkemaodou 1 respectively). The changes in ratio of the ABA to (IAA + GA + ZR) from 4 to 8 weeks after flowering affected by K application were coincident to the changes of sucrose accumulation. The reduced ratio of ABA/(IAA + GA + ZR) affected by K nutrition particularly reduced abscisic acid content plays a critical role in enhancing sucrose content, which might be a partial mechanism involved in K nutrition to improve the quality of vegetable soybean.
Collapse
Affiliation(s)
- Bingjie Tu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Haping Road No. 138, Harbin, 150081, Heilongjiang, China
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Changkai Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Haping Road No. 138, Harbin, 150081, Heilongjiang, China
| | - Bowen Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Haping Road No. 138, Harbin, 150081, Heilongjiang, China
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Qiuying Zhang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Haping Road No. 138, Harbin, 150081, Heilongjiang, China.
| | - Xiaobing Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Haping Road No. 138, Harbin, 150081, Heilongjiang, China
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Stephen J Herbert
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
21
|
Grilo FS, Di Stefano V, Lo Bianco R. Deficit irrigation and maturation stage influence quality and flavonoid composition of 'Valencia' orange fruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1904-1909. [PMID: 27528197 DOI: 10.1002/jsfa.7993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Effects of continuous deficit irrigation (DI) and partial rootzone drying (PRD) treatments (50% ETc) in comparison with full irrigation (CI, 100% ETc) were investigated during 'Valencia' orange fruit maturation. Ultra-high-performance liquid chromatography/high-resolution mass spectrometry was used to quantify hesperidin, narirutin, tangeritin, nobiletin, didymin and neoeriocitrin in the fruit juice and peel. RESULTS No significant effect of irrigation was found on yield, juice soluble solids or acidity. Juice color was not influenced by irrigation or harvest date, whereas peel color increased during maturation and was more pronounced in CI and PRD fruits. Juice acidity reached a peak in May, while soluble solids increased linearly throughout maturation. Hesperidin was the major flavanone detected during maturation, with concentrations 200-fold higher in the fruit peel than in the juice. In the peel, narirutin, didymin and neoeriocitrin decreased while hesperidin, nobiletin and tangeritin increased with maturation. Narirutin synthesis in the orange fruit was insensitive to irrigation strategy. In fruit peels, PRD and DI induced the decline of hesperidin, nobiletin and tangeritin only in June, whereas in the juice, deficit irrigation treatments induced an increase in hesperidin and didymin. CONCLUSION These results suggest that deficit irrigation, in particular the conditions imposed with PRD, may cause a significant accumulation shift of total flavonoids from the fruit peel into the juice, with a positive impact on juice quality and nutritional value. Fruit compositional changes during maturation also suggest that late harvest can improve fruit palatability and nutritional quality under the cultural and environmental conditions of this study. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Filipa S Grilo
- Department of Agricultural and Forest Sciences, University of Palermo, Italy
| | - Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Science and Technology, University of Palermo, Italy
| | - Riccardo Lo Bianco
- Department of Agricultural and Forest Sciences, University of Palermo, Italy
| |
Collapse
|
22
|
Liu X, Guo LX, Jin LF, Liu YZ, Liu T, Fan YH, Peng SA. Identification and transcript profiles of citrus growth-regulating factor genes involved in the regulation of leaf and fruit development. Mol Biol Rep 2016; 43:1059-67. [PMID: 27491940 DOI: 10.1007/s11033-016-4048-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/27/2016] [Indexed: 11/28/2022]
Abstract
Growth-regulating factor (GRF) is an important protein in GA-mediated response, with key roles in plant growth and development. However, it is not known whether or how the GRF proteins in citrus to regulate organ size. In this study, nine citrus GRF genes (CsGRF1-9) were validated from the 'Anliu' sweet orange (AL, Citrus sinensis cv. Anliu) by PCR amplification. They all contain two conserved motifs (QLQ and WRC) and have 3-4 exons. The transcript levels of genes were detected by qRT-PCR. Transcript analysis showed that (1) CsGRF 1, 2, 5, 6, 7, and 9 expressed predominantly in young leaf, CsGRF 3 and 4 expressed predominantly in fruit immature juice sacs and CsGRF 8 expressed predominantly in root; (2) all citrus GRF genes had significantly higher expression in young leaves than mature leaf; (3) in juice sacs, the transcript levels of CsGRF1, 4, 5, 6, and 8 increased significantly while the transcript levels of CsGRF2, 3, 7, and 9 had no significant change from 80 DAF to 100 DAF. Besides, GA3 treatment did not affect the transcript levels of CsGRF5 and CsGRF6 but significantly increased the transcript levels of the other seven CsGRF genes in young leaves. These results suggested that all CsGRF genes involve in the leaf development, CsGRF1, 4, 5, 6, and 8 act developmentally whilst CsGRF2, 3, 7, and 9 play fundamental roles in fruit cell enlargement, which may be through GA pathway or GA-independent pathway.
Collapse
Affiliation(s)
- Xiao Liu
- Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Ling-Xia Guo
- Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Long-Fei Jin
- Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Yong-Zhong Liu
- Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, People's Republic of China. .,Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), Ministry of Education, Wuhan, 430070, People's Republic of China.
| | - Tao Liu
- Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Yu-Hua Fan
- Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Shu-Ang Peng
- Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, People's Republic of China
| |
Collapse
|
23
|
Massenti R, Lo Bianco R, Sandhu AK, Gu L, Sims C. Huanglongbing modifies quality components and flavonoid content of 'Valencia' oranges. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:73-8. [PMID: 25546309 DOI: 10.1002/jsfa.7061] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/11/2014] [Accepted: 12/21/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND In order to evaluate the effect of citrus greening disease, or Huanglongbing (HLB), on quality components and flavonoid contents of 'Valencia' oranges, fruit from non-infected trees (control), from infected trees but symptom-less (asymptomatic) and from infected trees and showing clear HLB symptoms (symptomatic) were harvested in March and in May, 2013. Fruit peel, pulp and juice were separated, the main quality components were determined, and hesperidin, nobiletin, tangeretin, narirutin and didymin were quantified using liquid chromatography. RESULTS Peel colour, total soluble solids and citric acid were similar in control and asymptomatic fruits. Symptomatic fruits were smaller, yielded less juice, had higher acidity and lower sugar and peel colour than control fruits. In the peel, hesperidin, nobiletin, tangeretin, narirutin and didymin were higher in symptomatic than in asymptomatic and control fruits. Peel flavonoids decreased with fruit maturation. Also, in pulp and juice, flavonoid content was higher in symptomatic than in asymptomatic and control fruits. CONCLUSIONS These results show that asymptomatic fruits are similar to control fruits more than to symptomatic fruits, suggesting that secondary metabolism and physical properties of fruits are only affected at a later and more advanced stage of HLB infection. Despite the significant loss of quality, fruit with clear HLB symptoms accumulate high quantities of flavonoids in peel and pulp.
Collapse
Affiliation(s)
- Roberto Massenti
- Department of Agricultural and Forest Sciences, University of Palermo, Palermo, Italy
| | - Riccardo Lo Bianco
- Department of Agricultural and Forest Sciences, University of Palermo, Palermo, Italy
| | - Amandeep K Sandhu
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, USA
| | - Liwei Gu
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, USA
| | - Charles Sims
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
24
|
Ripoll J, Urban L, Brunel B, Bertin N. Water deficit effects on tomato quality depend on fruit developmental stage and genotype. JOURNAL OF PLANT PHYSIOLOGY 2016; 190:26-35. [PMID: 26629612 DOI: 10.1016/j.jplph.2015.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 05/23/2023]
Abstract
Many studies have advocated that water deficit (WD) may exert beneficial effects on fruit quality. However, the fruit response to WD at specific developmental stages was seldom investigated, although different mechanisms could be involved at each stage and lead to different effects on final fruit quality. In the present study, a moderate WD (-60% of water supply compared to control) was applied during each of the three major phases of fruit development, namely cell division (CD), cell expansion (CE) and maturation (MT). Two cocktail tomato (Solanum lycopersicum L.) genotypes were studied, one producing poor quality fruits (LA1420), and the other one producing tasty fruits (PlovdivXXIVa named Plovdiv). Contrasted responses were observed between the two genotypes. For both of them, fruit fresh mass and size were not significantly reduced by WD, whatever the developmental phase affected. Osmotic regulations were likely involved in the CD treatment for LA1420 fruits, which accumulated more sugars (both on a dry and fresh matter basis) and less acids (on a dry matter basis). In the CE treatment, other adaptive strategies involving sugar metabolism and sub-cellular compartmentation were suggested. In contrast, the composition of Plovdiv fruits changed only under the MT treatment, with less sugars, acids and carotenoids compared to control fruits (both on a dry and fresh matter basis). Total ascorbic acid (AsA) was not significantly influenced by treatments in both genotypes. On their whole, results suggest that, depending on genotypes, fruits are sweeter and less acidic under WD, but that the nutritive value related to vitamin and carotenoid contents may be lessened. The sensitivity of each developmental phase highly depends on the genotype. All phases were sensitive to WD for LA1420, but only the ripening phase for Plovdiv. Interestingly, major changes in fruit composition were observed in LA1420 which presents poor fruit quality under control conditions. This suggests the onset of fast adaptive response to WD at the fruit level in this genotype.
Collapse
Affiliation(s)
- Julie Ripoll
- INRA-Centre d'Avignon, UR1115 Plantes et Systèmes de Culture Horticoles, Domain Saint Paul-Site Agroparc, 228 route de l'aérodrome, CS 40509, 84 914 Avignon, Cedex 9, France; Université d'Avignon et des Pays du Vaucluse-Laboratoire de Physiologie des Fruits et Légumes EA4279, Bât. Agrosciences, 301 rue Baruch de Spinoza, B.P. 21239, 84916 Avignon, Cedex 9, France.
| | - Laurent Urban
- Université d'Avignon et des Pays du Vaucluse-Laboratoire de Physiologie des Fruits et Légumes EA4279, Bât. Agrosciences, 301 rue Baruch de Spinoza, B.P. 21239, 84916 Avignon, Cedex 9, France.
| | - Béatrice Brunel
- INRA-Centre d'Avignon, UR1115 Plantes et Systèmes de Culture Horticoles, Domain Saint Paul-Site Agroparc, 228 route de l'aérodrome, CS 40509, 84 914 Avignon, Cedex 9, France.
| | - Nadia Bertin
- INRA-Centre d'Avignon, UR1115 Plantes et Systèmes de Culture Horticoles, Domain Saint Paul-Site Agroparc, 228 route de l'aérodrome, CS 40509, 84 914 Avignon, Cedex 9, France.
| |
Collapse
|
25
|
Chen J, Funnell KA, Lewis DH, Eason JR, Woolley DJ. Regreening in spathes of Zantedeschia after anthesis: its physiology and control by fructification and hormones. PHYSIOLOGIA PLANTARUM 2015; 154:128-141. [PMID: 25243478 DOI: 10.1111/ppl.12285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 06/03/2023]
Abstract
The mature pigmented spathe of Zantedeschia is characterized by a developmental process, wherein the spathe regreens after anthesis and prior to senescence of the inflorescence. Previous research has shown that spathe regreening involves redifferentiation of chloroplasts and re-accumulation of chlorophyll, but the detailed physiological changes associated with regreening are still largely unknown. Using Zantedeschia aethiopica and the Zantedeschia pentlandii variety 'Best Gold' as models, this study explores the physiological mechanism and possible roles of fructification, 6-benzylaminopurine (BAP) and gibberellin (GA3 ) in induction or progression of spathe regreening. Application of BAP stimulated regreening in spathe tissue of 'Best Gold' by enhancing accumulation of carotenoid and chlorophyll, and also increasing stacking of grana. In contrast, GA3 retarded formation of double-membrane lamella during chloroplast redifferentiation, thus delaying the onset of regreening. We suggest that these actions of BAP and GA3 have a synergistic effect in delaying the onset of regreening in 'Best Gold' so that when applied together retardation of chlorophyll accumulation, chloroplast redifferentiation and accumulation of carotenoids were enhanced. The elimination of fructification did not prevent the occurrence of regreening in either Zantedeschia model plants, indicating that fructification was not a prerequisite for the induction of regreening. It is still unclear how regreening in Zantedeschia is triggered. We propose that the onset of regreening in Zantedeschia is likely to be a genetically programmed event.
Collapse
Affiliation(s)
- Jianyu Chen
- Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand; Breeding and Genomics, The New Zealand Institute for Plant & Food Research Limited, Palmerston North, 11-600, New Zealand
| | | | | | | | | |
Collapse
|
26
|
Reig C, Mesejo C, Martínez-Fuentes A, Martínez-Alcántara B, Agustí M. Loquat fruit ripening is associated with root depletion. Nutritional and hormonal control. JOURNAL OF PLANT PHYSIOLOGY 2015; 177:51-59. [PMID: 25659335 DOI: 10.1016/j.jplph.2014.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/21/2014] [Accepted: 12/29/2014] [Indexed: 06/04/2023]
Abstract
In woody species, it is known that there is a competition for nutrients, water and carbohydrates between root and fruit-shoot systems, however the influence of root development on fruit quality has received little attention. This research aims to identify the network of mechanisms involved in loquat (Eriobotrya japonica Lindl.) fruit ripening in connection with root activity. The study includes root growth rate measurements paralleling the ongoing fruit developmental stages, photosynthate translocation to the root by using (13)CO2 tracing, and nitrogen fractions (N-NH4(+), N-NO3(-), and N-proteinaceous) as well as their upward translocation to the fruit. The role of hormones (IAA, zeatin and ABA) in regulating the responses is also addressed. The experiment was conducted during two consecutive years on adult and 3-year-old loquat trees from early fruit developmental stage (10% of final size, 701 BBCH scale) to fully developed fruit colour (809 BBCH scale). This approach revealed that root development depends on the growing fruit sink strength, which reduces carbohydrates translocation to the roots and prevents them for further elongation. A nitrate accumulation in roots during the active fruit growth period takes place, which also contributes to slowing elongation and paralleled reduced ammonium and proteinaceous nitrogen concentrations. Concomitantly, the concentration of IAA and zeatin were lowest while that of ABA was highest when root exhibited minimum elongation. The depletion in zeatin and nitrogen supply by the roots paralleling the high ABA transport to the fruit allowed for colour break. These results suggest that loquat fruit changes colour by reducing root growth, as fruit increases sugars and ABA concentrations and reduces nitrogen and zeatin concentrations.
Collapse
Affiliation(s)
- Carmina Reig
- Instituto Agroforestal Mediterráneo, Universitat Politécnica de Valéncia, E-46022 Valencia, Spain
| | - Carlos Mesejo
- Instituto Agroforestal Mediterráneo, Universitat Politécnica de Valéncia, E-46022 Valencia, Spain
| | - Amparo Martínez-Fuentes
- Instituto Agroforestal Mediterráneo, Universitat Politécnica de Valéncia, E-46022 Valencia, Spain
| | - Belén Martínez-Alcántara
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Generalitat Valenciana, Moncada, E-46113 Valencia, Spain
| | - Manuel Agustí
- Instituto Agroforestal Mediterráneo, Universitat Politécnica de Valéncia, E-46022 Valencia, Spain.
| |
Collapse
|
27
|
Zhang MK, Zhang MP, Mazourek M, Tadmor Y, Li L. Regulatory control of carotenoid accumulation in winter squash during storage. PLANTA 2014; 240:1063-74. [PMID: 25139277 DOI: 10.1007/s00425-014-2147-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/07/2014] [Indexed: 05/17/2023]
Abstract
Storage promotes carotenoid accumulation and converts amylochromoplasts into chromoplasts in winter squash. Such carotenoid enhancement is likely due to continuous biosynthesis along with reduced turnover and/or enhanced sequestration. Postharvest storage of fruits and vegetables is often required and frequently results in nutritional quality change. In this study, we investigated carotenoid storage plastids, carotenoid content, and its regulation during 3-month storage of winter squash butternut fruits. We showed that storage improved visual appearance of fruit flesh color from light to dark orange, and promoted continuous accumulation of carotenoids during the first 2-month storage. Such an increased carotenoid accumulation was found to be concomitant with starch breakdown, resulting in the conversion of amylochromoplasts into chromoplasts. The butternut fruits contained predominantly β-carotene, lutein, and violaxanthin. Increased ratios of β-carotene and violaxanthin to total carotenoids were noticed during the storage. Analysis of carotenoid metabolic gene expression and PSY protein level revealed a decreased expression of carotenogenic genes and PSY protein following the storage, indicating that the increased carotenoid level might not be due to increased biosynthesis. Instead, the increase likely resulted from a continuous biosynthesis with a possibly reduced turnover and/or enhanced sequestration, suggesting a complex regulation of carotenoid accumulation during fruit storage. This study provides important information to our understanding of carotenogenesis and its regulation during postharvest storage of fruits.
Collapse
Affiliation(s)
- Ming Ke Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | | | | | | | | |
Collapse
|
28
|
Alós E, Distefano G, Rodrigo MJ, Gentile A, Zacarías L. Altered sensitivity to ethylene in 'Tardivo', a late-ripening mutant of Clementine mandarin. PHYSIOLOGIA PLANTARUM 2014; 151:507-21. [PMID: 24372483 DOI: 10.1111/ppl.12133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 11/12/2013] [Accepted: 11/15/2013] [Indexed: 05/06/2023]
Abstract
'Tardivo' mandarin is a mutant of 'Comune' Clementine with a delay in peel degreening and coloration, allowing late harvesting. In this work, we have explored if the late-harvesting phenotype of 'Tardivo' mandarin is related to altered perception and sensitivity to ethylene. The peel degreening rate was examined after a single ethephon treatment or during a continuous ethylene application in fruits at two maturation stages. In general, ethylene-induced peel degreening was considerably delayed and reduced in fruits of 'Tardivo', as well as the concomitant reduction of chlorophyll (Chl) and chloroplastic carotenoids, and the accumulation of chromoplastic carotenoids. Analysis of the expression of genes involved in Chl degradation, carotenoids, ABA, phenylpropanoids and ethylene biosynthesis revealed an impairment in the stimulation of most genes by ethylene in the peel of 'Tardivo' fruits with respect to 'Comune', especially after 5 days of ethylene application. Moreover, ethylene-induced expression of two ethylene receptor genes, ETR1 and ETR2, was also reduced in mutant fruits. Expression levels of two ethylene-responsive factors, ERF1 and ERF2, which were repressed by ethylene, were also impaired to a different extent, in fruits of both genotypes. Collectively, results suggested an altered sensitivity of the peel of 'Tardivo' to ethylene-induced physiological and molecular responses, including fruit degreening and coloration processes, which may be time-dependent since an early moderated reduction in the responses was followed by the latter inability to sustain ethylene action. These results support the involvement of ethylene in the regulation of at least some aspects of peel maturation in the non-climacteric citrus fruit.
Collapse
Affiliation(s)
- Enriqueta Alós
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980, Paterna, Valencia, Spain
| | | | | | | | | |
Collapse
|
29
|
Bruno L, Spadafora ND, Iaria D, Chiappetta A, Bitonti MB. Developmental stimuli and stress factors affect expression of ClGLP1, an emerging allergen-related gene in Citrus limon. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 79:31-40. [PMID: 24681751 DOI: 10.1016/j.plaphy.2014.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 03/03/2014] [Indexed: 05/10/2023]
Abstract
Germins and germin-like proteins (GLPs) constitute an ubiquitous family of plant proteins that seem to be involved in many developmental and stress related processes. A novel GLP cDNA was isolated from Citrus limon and structural features and genomic organization were investigated by in silico and Southern blots analysis. In lemon, the ClGLP1 encodes a 24.38 kDa which possesses a conserved motif of plant GLPs proteins. A phylogetic analysis mapped ClGLP1 as belonging to the GER3 subfamily into the GLP1 group of large GLP family. ClGLP1 was differentially expressed in the various organs and was highest in mature fruit. Moreover, expression in the fruit was tissue- and stage-related as well as dependent on agricultural practice (organic vs conventional). ClGLP1 transcripts increased during the transition from the green (180 days after blooming) to the yellow (240 days after blooming) mature fruit and were strongly enhanced in yellow mature fruit from organic compared with conventional culture. A sudden and systemic increase in ClGLP1 expression level was observed in leaves injured by wounding, together with an increase of endogenous H2O2 amount. Notably, an enhancement of H202 was observed in fruit peel during transition from green to yellow fruit stage. All together our data showed that ClGLP1 expression can be modulated in relation to both developmental stimuli and culture practices; evidence is also provided that through an oxidase activity this gene could play a role in fruit maturation as well as in stress responses.
Collapse
Affiliation(s)
- Leonardo Bruno
- Università della Calabria, Dipartimento di Ecologia, Biologia e Scienze della Terra Di. B.E.S.T., Via P. Bucci, I-87036 Arcavacata di Rende, CS, Italy.
| | - Natasha Damiana Spadafora
- Università della Calabria, Dipartimento di Ecologia, Biologia e Scienze della Terra Di. B.E.S.T., Via P. Bucci, I-87036 Arcavacata di Rende, CS, Italy
| | - Domenico Iaria
- Università della Calabria, Dipartimento di Ecologia, Biologia e Scienze della Terra Di. B.E.S.T., Via P. Bucci, I-87036 Arcavacata di Rende, CS, Italy
| | - Adriana Chiappetta
- Università della Calabria, Dipartimento di Ecologia, Biologia e Scienze della Terra Di. B.E.S.T., Via P. Bucci, I-87036 Arcavacata di Rende, CS, Italy
| | - Maria Beatrice Bitonti
- Università della Calabria, Dipartimento di Ecologia, Biologia e Scienze della Terra Di. B.E.S.T., Via P. Bucci, I-87036 Arcavacata di Rende, CS, Italy
| |
Collapse
|
30
|
Fanciullino AL, Bidel LPR, Urban L. Carotenoid responses to environmental stimuli: integrating redox and carbon controls into a fruit model. PLANT, CELL & ENVIRONMENT 2014; 37:273-89. [PMID: 23777240 DOI: 10.1111/pce.12153] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 05/20/2023]
Abstract
Carotenoids play an important role in plant adaptation to fluctuating environments as well as in the human diet by contributing to the prevention of chronic diseases. Insights have been gained recently into the way individual factors, genetic, environmental or developmental, control the carotenoid biosynthetic pathway at the molecular level. The identification of the rate-limiting steps of carotenogenesis has paved the way for programmes of breeding, and metabolic engineering, aimed at increasing the concentration of carotenoids in different crop species. However, the complexity that arises from the interactions between the different factors as well as from the coordination between organs remains poorly understood. This review focuses on recent advances in carotenoid responses to environmental stimuli and discusses how the interactions between the modulation factors and between organs affect carotenoid build-up. We develop the idea that reactive oxygen species/redox status and sugars/carbon status can be considered as integrated factors that account for most effects of the major environmental factors influencing carotenoid biosynthesis. The discussion highlights the concept of carotenoids or carotenoid-derivatives as stress signals that may be involved in feedback controls. We propose a conceptual model of the effects of environmental and developmental factors on carotenoid build-up in fruits.
Collapse
Affiliation(s)
- A L Fanciullino
- UR 1115 Plantes et Systèmes de Culture Horticoles, INRA, Avignon, Cedex, 9, France
| | | | | |
Collapse
|
31
|
Chromoplast biogenesis and carotenoid accumulation. Arch Biochem Biophys 2013; 539:102-9. [PMID: 23851381 DOI: 10.1016/j.abb.2013.07.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/07/2013] [Accepted: 07/01/2013] [Indexed: 01/29/2023]
Abstract
Chromoplasts are special organelles that possess superior ability to synthesize and store massive amounts of carotenoids. They are responsible for the distinctive colors found in fruits, flowers, and roots. Chromoplasts exhibit various morphologies and are derived from either pre-existing chloroplasts or other non-photosynthetic plastids such as proplastids, leucoplasts or amyloplasts. While little is known about the molecular mechanisms underlying chromoplast biogenesis, research progress along with proteomics study of chromoplast proteomes signifies various processes and factors important for chromoplast differentiation and development. Chromoplasts act as a metabolic sink that enables great biosynthesis and high storage capacity of carotenoids. The formation of chromoplasts enhances carotenoid metabolic sink strength and controls carotenoid accumulation in plants. The objective of this review is to provide an integrated view on our understanding of chromoplast biogenesis and carotenoid accumulation in plants.
Collapse
|
32
|
Tuan PA, Kim JK, Lee S, Chae SC, Park SU. Molecular characterization of carotenoid cleavage dioxygenases and the effect of gibberellin, abscisic acid, and sodium chloride on the expression of genes involved in the carotenoid biosynthetic pathway and carotenoid accumulation in the callus of Scutellaria baicalensis Georgi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5565-5572. [PMID: 23683071 DOI: 10.1021/jf401401w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Three cDNAs encoding carotenoid cleavage dioxygenases (SbCCD1, SbCCD4, and SbNCED) were isolated from Scutellaria baicalensis , an important traditional herb in Asia and North America. Amino acid sequence alignments showed that they share high identity and similarity to their orthologs in other plant species. Quantitative real-time polymerase chain reaction analysis revealed that SbCCD1 and SbCCD4 were most strongly expressed in flowers, whereas SbNCED was expressed at the highest level in roots. The expression levels of phytoene synthase (SbPSY), phytoene desaturase (SbPDS), ξ-carotene desaturase (SbZDS), β-ring carotene hydroxylase (SbCHXB), zeaxanthin epoxidase (SbZEP), SbCCD1, SbCCD4, and SbNCED in the callus of S. baicalensis varied under different concentrations of gibberellic acid (GA3) and abscisic acid (ABA). Under NaCl treatment, expression levels of all genes increased with increasing NaCl concentrations. Except for zeaxanthin, increasing GA3, ABA, and NaCl concentrations caused higher losses in the total carotenoid content. The total carotenoid content substantially decreased with increasing GA3, ABA, and NaCl concentrations, with the biggest reductions observed in the NaCl treatment. The isolation and characterization of SbCCD1, SbCCD4, and SbNCED together with the study on the effect of GA3, ABA, and NaCl on carotenoid biosynthesis will be helpful to elucidate the carotenoid biosynthesis mechanism in S. baicalensis and may set new trends in metabolic engineering of carotenoids in plants.
Collapse
Affiliation(s)
- Pham Anh Tuan
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, 79 Daehangno, Yuseong-gu, Daejeon 305-764, Korea
| | | | | | | | | |
Collapse
|
33
|
Poiroux-Gonord F, Fanciullino AL, Poggi I, Urban L. Carbohydrate control over carotenoid build-up is conditional on fruit ontogeny in clementine fruits. PHYSIOLOGIA PLANTARUM 2013; 147:417-31. [PMID: 22882610 DOI: 10.1111/j.1399-3054.2012.01672.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 05/18/2012] [Indexed: 05/21/2023]
Abstract
The final contents of primary and secondary metabolites of the ripe fruit depend on metabolic processes that are tightly regulated during fruit ontogeny. Carbohydrate supply during fruit development is known to influence these processes but, with respect to secondary metabolites, we do not really know whether this influence is direct or indirect. Here, we hypothesized that the sensitivity of clementine fruit metabolism to carbohydrate supply was conditional on fruit developmental stage. We applied treatments increasing fruit load reversibly or irreversibly at three key stages of clementine (Citrus clementina Hort. ex Tan.) fruit development: early after cell division, at the onset of fruit coloration (color break) and near maturity. The highest fruit load obtained by early defoliation (irreversible) had the highest impact on fruit growth, maturity and metabolism, followed by the highest fruit load obtained by early shading (reversible). Final fruit size decreased by 21 and 18% in these early irreversible and reversible treatments, respectively. Soluble sugars decreased by 18% in the early irreversible treatment, whereas organic acids increased by 46 and 29% in these early irreversible and reversible treatments, respectively. Interestingly, total carotenoids increased by 50 and 18%, respectively. Changes in leaf starch content and photosynthesis supported that these early treatments triggered a carbon starvation in the young fruits, with irreversible effects. Furthermore, our observations on the early treatments challenge the common view that carbohydrate supply influences positively carotenoid accumulation in fruits. We propose that early carbon starvation irreversibly promotes carotenoid accumulation.
Collapse
Affiliation(s)
- Florine Poiroux-Gonord
- INRA, UR 1103 Génétique et Ecophysiologie de la Qualité des Agrumes, San Giuliano, France
| | | | | | | |
Collapse
|
34
|
Poiroux-Gonord F, Fanciullino AL, Bert L, Urban L. Effect of fruit load on maturity and carotenoid content of clementine (Citrus clementina Hort. ex Tan.) fruits. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2012; 92:2076-83. [PMID: 22311856 DOI: 10.1002/jsfa.5584] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 09/29/2011] [Accepted: 12/04/2011] [Indexed: 05/21/2023]
Abstract
BACKGROUND Citrus fruits contain many secondary metabolites displaying valuable health properties. There is a lot of interest in enhancing citrus quality traits, especially carotenoid contents, by agronomic approaches. In this study the influence of carbohydrate availability on maturity and quality criteria was investigated in clementine fruits during ripening. Fruiting branches were girdled and defoliated after fruit set to obtain three levels of fruit load: high (five leaves per fruit), medium (15) and low (30). RESULTS Considering the soluble solid content/titratable acidity (SSC/TA) ratio, it was found that fruits of the high and medium fruit load treatments reached maturity 1.5 months later than fruits of the control. At the time of maturity the SSC/TA ratio of fruits of all treatments was about 13.6. At harvest, fruits were 23% smaller and total sugar concentration of the endocarp was 12.6% lower in the high fruit load treatment than in the control. In contrast, the concentrations of organic acids and total carotenoids were 55.4 and 93.0% higher respectively. Total carotenoids were not positively correlated with either soluble sugars or total carbohydrates. CONCLUSION Taken together, the results do not support the common view that carbohydrate availability directly determines carotenoid synthesis by influencing precursor availability.
Collapse
Affiliation(s)
- Florine Poiroux-Gonord
- INRA-UR 1103, Génétique et Ecophysiologie de la Qualité des Agrumes, F-20230 San Giuliano, Corsica, France
| | | | | | | |
Collapse
|
35
|
Cheng Y, Dong Y, Yan H, Ge W, Shen C, Guan J, Liu L, Zhang Y. Effects of 1-MCP on chlorophyll degradation pathway-associated genes expression and chloroplast ultrastructure during the peel yellowing of Chinese pear fruits in storage. Food Chem 2012; 135:415-22. [PMID: 22868108 DOI: 10.1016/j.foodchem.2012.05.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 03/21/2012] [Accepted: 05/01/2012] [Indexed: 10/28/2022]
Abstract
The peel yellowing is an important pigment physiological process of green fruit ripening, which mainly results from chlorophyll degradation in the fruit peel. In this work, two typical cultivars with different ripening speed, a slow ripening pear 'Emerald' (Pyrus bretschneideri Rehd. cv. Emerald) and a fast ripening 'Jingbai' (Pyrus ussuriensis Maxim. cv. Jingbai) were used to investigate the molecular mechanism of chlorophyll degradation in pear yellowing/ripening during postharvest storage. The fruits after harvest were treated with 1-methylcyclopropene (1-MCP), an ethylene action inhibitor at 1.0 μLl(-1) to determine its effect on chloroplast ultrastructure and the expression of chlorophyll degradation associated genes in peel tissues. Our results show that the pears treated with 1-MCP had a lower ethylene production rate and higher chlorophyll content compared to those of untreated fruit. The more intact chloroplasts with well-organised grana thylakoids and small plastoglobuli were maintained in the peel of 1-MCP treated fruit for up to 30 and 15 d in 'Emerald' and 'Jingbai', respectively. The expression of chlorophyll degradation associated genes: pheophorbide a oxygenase (PAO), non-yellow colouring (NYC), NYC1-like (NOL), stay-green 1(SGR1), was suppressed, while no significant change was found in chlorophyllase 1 (CHL1) and red chlorophyll catabolite reductase (RCCR) in both cultivar fruits treated with 1-MCP. These results suggest that 1-MCP can delay chlorophyll degradation by inhibiting ethylene production and suppressing the gene expression of PAO, NYC, NOL and SGR1, which are closely associated with chlorophyll catabolic pathway.
Collapse
Affiliation(s)
- Yudou Cheng
- Institute of Genetics and Physiology, Hebei Academy of Agricultural and Forestry Science, Shijiazhuang 050051, PR China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Tao NG, Ao TT, Liu YJ, Huang SR. Effect of sucrose-based polymers on quality of Satsuma mandarin fruit (Citrus unshiu Marc. cv. Miyagawa Wase). Int J Food Sci Technol 2012. [DOI: 10.1111/j.1365-2621.2011.02933.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Li L, Yang Y, Xu Q, Owsiany K, Welsch R, Chitchumroonchokchai C, Lu S, Van Eck J, Deng XX, Failla M, Thannhauser TW. The Or gene enhances carotenoid accumulation and stability during post-harvest storage of potato tubers. MOLECULAR PLANT 2012; 5:339-52. [PMID: 22155949 DOI: 10.1093/mp/ssr099] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Provitamin A carotenoids in staple crops are not very stable during storage and their loss compromises nutritional quality. To elucidate the fundamental mechanisms underlying carotenoid accumulation and stability, we investigated transgenic potato tubers that expressed the cauliflower Orange (Or) gene. We found that the Or transgene not only promoted retention of β-carotene level, but also continuously stimulated its accumulation during 5 months of cold storage. In contrast, no increased levels of carotenoids were observed in the tubers of vector-only controls or a yellow-flesh variety during the same period of storage. The increased carotenoid accumulation was found to be associated with the formation of lipoprotein-carotenoid sequestering structures, as well as with the enhanced abundance of phytoene synthase, a key enzyme in the carotenoid biosynthetic pathway. Furthermore, the provitamin A carotenoids stored were shown to be stable during simulated digestion and accessible for uptake by human intestinal absorptive cells. Proteomic analysis identified three major functional groups of proteins (i.e. heat shock proteins, glutathione-S-transferases, and carbohydrate metabolic proteins) that are potentially important in the Or-regulated carotenoid accumulation. Our results show that regulation of carotenoid sequestration capacity is an important mechanism by which carotenoid stability is regulated. Our findings suggest that induction of a proper sink structure formation in staple crops may provide the crops with a unique ability to promote and/or stabilize provitamin A accumulation during plant growth and post-harvest storage.
Collapse
Affiliation(s)
- Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang L, Ma G, Kato M, Yamawaki K, Takagi T, Kiriiwa Y, Ikoma Y, Matsumoto H, Yoshioka T, Nesumi H. Regulation of carotenoid accumulation and the expression of carotenoid metabolic genes in citrus juice sacs in vitro. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:871-86. [PMID: 21994171 PMCID: PMC3254687 DOI: 10.1093/jxb/err318] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 09/01/2011] [Accepted: 09/06/2011] [Indexed: 05/20/2023]
Abstract
In the present study, to investigate the mechanisms regulating carotenoid accumulation in citrus, a culture system was set up in vitro with juice sacs of three citrus varieties, Satsuma mandarin (Citrus unshiu Marc.), Valencia orange (Citrus sinensis Osbeck), and Lisbon lemon (Citrus limon Burm.f.). The juice sacs of all the three varieties enlarged gradually with carotenoid accumulation. The changing patterns of carotenoid content and the expression of carotenoid metabolic genes in juice sacs in vitro were similar to those ripening on trees in the three varieties. Using this system, the changes in the carotenoid content and the expression of carotenoid metabolic genes in response to environmental stimuli were investigated. The results showed that carotenoid accumulation was induced by blue light treatment, but was not affected by red light treatment in the three varieties. Different regulation of CitPSY expression, which was up-regulated by blue light while unaffected by red light, led to different changes in carotenoid content in response to these two treatments in Satsuma mandarin and Valencia orange. In all three varieties, increases in carotenoid content were observed with sucrose and mannitol treatments. However, the accumulation of carotenoid in the two treatments was regulated by distinct mechanisms at the transcriptional level. With abscisic acid (ABA) treatment, the expression of the genes investigated in this study was up-regulated in Satsuma mandarin and Lisbon lemon, indicating that ABA induced its own biosynthesis at the transcriptional level. This feedback regulation of ABA led to decreases in carotenoid content. With gibberellin (GA) treatment, carotenoid content was significantly decreased in the three varieties. Changes in the expression of genes related to carotenoid metabolism varied among the three varieties in response to GA treatment. These results provided insights into improving carotenoid content and composition in citrus during fruit maturation.
Collapse
Affiliation(s)
- Lancui Zhang
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
| | - Gang Ma
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
- The United Graduate School of Agricultural Science, Gifu University (Shizuoka University), Yanagido, Gifu 501-1193, Japan
| | - Masaya Kato
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
- To whom correspondence should be addressed. E-mail:
| | - Kazuki Yamawaki
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
| | - Toshihiko Takagi
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
| | - Yoshikazu Kiriiwa
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
| | - Yoshinori Ikoma
- Department of Citrus Research, National Institute of Fruit Tree Science, Okitsunakacho, Shimizu, Shizuoka 424-0292, Japan
| | - Hikaru Matsumoto
- Department of Citrus Research, National Institute of Fruit Tree Science, Okitsunakacho, Shimizu, Shizuoka 424-0292, Japan
| | - Terutaka Yoshioka
- Department of Citrus Research, National Institute of Fruit Tree Science, Okitsunakacho, Shimizu, Shizuoka 424-0292, Japan
| | - Hirohisa Nesumi
- Shikoku Research Center, Nation Agricultural Research Center for Western Region, Senyuu, Zentsuuji, Kagawa, 765-8508, Japan
| |
Collapse
|
39
|
Ríos G, Naranjo MA, Rodrigo MJ, Alós E, Zacarías L, Cercós M, Talón M. Identification of a GCC transcription factor responding to fruit colour change events in citrus through the transcriptomic analyses of two mutants. BMC PLANT BIOLOGY 2010; 10:276. [PMID: 21159189 PMCID: PMC3014968 DOI: 10.1186/1471-2229-10-276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 12/15/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND External ripening in Citrus fruits is morphologically characterized by a colour shift from green to orange due to the degradation of chlorophylls and the accumulation of carotenoid pigments. Although numerous genes coding for enzymes involved in such biochemical pathways have been identified, the molecular control of this process has been scarcely studied. In this work we used the Citrus clementina mutants 39B3 and 39E7, showing delayed colour break, to isolate genes potentially related to the regulation of peel ripening and its physiological or biochemical effects. RESULTS Pigment analyses revealed different profiles of carotenoid and chlorophyll modification in 39B3 and 39E7 mutants. Flavedo from 39B3 fruits showed an overall delay in carotenoid accumulation and chlorophyll degradation, while the flavedo of 39E7 was devoid of the apocarotenoid β-citraurin among other carotenoid alterations. A Citrus microarray containing about 20,000 cDNA fragments was used to identify genes that were differentially expressed during colour change in the flavedo of 39B3 and 39E7 mutants respect to the parental variety. The results highlighted 73 and 90 genes that were respectively up- and down-regulated in both mutants. CcGCC1 gene, coding for a GCC type transcriptional factor, was found to be down-regulated. CcGCC1 expression was strongly induced at the onset of colour change in the flavedo of parental clementine fruit. Moreover, treatment of fruits with gibberellins, a retardant of external ripening, delayed both colour break and CcGCC1 overexpression. CONCLUSIONS In this work, the citrus fruit ripening mutants 39B3 and 39E7 have been characterized at the phenotypic, biochemical and transcriptomic level. A defective synthesis of the apocarotenoid β-citraurin has been proposed to cause the yellowish colour of fully ripe 39E7 flavedo. The analyses of the mutant transcriptomes revealed that colour change during peel ripening was strongly associated with a major mobilization of mineral elements and with other previously known metabolic and photosynthetic changes. The expression of CcGCC1 was associated with peel ripening since CcGCC1 down-regulation correlated with a delay in colour break induced by genetic, developmental and hormonal causes.
Collapse
Affiliation(s)
- Gabino Ríos
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Carretera Moncada-Náquera km 4.5, 46113 Moncada (Valencia), Spain
| | - Miguel A Naranjo
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Carretera Moncada-Náquera km 4.5, 46113 Moncada (Valencia), Spain
| | - María-Jesús Rodrigo
- Departamento de Ciencia de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA)-CSIC, Apartado de Correos 73, 46100 Burjassot (Valencia), Spain
| | - Enriqueta Alós
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Carretera Moncada-Náquera km 4.5, 46113 Moncada (Valencia), Spain
| | - Lorenzo Zacarías
- Departamento de Ciencia de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA)-CSIC, Apartado de Correos 73, 46100 Burjassot (Valencia), Spain
| | - Manuel Cercós
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Carretera Moncada-Náquera km 4.5, 46113 Moncada (Valencia), Spain
| | - Manuel Talón
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Carretera Moncada-Náquera km 4.5, 46113 Moncada (Valencia), Spain
| |
Collapse
|
40
|
Poiroux-Gonord F, Bidel LPR, Fanciullino AL, Gautier H, Lauri-Lopez F, Urban L. Health benefits of vitamins and secondary metabolites of fruits and vegetables and prospects to increase their concentrations by agronomic approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:12065-82. [PMID: 21067179 DOI: 10.1021/jf1037745] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fruits and vegetables (FAVs) are an important part of the human diet and a major source of biologically active substances such as vitamins and secondary metabolites. The consumption of FAVs remains globally insufficient, so it should be encouraged, and it may be useful to propose to consumers FAVs with enhanced concentrations in vitamins and secondary metabolites. There are basically two ways to reach this target: the genetic approach or the environmental approach. This paper provides a comprehensive review of the results that have been obtained so far through purely agronomic approaches and brings them into perspective by comparing them with the achievements of genetic approaches. Although agronomic approaches offer very good perspectives, the existence of variability of responses suggests that the current understanding of the way regulatory and metabolic pathways are controlled needs to be increased. For this purpose, more in-depth study of the interactions existing between factors (light and temperature, for instance, genetic factors × environmental factors), between processes (primary metabolism and ontogeny, for example), and between organs (as there is some evidence that photooxidative stress in leaves affects antioxidant metabolism in fruits) is proposed.
Collapse
Affiliation(s)
- Florine Poiroux-Gonord
- INRA - Centre de Corse, Unité "Génétique et Ecophysiologie de la Qualité des Agrumes", F-20230 San Giuliano, France
| | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Alós E, Roca M, Iglesias DJ, Mínguez-Mosquera MI, Damasceno CMB, Thannhauser TW, Rose JKC, Talón M, Cercós M. An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis. PLANT PHYSIOLOGY 2008; 147:1300-15. [PMID: 18467459 PMCID: PMC2442528 DOI: 10.1104/pp.108.119917] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 05/05/2008] [Indexed: 05/20/2023]
Abstract
A Citrus sinensis spontaneous mutant, navel negra (nan), produces fruit with an abnormal brown-colored flavedo during ripening. Analysis of pigment composition in the wild-type and nan flavedo suggested that typical ripening-related chlorophyll (Chl) degradation, but not carotenoid biosynthesis, was impaired in the mutant, identifying nan as a type C stay-green mutant. nan exhibited normal expression of Chl biosynthetic and catabolic genes and chlorophyllase activity but no accumulation of dephytylated Chl compounds during ripening, suggesting that the mutation is not related to a lesion in any of the principal enzymatic steps in Chl catabolism. Transcript profiling using a citrus microarray indicated that a citrus ortholog of a number of SGR (for STAY-GREEN) genes was expressed at substantially lower levels in nan, both prior to and during ripening. However, the pattern of catabolite accumulation and SGR sequence analysis suggested that the nan mutation is distinct from those in previously described stay-green mutants and is associated with an upstream regulatory step, rather than directly influencing a specific component of Chl catabolism. Transcriptomic and comparative proteomic profiling further indicated that the nan mutation resulted in the suppressed expression of numerous photosynthesis-related genes and in the induction of genes that are associated with oxidative stress. These data, along with metabolite analyses, suggest that nan fruit employ a number of molecular mechanisms to compensate for the elevated Chl levels and associated photooxidative stress.
Collapse
Affiliation(s)
- Enriqueta Alós
- Instituto Valenciano de Investigaciones Agrarias, Centro de Genómica, 46113 Moncada, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lenk S, Buschmann C, Pfündel EE. In vivo assessing flavonols in white grape berries (Vitis vinifera L. cv. Pinot Blanc) of different degrees of ripeness using chlorophyll fluorescence imaging. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 34:1092-1104. [PMID: 32689439 DOI: 10.1071/fp07206] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 10/17/2007] [Indexed: 06/11/2023]
Abstract
Exposed and non-exposed halves of field-grown berries of the white grapevine Vitis vinifera L. cv. Pinot Blanc at various stages of ripeness were analysed using chlorophyll fluorescence imaging. The stage of ripeness was classified by the total sugar concentration which ranged between 120 and 300 g L-1 for the different berries but was similar in the exposed and the non-exposed half of individual berries. Fluorescence was excited in the UV-A and the blue spectral region and detected at red as well as far-red wavelengths. At both emission ranges, UV-excited fluorescence was weak and required correction for the contribution of small false signals. After correction, in vivo UV screening by berry skins was derived from the ratio of UV-A to blue-excited fluorescence intensities, and a relationship between in vivo UV screening and flavonol quantity was established: the quantity of flavonols was determined by spectral analysis of extracted phenolics. Significantly high flavonol concentrations, and effective in vivo UV screening, were detected in most exposed half-berries at sugar concentrations higher than 200 g L-1 but not in non-exposed samples. This suggests that radiation-exposure conditions determine flavonol synthesis. Based on the absence of flavonol accumulation in exposed half-berries with sugar concentrations smaller than 200 g L-1, however, it is suggested that berries need to arrive at an advanced stage of ripeness before responding to radiation-exposure by synthesising large amounts of UV-protecting flavonols. Chlorophyll degradation, which was followed by blue-excited intensities of far-red fluorescence, progressed in parallel with increasing sugar content suggesting that chlorophyll degradation is associated with berry ripening. In addition, exposure to sunlight appeared to slightly stimulate chlorophyll decay.
Collapse
Affiliation(s)
- Sándor Lenk
- Botanisches Institut II, Universität Karlsruhe, Fritz-Haber-Weg 4, D-76128 Karlsruhe, Germany
| | - Claus Buschmann
- Botanisches Institut II, Universität Karlsruhe, Fritz-Haber-Weg 4, D-76128 Karlsruhe, Germany
| | - Erhard E Pfündel
- Universität Würzburg, Julius-von-Sachs-Institut für Biowissenschaften, D-97082 Würzburg, Germany
| |
Collapse
|
44
|
Iglesias DJ, Cercós M, Colmenero-Flores JM, Naranjo MA, Ríos G, Carrera E, Ruiz-Rivero O, Lliso I, Morillon R, Tadeo FR, Talon M. Physiology of citrus fruiting. ACTA ACUST UNITED AC 2007. [DOI: 10.1590/s1677-04202007000400006] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Citrus is the main fruit tree crop in the world and therefore has a tremendous economical, social and cultural impact in our society. In recent years, our knowledge on plant reproductive biology has increased considerably mostly because of the work developed in model plants. However, the information generated in these species cannot always be applied to citrus, predominantly because citrus is a perennial tree crop that exhibits a very peculiar and unusual reproductive biology. Regulation of fruit growth and development in citrus is an intricate phenomenon depending upon many internal and external factors that may operate both sequentially and simultaneously. The elements and mechanisms whereby endogenous and environmental stimuli affect fruit growth are being interpreted and this knowledge may help to provide tools that allow optimizing production and fruit with enhanced nutritional value, the ultimate goal of the Citrus Industry. This article will review the progress that has taken place in the physiology of citrus fruiting during recent years and present the current status of major research topics in this area.
Collapse
Affiliation(s)
| | - Manuel Cercós
- Instituto Valenciano de Investigaciones Agrarias, Spain
| | | | | | - Gabino Ríos
- Instituto Valenciano de Investigaciones Agrarias, Spain
| | | | | | - Ignacio Lliso
- Instituto Valenciano de Investigaciones Agrarias, Spain
| | - Raphael Morillon
- Centre de Coopération Internationale en Recherche Agronomique pour le Dévelopement, France
| | | | - Manuel Talon
- Instituto Valenciano de Investigaciones Agrarias, Spain
| |
Collapse
|
45
|
Liu Y, Liu Q, Xiong J, Deng X. Difference of a citrus late-ripening mutant (Citrus sinensis) from its parental line in sugar and acid metabolism at the fruit ripening stage. ACTA ACUST UNITED AC 2007; 50:511-7. [PMID: 17653673 DOI: 10.1007/s11427-007-0063-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 03/03/2007] [Indexed: 01/17/2023]
Abstract
'Fengjiewancheng' (FW) (Citrus sinensis), a bud sport of 'Fengjie 72-1' navel orange (FJ), ripens one month later than its parental line. Differences in sugar and acid content and the transcript level of sucrose-and citric-metabolic enzymes for the two cultivars were investigated during fruit ripening. Results showed that both sugar and acid metabolisms of the mutant were affected by the mutation. In the pulp of FW, sugar content was significantly lower than that in FJ before 227 DAF (days after flowering) and higher at 263 DAF; the mutant's gene expression of one isoform of citrus sucrose synthase (CitSS1) was delayed, and its gene expression of citrus acid invertase (CitAI) was stronger than that in its parental cultivars at 207 and 263 DAF. In the peel, only the sucrose content in FW was significantly lower than those in FJ at the early periods of fruit ripening (165 and 187 DAF); however the transcripts of the sucrose-cleaving enzymes in the mutant were higher than those in FJ at different ripening points. As regards acid accumulation in the two cultivars, it was observed that in the pulp of the mutant, the malic acid content was significantly lower than that in its parental cultivars from 187 to 263 DAF, and in the peel, remarkably higher during the whole fruit ripening period. The citric acid content in both the pulp and the peel of FW was higher than that in those of FJ during the early ripening period and lower during the late ripening period, which were correspondingly associated in part with the higher transcript level of citrus mitochondrial citrate synthase (CitCS) and with lower or undetectable transcript level of citrus cytosolic aconitase (CitAC). Hence, it could be concluded that the mutation in FW affected sugar and acid metabolism, which might be related with other late-ripening phenotypes.
Collapse
Affiliation(s)
- YongZhong Liu
- National Key Laboratory of Crop Genetic Improvement; College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | |
Collapse
|
46
|
Lliso I, Tadeo FR, Phinney BS, Wilkerson CG, Talón M. Protein changes in the albedo of citrus fruits on postharvesting storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:9047-53. [PMID: 17910511 DOI: 10.1021/jf071198a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In this work, major protein changes in the albedo of the fruit peel of Murcott tangor (tangerine x sweet orange) during postharvest ageing were studied through 2D PAGE. Protein content in matured on-tree fruits and in fruits stored in nonstressing [99% relative humidity (RH) and 25 degrees C], cold (99% RH and 4 degrees C), and drought (60% RH and 25 degrees C) conditions was initially determined. Protein identification through MS/MS determinations revealed in all samples analyzed the occurrence of manganese superoxide dismutase (Mn SOD), actin, ATP synthase beta subunit (ATPase), citrus salt-stress associated protein (CitSap), ascorbate peroxidase (APX), translationally controlled tumor protein (TCTP), and a cysteine proteinase (CP) of the papain family. The latter protein was identified in two different gel spots, with different molecular mass, suggesting the simultaneous presence of the proteinase precursor and its active form. While Mn SOD, actin, ATPase, and CitSap were unchanged in the assayed conditions, TCTP and APX were downregulated during the postharvest ageing process. Ageing-induced APX repression was also reversed by drought. CP contents in albedo, which were similar in on- and off-tree fruits, were strongly dependent upon cold storage. The active/total CP protein ratio significantly increased after cold exposure. This proteomic survey indicates that major changes in protein content in the albedo of the peel of postharvest stored citrus fruits are apparently related to the activation of programmed cell death (PCD).
Collapse
Affiliation(s)
- Ignacio Lliso
- Research Technology Support Facility, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
47
|
Analysis of 13000 unique Citrus clusters associated with fruit quality, production and salinity tolerance. BMC Genomics 2007; 8:31. [PMID: 17254327 PMCID: PMC1796867 DOI: 10.1186/1471-2164-8-31] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 01/25/2007] [Indexed: 12/19/2022] Open
Abstract
Background Improvement of Citrus, the most economically important fruit crop in the world, is extremely slow and inherently costly because of the long-term nature of tree breeding and an unusual combination of reproductive characteristics. Aside from disease resistance, major commercial traits in Citrus are improved fruit quality, higher yield and tolerance to environmental stresses, especially salinity. Results A normalized full length and 9 standard cDNA libraries were generated, representing particular treatments and tissues from selected varieties (Citrus clementina and C. sinensis) and rootstocks (C. reshni, and C. sinenis × Poncirus trifoliata) differing in fruit quality, resistance to abscission, and tolerance to salinity. The goal of this work was to provide a large expressed sequence tag (EST) collection enriched with transcripts related to these well appreciated agronomical traits. Towards this end, more than 54000 ESTs derived from these libraries were analyzed and annotated. Assembly of 52626 useful sequences generated 15664 putative transcription units distributed in 7120 contigs, and 8544 singletons. BLAST annotation produced significant hits for more than 80% of the hypothetical transcription units and suggested that 647 of these might be Citrus specific unigenes. The unigene set, composed of ~13000 putative different transcripts, including more than 5000 novel Citrus genes, was assigned with putative functions based on similarity, GO annotations and protein domains Conclusion Comparative genomics with Arabidopsis revealed the presence of putative conserved orthologs and single copy genes in Citrus and also the occurrence of both gene duplication events and increased number of genes for specific pathways. In addition, phylogenetic analysis performed on the ammonium transporter family and glycosyl transferase family 20 suggested the existence of Citrus paralogs. Analysis of the Citrus gene space showed that the most important metabolic pathways known to affect fruit quality were represented in the unigene set. Overall, the similarity analyses indicated that the sequences of the genes belonging to these varieties and rootstocks were essentially identical, suggesting that the differential behaviour of these species cannot be attributed to major sequence divergences. This Citrus EST assembly contributes both crucial information to discover genes of agronomical interest and tools for genetic and genomic analyses, such as the development of new markers and microarrays.
Collapse
|
48
|
|
49
|
Cercós M, Soler G, Iglesias DJ, Gadea J, Forment J, Talón M. Global analysis of gene expression during development and ripening of citrus fruit flesh. A proposed mechanism for citric Acid utilization. PLANT MOLECULAR BIOLOGY 2006; 62:513-27. [PMID: 16897468 DOI: 10.1007/s11103-006-9037-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 06/21/2006] [Indexed: 05/04/2023]
Abstract
Microarrays of cDNA have been used to examine expression changes of 7000 genes during development and ripening of the fruit flesh of self-incompatible Citrus clementina, a non-climateric species. The data indicated that 2243 putative unigenes showed significant expression changes. Functional classification revealed that genes encoding for regulatory proteins were significantly overrepresented in the up-regulated gene clusters. The transcriptomic study together with the analyses of selected metabolites highlighted key physiological processes occurring during citrus fruit development and ripening such as water accumulation, carbohydrate build-up, acid reduction, pigment substitutions (carotenoid accumulation and chlorophyll decreases) and ascorbic acid diminution. Often, the combined analyses strongly suggested prevalence of specific metabolic alternatives. This observation has been exemplified with the proposal for a mechanism for citrate utilization, a process of much importance in citrus industry. Microarray data validated by real-time RT-PCR suggested that citrate was sequentially metabolyzed to isocitrate, 2-oxoglutarate and glutamate. Thereafter, glutamate was both utilized for glutamine production and catabolyzed through the gamma-aminobutirate (GABA) shunt (GABA --> succinate semialdehyde --> succinate). This last observation appears to be of special relevance since it links the proton consuming reaction glutamate + H(+)--> GABA + CO(2) with high acid levels. GG-MS determinations showed that glutamate was constant while GABA levels decreased at ripening in agreement with a feasible activation of the GABA shunt during acid catabolism. This suggestion provides a convincing explanation for the strong reduction of both citrate and cytoplasmatic acidity that takes place in citrus fruit flesh during development and ripening.
Collapse
Affiliation(s)
- Manuel Cercós
- Instituto Valenciano de Investigaciones Agrarias, Centro de Genómica, Ctra Moncada-Náquera Km 4.6, 46113 Moncada, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Télef N, Stammitti-Bert L, Mortain-Bertrand A, Maucourt M, Carde JP, Rolin D, Gallusci P. Sucrose deficiency delays lycopene accumulation in tomato fruit pericarp discs. PLANT MOLECULAR BIOLOGY 2006; 62:453-69. [PMID: 16915514 DOI: 10.1007/s11103-006-9033-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 06/13/2006] [Indexed: 05/11/2023]
Abstract
Tomato (Solanum lycopersicum) fruit ripening is characterized by a massive accumulation of carotenoids (mainly lycopene) as chloroplasts change to chromoplasts. To address the question of the role of sugars in controlling carotenoid accumulation, fruit pericarp discs (mature green fruits) were cultured in vitro in the presence of various sucrose concentrations. A significant difference in soluble sugar content was achieved depending on external sucrose availability. Sucrose limitation delayed and reduced lycopene and phytoene accumulation, with no significant effect on other carotenoids. Chlorophyll degradation and starch catabolism were not affected by variations of sucrose availability. The reduction of lycopene synthesis observed in sucrose-limited conditions was mediated through metabolic changes illustrated by reduced hexose accumulation levels. In addition, variations of sucrose availability modulated PSY1 gene expression. Taken together our results suggest that the modulation of carotenoid accumulation by sucrose availability occurs at the metabolic level and involves the differential regulation of genes involved in carotenoid biosynthesis.
Collapse
Affiliation(s)
- Nadège Télef
- UMR Physiologie et Biotechnologie Végétales, INRA, Université Bordeaux 1, Université Victor Segalen Bordeaux 2, CR INRA de Bordeaux, 71 Avenue Edouard Bourleaux, BP 81, 33883, Villenave d'Ornon Cedex, France
| | | | | | | | | | | | | |
Collapse
|