1
|
Yang H, Zhou L, Shi M, Yu J, Xie Y, Sun Y. Ubiquitination-Related Gene Signature, Nomogram and Immune Features for Prognostic Prediction in Patients with Head and Neck Squamous Cell Carcinoma. Genes (Basel) 2024; 15:880. [PMID: 39062659 PMCID: PMC11276148 DOI: 10.3390/genes15070880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The objective of this research was to create a prognostic model focused on genes related to ubiquitination (UbRGs) for evaluating their clinical significance in head and neck squamous cell carcinoma (HNSCC) patients. The transcriptome expression data of UbRGs were obtained from The Cancer Genome Atlas (TCGA) database, and weighted gene co-expression network analysis (WGCNA) was used to identify specific UbRGs within survival-related hub modules. A multi-gene signature was formulated using LASSO Cox regression analysis. Furthermore, various analyses, including time-related receiver operating characteristics (ROCs), Kaplan-Meier, Cox regression, nomogram prediction, gene set enrichment, co-expression, immune, tumor mutation burden (TMB), and drug sensitivity, were conducted. Ultimately, a prognostic signature consisting of 11 gene pairs for HNSCC was established. The Kaplan-Meier curves indicated significantly improved overall survival (OS) in the low-risk group compared to the high-risk group (p < 0.001), suggesting its potential as an independent and dependable prognostic factor. Additionally, a nomogram with AUC values of 0.744, 0.852, and 0.861 at 1-, 3-, and 5-year intervals was developed. Infiltration of M2 macrophages was higher in the high-risk group, and the TMB was notably elevated compared to the low-risk group. Several chemotherapy drugs targeting UbRGs were recommended for low-risk and high-risk patients, respectively. The prognostic signature derived from UbRGs can effectively predict prognosis and provide new personalized therapeutic targets for HNSCC.
Collapse
Affiliation(s)
- Huiwen Yang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (L.Z.); (M.S.); (J.Y.)
| | - Liuqing Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (L.Z.); (M.S.); (J.Y.)
| | - Mengwen Shi
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (L.Z.); (M.S.); (J.Y.)
| | - Jintao Yu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (L.Z.); (M.S.); (J.Y.)
| | - Yi Xie
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (L.Z.); (M.S.); (J.Y.)
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
2
|
Chen Y, Zhou D, Yao Y, Sun Y, Yao F, Ma L. Monoubiquitination in Homeostasis and Cancer. Int J Mol Sci 2022; 23:ijms23115925. [PMID: 35682605 PMCID: PMC9180643 DOI: 10.3390/ijms23115925] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Monoubiquitination is a post-translational modification (PTM), through which a single ubiquitin molecule is covalently conjugated to a lysine residue of the target protein. Monoubiquitination regulates the activity, subcellular localization, protein-protein interactions, or endocytosis of the substrate. In doing so, monoubiquitination is implicated in diverse cellular processes, including gene transcription, endocytosis, signal transduction, cell death, and DNA damage repair, which in turn regulate cell-cycle progression, survival, proliferation, and stress response. In this review, we summarize the functions of monoubiquitination and discuss how this PTM modulates homeostasis and cancer.
Collapse
Affiliation(s)
- Yujie Chen
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
| | - Dandan Zhou
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
| | - Yinan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- Correspondence: (F.Y.); (L.M.)
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Correspondence: (F.Y.); (L.M.)
| |
Collapse
|
3
|
Valdez L, Cheng B, Gonzalez D, Rodriguez R, Campano P, Tsin A, Fang X. Combined treatment with niclosamide and camptothecin enhances anticancer effect in U87 MG human glioblastoma cells. Oncotarget 2022; 13:642-658. [PMID: 35548329 PMCID: PMC9084225 DOI: 10.18632/oncotarget.28227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Laura Valdez
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- These authors contributed equally to this work
| | - Benxu Cheng
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- These authors contributed equally to this work
| | - Daniela Gonzalez
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Reanna Rodriguez
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Paola Campano
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Andrew Tsin
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Xiaoqian Fang
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| |
Collapse
|
4
|
Synergistic effect of long-term feed deprivation and temperature on the cellular physiology of meagre (Argyrosomus regius). J Therm Biol 2022; 105:103207. [DOI: 10.1016/j.jtherbio.2022.103207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 11/21/2022]
|
5
|
Choi HS, Baek KH. Pro-apoptotic and anti-apoptotic regulation mediated by deubiquitinating enzymes. Cell Mol Life Sci 2022; 79:117. [PMID: 35118522 PMCID: PMC11071826 DOI: 10.1007/s00018-022-04132-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 12/16/2022]
Abstract
Although damaged cells can be repaired, cells that are considered unlikely to be repaired are eliminated through apoptosis, a type of predicted cell death found in multicellular organisms. Apoptosis is a structured cell death involving alterations to the cell morphology and internal biochemical changes. This process involves the expansion and cracking of cells, changes in cell membranes, nuclear fragmentation, chromatin condensation, and chromosome cleavage, culminating in the damaged cells being eaten and processed by other cells. The ubiquitin-proteasome system (UPS) is a major cellular pathway that regulates the protein levels through proteasomal degradation. This review proposes that apoptotic proteins are regulated through the UPS and describes a unique direction for cancer treatment by controlling proteasomal degradation of apoptotic proteins, and small molecules targeted to enzymes associated with UPS.
Collapse
Affiliation(s)
- Hae-Seul Choi
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea.
| |
Collapse
|
6
|
Rice Lesion Mimic Mutants (LMM): The Current Understanding of Genetic Mutations in the Failure of ROS Scavenging during Lesion Formation. PLANTS 2021; 10:plants10081598. [PMID: 34451643 PMCID: PMC8400881 DOI: 10.3390/plants10081598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 01/02/2023]
Abstract
Rice lesion mimic mutants (LMMs) form spontaneous lesions on the leaves during vegetative growth without pathogenic infections. The rice LMM group includes various mutants, including spotted leaf mutants, brown leaf mutants, white-stripe leaf mutants, and other lesion-phenotypic mutants. These LMM mutants exhibit a common phenotype of lesions on the leaves linked to chloroplast destruction caused by the eruption of reactive oxygen species (ROS) in the photosynthesis process. This process instigates the hypersensitive response (HR) and programmed cell death (PCD), resulting in lesion formation. The reasons for lesion formation have been studied extensively in terms of genetics and molecular biology to understand the pathogen and stress responses. In rice, the lesion phenotypes of most rice LMMs are inherited according to the Mendelian principles of inheritance, which remain in the subsequent generations. These rice LMM genetic traits have highly developed innate self-defense mechanisms. Thus, although rice LMM plants have undesirable agronomic traits, the genetic principles of LMM phenotypes can be used to obtain high grain yields by deciphering the efficiency of photosynthesis, disease resistance, and environmental stress responses. From these ailing rice LMM plants, rice geneticists have discovered novel proteins and physiological causes of ROS in photosynthesis and defense mechanisms. This review discusses recent studies on rice LMMs for the Mendelian inheritances, molecular genetic mapping, and the genetic definition of each mutant gene.
Collapse
|
7
|
Schmittmann L, Franzenburg S, Pita L. Individuality in the Immune Repertoire and Induced Response of the Sponge Halichondria panicea. Front Immunol 2021; 12:689051. [PMID: 34220847 PMCID: PMC8242945 DOI: 10.3389/fimmu.2021.689051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
The animal immune system mediates host-microbe interactions from the host perspective. Pattern recognition receptors (PRRs) and the downstream signaling cascades they induce are a central part of animal innate immunity. These molecular immune mechanisms are still not fully understood, particularly in terms of baseline immunity vs induced specific responses regulated upon microbial signals. Early-divergent phyla like sponges (Porifera) can help to identify the evolutionarily conserved mechanisms of immune signaling. We characterized both the expressed immune gene repertoire and the induced response to lipopolysaccharides (LPS) in Halichondria panicea, a promising model for sponge symbioses. We exposed sponges under controlled experimental conditions to bacterial LPS and performed RNA-seq on samples taken 1h and 6h after exposure. H. panicea possesses a diverse array of putative PRRs. While part of those PRRs was constitutively expressed in all analyzed sponges, the majority was expressed individual-specific and regardless of LPS treatment or timepoint. The induced immune response by LPS involved differential regulation of genes related to signaling and recognition, more specifically GTPases and post-translational regulation mechanisms like ubiquitination and phosphorylation. We have discovered individuality in both the immune receptor repertoire and the response to LPS, which may translate into holobiont fitness and susceptibility to stress. The three different layers of immune gene control observed in this study, - namely constitutive expression, individual-specific expression, and induced genes -, draw a complex picture of the innate immune gene regulation in H. panicea. Most likely this reflects synergistic interactions among the different components of immunity in their role to control and respond to a stable microbiome, seawater bacteria, and potential pathogens.
Collapse
Affiliation(s)
- Lara Schmittmann
- Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Sören Franzenburg
- Research Group Genetics&Bioinformatics/Systems Immunology, Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Lucía Pita
- Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
8
|
Kaur G, Iyer LM, Burroughs AM, Aravind L. Bacterial death and TRADD-N domains help define novel apoptosis and immunity mechanisms shared by prokaryotes and metazoans. eLife 2021; 10:70394. [PMID: 34061031 PMCID: PMC8195603 DOI: 10.7554/elife.70394] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022] Open
Abstract
Several homologous domains are shared by eukaryotic immunity and programmed cell-death systems and poorly understood bacterial proteins. Recent studies show these to be components of a network of highly regulated systems connecting apoptotic processes to counter-invader immunity, in prokaryotes with a multicellular habit. However, the provenance of key adaptor domains, namely those of the Death-like and TRADD-N superfamilies, a quintessential feature of metazoan apoptotic systems, remained murky. Here, we use sensitive sequence analysis and comparative genomics methods to identify unambiguous bacterial homologs of the Death-like and TRADD-N superfamilies. We show the former to have arisen as part of a radiation of effector-associated α-helical adaptor domains that likely mediate homotypic interactions bringing together diverse effector and signaling domains in predicted bacterial apoptosis- and counter-invader systems. Similarly, we show that the TRADD-N domain defines a key, widespread signaling bridge that links effector deployment to invader-sensing in multicellular bacterial and metazoan counter-invader systems. TRADD-N domains are expanded in aggregating marine invertebrates and point to distinctive diversifying immune strategies probably directed both at RNA and retroviruses and cellular pathogens that might infect such communities. These TRADD-N and Death-like domains helped identify several new bacterial and metazoan counter-invader systems featuring underappreciated, common functional principles: the use of intracellular invader-sensing lectin-like (NPCBM and FGS), transcription elongation GreA/B-C, glycosyltransferase-4 family, inactive NTPase (serving as nucleic acid receptors), and invader-sensing GTPase switch domains. Finally, these findings point to the possibility of multicellular bacteria-stem metazoan symbiosis in the emergence of the immune/apoptotic systems of the latter.
Collapse
Affiliation(s)
- Gurmeet Kaur
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| |
Collapse
|
9
|
Coccia E, Planells-Ferrer L, Badillos-Rodríguez R, Pascual M, Segura MF, Fernández-Hernández R, López-Soriano J, Garí E, Soriano E, Barneda-Zahonero B, Moubarak RS, Pérez-García MJ, Comella JX. SIVA-1 regulates apoptosis and synaptic function by modulating XIAP interaction with the death receptor antagonist FAIM-L. Cell Death Dis 2020; 11:82. [PMID: 32015347 PMCID: PMC6997380 DOI: 10.1038/s41419-020-2282-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/15/2022]
Abstract
The long isoform of Fas apoptosis inhibitory molecule (FAIM-L) is a neuron-specific death receptor antagonist that modulates apoptotic cell death and mechanisms of neuronal plasticity. FAIM-L exerts its antiapoptotic action by binding to X-linked inhibitor of apoptosis protein (XIAP), an inhibitor of caspases, which are the main effectors of apoptosis. XIAP levels are regulated by the ubiquitin-proteasome pathway. FAIM-L interaction with XIAP prevents the ubiquitination and degradation of the latter, thereby allowing it to inhibit caspase activation. This interaction also modulates non-apoptotic functions of caspases, such as the endocytosis of AMPA receptor (AMPAR) in hippocampal long-term depression (LTD). The molecular mechanism of action exerted by FAIM-L is unclear since the consensus binding motifs are still unknown. Here, we performed a two-hybrid screening to discover novel FAIM-L-interacting proteins. We found a functional interaction of SIVA-1 with FAIM-L. SIVA-1 is a proapoptotic protein that has the capacity to interact with XIAP. We describe how SIVA-1 regulates FAIM-L function by disrupting the interaction of FAIM-L with XIAP, thereby promoting XIAP ubiquitination, caspase-3 activation and neuronal death. Furthermore, we report that SIVA-1 plays a role in receptor internalization in synapses. SIVA-1 is upregulated upon chemical LTD induction, and it modulates AMPAR internalization via non-apoptotic activation of caspases. In summary, our findings uncover SIVA-1 as new functional partner of FAIM-L and demonstrate its role as a regulator of caspase activity in synaptic function.
Collapse
Affiliation(s)
- Elena Coccia
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain.,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08031, Bellaterra, Spain
| | - Laura Planells-Ferrer
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain.,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08031, Bellaterra, Spain
| | - Raquel Badillos-Rodríguez
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain.,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08031, Bellaterra, Spain
| | - Marta Pascual
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Bellaterra, Spain.,Department of Cell Biology, Physiology and Immunology, Institut de Neurociències, Universitat de Barcelona, 08031, Barcelona, Spain
| | - Miguel F Segura
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, 08035, Barcelona, Spain
| | - Rita Fernández-Hernández
- Cell Cycle Laboratory, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina, Universitat de Lleida, 25198, Lleida, Catalonia, Spain
| | - Joaquin López-Soriano
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain.,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08031, Bellaterra, Spain
| | - Eloi Garí
- Cell Cycle Laboratory, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina, Universitat de Lleida, 25198, Lleida, Catalonia, Spain
| | - Eduardo Soriano
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Bellaterra, Spain.,Department of Cell Biology, Physiology and Immunology, Institut de Neurociències, Universitat de Barcelona, 08031, Barcelona, Spain.,ICREA Academia, Barcelona, Spain
| | - Bruna Barneda-Zahonero
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain.,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08031, Bellaterra, Spain
| | - Rana S Moubarak
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain.,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08031, Bellaterra, Spain.,Department of Pathology, NYU Langone Health, New York, 10016, NY, USA
| | - M Jose Pérez-García
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain. .,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08031, Bellaterra, Spain.
| | - Joan X Comella
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain. .,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08031, Bellaterra, Spain.
| |
Collapse
|
10
|
Feng H, Guo X, Sun H, Zhang S, Xi J, Yin J, Cao Y, Li K. Flight muscles degenerate by programmed cell death after migration in the wheat aphid, Sitobion avenae. BMC Res Notes 2019; 12:672. [PMID: 31639041 PMCID: PMC6805507 DOI: 10.1186/s13104-019-4708-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Previous studies showed that flight muscles degenerate after migration in some aphid species; however, the underlying molecular mechanism remains virtually unknown. In this study, using the wheat aphid, Sitobion avenae, we aim to investigate aphid flight muscle degeneration and the underlying molecular mechanism. RESULTS Sitobion avenae started to differentiate winged or wingless morphs at the second instar, the winged aphids were fully determined at the third instar, and their wings were fully developed at the fourth instar. After migration, the aphid flight muscles degenerated via programmed cell death, which is evidenced by a Terminal deoxynucleotidyl transferase dUTP-biotin nick-end labeling assay. Then, we identified a list of differentially expressed genes before and after tethered flights using differential-display reverse transcription-PCR. One of the differentially expressed genes, ubiquitin-ribosomal S27a, was confirmed using qPCR. Ubiquitin-ribosomal S27a is drastically up regulated following the aphids' migration and before the flight muscle degeneration. Our data suggested that aphid flight muscles degenerate after migration. During flight muscle degeneration, endogenous proteins may be degraded to reallocate energy for reproduction.
Collapse
Affiliation(s)
- Honglin Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, NO. 2 Yuanmingyuan Xilu, Haidian District, Beijing, 100193, China. .,College of Plant Science, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, Jilin, China. .,Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA.
| | - Xiao Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, NO. 2 Yuanmingyuan Xilu, Haidian District, Beijing, 100193, China.,Chongqing Academy of Agricultural Sciences, Baishiyi, Jiulongpo District, Chongqing, 401329, China
| | - Hongyan Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, NO. 2 Yuanmingyuan Xilu, Haidian District, Beijing, 100193, China.,College of Plant Science, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Shuai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, NO. 2 Yuanmingyuan Xilu, Haidian District, Beijing, 100193, China
| | - Jinghui Xi
- College of Plant Science, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Jiao Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, NO. 2 Yuanmingyuan Xilu, Haidian District, Beijing, 100193, China
| | - Yazhong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, NO. 2 Yuanmingyuan Xilu, Haidian District, Beijing, 100193, China
| | - Kebin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, NO. 2 Yuanmingyuan Xilu, Haidian District, Beijing, 100193, China.
| |
Collapse
|
11
|
Mandal A, Sharma N, Muthamilarasan M, Prasad M. Ubiquitination: a tool for plant adaptation to changing environments. THE NUCLEUS 2018. [DOI: 10.1007/s13237-018-0255-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
12
|
Godini R, Fallahi H, Ebrahimie E. Network analysis of inflammatory responses to sepsis by neutrophils and peripheral blood mononuclear cells. PLoS One 2018; 13:e0201674. [PMID: 30086151 PMCID: PMC6080784 DOI: 10.1371/journal.pone.0201674] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/19/2018] [Indexed: 12/03/2022] Open
Abstract
Sepsis is a life-threatening syndrome causing thousands of deaths yearly worldwide. Sepsis is a result of infection and could lead to systemic inflammatory responses and organ failures. Additionally, blood cells, as the main cells in the immune systems, could be also affected by sepsis. Here, we have used different network analysis approaches, including Weighted Gene Co-expression Network Analysis (WGCNA), Protein-Protein Interaction (PPI), and gene regulatory network, to dissect system-level response to sepsis by the main white blood cells. Gene expression profiles of Neutrophils (NTs), Dendritic Cells (DCs), and Peripheral Blood Mononuclear Cells (PBMCs) that were exposed to septic plasma were obtained and analyzed using bioinformatics approaches. Individual gene expression matrices and the list of differentially expressed genes (DEGs) were prepared and used to construct several networks. Consequently, key regulatory modules and hub genes were detected through network analysis and annotated through ontology analysis extracted from DAVID database. Our results showed that septic plasma affected the regulatory networks in NTs, PBMCs more than the network in DCs. Gene ontology of DEGs revealed that signal transduction and immune cells responses are the most important biological processes affected by sepsis. On the other hand, network analysis detected modules and hub genes in each cell types. It was found that pathways involved in immune cells, signal transduction, and apoptotic processes are among the most affected pathways in the responses to sepsis. Altogether, we have found several hub genes including ADORA3, CD83 CDKN1A, FFAR2, GNAQ, IL1B, LTB, MAPK14, SAMD9L, SOCS1, and STAT1, which might specifically respond to sepsis infection. In conclusion, our results uncovered the system-level responses of the main white blood cells to sepsis and identified several hub genes with potential applications for therapeutic and diagnostic purposes.
Collapse
Affiliation(s)
- Rasoul Godini
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, Iran
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, Iran
- * E-mail: ,
| | - Esmaeil Ebrahimie
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
- School of Information Technology and Mathematical Sciences, Division of Information Technology, Engineering and the Environment, The University of South Australia, Adelaide, South Australia, Australia
- School of Biological Sciences, Faculty of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
13
|
Cheng B, Morales LD, Zhang Y, Mito S, Tsin A. Niclosamide induces protein ubiquitination and inhibits multiple pro-survival signaling pathways in the human glioblastoma U-87 MG cell line. PLoS One 2017; 12:e0184324. [PMID: 28877265 PMCID: PMC5587337 DOI: 10.1371/journal.pone.0184324] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/22/2017] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma is the most common and lethal malignant primary brain tumor for which the development of efficacious chemotherapeutic agents remains an urgent need. The anti-helminthic drug niclosamide, which has long been in use to treat tapeworm infections, has recently attracted renewed interest due to its apparent anticancer effects in a variety of in vitro and in vivo cancer models. However, the mechanism(s) of action remains to be elucidated. In the present study, we found that niclosamide induced cell toxicity in human glioblastoma cells corresponding with increased protein ubiquitination, ER stress and autophagy. In addition, niclosamide treatment led to down-regulation of Wnt/β-catenin, PI3K/AKT, MAPK/ERK, and STAT3 pro-survival signal transduction pathways to further reduce U-87 MG cell viability. Taken together, these results provide new insights into the glioblastoma suppressive capabilities of niclosamide, showing that niclosamide can target multiple major cell signaling pathways simultaneously to effectively promote cell death in U-87 MG cells. Niclosamide constitutes a new prospect for a therapeutic treatment against human glioblastoma.
Collapse
Affiliation(s)
- Benxu Cheng
- Department of Biomedical Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, Texas, United States of America
- * E-mail:
| | - Liza Doreen Morales
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Edinburg, Texas, United States of America
| | - Yonghong Zhang
- Department of Chemistry, University of Texas Rio Grande Valley, Edinburg, Texas, United States of America
| | - Shizue Mito
- Department of Chemistry, University of Texas Rio Grande Valley, Edinburg, Texas, United States of America
| | - Andrew Tsin
- Department of Biomedical Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, Texas, United States of America
| |
Collapse
|
14
|
Ghannam A, Jacques A, de Ruffray P, Kauffmann S. NtRING1, putative RING-finger E3 ligase protein, is a positive regulator of the early stages of elicitin-induced HR in tobacco. PLANT CELL REPORTS 2016; 35:415-28. [PMID: 26542819 DOI: 10.1007/s00299-015-1893-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/09/2015] [Accepted: 10/28/2015] [Indexed: 05/25/2023]
Abstract
KEY MESSAGE NtRING1 is a RING-finger protein with a putative E3 ligase activity. NtRING1 regulates HR establishment against different pathogens. Loss-/gain-of-function of NtRING1 altered early stages of HR phenotype establishment. Plant defence responses against pathogens often involve the restriction of pathogens by inducing a hypersensitive response (HR). cDNA clones DD11-39, DD38-11 and DD34-26 were previously obtained from a differential screen aimed at characterising tobacco genes with an elicitin-induced HR-specific pattern of expression. Our precedent observations suggested that DD11-39, DD38-11 and DD34-26 might play roles in the HR establishment. Only for DD11-39 a full-length cDNA sequence was obtained and the corresponding protein encoded for a type-HC RING-finger/putative E3 ligase protein which we termed NtRING1. The expression of NtRING1 was upregulated upon HR induction by elicitin, Ralstonia solanacearum, or tobacco mosaic virus (TMV) in tobacco. Silencing of NtRING1 remarkably delayed the establishment of elicitin-induced HR in tobacco as well as the expression of different early induction genes in tissues undergoing HR. Accordingly, transient overexpression of NtRING1 accelerated the HR launching upon elicitin treatment. Taking together, our data suggests that NtRING1 plays a functional role in the early establishment of HR.
Collapse
Affiliation(s)
- Ahmed Ghannam
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, 67084, Strasbourg, France.
- Laboratory Functional Genomics for Plant Immunomodulation, Plant Pathology Division, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria.
| | - Alban Jacques
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, 67084, Strasbourg, France
- Ecole d'ingénieurs de Purpan, Laboratoire d'Agro-Physiologie, 75 voie du TOEC, 31076, Toulouse Cedex 3, France
| | - Patrice de Ruffray
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Serge Kauffmann
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, 67084, Strasbourg, France
| |
Collapse
|
15
|
Adiguzel Z, Baykal AT, Kacar O, Yilmaz VT, Ulukaya E, Acilan C. Biochemical and Proteomic Analysis of a Potential Anticancer Agent: Palladium(II) Saccharinate Complex of Terpyridine Acting through Double Strand Break Formation. J Proteome Res 2014; 13:5240-9. [DOI: 10.1021/pr5006718] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zelal Adiguzel
- TUBITAK, Marmara
Research Center, Genetic Engineering and Biotechnology Institute, Gebze/Kocaeli, 41470, Turkey
| | | | - Omer Kacar
- TUBITAK, Marmara
Research Center, Genetic Engineering and Biotechnology Institute, Gebze/Kocaeli, 41470, Turkey
| | - Veysel T. Yilmaz
- Uludag University, Faculty of Arts and Sciences,
Department of Chemistry, 16120, Bursa, Turkey
| | - Engin Ulukaya
- Uludag University, Medical School, Department of
Medical Biochemistry, 16120, Bursa, Turkey
| | - Ceyda Acilan
- TUBITAK, Marmara
Research Center, Genetic Engineering and Biotechnology Institute, Gebze/Kocaeli, 41470, Turkey
| |
Collapse
|
16
|
Weng L, Ziliak D, LaCroix B, Geeleher P, Huang RS. Integrative "omic" analysis for tamoxifen sensitivity through cell based models. PLoS One 2014; 9:e93420. [PMID: 24699530 PMCID: PMC3974759 DOI: 10.1371/journal.pone.0093420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/04/2014] [Indexed: 12/25/2022] Open
Abstract
It has long been observed that tamoxifen sensitivity varies among breast cancer patients. Further, ethnic differences of tamoxifen therapy between Caucasian and African American have also been reported. Since most studies have been focused on Caucasian people, we sought to comprehensively evaluate genetic variants related to tamoxifen therapy in African-derived samples. An integrative "omic" approach developed by our group was used to investigate relationships among endoxifen (an active metabolite of tamoxifen) sensitivity, SNP genotype, mRNA and microRNA expressions in 58 HapMap YRI lymphoblastoid cell lines. We identified 50 SNPs that associate with cellular sensitivity to endoxifen through their effects on 34 genes and 30 microRNA expression. Some of these findings are shared in both Caucasian and African samples, while others are unique in the African samples. Among gene/microRNA that were identified in both ethnic groups, the expression of TRAF1 is also correlated with tamoxifen sensitivity in a collection of 44 breast cancer cell lines. Further, knock-down TRAF1 and over-expression of hsa-let-7i confirmed the roles of hsa-let-7i and TRAF1 in increasing tamoxifen sensitivity in the ZR-75-1 breast cancer cell line. Our integrative omic analysis facilitated the discovery of pharmacogenomic biomarkers that potentially affect tamoxifen sensitivity.
Collapse
Affiliation(s)
- Liming Weng
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Dana Ziliak
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Bonnie LaCroix
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Paul Geeleher
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - R. Stephanie Huang
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
17
|
Dai CL, Shi J, Chen Y, Iqbal K, Liu F, Gong CX. Inhibition of protein synthesis alters protein degradation through activation of protein kinase B (AKT). J Biol Chem 2013; 288:23875-83. [PMID: 23843462 DOI: 10.1074/jbc.m112.445148] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The homeostasis of protein metabolism is maintained and regulated by the rates of protein biosynthesis and degradation in living systems. Alterations of protein degradation may regulate protein biosynthesis through a feedback mechanism. Whether a change in protein biosynthesis modulates protein degradation has not been reported. In this study, we found that inhibition of protein biosynthesis induced phosphorylation/activation of AKT and led to phosphorylation of AKT target substrates, including FoxO1, GSK3α/β, p70S6K, AS160, and the E3 ubiquitin ligase MDM2. Phosphorylation of ribosomal protein S6 was also modulated by inhibition of protein biosynthesis. The AKT phosphorylation/activation was mediated mainly through the PI3K pathway because it was blocked by the PI3K inhibitor LY294002. The activated AKT phosphorylated MDM2 at Ser(166) and promoted degradation of the tumor suppressor p53. These findings suggest that inhibition of protein biosynthesis can alter degradation of some proteins through activation of AKT. This study reveals a novel regulation of protein degradation and calls for caution in blocking protein biosynthesis to study the half-life of proteins.
Collapse
Affiliation(s)
- Chun-Ling Dai
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA
| | | | | | | | | | | |
Collapse
|
18
|
Lee EW, Seo J, Jeong M, Lee S, Song J. The roles of FADD in extrinsic apoptosis and necroptosis. BMB Rep 2013; 45:496-508. [PMID: 23010170 DOI: 10.5483/bmbrep.2012.45.9.186] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fas-associated protein with death domain (FADD), an adaptor that bridges death receptor signaling to the caspase cascade, is indispensible for the induction of extrinsic apoptotic cell death. Interest in the non-apoptotic function of FADD has greatly increased due to evidence that FADD-deficient mice or dominant-negative FADD transgenic mice result in embryonic lethality and an immune defect without showing apoptotic features. Numerous studies have suggested that FADD regulates cell cycle progression, proliferation, and autophagy, affecting these phenomena. Recently, programmed necrosis, also called necroptosis, was shown to be a key mechanism that induces embryonic lethality and an immune defect. Supporting these findings, FADD was shown to be involved in various necroptosis models. In this review, we summarize the mechanism of extrinsic apoptosis and necroptosis, and discuss the in vivo and in vitro roles of FADD in necroptosis induced by various stimuli.
Collapse
Affiliation(s)
- Eun-Woo Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea.
| | | | | | | | | |
Collapse
|
19
|
A connected set of genes associated with programmed cell death implicated in controlling the hypersensitive response in maize. Genetics 2012; 193:609-20. [PMID: 23222653 DOI: 10.1534/genetics.112.147595] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rp1-D21 is a maize auto-active resistance gene conferring a spontaneous hypersensitive response (HR) of variable severity depending on genetic background. We report an association mapping strategy based on the Mutant Assisted Gene Identification and Characterization approach to identify naturally occurring allelic variants associated with phenotypic variation in HR. Each member of a collection of 231 diverse inbred lines of maize constituting a high-resolution association mapping panel were crossed to a parental stock heterozygous for Rp1-D21, and the segregating F(1) generation testcrosses were evaluated for phenotypes associated with lesion severity for 2 years at two locations. A genome-wide scan for associations with HR was conducted with 47,445 SNPs using a linear mixed model that controlled for spurious associations due to population structure. Since the ability to identify candidate genes and the resolution of association mapping are highly influenced by linkage disequilibrium (LD), we examined the extent of genome-wide LD. On average, marker pairs separated by >10 kbp had an r(2) value of <0.1. Genomic regions surrounding SNPs significantly associated with HR traits were locally saturated with additional SNP markers to establish local LD structure and precisely identify candidate genes. Six significantly associated SNPs at five loci were detected. At each locus, the associated SNP was located within or immediately adjacent to candidate causative genes predicted to play significant roles in the control of programmed cell death and especially in ubiquitin pathway-related processes.
Collapse
|
20
|
Protein cross-linking as a novel mechanism of action of a ubiquitin-activating enzyme inhibitor with anti-tumor activity. Biochem Pharmacol 2011; 82:341-9. [DOI: 10.1016/j.bcp.2011.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 11/22/2022]
|
21
|
Seo G, Kim SK, Byun YJ, Oh E, Jeong SW, Chae GT, Lee SB. Hydrogen peroxide induces Beclin 1-independent autophagic cell death by suppressing the mTOR pathway via promoting the ubiquitination and degradation of Rheb in GSH-depleted RAW 264.7 cells. Free Radic Res 2010; 45:389-99. [PMID: 21067284 DOI: 10.3109/10715762.2010.535530] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel mechanism for H₂O₂-induced autophagic cell death in GSH-depleted RAW 264.7 cells, a murine macrophage cell line, is proposed. Under GSH-depleted conditions, H₂O₂-induced autophagic cell, characterized by an increased LC3-II/I ratio, a decreased level of p62 and the formation of autophagic vacuoles, was inhibited by bafilomycin A1 and by Atg5 siRNA transfection, whereas the cell death was not inhibited by zVAD-fmk, by PI3K inhibitors or by Beclin 1 siRNA transfection. In addition, H₂O₂ treatment reduced the activity of mTOR and promoted the ubiquitination and degradation of Rheb, a key upstream activator of mTOR. Furthermore, proteasome inhibition with MG132 restored the expression of Rheb and increased mTOR activity, resulting in an increased viability of H₂O₂-treated cells. Collectively, these findings demonstrate that H₂O₂ induces Beclin 1-independent autophagic cell death by suppressing the mTOR pathway via promoting the ubiquitination and degradation of Rheb in GSH-depleted RAW 264.7 cells.
Collapse
Affiliation(s)
- Gimoon Seo
- Institute of Hansen's Disease, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 137-701, Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
Calandrella N, De Seta C, Scarsella G, Risuleo G. Carnitine reduces the lipoperoxidative damage of the membrane and apoptosis after induction of cell stress in experimental glaucoma. Cell Death Dis 2010; 1:e62. [PMID: 21364667 PMCID: PMC3032525 DOI: 10.1038/cddis.2010.40] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The pathological damage caused by glaucoma is associated to a high intraocular pressure. The ocular hypertone is most likely due to a defective efflux of aqueous humor from the anterior chamber of the eye. Ocular hypertension causes apoptotic death of retinal ganglion cells and overexpression of molecular markers typical of cell stress response and apoptosis. In this work, we report on the neuroprotective, antiapoptotic and antioxidant action of a natural substance, -carnitine. This compound is known for its ability to improve the mitochondrial performance. We analyze a number of cellular and molecular markers, typical of ocular hypertension and, in general, of the cell stress response. In particular, -carnitine reduces the expression of glial fibrillary acidic protein, inducible nitric oxide synthase, ubiquitin and caspase 3 typical markers of cell stress. In addition, the morphological analysis of the optic nerve evidenced a reduction of the pathological excavation of the optic disk. This experimental hypertone protocol induces a severe lipoperoxidation, which is significantly reduced by -carnitine. The overall interpretation is that mortality of the retinal cells is due to membrane damage.
Collapse
Affiliation(s)
- N Calandrella
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Roma La Sapienza, Roma, Italy
| | | | | | | |
Collapse
|
23
|
Walter D, Matter A, Fahrenkrog B. Bre1p-mediated histone H2B ubiquitylation regulates apoptosis in Saccharomyces cerevisiae. J Cell Sci 2010; 123:1931-9. [DOI: 10.1242/jcs.065938] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BRE1 encodes an E3 ubiquitin protein ligase that is required for the ubiquitylation of histone H2B at lysine 123 (K123). Ubiquitylation of this histone residue is involved in a variety of cellular processes including gene activation and gene silencing. Abolishing histone H2B ubiquitylation also confers X-ray sensitivity and abrogates checkpoint activation after DNA damage. Here we show that Saccharomyces cerevisiae Bre1p exhibits anti-apoptotic activity in yeast and that this is linked to histone H2B ubiquitylation. We found that enhanced levels of Bre1p protect from hydrogen-peroxide-induced cell death, whereas deletion of BRE1 enhances cell death. Moreover, cells lacking Bre1p show reduced lifespan during chronological ageing, a physiological apoptotic condition in yeast. Importantly, the resistance against apoptosis is conferred by histone H2B ubiquitylation mediated by the E3 ligase activity of Bre1p. Furthermore, we found that the death of Δbre1 cells depends on the yeast caspase Yca1p, because Δbre1 cells exhibit increased caspase activity when compared with wild-type cells, and deletion of YCA1 leads to reduced apoptosis sensitivity of cells lacking Bre1p.
Collapse
Affiliation(s)
- David Walter
- M. E. Müller Institute for Structural Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Anja Matter
- M. E. Müller Institute for Structural Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Birthe Fahrenkrog
- M. E. Müller Institute for Structural Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
24
|
A potent enhancer element in the 5′-UTR intron is crucial for transcriptional regulation of the human ubiquitin C gene. Gene 2009; 448:88-101. [DOI: 10.1016/j.gene.2009.08.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/26/2009] [Accepted: 08/28/2009] [Indexed: 02/01/2023]
|
25
|
Mechanisms of p,p′-DDE-induced apoptosis in human peripheral blood mononuclear cells. Toxicol In Vitro 2009; 23:1000-6. [DOI: 10.1016/j.tiv.2009.06.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 11/20/2022]
|
26
|
Duan X, Berthiaume F, Yarmush DM, Yarmush ML. Dissimilar hepatic protein expression profiles during the acute and flow phases following experimental thermal injury. Proteomics 2009; 9:636-47. [PMID: 19137545 DOI: 10.1002/pmic.200700427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The liver plays a major role in the early hypometabolic and later hypermetabolic phases after severe burn injury. Proteomic analysis was used to identify altered proteins in liver during these two phases. Sprague-Dawley rats were subjected to a full-thickness dorsal burn injury covering 40% of the total body surface area. Controls consisted of sham-treated animals. Liver tissues were collected on postburn days 1 and 7. The proteomic data show greater production of positive acute phase proteins on day 1 than on day 7. Many antioxidant enzymes were coordinately downregulated on day 1, including the potent biliverdin reductase. These antioxidants were restored and in some cases upregulated on day 7. This opposite trend in the change of antioxidant proteins corroborated our finding of more pronounced oxidative stress on day 1 than on day 7 as measured via protein carbonyl content. The changes of metabolic enzymes on days 1 and 7 were consistent with hypo- and hyper-metabolic states, respectively. Furthermore, a previously unreported decrease in ornithine aminotransferase on day 7 may be a key contributor to the observed increased urinary urea excretion during the hypermetabolic phase. Overall, the many differences in protein expression observed on postburn days 1 and 7 reflect the dissimilar hepatic metabolic patterns during the acute and flow phases following burn injury.
Collapse
Affiliation(s)
- Xunbao Duan
- Boston Shriners Burns Hospital Special Shared Facility for Genomics and Proteomics, USA
| | | | | | | |
Collapse
|
27
|
Kimbrel EA, Davis TN, Bradner JE, Kung AL. In Vivo Pharmacodynamic Imaging of Proteasome Inhibition. Mol Imaging 2009. [DOI: 10.2310/7290.2009.00007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Inhibiting the proteolytic activity of the 26S proteasome has been shown to have selective apoptotic effects on cancer cells and to be clinically efficacious in certain malignancies. There is an unmet medical need for additional proteasome inhibitors, and their development will be facilitated by surrogate markers of proteasome function. Toward this end, ectopic fusion of the destruction domain from ornithine decarboxylase (ODC) to reporter proteins is often used for assessing proteasome function. For luciferase-based reporters, we hypothesized that the oxygen-dependent destruction domain (ODD) from hypoxia-inducible factor 1α (HIF-1α) may provide improved sensitivity over luciferase-ODC, owing to its extremely rapid turnover by the proteasome (HIF-1α has a half-life of less than 5 minutes). In the current study, we show that ODD-luciferase affords a greater dynamic range and faster kinetics than luciferase-ODC in sensing proteasome inhibition in vitro. Importantly, ODD-luciferase also serves as an effective in vivo marker of proteasome function in xenograft tumor models, with inhibition being detected by noninvasive imaging within 3 hours of bortezomib administration. These data establish ODD-luciferase as a surrogate marker of proteasome function that can be used both in vitro and in vivo for the development of novel proteasome inhibitors.
Collapse
Affiliation(s)
- Erin A. Kimbrel
- From the Departments of Pediatric Oncology and Adult Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA; Broad Institute of Harvard and MIT, Cambridge, MA; and Division of Pediatric Hematology/Oncology, Children's Hospital, Boston, MA
| | - Tina N. Davis
- From the Departments of Pediatric Oncology and Adult Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA; Broad Institute of Harvard and MIT, Cambridge, MA; and Division of Pediatric Hematology/Oncology, Children's Hospital, Boston, MA
| | - James E. Bradner
- From the Departments of Pediatric Oncology and Adult Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA; Broad Institute of Harvard and MIT, Cambridge, MA; and Division of Pediatric Hematology/Oncology, Children's Hospital, Boston, MA
| | - Andrew L. Kung
- From the Departments of Pediatric Oncology and Adult Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA; Broad Institute of Harvard and MIT, Cambridge, MA; and Division of Pediatric Hematology/Oncology, Children's Hospital, Boston, MA
| |
Collapse
|
28
|
Oshima S, Turer EE, Callahan JA, Chai S, Advincula R, Barrera J, Shifrin N, Lee B, Yen B, Woo T, Malynn BA, Ma A. ABIN-1 is a ubiquitin sensor that restricts cell death and sustains embryonic development. Nature 2009; 457:906-9. [PMID: 19060883 PMCID: PMC2642523 DOI: 10.1038/nature07575] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 10/24/2008] [Indexed: 11/12/2022]
Abstract
Proteins that directly regulate tumour necrosis factor receptor (TNFR) signalling have critical roles in regulating cellular activation and survival. ABIN-1 (A20 binding and inhibitor of NF-kappaB) is a novel protein that is thought to inhibit NF-kappaB signalling. Here we show that mice deficient for ABIN-1 die during embryogenesis with fetal liver apoptosis, anaemia and hypoplasia. ABIN-1 deficient cells are hypersensitive to tumour necrosis factor (TNF)-induced programmed cell death, and TNF deficiency rescues ABIN-1 deficient embryos. ABIN-1 inhibits caspase 8 recruitment to FADD (Fas-associated death domain-containing protein) in TNF-induced signalling complexes, preventing caspase 8 cleavage and programmed cell death. Moreover, ABIN-1 directly binds polyubiquitin chains and this ubiquitin sensing activity is required for ABIN-1's anti-apoptotic activity. These studies provide insights into how ubiquitination and ubiquitin sensing proteins regulate cellular and organismal survival.
Collapse
Affiliation(s)
| | | | - Joseph A. Callahan
- Department of Medicine, University of California at San Francisco, 513 Parnassus Ave, S-1057, San Francisco, CA 94143-0451
| | - Sophia Chai
- Department of Medicine, University of California at San Francisco, 513 Parnassus Ave, S-1057, San Francisco, CA 94143-0451
| | - Rommel Advincula
- Department of Medicine, University of California at San Francisco, 513 Parnassus Ave, S-1057, San Francisco, CA 94143-0451
| | - Julio Barrera
- Department of Medicine, University of California at San Francisco, 513 Parnassus Ave, S-1057, San Francisco, CA 94143-0451
| | - Nataliya Shifrin
- Department of Medicine, University of California at San Francisco, 513 Parnassus Ave, S-1057, San Francisco, CA 94143-0451
| | - Bettina Lee
- Department of Medicine, University of California at San Francisco, 513 Parnassus Ave, S-1057, San Francisco, CA 94143-0451
| | - Benjamin Yen
- Department of Medicine, University of California at San Francisco, 513 Parnassus Ave, S-1057, San Francisco, CA 94143-0451
| | - Tammy Woo
- Department of Medicine, University of California at San Francisco, 513 Parnassus Ave, S-1057, San Francisco, CA 94143-0451
| | - Barbara A. Malynn
- Department of Medicine, University of California at San Francisco, 513 Parnassus Ave, S-1057, San Francisco, CA 94143-0451
| | - Averil Ma
- Department of Medicine, University of California at San Francisco, 513 Parnassus Ave, S-1057, San Francisco, CA 94143-0451
| |
Collapse
|
29
|
Sompallae R, Gastaldello S, Hildebrand S, Zinin N, Hassink G, Lindsten K, Haas J, Persson B, Masucci MG. Epstein-barr virus encodes three bona fide ubiquitin-specific proteases. J Virol 2008; 82:10477-86. [PMID: 18715931 PMCID: PMC2573217 DOI: 10.1128/jvi.01113-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 08/08/2008] [Indexed: 12/17/2022] Open
Abstract
Manipulation of the ubiquitin proteasome system (UPS) is emerging as a common theme in viral pathogenesis. Some viruses have been shown to encode functional homologs of UPS enzymes, suggesting that a systematic identification of these products may provide new insights into virus-host cell interactions. Ubiquitin-specific proteases, collectively known as deubiquitinating enzymes (DUBs), regulate the activity of the UPS by hydrolyzing ubiquitin peptide or isopeptide bonds. The prediction of viral DUBs based on sequence similarity with known enzymes is hampered by the diversity of viral genomes. In this study sequence alignments, pattern searches, and hidden Markov models were developed for the conserved C- and H-boxes of the known DUB families and used to search the open reading frames (ORFs) of Epstein-Barr virus (EBV), a large gammaherpesvirus that has been implicated in the pathogenesis of a broad spectrum of human malignancies of lymphoid and epithelial cell origin. The searches identified a limited number of EBV ORFs that contain putative DUB catalytic domains. DUB activity was confirmed by functional assays and mutation analysis for three high scoring candidates, supporting the usefulness of this bioinformatics approach in predicting distant homologues of cellular enzymes.
Collapse
|
30
|
Ceckova M, Vackova Z, Radilova H, Libra A, Buncek M, Staud F. Effect of ABCG2 on cytotoxicity of platinum drugs: interference of EGFP. Toxicol In Vitro 2008; 22:1846-52. [PMID: 18801423 DOI: 10.1016/j.tiv.2008.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 07/31/2008] [Accepted: 09/02/2008] [Indexed: 11/16/2022]
Abstract
ATP-binding drug efflux transporters decrease intracellular concentrations of cytotoxic drugs, causing multidrug resistance in cancer. In this study, we examined possible interactions of ABCG2 transporter with platinum cytotoxic drugs. We demonstrate here an interference of platinum drugs with enhanced green fluorescence protein (EGFP) in the cellular models, where EGFP was employed as a reporter gene. Cytotoxicity of cisplatin (CIP), carboplatin (CAP) and oxaliplatin (OXP) was significantly lowered in MDCKII cells transfected with ABCG2 transporter and EGFP reporter. The IC(50) values in MDCKII-ABCG2 were 25.7, 164 and 165 microM for CIP, CAP and OXP, respectively, whereas IC(50) for the same cytostatics in MDCKII cells were as follows: 15.4, 133 and 50.3 microM. Addition of fumitremorgin C (FTC), a potent ABCG2 inhibitor, significantly suppressed the resistance of MDCKII-ABCG2 to OXP, suggesting that OXP interacts with ABCG2. However, FTC did not change the sensitivity of the cells to CIP and CAP. We assume that EGFP rather than ABCG2 causes the diminished toxicity of the platinum cytostatics in the transfected cells. This hypothesis was confirmed in human Hep2 cells expressing EGFP: using MTT test, IC(50) of 30.0, 247 and 27.9 microM were obtained for CIP, CAP and OXP, respectively, while 12.3, 106 and 20.5 microM were observed in the parent Hep2 cells. Employing neutral red cytotoxicity assay, similar data were obtained (IC(50) 7.73, 685 and 112 microM for CIP, CAP, and OXP, respectively, in the Hep2-EGFP cells and 1.65, 79.4 and 24.5 microM in the parent Hep2 cells). Caspase-3/7 assay revealed lower susceptibility of EGFP expressing Hep2 cells to apoptosis induced by CIP when compared to the parent cell line. We therefore conclude that EGFP in transfected cells interferes with cytotoxicity of platinum drugs by hindering the drug induced apoptosis and could cause misinterpretation of results obtained in cytotoxicity studies.
Collapse
Affiliation(s)
- Martina Ceckova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | | | | | | | | | | |
Collapse
|
31
|
Mazzoni C, Falcone C. Caspase-dependent apoptosis in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1320-7. [PMID: 18355456 DOI: 10.1016/j.bbamcr.2008.02.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 01/02/2023]
Abstract
Damaging environment, certain intracellular defects or heterologous expression of pro-apoptotic genes induce death in yeast cells exhibiting typical markers of apoptosis. In mammals, apoptosis can be directed by the activation of groups of proteases, called caspases, that cleave specific substrates and trigger cell death. In addition, in plants, fungi, Dictyostelium and metazoa, paracaspases and metacaspases have been identified that share some homologies with caspases but showing different substrate specificity. In the yeast Saccharomyces cerevisiae, a gene (MCA1/YCA1) has been identified coding for a metacaspase involved in the induction of cell death. Metacaspases are not biochemical, but sequence and functional homologes of caspases, as deletion of them rescues entirely different death scenarios. In this review we will summarize the current knowledge in S. cerevisiae on apoptotic processes, induced by internal and external triggers, which are dependent on the metacaspase gene YCA1.
Collapse
Affiliation(s)
- Cristina Mazzoni
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Cell and Developmental Biology, University of Rome La Sapienza Piazzale Aldo Moro 5, Rome, Italy.
| | | |
Collapse
|
32
|
Ishioka T, Katayama R, Kikuchi R, Nishimoto M, Takada S, Takada R, Matsuzawa SI, Reed JC, Tsuruo T, Naito M. Impairment of the ubiquitin-proteasome system by cellular FLIP. Genes Cells 2007; 12:735-44. [PMID: 17573774 DOI: 10.1111/j.1365-2443.2007.01087.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular FLIP (cFLIP) is a homologue of caspase-8 without protease activity that inhibits the apoptosis signaling initiated by death receptor ligation. We previously reported that a long form of cFLIP (cFLIP-L) inhibits ubiquitylation of beta-catenin and enhances Wnt signaling. Here we show that cFLIP-L impairs the function of the ubiquitin-proteasome system (UPS), and increases the accumulation of various short-lived proteins, such as GFP conjugated with destabilization sequence, beta-catenin and HIF1 alpha, that are subjected to rapid ubiquitylation and degradation by proteasomes. Accordingly, beta-catenin- and HIF1 alpha-mediated gene expressions are induced in the cFLIP-L-expressing cells. Exogenously expressed cFLIP-L accumulates in aggregates at the peri-nuclear region in the cells, and the cFLIP-L aggregates are refractory to solubilization. Like exogenously expressed cFLIP-L, the endogenous cFLIP in A549 lung cancer cells displays particulate distribution in the cells and more than 60% of cFLIP-L is refractory to solubilization. Down-regulation of cFLIP in A549 cells by RNA-mediated interference reduced beta-catenin- and HIF1 alpha-mediated gene expression. These results suggest that cFLIP-L is prone to aggregate and impairs UPS function, which could be involved in the pathological function of cFLIP-L expressed in certain cancer cells.
Collapse
Affiliation(s)
- Toshiyasu Ishioka
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Koiwai H, Tagiri A, Katoh S, Katoh E, Ichikawa H, Minami E, Nishizawa Y. RING-H2 type ubiquitin ligase EL5 is involved in root development through the maintenance of cell viability in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:92-104. [PMID: 17559513 DOI: 10.1111/j.1365-313x.2007.03120.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Rice EL5 is an ATL family gene characterized by a transmembrane domain at the N-terminal and a RING-H2 finger domain (RFD), which exhibits ubiquitin ligase (E3) activity. To elucidate the physiological roles of EL5, we analyzed transgenic rice plants overexpressing mutant EL5 proteins that are impaired in E3 activity to various degrees. Plants expressing EL5C153A and EL5W165A, which encode an inactive E3, showed a rootless phenotype accompanied by cell death in root primordia, and those expressing EL5V162A, with moderately impaired E3 activity, formed short crown roots with necrotic lateral roots. The dominant-negative phenotype was specifically observed in root meristems where EL5 is expressed, and not recovered by exogenous auxin. When wild-type EL5 was transcriptionally overexpressed, the EL5 protein was barely detected by Western blotting. Neither treatment with a proteasome inhibitor nor mutation of the sole lysine residue, a potential target of ubiquitination, resulted in increased EL5 accumulation, whereas mutations in the RFD led to increased EL5 accumulation. The stabilized EL5 without the RFD was localized in the plasma membrane. Deletion of the transmembrane domain prevented the EL5 from localizing in the membrane and from exerting an inhibitory effect on root formation. Deletion of the C-terminal region also neutralized the negative effect. We concluded that EL5 plays a major role as a membrane-anchored E3 for the maintenance of cell viability after the initiation of root primordial formation. In addition, we propose that EL5 is an unstable protein, of which degradation is regulated by the RFD in a proteasome-independent manner.
Collapse
Affiliation(s)
- Hanae Koiwai
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Kannondai, 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Calandrella N, Scarsella G, Pescosolido N, Risuleo G. Degenerative and apoptotic events at retinal and optic nerve level after experimental induction of ocular hypertension. Mol Cell Biochem 2007; 301:155-63. [PMID: 17242991 DOI: 10.1007/s11010-006-9407-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 12/20/2006] [Indexed: 11/28/2022]
Abstract
Ocular hypertension is a symptom of a glaucomatous condition characterized by a severe vision decrease. Blindness caused by the apoptotic death of the retinal ganglion cells and of the astrocytes of the optic nerve may eventually result. Experimental hypertension was induced by inoculation of methylcellulose in the anterior chamber. Chromatin staining, TUNEL assay, and inter-nucleosomal DNA fragmentation observed in retina and optic nerve strongly suggest that hypertension causes apoptosis. Immunolocalization of the fibrillary acidic glial protein, specific of cell stress, and caspase-3 in the same tissues, further support this mode of cell death. Activation of the ubiquitin dependent proteolytic system was also observed. Protection from apoptosis exerted by administration of the peroxide scavenger trolox, suggests that the apoptotic pathway is activated by an oxidative stress. The data presented here show that the experimental hypertensive insult induces degenerative and apoptotic events comparable to those observed in human glaucoma.
Collapse
Affiliation(s)
- Nicola Calandrella
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Roma La Sapienza, Piazzale Aldo Moro, Rome, Italy
| | | | | | | |
Collapse
|
35
|
Habib GM, Shi ZZ, Lieberman MW. Glutathione protects cells against arsenite-induced toxicity. Free Radic Biol Med 2007; 42:191-201. [PMID: 17189825 PMCID: PMC1855165 DOI: 10.1016/j.freeradbiomed.2006.10.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 10/05/2006] [Accepted: 10/07/2006] [Indexed: 02/07/2023]
Abstract
To understand the role of glutathione (GSH) in the protection of cells from arsenite toxicity, we studied the mechanism of apoptotic cell death in cells genetically unable to synthesize GSH (GCS-2 cells). Arsenite stimulated an increase in protein ubiquitination in GCS-2 cells while the wild-type cells were unaffected. Arsenite treatment increased lipid peroxidation and induced ubiquitination of molecular chaperone Hsp90 and impaired its ability to bind cochaperone p50(Cdc-37) and client proteins Plk-1 and Cdk-4 in GCS-2 cells. Treatment with arsenite also partially inhibited proteasome activity in GCS-2 cells. In these cells stably transfected with GFP(u) (a reporter consisting of a short degron fused to the COOH-terminus of GFP), intracellular fluorescence increased, suggesting the accumulation of GFP aggregates. GCS-2 cells underwent apoptosis accompanied by release of cytochrome c into the cytoplasm. Taken together, these data suggest that a possible mechanism of arsenite-induced apoptosis is the accumulation of ubiquitinated proteins and impairment of the protein degradative pathway. Further, protection from arsenite-induced ubiquitination is mediated by GSH and to a lesser extent by available reducing equivalents in the cells.
Collapse
Affiliation(s)
- Geetha M Habib
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | |
Collapse
|
36
|
Cazzaniga E, Bulbarelli A, Cassetti A, Lonati E, Re F, Palestini P, Mutoh T, Masserini M. β-amyloid (25–35) enhances lipid metabolism and protein ubiquitination in cultured neurons. J Neurosci Res 2007; 85:2253-61. [PMID: 17510978 DOI: 10.1002/jnr.21354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated the effect of beta-amyloid (Abeta) (25-35), a cytotoxic fragment of Abeta peptide, on lipid metabolism and protein ubiquitination in cultured rat hippocampal neurons. After treatment with Abeta under conditions leading to apoptotis, as assessed by caspase activity assay, the total cell mass of lipids changed following a biphasic behavior, with an increase that reached a maximum after 16 hr of treatment, followed by a decrease. The increase at 16 hr was 15.3% in the case of phospholipids and 103.0% in the case of gangliosides and was due to enhanced biosynthesis as confirmed by increase of radioactivity incorporation (phospholipids +52.0%, gangliosides +193.1%) in cells fed with tritiated palmitic acid. No change with respect to cholesterol was observed. Strikingly, under these conditions, the ubiquitination state of cell proteins strongly increased. These effects were not observed with the (35-25) reverse sequence peptide. Similarly to Abeta, lactacystin treatment increased lipid synthesis and protein ubiquitination; only lactacystin, and not Abeta, induced a strong decrease of proteasome chimotrypsin activity. These results suggest that Abeta enhances protein ubiquitination, without inhibiting proteasomal activity, and lipid synthesis. These results may shed new light on the mechanisms of Abeta toxicity.
Collapse
Affiliation(s)
- Emanuela Cazzaniga
- Department of Experimental and Environmental Medicine, University of Milano Bicocca, Monza, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kwon J. The New Function of Two Ubiquitin C-Terminal Hydrolase Isozymes as Reciprocal Modulators of Germ Cell Apoptosis. Exp Anim 2007; 56:71-7. [PMID: 17460351 DOI: 10.1538/expanim.56.71] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Ubiquitination is required throughout all developmental stages of mammalian spermatogenesis. The two ubiquitin C-terminal hydrolase (UCH) enzymes, UCH-L1 and UCH-L3, deubiquitinate ubiquitin-protein conjugates and control the cellular balance of ubiquitin. These two UCH isozymes have 52% amino acid identity and share significant structural similarity. A new function of these two closely related UCH enzymes during spermatogenesis which is associated with germ cell apoptosis has been analyzed. Apoptosis, in general, is thought to be partly regulated by the ubiquitin-proteasome system. During spermatogenesis, apoptosis controls germ cell numbers and eliminates defective germ cells to facilitate testicular homeostasis. In this paper, I review the distinct function of the two UCH isozymes in the testis of gad and Uchl3 knockout mice, which are strongly but reciprocally expressed during spermatogenesis. In addition, the importance of UCHL1-dependent apoptosis for normal spermatogenesis and sperm quality control is discussed.
Collapse
Affiliation(s)
- Jungkee Kwon
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chonbuk National University, Duckjin-Gu, Jeonju, Jeonbuk, Korea
| |
Collapse
|
38
|
Zeng LR, Vega-Sánchez ME, Zhu T, Wang GL. Ubiquitination-mediated protein degradation and modification: an emerging theme in plant-microbe interactions. Cell Res 2006; 16:413-26. [PMID: 16699537 DOI: 10.1038/sj.cr.7310053] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Post-translational modification is central to protein stability and to the modulation of protein activity. Various types of protein modification, such as phosphorylation, methylation, acetylation, myristoylation, glycosylation, and ubiquitination, have been reported. Among them, ubiquitination distinguishes itself from others in that most of the ubiquitinated proteins are targeted to the 26S proteasome for degradation. The ubiquitin/26S proteasome system constitutes the major protein degradation pathway in the cell. In recent years, the importance of the ubiquitination machinery in the control of numerous eukaryotic cellular functions has been increasingly appreciated. Increasing number of E3 ubiquitin ligases and their substrates, including a variety of essential cellular regulators have been identified. Studies in the past several years have revealed that the ubiquitination system is important for a broad range of plant developmental processes and responses to abiotic and biotic stresses. This review discusses recent advances in the functional analysis of ubiquitination-associated proteins from plants and pathogens that play important roles in plant-microbe interactions.
Collapse
Affiliation(s)
- Li-Rong Zeng
- Department of Plant Pathology and Plant Molecular Biology and Biotechnology Program, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
39
|
Demontis S, Rigo C, Piccinin S, Mizzau M, Sonego M, Fabris M, Brancolini C, Maestro R. Twist is substrate for caspase cleavage and proteasome-mediated degradation. Cell Death Differ 2006; 13:335-45. [PMID: 16096654 DOI: 10.1038/sj.cdd.4401744] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Twist is a member of the basic helix-loop-helix family of transcription factors. An aberrant Twist expression has been found in diverse types of cancer, including sarcomas, carcinomas and lymphomas, supporting a role for Twist in tumor progression. Twist is known to be essential for mesodermal development. However, since a prolonged Twist expression results in a block of muscle, cartilage and bone differentiation, Twist has to be excluded from somites during late embryogenesis for terminal differentiation to occur. This implies that Twist expression must be target of a tight control. Here we provide evidence that Twist undergoes post-transcriptional regulation. Twist is substrate for cleavage by caspases during apoptosis and its cleavage results in ubiquitin-mediated proteasome degradation. Our findings suggest that Twist post-transcriptional regulation may play an important role in tissue determination and raise the possibility that alterations in the protein turnover may account for Twist overexpression observed in tumors.
Collapse
Affiliation(s)
- S Demontis
- Unit of Molecular Mechanisms of Neoplastic Progression, Department of Experimental Oncology, CRO IRCCS National Cancer Institute, Aviano, PN, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhang L, Zhu H, Teraishi F, Davis JJ, Guo W, Fan Z, Fang B. Accelerated degradation of caspase-8 protein correlates with TRAIL resistance in a DLD1 human colon cancer cell line. Neoplasia 2005; 7:594-602. [PMID: 16036110 PMCID: PMC1501285 DOI: 10.1593/neo.04688] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 01/14/2005] [Accepted: 01/18/2005] [Indexed: 01/24/2023] Open
Abstract
The tumor-selective cytotoxic effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) makes TRAIL an attractive candidate as an anticancer agent. However, resistance to TRAIL poses a challenge in anticancer therapy with TRAIL. Therefore, characterizing the mechanisms of resistance and developing strategies to overcome the resistance are important steps toward successful TRAIL-mediated cancer therapy. In this study, we investigated mechanisms of acquired TRAIL resistance in a colon cancer DLD1 cell line. Compared with the TRAIL-susceptible DLD1 cell line, TRAIL-resistant DLD1/TRAIL-R cells have a low level of caspase-8 protein, but not its mRNA. Suppression of caspase-8 expression by siRNA in parental DLD1 cells led to TRAIL resistance. Restoration of caspase-8 protein expression by stable transfection rendered the DLD1/TRAIL-R cell line fully sensitive to TRAIL protein, suggesting that the low level of caspase-8 protein expression might be the culprit in TRAIL resistance in DLD1/TRAIL-R cells. Sequencing analysis of the caspase-8 coding region revealed a missense mutation that is present in both TRAIL-sensitive and TRAIL-resistant DLD1 cells. Subsequent study showed that the degradation of caspase-8 protein was accelerated in DLD1/TRAIL-R cells compared to parental DLD1 cells. Thus, accelerated degradation of caspase-8 protein is one of the mechanisms that lead to TRAIL resistance.
Collapse
Affiliation(s)
- Lidong Zhang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Hongbo Zhu
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Fuminori Teraishi
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - John J Davis
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
- Program in Gene Therapy and Virology, The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Wei Guo
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Fan
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
- Program in Gene Therapy and Virology, The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
41
|
Sur R, Ramos J. Vanishin is a novel ubiquitinylated death-effector domain protein that blocks ERK activation. Biochem J 2005; 387:315-24. [PMID: 15537391 PMCID: PMC1134959 DOI: 10.1042/bj20041713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ERK (extracellular-signal regulated-kinase)/MAPK (mitogen-activated protein kinase) pathway can regulate transcription, proliferation, migration and apoptosis. The small DED (death-effector domain) protein PEA-15 (phosphoprotein enriched in astrocytes-15) binds ERK and targets it to the cytoplasm. Other DED-containing proteins including cFLIP and DEDD can also regulate signal transduction events and transcription in addition to apoptosis. In the present study, we report the identification of a novel DED-containing protein called Vanishin. The amino acid sequence of Vanishin is closest in similarly to PEA-15 (61% identical). Vanishin mRNA is expressed in several mouse tissues and in both mouse and human cell lines. Interestingly, Vanishin is regulated by ubiquitinylation and subsequent degradation by the 26 S proteasome. The ubiquitinylation is complex and occurs at both the internal lysine residues and the N-terminus. We further show that Vanishin binds ERK/MAPK but not the DED proteins Fas-associated death domain, caspase 8 or PEA-15. Vanishin is present in both the nucleus and Golgi on overexpression and forces increased ERK accumulation in the nucleus in the absence of ERK stimulation. Moreover, Vanishin expression inhibits ERK activation and ERK-dependent transcription in cells, but does not alter MAPK/ERK activity. Therefore Vanishin is a novel regulator of ERK that is controlled by ubiquitinylation.
Collapse
Affiliation(s)
- Runa Sur
- *Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, U.S.A
| | - Joe W. Ramos
- †Cancer Research Center of Hawaii, University of Hawaii at Manoa, 1236 Lauhala Street, Honolulu, HI 96813, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
42
|
Lee JC, Wang GX, Schickling O, Peter ME. Fusing DEDD with ubiquitin changes its intracellular localization and apoptotic potential. Apoptosis 2005; 10:1483-95. [PMID: 16235027 DOI: 10.1007/s10495-005-1833-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
DEDD, a highly conserved and ubiquitous death effector domain containing protein, exists in non, mono, and diubiquitinated forms. We previously reported that endogenous unmodified DEDD is only found in nucleoli and that mono- and diubiquitinated DEDD associate with caspase-3 in the cytosol suggesting that ubiquitination may be important to the apoptosis regulating functions of DEDD in the cytosol. We now demonstrate that many of its 16 lysine residues can serve as alternative acceptors for ubiquitination to maintain the monoubiquitination status of DEDD. A central region in DEDD (amino acids 109-305) outside the death effector domain was found to be essential for ubiquitination and/or the docking of the ubiquitination machinery. Fusion of ubiquitin to the C-terminus of DEDD to mimic monoubiquitinated DEDD relocated DEDD from nucleoli to the cytosol. This fusion protein also demonstrated a greater apoptosis potential than unmodified DEDD. Finally, we show that both mono- and polyubiquitination of DEDD can be achieved by the cellular inhibitor of apoptosis proteins 1 and 2 (cIAP-1/2). In addition, the cotransfection of DEDD with cIAP-1 or cIAP-2 results in the relocalization of the IAPs to the nucleoli. Our data suggest that monoubiquitination of DEDD regulates both its cytoplasmic localization and its proapoptotic potential and that IAP proteins can regulate DEDD's ubiquitination status.
Collapse
Affiliation(s)
- J C Lee
- The Ben May Institute for Cancer Research, University of Chicago, 924 E. 57th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
43
|
Chauhan D, Hideshima T, Mitsiades C, Richardson P, Anderson KC. Proteasome inhibitor therapy in multiple myeloma. Mol Cancer Ther 2005; 4:686-92. [PMID: 15827343 DOI: 10.1158/1535-7163.mct-04-0338] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiple myeloma remains incurable despite available therapies, and novel therapies that target both tumor cell and bone marrow microenvironment are urgently needed. Preclinical in vitro and in vivo studies show remarkable anti-multiple myeloma activity of the proteasome inhibitor bortezomib/PS-341 even in multiple myeloma cells refractory to multiple prior therapies, including dexamethasone, melphalan, and thalidomide. Based on these findings, the U.S. Food and Drug Administration recently approved the first proteasome inhibitor bortezomib (Velcade), formerly known as PS-341, for the treatment of relapsed/refractory multiple myeloma. Bortezomib therapy has set an outstanding example of translational research in the field of oncology. Genomics and proteomic studies further provide rationale for combining bortezomib with conventional and novel agents to inhibit multiple myeloma growth, overcome drug resistance, reduce attendant toxicity, and improve patient outcome in multiple myeloma.
Collapse
Affiliation(s)
- Dharminder Chauhan
- The Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
44
|
Chauhan D, Hideshima T, Anderson KC. PROTEASOME INHIBITION IN MULTIPLE MYELOMA: Therapeutic Implication. Annu Rev Pharmacol Toxicol 2005; 45:465-76. [PMID: 15822185 DOI: 10.1146/annurev.pharmtox.45.120403.100037] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Normal cellular functioning requires processing of proteins regulating cell cycle, growth, and apoptosis. The ubiquitin-proteasome pathway (UBP) modulates intracellular protein degradation. Specifically, the 26S proteasome is a multienzyme protease that degrades misfolded or redundant proteins; conversely, blockade of the proteasomal degradation pathways results in accumulation of unwanted proteins and cell death. Because cancer cells are more highly proliferative than normal cells, their rate of protein translation and degradation is also higher. This notion led to the development of proteasome inhibitors as therapeutics in cancer. The FDA recently approved the first proteasome inhibitor bortezomib (Velcade™), formerly known as PS-341, for the treatment of newly diagnosed and relapsed/refractory multiple myeloma (MM). Ongoing studies are examining other novel proteasome inhibitors, in addition to bortezomib, for the treatment of MM and other cancers.
Collapse
Affiliation(s)
- Dharminder Chauhan
- The Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
45
|
Tran SEF, Meinander A, Eriksson JE. Instant decisions: transcription-independent control of death-receptor-mediated apoptosis. Trends Biochem Sci 2005; 29:601-8. [PMID: 15501679 DOI: 10.1016/j.tibs.2004.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Transcription-independent modulation of signaling mediated by death receptors (DRs) has emerged as an important determinant of cell survival during both development and cellular homeostasis. Frequently, a given DR signal must be redirected rapidly either to inhibit or to potentiate the apoptotic response. This process requires immediate, protein-synthesis-independent modifications of the regulatory molecules involved. Numerous mechanisms have been shown to regulate DR responses without engaging the apoptosis-directing transcription machinery. These mechanisms involve key posttranslational modifications such as phosphorylation, ubiquitination and proteolytic degradation, all of which affect the activities of proteins at different levels in the DR signaling pathways. Changes in the organization of regulatory molecules and in their interactions with other factors also affect the DR signaling pathways. The balance between these modulatory signals rapidly decides the fate of a cell.
Collapse
Affiliation(s)
- Stefanie E F Tran
- Institut de Génétique Moléculaire et Cellulaire de Montpellier, CNRS UMR 5535, 1919 route de Mende, 34293 Montpellier, France
| | | | | |
Collapse
|
46
|
Qian A, Meals RA, Rajfer J, Gonzalez-Cadavid NF. Comparison of gene expression profiles between Peyronie's disease and Dupuytren's contracture. Urology 2005; 64:399-404. [PMID: 15302515 DOI: 10.1016/j.urology.2004.04.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Accepted: 04/07/2004] [Indexed: 12/22/2022]
Abstract
OBJECTIVES To compare the gene expression alterations in human Peyronie's disease (PD) and Dupuytren's disease (DD) to determine whether they share a common pathophysiology. Multiple mRNA expression profiles of human PD have previously shown that genes that regulate fibroblast replication, myofibroblast differentiation, collagen metabolism, tissue repair, and ossification are involved. DD, a palmar fascia fibrosis, may be associated with PD. METHODS Total RNA samples from PD plaques, normal tunica albuginea, Dupuytren's nodules, and normal palmar fascia (nine samples per group) were subjected to differential gene expression profile analysis (Clontech Atlas DNA microarray) comparing PD with tunica albuginea and DD with normal palmar fascia. Changes of more than 2.0 in PD and DD compared with tunica albuginea and normal palmar fascia, respectively, were recorded. Reverse transcriptase-polymerase chain reactions were performed for some genes whose expression was altered in PD. RESULTS Some of the gene families upregulated in both PD and DD were (a) collagen degradation: matrix metalloproteinase (MMP), with MMP2 and MMP9, and thymosins (MMP activators), with TMbeta10 and TMbeta4; (b) ossification: osteoblast-specific factors (OSFs) OSF-1 and OSF-2 (DD only); and (c) myofibroblast differentiation: RhoGDP dissociation inhibitor 1. The genes upregulated in PD only were decorin (an inhibitor of transforming growth factor-beta1 and a part of fibroblast replication/collagen synthesis) and early growth response protein. Reverse transcriptase-polymerase chain reaction confirmed these changes. CONCLUSIONS These data demonstrate that the pattern of alterations in the expression of certain gene families in PD and DD is similar, suggesting that they share a common pathophysiology and may be amenable to the same therapeutic regimens.
Collapse
Affiliation(s)
- A Qian
- Harbor-UCLA Research and Education Institute, Torrance, California 90502, USA
| | | | | | | |
Collapse
|
47
|
Bettiga M, Calzari L, Orlandi I, Alberghina L, Vai M. Involvement of the yeast metacaspase Yca1 in ubp10Delta-programmed cell death. FEMS Yeast Res 2005; 5:141-7. [PMID: 15489197 DOI: 10.1016/j.femsyr.2004.07.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 07/14/2004] [Accepted: 07/16/2004] [Indexed: 11/23/2022] Open
Abstract
UBP10 encodes a deubiquitinating enzyme of Saccharomyces cerevisiae. Its inactivation results in a complex phenotype characterized by a subpopulation of cells that exhibits the typical cellular markers of apoptosis. Here, we show that additional deletion of YCA1, coding for the yeast metacaspase, suppressed the ubp10 disruptant phenotype. Moreover, YCA1 overexpression, without any external stimulus, had a detrimental effect on growth and viability of ubp10 cells accompanied by an increase of apoptotic cells. This response was completely abrogated by ascorbic acid addition. We also observed that cells lacking UBP10 had an endogenous caspase activity, revealed by incubation in vivo with FITC-labeled VAD-fmk. All these results argue in favour of an involvement of the yeast metacaspase in the active cell death triggered by loss of UBP10 function.
Collapse
Affiliation(s)
- Maurizio Bettiga
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | | | | | | | | |
Collapse
|
48
|
Chen ML, Chen CH. Microarray analysis of differentially expressed genes in rat frontal cortex under chronic risperidone treatment. Neuropsychopharmacology 2005; 30:268-77. [PMID: 15536490 DOI: 10.1038/sj.npp.1300612] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Long-term administration of antipsychotic drugs can induce differential expression of a variety of genes in the brain, which may underscore the molecular mechanism of the clinical efficacy and/or side effects of antipsychotic drugs. We used cDNA microarray analysis to screen differentially expressed genes in rat frontal cortex under 4 weeks' treatment of risperidone (1 mg/kg). Using real-time quantitative PCR, we were able to verify eight genes, whose expression were significantly upregulated in rat frontal cortex under chronic risperidone treatment when compared with control animals. These genes include receptor for activated protein kinase C, amida, cathepsin D, calpain 2, calcium-independent receptor for alpha-latrotoxin, monoamine oxidase B, polyubiquitin, and kinesin light chain. In view of the physiological function of these genes, the results of our study suggest that chronic risperidone treatment may affect the neurotransmission, synaptic plasticity, and proteolysis of brain cells. This study also demonstrates that cDNA microarray analysis is useful for uncovering genes that are regulated by chronic antipsychotic drugs treatment, which may help bring new insight into the molecular mechanism of antipsychotic drugs.
Collapse
Affiliation(s)
- Mao-Liang Chen
- Institute of Medical Sciences, Tzu-Chi University, Hualien City, Taiwan
| | | |
Collapse
|
49
|
Chen Y, Li S, Ye L, Geng J, Deng Y, Hu S. Gene expression profiling in porcine fetal thymus. GENOMICS PROTEOMICS & BIOINFORMATICS 2005; 1:171-2. [PMID: 15626347 PMCID: PMC5172427 DOI: 10.1016/s1672-0229(03)01021-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To obtain an initial overview of gene diversity and expression pattern in porcine thymus, 11,712 ESTs (Expressed Sequence Tags) from 100-day-old porcine thymus (FTY) were sequenced and 7,071 cleaned ESTs were used for gene expression analysis. Clustered by the PHRAP program, 959 contigs and 3,074 singlets were obtained. Blast search showed that 806 contigs and 1,669 singlets (totally 5,442 ESTs) had homologues in GenBank and 1,629 ESTs were novel. According to the Gene Ontology classification, 36.99% ESTs were cataloged into the gene expression group, indicating that although the functional gene (18.78% in defense group) of thymus is expressed in a certain degree, the 100-day-old porcine thymus still exists in a developmental stage. Comparative analysis showed that the gene expression pattern of the 100-day-old porcine thymus is similar to that of the human infant thymus.
Collapse
Affiliation(s)
- Yanjiong Chen
- The State Laboratory of the Ministry of Health for Forensic Science, Medical College of Xi’an Jiaotong University, Xi’an 710061, China
- Beijing Genomics Institute, Beijing 101300, China
| | - Shengbin Li
- The State Laboratory of the Ministry of Health for Forensic Science, Medical College of Xi’an Jiaotong University, Xi’an 710061, China
- Beijing Genomics Institute, Beijing 101300, China
| | - Lin Ye
- Hangzhou Genomics Institute, Hangzhou 310007, China
| | - Jianing Geng
- Beijing Genomics Institute, Beijing 101300, China
| | - Yajun Deng
- The State Laboratory of the Ministry of Health for Forensic Science, Medical College of Xi’an Jiaotong University, Xi’an 710061, China
- Beijing Genomics Institute, Beijing 101300, China
| | - Songnian Hu
- Beijing Genomics Institute, Beijing 101300, China
- Hangzhou Genomics Institute, Hangzhou 310007, China
- Corresponding author.
| |
Collapse
|
50
|
Kwon J, Wang YL, Setsuie R, Sekiguchi S, Sato Y, Sakurai M, Noda M, Aoki S, Yoshikawa Y, Wada K. Two closely related ubiquitin C-terminal hydrolase isozymes function as reciprocal modulators of germ cell apoptosis in cryptorchid testis. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:1367-74. [PMID: 15466400 PMCID: PMC1618639 DOI: 10.1016/s0002-9440(10)63394-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The experimentally induced cryptorchid mouse model is useful for elucidating the in vivo molecular mechanism of germ cell apoptosis. Apoptosis, in general, is thought to be partly regulated by the ubiquitin-proteasome system. Here, we analyzed the function of two closely related members of the ubiquitin C-terminal hydrolase (UCH) family in testicular germ cell apoptosis experimentally induced by cryptorchidism. The two enzymes, UCH-L1 and UCH-L3, deubiquitinate ubiquitin-protein conjugates and control the cellular balance of ubiquitin. The testes of gracile axonal dystrophy (gad) mice, which lack UCH-L1, were resistant to cryptorchid stress-related injury and had reduced ubiquitin levels. The level of both anti-apoptotic (Bcl-2 family and XIAP) and prosurvival (pCREB and BDNF) proteins was significantly higher in gad mice after cryptorchid stress. In contrast, Uchl3 knockout mice showed profound testicular atrophy and apoptotic germ cell loss after cryptorchid injury. Ubiquitin level was not significantly different between wild-type and Uchl3 knockout mice, whereas the levels of Nedd8 and the apoptotic proteins p53, Bax, and caspase3 were elevated in Uchl3 knockout mice. These results demonstrate that UCH-L1 and UCH-L3 function differentially to regulate the cellular levels of anti-apoptotic, prosurvival, and apoptotic proteins during testicular germ cell apoptosis.
Collapse
Affiliation(s)
- Jungkee Kwon
- Department of Degenerative Neurological Disease, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|