1
|
Tisdale EJ, Artalejo CR. ERK activation by Rab2B in the early secretory pathway impacts the ERGIC-Golgi interface. Cell Signal 2025; 130:111710. [PMID: 40037424 DOI: 10.1016/j.cellsig.2025.111710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
The Golgi complex is a hub for several signal transduction networks that regulate Golgi morphology, membrane transport, and glycosylation. The Rab2 (A, B isoforms) protein participates in membrane trafficking to and from the Golgi and is also linked to signaling molecules. In that regard, Rab2A in breast cancer stem cells binds and blocks (p)ERK1/2 inactivation by MAP kinase phosphatase 3. However, the cellular role of Rab2B in ERK1/2 signaling activity at the endoplasmic reticulum-Golgi intermediate compartment (ERGIC/IC) and cis Golgi where Rab2B immunolocalizes and functions is unknown. To address this question, normal rat kidney (NRK) cells were transfected with Rab2B cDNA to mimic Rab2 overexpression as found in cancer cells. Rab2B overexpressing NRK cells had a significant increase in steady state activated ERK. Studies were then performed to identify the Rab2-ERK1/2 substrate(s) that locate and function in the early secretory pathway. To that end, GRASP65 was identified as a target of ERK1/2 phosphorylation. In Rab2B overexpressing NRK cells, GRASP65 co-distributed with GM130 on membranes of the ERGIC/IC that increased in size and number with the concomitant appearance of unlinked cis Golgi elements. Additionally, we observed GRASP65 labeled ERGIC/IC membranes that accumulated at 15°C and remained prominent after temperature shift to 37 °C to promote transport. However, addition of a MEK inhibitor reversed the transport block indicating that ERK1/2 phosphorylation of GRASP65 effected ERGIC/IC redistribution to the cis Golgi. Since several glycosyltransferases cycle between the Golgi and ERGIC/IC, a potential consequence of Golgi structural changes is modification of protein glycosylation. Indeed, we found changes in total and cell surface O-glycosylation in Rab2B overexpressing cells. These results suggest that phosphoGRASP65 plays an important role in the protein sorting and recycling process from the ERGIC/IC to cis Golgi: Dysregulation results in cis Golgi discontinuities and aberrant glycosylated proteins that are potentially pro-oncogenic.
Collapse
Affiliation(s)
- Ellen J Tisdale
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48202, United States of America.
| | - Cristina R Artalejo
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48202, United States of America
| |
Collapse
|
2
|
Villalón-García I, Álvarez-Córdoba M, Povea-Cabello S, Talaverón-Rey M, Villanueva-Paz M, Luzón-Hidalgo R, Suárez-Rivero JM, Suárez-Carrillo A, Munuera-Cabeza M, Salas JJ, Falcón-Moya R, Rodríguez-Moreno A, Armengol JA, Sánchez-Alcázar JA. Vitamin E prevents lipid peroxidation and iron accumulation in PLA2G6-Associated Neurodegeneration. Neurobiol Dis 2022; 165:105649. [PMID: 35122944 DOI: 10.1016/j.nbd.2022.105649] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/11/2022] [Accepted: 01/31/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND PLA2G6-Associated Neurodegeneration (PLAN) is a rare neurodegenerative disease with autosomal recessive inheritance, which belongs to the NBIA (Neurodegeneration with Brain Iron Accumulation) group. Although the pathogenesis of the disease remains largely unclear, lipid peroxidation seems to play a central role in the pathogenesis. Currently, there is no cure for the disease. OBJECTIVE In this work, we examined the presence of lipid peroxidation, iron accumulation and mitochondrial dysfunction in two cellular models of PLAN, patients-derived fibroblasts and induced neurons, and assessed the effects of α-tocopherol (vitamin E) in correcting the pathophysiological alterations in PLAN cell cultures. METHODS Pathophysiological alterations were examined in fibroblasts and induced neurons generated by direct reprograming. Iron and lipofuscin accumulation were assessed using light and electron microscopy, as well as biochemical analysis techniques. Reactive Oxygen species production, lipid peroxidation and mitochondrial dysfunction were measured using specific fluorescent probes analysed by fluorescence microscopy and flow cytometry. RESULTS PLAN fibroblasts and induced neurons clearly showed increased lipid peroxidation, iron accumulation and altered mitochondrial membrane potential. All these pathological features were reverted with vitamin E treatment. CONCLUSIONS PLAN fibroblasts and induced neurons reproduce the main pathological alterations of the disease and provide useful tools for disease modelling. The main pathological alterations were corrected by Vitamin E supplementation in both models, suggesting that blocking lipid peroxidation progression is a critical therapeutic target.
Collapse
Affiliation(s)
- Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Marina Villanueva-Paz
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Raquel Luzón-Hidalgo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Joaquín J Salas
- Departamento de Bioquímica y Biología Molecular de Productos Vegetales, Instituto de la Grasa (CSIC), Sevilla, Spain.
| | - Rafael Falcón-Moya
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain.
| | - Antonio Rodríguez-Moreno
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain.
| | - José A Armengol
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain.
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
3
|
Havranek KE, Reyes Ballista JM, Hines KM, Brindley MA. Untargeted Lipidomics of Vesicular Stomatitis Virus-Infected Cells and Viral Particles. Viruses 2021; 14:v14010003. [PMID: 35062207 PMCID: PMC8778780 DOI: 10.3390/v14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/16/2022] Open
Abstract
The viral lifecycle is critically dependent upon host lipids. Enveloped viral entry requires fusion between viral and cellular membranes. Once an infection has occurred, viruses may rely on host lipids for replication and egress. Upon exit, enveloped viruses derive their lipid bilayer from host membranes during the budding process. Furthermore, host lipid metabolism and signaling are often hijacked to facilitate viral replication. We employed an untargeted HILIC-IM-MS lipidomics approach and identified host lipid species that were significantly altered during vesicular stomatitis virus (VSV) infection. Many glycerophospholipid and sphingolipid species were modified, and ontological enrichment analysis suggested that the alterations to the lipid profile change host membrane properties. Lysophosphatidylcholine (LPC), which can contribute to membrane curvature and serve as a signaling molecule, was depleted during infection, while several ceramide sphingolipids were augmented during infection. Ceramide and sphingomyelin lipids were also enriched in viral particles, indicating that sphingolipid metabolism is important during VSV infection.
Collapse
Affiliation(s)
- Katherine E. Havranek
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (K.E.H.); (J.M.R.B.)
| | - Judith Mary Reyes Ballista
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (K.E.H.); (J.M.R.B.)
| | - Kelly Marie Hines
- Department of Chemistry, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA
- Correspondence: (K.M.H.); (M.A.B.); Tel.: +1-706-542-1966 (K.M.H.); +1-706-542-5796 (M.A.B.)
| | - Melinda Ann Brindley
- Department of Infectious Diseases, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Correspondence: (K.M.H.); (M.A.B.); Tel.: +1-706-542-1966 (K.M.H.); +1-706-542-5796 (M.A.B.)
| |
Collapse
|
4
|
Qin QM, Pei J, Gomez G, Rice-Ficht A, Ficht TA, de Figueiredo P. A Tractable Drosophila Cell System Enables Rapid Identification of Acinetobacter baumannii Host Factors. Front Cell Infect Microbiol 2020; 10:240. [PMID: 32528902 PMCID: PMC7264411 DOI: 10.3389/fcimb.2020.00240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Acinetobacter baumannii is an important causative agent of nosocomial infections worldwide. The pathogen also readily acquires resistance to antibiotics, and pan-resistant strains have been reported. A. baumannii is widely regarded as an extracellular bacterial pathogen. However, accumulating evidence demonstrates that the pathogen can invade, survive or persist in infected mammalian cells. Unfortunately, the molecular mechanisms controlling these processes remain poorly understood. Here, we show that Drosophila S2 cells provide several attractive advantages as a model system for investigating the intracellular lifestyle of the pathogen, including susceptibility to bacterial intracellular replication and limited infection-induced host cell death. We also show that the Drosophila system can be used to rapidly identify host factors, including MAP kinase proteins, which confer susceptibility to intracellular parasitism. Finally, analysis of the Drosophila system suggested that host proteins that regulate organelle biogenesis and membrane trafficking contribute to regulating the intracellular lifestyle of the pathogen. Taken together, these findings establish a novel model system for elucidating interactions between A. baumannii and host cells, define new factors that regulate bacterial invasion or intracellular persistence, and identify subcellular compartments in host cells that interact with the pathogen.
Collapse
Affiliation(s)
- Qing-Ming Qin
- College of Plant Sciences, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China.,Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan TX, United States
| | - Jianwu Pei
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Gabriel Gomez
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Allison Rice-Ficht
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, TX, United States
| | - Thomas A Ficht
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Paul de Figueiredo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan TX, United States.,Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States.,Norman Borlaug Center, Texas A&M University, College Station, TX, United States
| |
Collapse
|
5
|
Fernandes ACS, Soares DC, Neves RFC, Koeller CM, Heise N, Adade CM, Frases S, Meyer-Fernandes JR, Saraiva EM, Souto-Padrón T. Endocytosis and Exocytosis in Leishmania amazonensis Are Modulated by Bromoenol Lactone. Front Cell Infect Microbiol 2020; 10:39. [PMID: 32117812 PMCID: PMC7020749 DOI: 10.3389/fcimb.2020.00039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
In the protozoan pathogen Leishmania, endocytosis, and exocytosis occur mainly in the small area of the flagellar pocket membrane, which makes this parasite an interesting model of strikingly polarized internalization and secretion. Moreover, little is known about vesicle recognition and fusion mechanisms, which are essential for both endo/exocytosis in this parasite. In other cell types, vesicle fusion events require the activity of phospholipase A2 (PLA2), including Ca2+-independent iPLA2 and soluble, Ca2+-dependent sPLA2. Here, we studied the role of bromoenol lactone (BEL) inhibition of endo/exocytosis in promastigotes of Leishmania amazonensis. PLA2 activities were assayed in intact parasites, in whole conditioned media, and in soluble and extracellular vesicles (EVs) conditioned media fractions. BEL did not affect the viability of promastigotes, but reduced the differentiation into metacyclic forms. Intact parasites and EVs had BEL-sensitive iPLA2 activity. BEL treatment reduced total EVs secretion, as evidenced by reduced total protein concentration, as well as its size distribution and vesicles in the flagellar pocket of treated parasites as observed by TEM. Membrane proteins, such as acid phosphatases and GP63, became concentrated in the cytoplasm, mainly in multivesicular tubules of the endocytic pathway. BEL also prevented the endocytosis of BSA, transferrin and ConA, with the accumulation of these markers in the flagellar pocket. These results suggested that the activity inhibited by BEL, which is one of the irreversible inhibitors of iPLA2, is required for both endocytosis and exocytosis in promastigotes of L. amazonensis.
Collapse
Affiliation(s)
- Anne C S Fernandes
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Deivid C Soares
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberta F C Neves
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina M Koeller
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Norton Heise
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila M Adade
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José R Meyer-Fernandes
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro de Ciências da Saúde, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elvira M Saraiva
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thaïs Souto-Padrón
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Lin G, Lee PT, Chen K, Mao D, Tan KL, Zuo Z, Lin WW, Wang L, Bellen HJ. Phospholipase PLA2G6, a Parkinsonism-Associated Gene, Affects Vps26 and Vps35, Retromer Function, and Ceramide Levels, Similar to α-Synuclein Gain. Cell Metab 2018; 28:605-618.e6. [PMID: 29909971 DOI: 10.1016/j.cmet.2018.05.019] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/23/2018] [Accepted: 05/22/2018] [Indexed: 11/16/2022]
Abstract
Mutations in PLA2G6 (PARK14) cause neurodegenerative disorders in humans, including autosomal recessive neuroaxonal dystrophy and early-onset parkinsonism. We show that loss of iPLA2-VIA, the fly homolog of PLA2G6, reduces lifespan, impairs synaptic transmission, and causes neurodegeneration. Phospholipases typically hydrolyze glycerol phospholipids, but loss of iPLA2-VIA does not affect the phospholipid composition of brain tissue but rather causes an elevation in ceramides. Reducing ceramides with drugs, including myriocin or desipramine, alleviates lysosomal stress and suppresses neurodegeneration. iPLA2-VIA binds the retromer subunits Vps35 and Vps26 and enhances retromer function to promote protein and lipid recycling. Loss of iPLA2-VIA impairs retromer function, leading to a progressive increase in ceramide. This induces a positive feedback loop that affects membrane fluidity and impairs retromer function and neuronal function. Similar defects are observed upon loss of vps26 or vps35 or overexpression of α-synuclein, indicating that these defects may be common in Parkinson disease.
Collapse
Affiliation(s)
- Guang Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Pei-Tseng Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Kuchuan Chen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Dongxue Mao
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Kai Li Tan
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Wen-Wen Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Liping Wang
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Abstract
The Golgi complex is the Grand Central Station of intracellular membrane trafficking in the secretory and endocytic pathways. Anterograde and retrograde export of cargo from the Golgi complex involves a complex interplay between the formation of coated vesicles and membrane tubules, although much less is known about tubule-mediated trafficking. Recent advances using in vitro assays have identified several cytoplasmic phospholipase A2 (PLA2) enzymes that are required for the biogenesis of membrane tubules and their roles in the functional organization of the Golgi complex. In this chapter we describe methods for the cell-free reconstitution of PLA2-dependent Golgi membrane tubule formation. These methods should facilitate the identification of other proteins that regulate this process.
Collapse
|
8
|
ER trapping reveals Golgi enzymes continually revisit the ER through a recycling pathway that controls Golgi organization. Proc Natl Acad Sci U S A 2015; 112:E6752-61. [PMID: 26598700 DOI: 10.1073/pnas.1520957112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Whether Golgi enzymes remain localized within the Golgi or constitutively cycle through the endoplasmic reticulum (ER) is unclear, yet is important for understanding Golgi dependence on the ER. Here, we demonstrate that the previously reported inefficient ER trapping of Golgi enzymes in a rapamycin-based assay results from an artifact involving an endogenous ER-localized 13-kD FK506 binding protein (FKBP13) competing with the FKBP12-tagged Golgi enzyme for binding to an FKBP-rapamycin binding domain (FRB)-tagged ER trap. When we express an FKBP12-tagged ER trap and FRB-tagged Golgi enzymes, conditions precluding such competition, the Golgi enzymes completely redistribute to the ER upon rapamycin treatment. A photoactivatable FRB-Golgi enzyme, highlighted only in the Golgi, likewise redistributes to the ER. These data establish Golgi enzymes constitutively cycle through the ER. Using our trapping scheme, we identify roles of rab6a and calcium-independent phospholipase A2 (iPLA2) in Golgi enzyme recycling, and show that retrograde transport of Golgi membrane underlies Golgi dispersal during microtubule depolymerization and mitosis.
Collapse
|
9
|
Martínez-Martínez N, Martínez-Alonso E, Ballesta J, Martínez-Menárguez JA. Phospholipase D2 is involved in the formation of Golgi tubules and ArfGAP1 recruitment. PLoS One 2014; 9:e111685. [PMID: 25354038 PMCID: PMC4213061 DOI: 10.1371/journal.pone.0111685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 10/03/2014] [Indexed: 11/19/2022] Open
Abstract
Lipids and lipid-modifying enzymes play a key role in the biogenesis, maintenance and fission of transport carriers in the secretory and endocytic pathways. In the present study we demonstrate that phosphatidic acid generated by phospholipase D2 (PLD2) is involved in the formation of Golgi tubules. The main evidence to support this is: 1) inhibitors of phosphatidic acid formation and PLD2 depletion inhibit the formation of tubules containing resident enzymes and regulators of intra-Golgi transport in a low temperature (15°C) model of Golgi tubulation but do not affect brefeldin A-induced tubules, 2) inhibition of PLD2 enzymatic activity and PLD2 depletion in cells cultured under physiological conditions (37°C) induce the formation of tubules specifically containing Golgi matrix proteins, and, 3) over-expression of PLD2 induces the formation of a tubular network. In addition, it was found that the generation of this lipid by the isoenzyme is necessary for ArfGAP1 recruitment to Golgi membranes. These results suggest that both proteins are involved in the molecular mechanisms which drive the formation of different types of Golgi tubules.
Collapse
Affiliation(s)
- Narcisa Martínez-Martínez
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - Emma Martínez-Alonso
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - José Ballesta
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - José A. Martínez-Menárguez
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, University of Murcia, Murcia, Spain
- * E-mail:
| |
Collapse
|
10
|
Vitkova V, Mitkova D, Staneva G. Lyso- and omega-3-containing phosphatidylcholines alter the bending elasticity of lipid membranes. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.03.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Abstract
Some of the most potent toxins produced by plants and bacteria are members of a large family known as the AB toxins. AB toxins are generally characterized by a heterogenous complex consisting of two protein chains arranged in various monomeric or polymeric configurations. The newest class within this superfamily is the cytolethal distending toxin (Cdt). The Cdt is represented by a subfamily of toxins produced by a group of taxonomically distinct Gram negative bacteria. Members of this subfamily have a related AB-type chain or subunit configuration and properties distinctive to the AB paradigm. In this review, the unique structural and cytotoxic properties of the Cdt subfamily, target cell specificities, intoxication pathway, modes of action, and relationship to the AB toxin superfamily are compared and contrasted.
Collapse
|
12
|
Soonthornsit J, Yamaguchi Y, Tamura D, Ishida R, Nakakoji Y, Osako S, Yamamoto A, Nakamura N. Low cytoplasmic pH reduces ER-Golgi trafficking and induces disassembly of the Golgi apparatus. Exp Cell Res 2014; 328:325-39. [PMID: 25257606 DOI: 10.1016/j.yexcr.2014.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/01/2014] [Accepted: 09/04/2014] [Indexed: 12/18/2022]
Abstract
The Golgi apparatus was dramatically disassembled when cells were incubated in a low pH medium. The cis-Golgi disassembled quickly, extended tubules and spread to the periphery of cells within 30 min. In contrast, medial- and trans-Golgi were fragmented in significantly larger structures of smaller numbers at a slower rate and remained largely in structures distinct from the cis-Golgi. Electron microscopy revealed the complete disassembly of the Golgi stack in low pH treated cells. The effect of low pH was reversible; the Golgi apparatus reassembled to form a normal ribbon-like structure within 1-2h after the addition of a control medium. The anterograde ER to Golgi transport and retrograde Golgi to ER transport were both reduced under low pH. Phospholipase A2 inhibitors (ONO, BEL) effectively suppressed the Golgi disassembly, suggesting that the phospholipase A2 was involved in the Golgi disassembly. Over-expression of Rab1, 2, 30, 33 and 41 also suppressed the Golgi disassembly under low pH, suggesting that they have protective role against Golgi disassembly. Low pH treatment reduced cytoplasmic pH, but not the luminal pH of the Golgi apparatus, strongly suggesting that reduction of the cytoplasmic pH triggered the Golgi disassembly. Because a lower cytoplasmic pH is induced in physiological or pathological conditions, disassembly of the Golgi apparatus and reduction of vesicular transport through the Golgi apparatus may play important roles in cell physiology and pathology. Furthermore, our findings indicated that low pH treatment can serve as an important tool to analyze the molecular mechanisms that support the structure and function of the Golgi apparatus.
Collapse
Affiliation(s)
- Jeerawat Soonthornsit
- Laboratory for Cell and Developmental Biology, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita, Kyoto 603-8555, Japan
| | - Yoko Yamaguchi
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Daisuke Tamura
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Ryuichi Ishida
- Laboratory for Cell and Developmental Biology, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita, Kyoto 603-8555, Japan
| | - Yoko Nakakoji
- Laboratory for Cell and Developmental Biology, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita, Kyoto 603-8555, Japan
| | - Shiho Osako
- Laboratory for Cell and Developmental Biology, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita, Kyoto 603-8555, Japan
| | - Akitsugu Yamamoto
- Department of Animal Bioscience, Nagahama Institute of Bio-Science and Technology, 266 Tamura, Nagahama, Shiga, 526-0829, Japan
| | - Nobuhiro Nakamura
- Laboratory for Cell and Developmental Biology, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita, Kyoto 603-8555, Japan; Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan.
| |
Collapse
|
13
|
Sandvig K, Bergan J, Kavaliauskiene S, Skotland T. Lipid requirements for entry of protein toxins into cells. Prog Lipid Res 2014; 54:1-13. [PMID: 24462587 DOI: 10.1016/j.plipres.2014.01.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 01/05/2023]
Abstract
The plant toxin ricin and the bacterial toxin Shiga toxin both belong to a group of protein toxins having one moiety that binds to the cell surface, and another, enzymatically active moiety, that enters the cytosol and inhibits protein synthesis by inactivating ribosomes. Both toxins travel all the way from the cell surface to endosomes, the Golgi apparatus and the ER before the ribosome-inactivating moiety enters the cytosol. Shiga toxin binds to the neutral glycosphingolipid Gb3 at the cell surface and is therefore dependent on this lipid for transport into the cells, whereas ricin binds both glycoproteins and glycolipids with terminal galactose. The different steps of transport used by these toxins have specific requirements for lipid species, and with the recent developments in mass spectrometry analysis of lipids and microscopical and biochemical dissection of transport in cells, we are starting to see the complexity of endocytosis and intracellular transport. In this article we describe lipid requirements and the consequences of lipid changes for the entry and intoxication with ricin and Shiga toxin. These toxins can be a threat to human health, but can also be exploited for diagnosis and therapy, and have proven valuable as tools to study intracellular transport.
Collapse
Affiliation(s)
- Kirsten Sandvig
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Jonas Bergan
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| | - Simona Kavaliauskiene
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Tore Skotland
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
14
|
Abstract
Heterotrimeric G proteins transduce the ligand binding of transmembrane G protein coupled receptors into a variety of intracellular signaling pathways. Recently, heterotrimeric Gβγ subunit signaling at the Golgi complex has been shown to regulate the formation of vesicular transport carriers that deliver cargo from the Golgi to the plasma membrane. In addition to vesicles, membrane tubules have also been shown to mediate export from the Golgi complex, which requires the activity of cytoplasmic phospholipase A2 (PLA2) enzyme activity. Through the use of an in vitro reconstitution assay with isolated Golgi complexes, we provide evidence that Gβ1γ2 signaling also stimulates Golgi membrane tubule formation. In addition, we show that an inhibitor of Gβγ activation of PLA2 enzymes inhibits in vitro Golgi membrane tubule formation. Additionally, purified Gβγ protein stimulates membrane tubules in the presence of low (sub-threshold) cytosol concentrations. Importantly, this Gβγ stimulation of Golgi membrane tubule formation was inhibited by treatment with the PLA2 antagonist ONO-RS-082. These studies indicate that Gβ1γ2 signaling activates PLA2 enzymes required for Golgi membrane tubule formation, thus establishing a new layer of regulation for this process.
Collapse
Affiliation(s)
- Marie E Bechler
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - William J Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
15
|
Martínez-Alonso E, Tomás M, Martínez-Menárguez JA. Golgi tubules: their structure, formation and role in intra-Golgi transport. Histochem Cell Biol 2013; 140:327-39. [PMID: 23812035 DOI: 10.1007/s00418-013-1114-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2013] [Indexed: 11/28/2022]
Abstract
Tubules are common Golgi elements that can form extensive networks associated with the cis-, lateral and trans-Golgi sides, but despite this, they have almost been forgotten for decades. The molecular mechanisms involved in their formation, elongation and fission are only just beginning to be understood. However, the role of these membranes is not well understood. In the present review, we analyze the mechanisms that induce Golgi tubulation or, conversely, disrupt tubules in order to throw some lights on the nature of these elements. The putative role of these elements in the framework of current models for intra-Golgi transport is also discussed.
Collapse
Affiliation(s)
- Emma Martínez-Alonso
- Department of Cell Biology and Histology, Medical School, University of Murcia, 30100 Murcia, Spain
| | | | | |
Collapse
|
16
|
Gutiérrez-Martínez E, Fernández-Ulibarri I, Lázaro-Diéguez F, Johannes L, Pyne S, Sarri E, Egea G. Lipid phosphate phosphatase 3 participates in transport carrier formation and protein trafficking in the early secretory pathway. J Cell Sci 2013; 126:2641-55. [PMID: 23591818 DOI: 10.1242/jcs.117705] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The inhibition of phosphatidic acid phosphatase (PAP) activity by propanolol indicates that diacylglycerol (DAG) is required for the formation of transport carriers at the Golgi and for retrograde trafficking to the ER. Here we report that the PAP2 family member lipid phosphate phosphatase 3 (LPP3, also known as PAP2b) localizes in compartments of the secretory pathway from ER export sites to the Golgi complex. The depletion of human LPP3: (i) reduces the number of tubules generated from the ER-Golgi intermediate compartment and the Golgi, with those formed from the Golgi being longer in LPP3-silenced cells than in control cells; (ii) impairs the Rab6-dependent retrograde transport of Shiga toxin subunit B from the Golgi to the ER, but not the anterograde transport of VSV-G or ssDsRed; and (iii) induces a high accumulation of Golgi-associated membrane buds. LPP3 depletion also reduces levels of de novo synthesized DAG and the Golgi-associated DAG contents. Remarkably, overexpression of a catalytically inactive form of LPP3 mimics the effects of LPP3 knockdown on Rab6-dependent retrograde transport. We conclude that LPP3 participates in the formation of retrograde transport carriers at the ER-Golgi interface, where it transitorily cycles, and during its route to the plasma membrane.
Collapse
Affiliation(s)
- Enric Gutiérrez-Martínez
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The Golgi complex is considered the central station of the secretory pathway where cargo proteins and lipids are properly modified, classified, packed into specific carriers and delivered to their final destinations. Early electron microscope studies showed the extraordinary structural complexity of this organelle. However, despite the large volume of incoming and outgoing traffic, it is able to maintain its architecture, although it is also flexible enough to adapt to the functional status of the cell. Many components of the molecular machinery involved in membrane traffic and other Golgi functions have been identified. However, some basic aspects of Golgi functioning remain unsolved. For instance, how cargo moves through the stack remains controversial and two classical models have been proposed: vesicular transport and cisternal maturation. Since neither of these models explains all the experimental data, a combination of these models as well as new models have been proposed. In this context, the specific role of the cisternae, vesicles and tubules needs to be clarified. In this review, we summarize our current knowledge of the Golgi organization and function, focusing on the mechanisms of intra-Golgi transport.
Collapse
|
18
|
Martínez-Alonso E, Tomás M, Martínez-Menárguez JA. Morpho-functional architecture of the Golgi complex of neuroendocrine cells. Front Endocrinol (Lausanne) 2013; 4:41. [PMID: 23543640 PMCID: PMC3610015 DOI: 10.3389/fendo.2013.00041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/14/2013] [Indexed: 12/22/2022] Open
Abstract
In neuroendocrine cells, prohormones move from the endoplasmic reticulum to the Golgi complex (GC), where they are sorted and packed into secretory granules. The GC is considered the central station of the secretory pathway of proteins and lipids en route to their final destination. In most mammalian cells, it is formed by several stacks of cisternae connected by tubules, forming a continuous ribbon. This organelle shows an extraordinary structural and functional complexity, which is exacerbated by the fact that its architecture is cell type specific and also tuned by the functional status of the cell. It is, indeed, one the most beautiful cellular organelles and, for that reason, perhaps the most extensively photographed by electron microscopists. In recent decades, an exhaustive dissection of the molecular machinery involved in membrane traffic and other Golgi functions has been carried out. Concomitantly, detailed morphological studies have been performed, including 3D analysis by electron tomography, and the precise location of key proteins has been identified by immunoelectron microscopy. Despite all this effort, some basic aspects of Golgi functioning remain unsolved. For instance, the mode of intra-Golgi transport is not known, and two opposing theories (vesicular transport and cisternal maturation models) have polarized the field for many years. Neither of these theories explains all the experimental data so that new theories and combinations thereof have recently been proposed. Moreover, the specific role of the small vesicles and tubules which surround the stacks needs to be clarified. In this review, we summarize our current knowledge of the Golgi architecture in relation with its function and the mechanisms of intra-Golgi transport. Within the same framework, the characteristics of the GC of neuroendocrine cells are analyzed.
Collapse
Affiliation(s)
- Emma Martínez-Alonso
- Department of Cell Biology and Histology, Medical School, University of MurciaMurcia, Spain
| | - Mónica Tomás
- Department of Human Anatomy and Embryology, Medical School, Valencia UniversityValencia, Spain
| | - José A. Martínez-Menárguez
- Department of Cell Biology and Histology, Medical School, University of MurciaMurcia, Spain
- *Correspondence: José A. Martínez-Menárguez, Department of Cell Biology and Histology, Medical School, University of Murcia, 30100 Murcia, Spain. e-mail:
| |
Collapse
|
19
|
Kuhle K, Flieger A. Legionella phospholipases implicated in virulence. Curr Top Microbiol Immunol 2013; 376:175-209. [PMID: 23925490 DOI: 10.1007/82_2013_348] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phospholipases are diverse enzymes produced in eukaryotic hosts and their bacterial pathogens. Several pathogen phospholipases have been identified as major virulence factors acting mainly in two different modes: on the one hand, they have the capability to destroy host membranes and on the other hand they are able to manipulate host signaling pathways. Reaction products of bacterial phospholipases may act as secondary messengers within the host and therefore influence inflammatory cascades and cellular processes, such as proliferation, migration, cytoskeletal changes as well as membrane traffic. The lung pathogen and intracellularly replicating bacterium Legionella pneumophila expresses a variety of phospholipases potentially involved in disease-promoting processes. So far, genes encoding 15 phospholipases A, three phospholipases C, and one phospholipase D have been identified. These cell-associated or secreted phospholipases may contribute to intracellular establishment, to egress of the pathogen from the host cell, and to the observed lung pathology. Due to the importance of phospholipase activities for host cell processes, it is conceivable that the pathogen enzymes may mimic or substitute host cell phospholipases to drive processes for the pathogen's benefit. The following chapter summarizes the current knowledge on the L. pneumophila phospholipases, especially their substrate specificity, localization, mode of secretion, and impact on host cells.
Collapse
Affiliation(s)
- Katja Kuhle
- FG 11 - Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institut, Burgstr. 37, 38855, Wernigerode, Germany
| | | |
Collapse
|
20
|
Abstract
The striking morphology of the Golgi complex has fascinated cell biologists since its discovery over 100 years ago. Yet, despite intense efforts to understand how membrane flow relates to Golgi form and function, this organelle continues to baffle cell biologists and biochemists alike. Fundamental questions regarding Golgi function, while hotly debated, remain unresolved. Historically, Golgi function has been described from a protein-centric point of view, but we now appreciate that conceptual frameworks for how lipid metabolism is integrated with Golgi biogenesis and function are essential for a mechanistic understanding of this fascinating organelle. It is from a lipid-centric perspective that we discuss the larger question of Golgi dynamics and membrane trafficking. We review the growing body of evidence for how lipid metabolism is integrally written into the engineering of the Golgi system and highlight questions for future study.
Collapse
Affiliation(s)
- Vytas A Bankaitis
- Department of Cell and Developmental Biology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7090, USA.
| | | | | |
Collapse
|
21
|
Regulation of the Golgi complex by phospholipid remodeling enzymes. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1078-88. [PMID: 22562055 DOI: 10.1016/j.bbalip.2012.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/15/2012] [Accepted: 04/13/2012] [Indexed: 11/23/2022]
Abstract
The mammalian Golgi complex is a highly dynamic organelle consisting of stacks of flattened cisternae with associated coated vesicles and membrane tubules that contribute to cargo import and export, intra-cisternal trafficking, and overall Golgi architecture. At the morphological level, all of these structures are continuously remodeled to carry out these trafficking functions. Recent advances have shown that continual phospholipid remodeling by phospholipase A (PLA) and lysophospholipid acyltransferase (LPAT) enzymes, which deacylate and reacylate Golgi phospholipids, respectively, contributes to this morphological remodeling. Here we review the identification and characterization of four cytoplasmic PLA enzymes and one integral membrane LPAT that participate in the dynamic functional organization of the Golgi complex, and how some of these enzymes are integrated to determine the relative abundance of COPI vesicle and membrane tubule formation. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
|
22
|
Micaroni M. Calcium around the Golgi apparatus: implications for intracellular membrane trafficking. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:439-60. [PMID: 22453953 DOI: 10.1007/978-94-007-2888-2_18] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As with other complex cellular functions, intracellular membrane transport involves the coordinated engagement of a series of organelles and machineries; in the last couple of decades more importance has been given to the role of calcium (Ca(2+)) in the regulation of membrane trafficking, which is directly involved in coordinating the endoplasmic reticulum-to-Golgi-to-plasma membrane delivery of cargo. Consequently, the Golgi apparatus (GA) is now considered not just the place proteins mature in as they move to their final destination(s), but it is increasingly viewed as an intracellular Ca(2+) store. In the last few years the mechanisms regulating the homeostasis of Ca(2+) in the GA and its role in membrane trafficking have begun to be elucidated. Here, these recent discoveries that shed light on the role Ca(2+) plays as of trigger of different steps during membrane trafficking has been reviewed. This includes recruitment of proteins and SNARE cofactors to the Golgi membranes, which are both fundamental for the membrane remodeling and the regulation of fusion/fission events occurring during the passage of cargo across the GA. I conclude by focusing attention on Ca(2+) homeostasis dysfunctions in the GA and their related pathological implications.
Collapse
Affiliation(s)
- Massimo Micaroni
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, 4072 Brisbane, St. Lucia, QLD, Australia.
| |
Collapse
|
23
|
Bechler ME, de Figueiredo P, Brown WJ. A PLA1-2 punch regulates the Golgi complex. Trends Cell Biol 2011; 22:116-24. [PMID: 22130221 DOI: 10.1016/j.tcb.2011.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 12/14/2022]
Abstract
The mammalian Golgi complex, trans Golgi network (TGN) and ER-Golgi intermediate compartment (ERGIC) are comprised of membrane cisternae, coated vesicles and membrane tubules, all of which contribute to membrane trafficking and maintenance of their unique architectures. Recently, a new cast of players was discovered to regulate the Golgi and ERGIC: four unrelated cytoplasmic phospholipase A (PLA) enzymes, cPLA(2)α (GIVA cPLA(2)), PAFAH Ib (GVIII PLA(2)), iPLA(2)-β (GVIA-2 iPLA(2)) and iPLA(1)γ. These ubiquitously expressed enzymes regulate membrane trafficking from specific Golgi subcompartments, although there is evidence for some functional redundancy between PAFAH Ib and cPLA(2)α. Three of these enzymes, PAFAH Ib, cPLA(2)α and iPLA(2)-β, exert effects on Golgi structure and function by inducing the formation of membrane tubules. We review our current understanding of how PLA enzymes regulate Golgi and ERGIC morphology and function.
Collapse
Affiliation(s)
- Marie E Bechler
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
24
|
Lang C, Flieger A. Characterisation of Legionella pneumophila phospholipases and their impact on host cells. Eur J Cell Biol 2011; 90:903-12. [DOI: 10.1016/j.ejcb.2010.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 12/08/2010] [Accepted: 12/13/2010] [Indexed: 01/16/2023] Open
|
25
|
Role of phospholipase A(2) in retrograde transport of ricin. Toxins (Basel) 2011; 3:1203-19. [PMID: 22069763 PMCID: PMC3202871 DOI: 10.3390/toxins3091203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/25/2011] [Accepted: 09/16/2011] [Indexed: 12/03/2022] Open
Abstract
Ricin is a protein toxin classified as a bioterror agent, for which there are no known treatment options available after intoxication. It is composed of an enzymatically active A-chain connected by a disulfide bond to a cell binding B-chain. After internalization by endocytosis, ricin is transported retrogradely to the Golgi and ER, from where the ricin A-chain is translocated to the cytosol where it inhibits protein synthesis and thus induces cell death. We have identified cytoplasmic phospholipase A2 (PLA2) as an important factor in ricin retrograde transport. Inhibition of PLA2 protects against ricin challenge, however the toxin can still be endocytosed and transported to the Golgi. Interestingly, ricin transport from the Golgi to the ER is strongly impaired in response to PLA2 inhibition. Confocal microscopy analysis shows that ricin is still colocalized with the trans-Golgi marker TGN46 in the presence of PLA2 inhibitor, but less is colocalized with the cis-Golgi marker GM130. We propose that PLA2 inhibition results in impaired ricin transport through the Golgi stack, thus preventing it from reaching the ER. Consequently, ricin cannot be translocated to the cytosol to exert its toxic action.
Collapse
|
26
|
Bechler ME, Doody AM, Ha KD, Judson BL, Chen I, Brown WJ. The phospholipase A₂ enzyme complex PAFAH Ib mediates endosomal membrane tubule formation and trafficking. Mol Biol Cell 2011; 22:2348-59. [PMID: 21593204 PMCID: PMC3128536 DOI: 10.1091/mbc.e09-12-1064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
For the first time, a cytoplasmic phospholipase A2 enzyme, platelet-activating factor acetylhydrolase (I)b, is described that is directly involved in the formation of membrane
tubules from endosomes and trafficking through the endocytic recycling pathway. Previous studies have shown that membrane tubule–mediated export from endosomal compartments requires a cytoplasmic phospholipase A2 (PLA2) activity. Here we report that the cytoplasmic PLA2 enzyme complex platelet-activating factor acetylhydrolase (PAFAH) Ib, which consists of α1, α2, and LIS1 subunits, regulates the distribution and function of endosomes. The catalytic subunits α1 and α2 are located on early-sorting endosomes and the central endocytic recycling compartment (ERC) and their overexpression, but not overexpression of their catalytically inactive counterparts, induced endosome membrane tubules. In addition, overexpression α1 and α2 altered normal endocytic trafficking; transferrin was recycled back to the plasma membrane directly from peripheral early-sorting endosomes instead of making an intermediate stop in the ERC. Consistent with these results, small interfering RNA–mediated knockdown of α1 and α2 significantly inhibited the formation of endosome membrane tubules and delayed the recycling of transferrin. In addition, the results agree with previous reports that PAFAH Ib α1 and α2 expression levels affect the distribution of endosomes within the cell through interactions with the dynein regulator LIS1. These studies show that PAFAH Ib regulates endocytic membrane trafficking through novel mechanisms involving both PLA2 activity and LIS1-dependent dynein function.
Collapse
Affiliation(s)
- Marie E Bechler
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
27
|
Inhibition of phospholipase A2 increased the removal of the prion derived peptide PrP82-146 from cultured neurons. Neuropharmacology 2010; 60:365-72. [PMID: 20934441 DOI: 10.1016/j.neuropharm.2010.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/01/2010] [Accepted: 10/03/2010] [Indexed: 11/22/2022]
Abstract
The prion diseases are characterised by the formation of the disease-associated isoform of the prion protein (PrP(Sc)) and the production of disease-related peptides. The prion derived peptide PrP82-146 bound readily to cortical neurons and was found within detergent resistant membranes that are commonly called lipid rafts. It was not found within lysosomes and the slow degradation of PrP82-146 resulted in a half-life of approximately 5 days. In cortical neurons pre-treated with phospholipase A(2) (PLA(2)) inhibitors (AACOCF(3) or MAFP) less PrP82-146 entered lipid rafts, more PrP82-146 was found within lysosomes and the half-life of PrP82-146 was reduced to 24 h. Similarly, pre-treatment of neurons with platelet-activating factor (PAF) receptor antagonists (Hexa-PAF and ginkgolide B) increased the entry of PrP82-146 into lysosomes and reduced its half-life. Furthermore, the addition of PAF reversed the effects of PLA(2) inhibitors on PrP82-146 trafficking. PAF controlled the amount of cholesterol in cell membranes and the effects of PAF receptor antagonists on the trafficking of PrP82-146 were reversed by the addition of cholesterol. We conclude that activation of PLA(2) and the production of PAF control a cholesterol-sensitive pathway that affects the cellular localisation and hence the fate of PrP82-146 in neurons.
Collapse
|
28
|
Ben-Tekaya H, Kahn RA, Hauri HP. ADP ribosylation factors 1 and 4 and group VIA phospholipase A₂ regulate morphology and intraorganellar traffic in the endoplasmic reticulum-Golgi intermediate compartment. Mol Biol Cell 2010; 21:4130-40. [PMID: 20881058 PMCID: PMC2993742 DOI: 10.1091/mbc.e10-01-0022] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In search of morphological determinants for the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), we found that a concerted action of Arf1, Arf4, and PLA2G6-A controls the architecture of the ERGIC by regulating tubular carriers. This is predicted to impact the rate of transport and destination of cargos in the ERGIC. Organelle morphology of the endomembrane system is critical for optimal organelle function. ADP ribosylation factors (Arfs), a family of small GTPases, are required for maintaining the structure of the Golgi and endosomes. What determines the discontinuous nature of the endoplasmic reticulum (ER)–Golgi intermediate compartment (ERGIC) as tubulovesicular clusters is unknown. In search of morphological determinants for the ERGIC, we found that a double knockdown of Arf1+Arf4 induced dynamic ERGIC tubules that connect ERGIC clusters, indicating that the tubules mediated lateral intraERGIC traffic. Tubule formation was inhibited by an antagonist of group VI calcium-independent phospholipase A2 (PLA2G6) and by silencing the A isoform of PLA2G6 (PLA2G6-A). Arf1+Arf4 depletion altered the expression of PLA2G6-A splice variants and relocalized PLA2G6-A from the cytosol to ERGIC clusters and tubules, suggesting that the enzyme became locally active. We show that changes in Arf1 can modulate the activity of PLA2G6-A. We propose that a concerted action of Arf1, Arf4, and PLA2G6-A controls the architecture of the ERGIC in a way that is predicted to impact the rate and possibly the destination of cargos. Our findings have identified key components in the molecular mechanism underlying the regulation of tubules in the ERGIC and uncover tubular carriers as tightly controlled machinery.
Collapse
|
29
|
Schmidt JA, Kalkofen DN, Donovan KW, Brown WJ. A role for phospholipase A2 activity in membrane tubule formation and TGN trafficking. Traffic 2010; 11:1530-6. [PMID: 20874826 DOI: 10.1111/j.1600-0854.2010.01115.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have investigated the role of phospholipase A(2) (PLA(2) ) enzymes in generating membrane tubules at the trans-Golgi network (TGN). Constitutive TGN membrane tubules and those induced by over-expressing kinase dead protein kinase D were inhibited by the PLA(2) inhibitors ONO-RS-082 (ONO) and bromoenol lactone. These antagonists also inhibited secretory delivery of both soluble and transmembrane cargoes. Finally, use of the reversible antagonist ONO and time-lapse imaging revealed for the first time that PLA(2) antagonists inhibit the initiation of membrane tubule formation at the TGN. Thus, PLA(2) enzymes appear to have an important role in the earliest steps of membrane tubule formation at the TGN, which are utilized for membrane trafficking.
Collapse
Affiliation(s)
- John A Schmidt
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
30
|
Bechler ME, Doody AM, Racoosin E, Lin L, Lee KH, Brown WJ. The phospholipase complex PAFAH Ib regulates the functional organization of the Golgi complex. ACTA ACUST UNITED AC 2010; 190:45-53. [PMID: 20624900 PMCID: PMC2911670 DOI: 10.1083/jcb.200908105] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report that platelet-activating factor acetylhydrolase (PAFAH) Ib, comprised of two phospholipase A(2) (PLA(2)) subunits, alpha1 and alpha2, and a third subunit, the dynein regulator lissencephaly 1 (LIS1), mediates the structure and function of the Golgi complex. Both alpha1 and alpha2 partially localize on Golgi membranes, and purified catalytically active, but not inactive alpha1 and alpha2 induce Golgi membrane tubule formation in a reconstitution system. Overexpression of wild-type or mutant alpha1 or alpha2 revealed that both PLA(2) activity and LIS1 are important for maintaining Golgi structure. Knockdown of PAFAH Ib subunits fragments the Golgi complex, inhibits tubule-mediated reassembly of intact Golgi ribbons, and slows secretion of cargo. Our results demonstrate a cooperative interplay between the PLA(2) activity of alpha1 and alpha2 with LIS1 to facilitate the functional organization of the Golgi complex, thereby suggesting a model that links phospholipid remodeling and membrane tubulation to dynein-dependent transport.
Collapse
Affiliation(s)
- Marie E Bechler
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
The role of lipid metabolic enzymes in Golgi membrane remodeling is a subject of intense interest. Now, in this issue, Schmidt and Brown (2009. J. Cell Biol. doi:10.1083/jcb.200904147) report that lysophosphatidic acid-specific acyltransferase, LPAAT3, contributes to Golgi membrane dynamics by suppressing tubule formation.
Collapse
Affiliation(s)
- Vytas A Bankaitis
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
32
|
Schmidt JA, Brown WJ. Lysophosphatidic acid acyltransferase 3 regulates Golgi complex structure and function. ACTA ACUST UNITED AC 2009; 186:211-8. [PMID: 19635840 PMCID: PMC2717635 DOI: 10.1083/jcb.200904147] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have suggested that the functional organization of the Golgi complex is dependent on phospholipid remodeling enzymes. Here, we report the identification of an integral membrane lysophosphatidic acid–specific acyltransferase, LPAAT3, which regulates Golgi membrane tubule formation, trafficking, and structure by altering phospholipids and lysophospholipids. Overexpression of LPAAT3 significantly inhibited the formation of Golgi membrane tubules in vivo and in vitro. Anterograde and retrograde protein trafficking was slower in cells overexpressing LPAAT3 and accelerated in cells with reduced expression (by siRNA). Golgi morphology was also dependent on LPAAT3 because its knockdown caused the Golgi to become fragmented. These data are the first to show a direct role for a specific phospholipid acyltransferase in regulating membrane trafficking and organelle structure.
Collapse
Affiliation(s)
- John A Schmidt
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
33
|
Pietro ES, Capestrano M, Polishchuk EV, DiPentima A, Trucco A, Zizza P, Mariggiò S, Pulvirenti T, Sallese M, Tete S, Mironov AA, Leslie CC, Corda D, Luini A, Polishchuk RS. Group IV phospholipase A(2)alpha controls the formation of inter-cisternal continuities involved in intra-Golgi transport. PLoS Biol 2009; 7:e1000194. [PMID: 19753100 PMCID: PMC2732982 DOI: 10.1371/journal.pbio.1000194] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 07/31/2009] [Indexed: 11/18/2022] Open
Abstract
The organization of intra-Golgi trafficking and the nature of the transport intermediates involved (e.g., vesicles, tubules, or tubular continuities) remain incompletely understood. It was recently shown that successive cisternae in the Golgi stack are interconnected by membrane tubules that form during the arrival of transport carriers from the endoplasmic reticulum. Here, we examine the mechanisms of generation and the function of these tubules. In principle, tubule formation might depend on several protein- and/or lipid-based mechanisms. Among the latter, we have studied the phospholipase A(2) (PLA(2))-mediated generation of wedge-shaped lysolipids, with the resulting local positive membrane curvature. We show that the arrival of cargo at the Golgi complex induces the recruitment of Group IVA Ca(2+)-dependent, cytosolic PLA(2) (cPLA(2)alpha) onto the Golgi complex itself, and that this cPLA(2)alpha is required for the formation of the traffic-dependent intercisternal tubules and for intra-Golgi transport. In contrast, silencing of cPLA(2)alpha has no inhibitory effects on peri-Golgi vesicles. These findings identify cPLA(2)alpha as the first component of the machinery that is responsible for the formation of intercisternal tubular continuities and support a role for these continuities in transport through the Golgi complex.
Collapse
Affiliation(s)
- Enrica San Pietro
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
| | | | - Elena V. Polishchuk
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
| | - Alessio DiPentima
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
| | - Alvar Trucco
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
| | - Pasquale Zizza
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
| | - Stefania Mariggiò
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
| | - Teodoro Pulvirenti
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
| | - Michele Sallese
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
| | - Stefano Tete
- Department of Oral Sciences, University “G. D'Annunzio”, Chieti, Italy
| | - Alexander A. Mironov
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
| | - Christina C. Leslie
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado, United States of America
| | - Daniela Corda
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
| | - Alberto Luini
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
- Telethon Institute of Genetics and Medicine, Naples, Italy
- * E-mail: (AL); (RSP)
| | - Roman S. Polishchuk
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Chieti, Italy
- Telethon Institute of Genetics and Medicine, Naples, Italy
- * E-mail: (AL); (RSP)
| |
Collapse
|
34
|
Nakano T, Inoue I, Shinozaki R, Matsui M, Akatsuka T, Takahashi S, Tanaka K, Akita M, Seo M, Hokari S, Katayama S, Komoda T. A possible role of lysophospholipids produced by calcium-independent phospholipase A(2) in membrane-raft budding and fission. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2222-8. [PMID: 19643079 DOI: 10.1016/j.bbamem.2009.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 07/10/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
Abstract
Phospholipase A(2) (PLA(2)) not only plays a role in the membrane vesiculation system but also mediates membrane-raft budding and fission in artificial giant liposomes. This study aimed to demonstrate the same effects in living cells. Differentiated Caco-2 cells were cultured on filter membranes. MDCK cells were challenged with Influenza virus. The MDCK cultures were harvested for virus titration with a plaque assay. Alkaline phosphatase (ALP), a membrane-raft associated glycosylphosphatidylinositol (GPI)-anchored protein, was 70% released by adding 0.2 mmol/l lysophosphatidylcholine, which was abolished by treatment with a membrane-raft disrupter, methyl-beta-cyclodextrin. Activation of calcium-independent PLA(2) (iPLA(2)) by brefeldin A increased the apical release of ALP by approximately 1.5-fold (p<0.01), which was blocked by PLA(2) inhibitor bromoenol lactone (BEL). BEL also reduced Influenza virus production into the media (<10%) in the MDCK culture. These results suggest that cells utilize inverted corn-shaped lysophospholipids generated by PLA(2) to modulate plasma membrane structure and assist the budding of raft-associated plasma membrane particles, which virus utilizes for its budding. Brush borders are enriched with membrane-rafts and undergo rapid turnover; thus, PLA(2) may be involved in the regulatory mechanism in membrane dynamism. Further, iPLA(2) may provide a therapeutic target for viral infections.
Collapse
Affiliation(s)
- Takanari Nakano
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Saitama 350-0455, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Morikawa RK, Aoki J, Kano F, Murata M, Yamamoto A, Tsujimoto M, Arai H. Intracellular phospholipase A1gamma (iPLA1gamma) is a novel factor involved in coat protein complex I- and Rab6-independent retrograde transport between the endoplasmic reticulum and the Golgi complex. J Biol Chem 2009; 284:26620-30. [PMID: 19632984 DOI: 10.1074/jbc.m109.038869] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The mammalian intracellular phospholipase A(1) (iPLA(1)) family consists of three members, iPLA(1)alpha/PA-PLA(1), iPLA(1)beta/p125, and iPLA(1)gamma/KIAA0725p. Although iPLA(1)beta has been implicated in organization of the ER-Golgi compartments, little is known about the physiological role of its closest paralog, iPLA(1)gamma. Here we show that iPLA(1)gamma mediates a specific retrograde membrane transport pathway between the endoplasmic reticulum (ER) and the Golgi complex. iPLA(1)gamma appeared to be localized to the cytosol, the cis-Golgi, and the ER-Golgi intermediate compartment (ERGIC). Time-lapse microscopy revealed that a population of GFP-iPLA(1)gamma was associated with transport carriers moving out from the Golgi complex. Knockdown of iPLA(1)gamma expression by RNAi did not affect the anterograde transport of VSVGts045 but dramatically delayed two types of Golgi-to-ER retrograde membrane transport; that is, transfer of the Golgi membrane into the ER in the presence of brefeldin A and delivery of cholera toxin B subunit from the Golgi complex to the ER. Notably, knockdown of iPLA(1)gamma did not impair COPI- and Rab6-dependent retrograde transports represented by ERGIC-53 recycling and ER delivery of Shiga toxin, respectively. Thus, iPLA(1)gamma is a novel membrane transport factor that contributes to a specific Golgi-to-ER retrograde pathway distinct from presently characterized COPI- and Rab6-dependent pathways.
Collapse
Affiliation(s)
- Rei K Morikawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Asp L, Kartberg F, Fernandez-Rodriguez J, Smedh M, Elsner M, Laporte F, Bárcena M, Jansen KA, Valentijn JA, Koster AJ, Bergeron JJM, Nilsson T. Early stages of Golgi vesicle and tubule formation require diacylglycerol. Mol Biol Cell 2008; 20:780-90. [PMID: 19037109 DOI: 10.1091/mbc.e08-03-0256] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have investigated the role for diacylglycerol (DAG) in membrane bud formation in the Golgi apparatus. Addition of propranolol to specifically inhibit phosphatidate phosphohydrolase (PAP), an enzyme responsible for converting phosphatidic acid into DAG, effectively prevents formation of membrane buds. The effect of PAP inhibition on Golgi membranes is rapid and occurs within 3 min. Removal of the PAP inhibitor then results in a rapid burst of buds, vesicles, and tubules that peaks within 2 min. The inability to form buds in the presence of propranolol does not appear to be correlated with a loss of ARFGAP1 from Golgi membranes, as knockdown of ARFGAP1 by RNA interference has little or no effect on actual bud formation. Rather, knockdown of ARFGAP1 results in an increase in membrane buds and a decrease of vesicles and tubules suggesting it functions in the late stages of scission. How DAG promotes bud formation is discussed.
Collapse
Affiliation(s)
- Lennart Asp
- Department of Medical and Clinical Genetics, the Sahlgrenska Academy at the University of Gothenburg, 405 30 Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cubells L, de Muga SV, Tebar F, Bonventre JV, Balsinde J, Pol A, Grewal T, Enrich C. Annexin A6-induced Inhibition of Cytoplasmic Phospholipase A2 Is Linked to Caveolin-1 Export from the Golgi. J Biol Chem 2008; 283:10174-83. [DOI: 10.1074/jbc.m706618200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
38
|
Mages J, Freimüller K, Lang R, Hatzopoulos AK, Guggemoos S, Koszinowski UH, Adler H. Proteins of the secretory pathway govern virus productivity during lytic gammaherpesvirus infection. J Cell Mol Med 2008; 12:1974-89. [PMID: 18194452 PMCID: PMC2673020 DOI: 10.1111/j.1582-4934.2008.00235.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background: Diseases caused by gammaherpesviruses continue to be a challenge for human health and antiviral treatment. Most of the commonly used antiviral drugs are directed against viral gene products. However, the emergence of drug-resistant mutations ma limit the effectiveness of these drugs. Since viruses require a host cell to propagate, the search for host cell targets is an interestin alternative. Methods: In this study, we infected three different cell types (fibroblasts, endothelial precursor cells and macrophages with a murine gammaherpesvirus and analysed the host cell response for changes either common to all or unique to a particular cell type using oligonucleotide microarrays. Results: The analysis revealed a number of genes whose transcription was significantly up- or down-regulated in either one or two of the cell types tested. After infection, only two genes, Lman1 (also known as ERGIC53) an synaptobrevin-like 1 (sybl1) were significantly up-regulated in all three cell types, suggestive for a general role for the virus life cycl independent of the cell type. Both proteins have been implicated in cellular exocytosis and transport of glycoproteins through the secre tory pathway. To test the significance of the observed up-regulation, the functionality of these proteins was modulated, and the effect on virus replication was monitored. Inhibition of either Lman1 or sybl1 resulted in a significant reduction in virus production. Conclusions: This suggests that proteins of the secretory pathway which appear to be rate limiting for virus production may represent new targets for intervention.
Collapse
Affiliation(s)
- J Mages
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The mechanisms of agonist-induced calcium entry (ACE) following depletion of intracellular calcium stores have not been fully established. We report here that calcium-independent phospholipase A (iPLA2) is required for robust Ca2+ entry in HaCaT keratinocytes following ATP or UTP stimulation. Lysophosphatidic acid (LPA), an unrelated agonist, evoked Ca2+ release without inducing robust Ca2+ entry. Both LPA and UTP induced the redistribution of STIM1 into puncta which localized to regions near or at the plasma membrane, as well as within the cytoplasm. Plasma membrane-associated STIM1 remained high for up to 10 min after UTP stimulation, whereas it had returned almost to baseline by that time point in LPA-stimulated cells. This correlated with faster reloading of the endoplasmic reticulum Ca2+ stores in LPA treated cells. Thus by differentially regulating store-refilling after agonist-mediated depletion, LPA and UTP may exert distinct effects on the duration of STIM1 localization at the plasma membrane, and thus, on the magnitude and duration of ACE.
Collapse
Affiliation(s)
- Kehinde Ross
- Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | | | | |
Collapse
|
40
|
VanRheenen SM, Luo ZQ, O'Connor T, Isberg RR. Members of a Legionella pneumophila family of proteins with ExoU (phospholipase A) active sites are translocated to target cells. Infect Immun 2006; 74:3597-606. [PMID: 16714592 PMCID: PMC1479236 DOI: 10.1128/iai.02060-05] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Legionella pneumophila replicates within alveolar macrophages, causing a severe pneumonia termed Legionnaires' disease. The bacterium resides within a vacuole that escapes immediate transport to the host lysosome. Instead, the vacuole interacts with the early secretory pathway to establish an environment suitable for rapid multiplication. A type IV secretion system is central to the pathogenicity of the bacterium, and many protein substrates that are translocated by this system to the host cell have been identified. One of these, VipD, was found to interrupt the late secretory pathway when overproduced in Saccharomyces cerevisiae. We independently identified VipD in a previous study and have further characterized this protein as well as its three paralogs. The vipD gene belongs to a family of L. pneumophila open reading frames that are predicted to contain a phospholipase A domain with sequence similarity to the type III-secreted toxin ExoU from Pseudomonas aeruginosa. Similarly to other known translocated proteins of L. pneumophila, VipD is strongly induced in early stationary phase, a time when the bacterium is most virulent. Detergent extraction studies of infected macrophages confirm that VipD is translocated into host cells via the type IV secretion system. A second assay for translocation revealed that two paralogs of VipD, VpdA and VpdB, also have translocation signals recognized by the type IV system. A strain lacking VipD and its three paralogs grew at wild-type rates in murine macrophages, although secondary mutations that cause growth defects in strains lacking VipD accumulate. The quadruple mutant displayed a growth advantage in the amoebal host Dictyostelium discoideum, indicating that the protein family may modulate intracellular growth in a complex fashion. VipD is mildly toxic when overproduced in eukaryotic cells, and the toxicity is partially dependent on the putative phospholipase active site. VipD and its paralogs therefore define a family of translocated proteins that may assist in the establishment of a vacuole suitable for bacterial replication through functioning as a phospholipase.
Collapse
Affiliation(s)
- Susan M VanRheenen
- Department of Molecular Biology and Microbiology and Howard Hughes Medical Institute, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | | | | | | |
Collapse
|
41
|
Souto-Padrón T, Lima AP, Ribeiro RDO. Effects of dibucaine on the endocytic/exocytic pathways in Trypanosoma cruzi. Parasitol Res 2006; 99:317-20. [PMID: 16612626 DOI: 10.1007/s00436-006-0192-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 03/09/2006] [Indexed: 11/28/2022]
Abstract
Although local anesthetics (LA) are considered primarily Na+-channel blockers in the past decade, an alternative action of LA as inhibitors of fusion among compartments of the endocytic/exocytic pathways was described. In epimastigote forms of Trypanosoma cruzi, we observed that 50 mM dibucaine reduced the rates of uptake of bovine serum albumin (BSA) and immunoglobulin to 60% of control values in addition to the delay of exocytosis of cysteine proteases. Fusion among endocytic compartments was not inhibited in the presence of dibucaine because previously labeled reservosomes was loaded with a second label in sequential pulse-chase experiments. However, dibucaine reduced the degradation of BSA-gold complex in the reservosomes, which was not caused either by an inhibition of the whole proteolytic activity of the parasite or by a reduction on the expression levels of cruzipain. The immunocytochemical analysis suggested that the inhibition of the degradation of gold-labeled BSA in reservosomes could be due to a subversion of the regular traffic of proteases toward the reservosomes in dibucaine-treated cells.
Collapse
Affiliation(s)
- Thaïs Souto-Padrón
- Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
42
|
Chapter 7 Lipid Vesicles—Development and Applications for Studding Membrane Heterogeneity and Interactions. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2006. [DOI: 10.1016/s1554-4516(06)05007-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
43
|
Chambers K, Judson B, Brown WJ. A unique lysophospholipid acyltransferase (LPAT) antagonist, CI-976, affects secretory and endocytic membrane trafficking pathways. J Cell Sci 2005; 118:3061-71. [PMID: 15972316 DOI: 10.1242/jcs.02435] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that inhibition of a Golgi-complex-associated lysophospholipid acyltransferase (LPAT) activity by the drug CI-976 stimulates Golgi tubule formation and subsequent redistribution of resident Golgi proteins to the endoplasmic reticulum (ER). Here, we show that CI-976 stimulates tubule formation from all subcompartments of the Golgi complex, and often these tubules formed independently, i.e. individual tubules usually did not contain markers from different subcompartments. Whereas the cis, medial and trans Golgi membranes redistributed to the ER, the trans Golgi network (TGN) collapsed back to a compact juxtanuclear position similar to that seen with brefeldin A (BFA) treatment. Also similar to BFA, CI-976 induced the formation of endosome tubules, but unlike BFA, these tubules did not fuse with TGN tubules. Finally, CI-976 produced an apparently irreversible block in the endocytic recycling pathway of transferrin (Tf) and Tf receptors (TfRs) but had no direct effect on Tf uptake from the cell surface. Tf and TfRs accumulated in centrally located, Rab11-positive vesicles indicating that CI-976 inhibits export of cargo from the central endocytic recycling compartment. These results, together with previous studies, demonstrate that CI-976 inhibits multiple membrane trafficking steps, including ones found in the endocytic and secretory pathways, and imply a wider role for lysophospholipid acyltransferases in membrane trafficking.
Collapse
Affiliation(s)
- Kimberly Chambers
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
44
|
Péchoux C, Boisgard R, Chanat E, Lavialle F. Ca(2+)-independent phospholipase A2 participates in the vesicular transport of milk proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1743:317-29. [PMID: 15843044 DOI: 10.1016/j.bbamcr.2005.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 01/12/2005] [Accepted: 01/13/2005] [Indexed: 11/16/2022]
Abstract
Changes in the lipid composition of intracellular membranes are believed to take part in the molecular processes that sustain traffic between organelles of the endocytic and exocytic transport pathways. Here, we investigated the participation of the calcium-independent phospholipase A2 in the secretory pathway of mammary epithelial cells. Treatment with bromoenol lactone, a suicide substrate which interferes with the production of lysophospholipids by the calcium-independent phospholipase A2, resulted in the reduction of milk proteins secretion. The inhibitor slowed down transport of the caseins from the endoplasmic reticulum to the Golgi apparatus and affected the distribution of p58 and p23, indicating that the optimal process of transport of these proteins between the endoplasmic reticulum, the endoplasmic reticulum/Golgi intermediate compartment and/or the cis-side of the Golgi was dependent upon the production of lysolipids. Moreover, bromoenol lactone was found to delay the rate of protein transport from the trans-Golgi network to the plasma membrane. Concomitantly, membrane-bound structures containing casein accumulated in the juxtanuclear Golgi region. We concluded from these results that efficient formation of post-Golgi carriers also requires the phospholipase activity. These data further support the participation of calcium-independent phospholipase A2 in membrane trafficking and shed a new light on the tubulo/vesicular transport of milk protein through the secretory pathway.
Collapse
Affiliation(s)
- Christine Péchoux
- Institut National de la Recherche Agronomique, Laboratoire de Génomique et Physiologie de la Lactation. F-78352 Jouy-en-Josas Cedex, France
| | | | | | | |
Collapse
|
45
|
Staneva G, Angelova MI, Koumanov K. Phospholipase A2 promotes raft budding and fission from giant liposomes. Chem Phys Lipids 2004; 129:53-62. [PMID: 14998727 DOI: 10.1016/j.chemphyslip.2003.11.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Accepted: 11/30/2003] [Indexed: 11/26/2022]
Abstract
Cellular processes involving membrane vesiculation are related to cellular transport and membrane components trafficking. Endocytosis, formation of caveolae and caveosomes, as well as Golgi membranes traffic have been linked to the existence and dynamics of particular types of lipid/protein membrane domains, enriched in sphingolipids and cholesterol, called rafts [Nature 387 (1997) 569; Trends Cell Biol. 12 (2002) 296; Biochemistry 27 (1988) 6197]. In addition, the participation of phospholipases in the vesiculation of Golgi and other membranes has been already established [Traffic 1 (2000) 504] essentially in their role in the production of second messenger molecules. In this work we illustrate with raft-containing giant lipid vesicles a mechanism for raft-vesicle expulsion from the membrane due to the activity of a single enzyme-phospholipase A(2) (PLA(2)). This leads to the hypothesis that the PLA(2), apart from its role in second messenger generation, might play a direct and general role in the vesiculation processes underlying the intermembrane transport of rafts through purely physicochemical mechanisms. These mechanisms would be: enzyme adsorption leading to membrane curvature generation (budding), and enzyme activity modulation of the line tension at the raft boundaries, which induces vesicle fission.
Collapse
Affiliation(s)
- Galya Staneva
- Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl.21, 1113 Sofia, Bulgaria
| | | | | |
Collapse
|
46
|
Chan D, Strang M, Judson B, Brown WJ. Inhibition of membrane tubule formation and trafficking by isotetrandrine, an antagonist of G-protein-regulated phospholipase A2 enzymes. Mol Biol Cell 2004; 15:1871-80. [PMID: 14767064 PMCID: PMC379283 DOI: 10.1091/mbc.e03-09-0644] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 11/30/2003] [Accepted: 01/11/2004] [Indexed: 11/11/2022] Open
Abstract
Previous studies have established a role for cytoplasmic phospholipase A(2) (PLA(2)) activity in tubule-mediated retrograde trafficking between the Golgi complex and the endoplasmic reticulum (ER). However, little else is known about how membrane tubule formation is regulated. This study demonstrates that isotetrandrine (ITD), a biscoclaurine alkaloid known to inhibit PLA(2) enzyme activation by heterotrimeric G-proteins, effectively prevented brefeldin A (BFA)-induced tubule formation from the Golgi complex and retrograde trafficking to the ER. In addition, ITD inhibited BFA-stimulated tubule formation from the trans-Golgi network and endosomes. ITD inhibition of the BFA response was potent (IC(50) approximately 10-20 microM) and rapid (complete inhibition with a 10-15-min preincubation). ITD also inhibited normal retrograde trafficking as revealed by the formation of nocodazole-induced Golgi mini-stacks at ER exit sites. Treatment of cells with ITD alone caused the normally interconnected Golgi ribbons to become fragmented and dilated, but cisternae were still stacked and located in a juxtanuclear position. These results suggest that a G-protein-binding PLA(2) enzyme plays a pivotal role in tubule mediated trafficking between the Golgi and the ER, the maintenance of the interconnected ribbons of Golgi stacks, and tubule formation from endosomes.
Collapse
Affiliation(s)
- Diane Chan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 18483, USA
| | | | | | | |
Collapse
|
47
|
Chambers K, Brown WJ. Characterization of a novel CI-976-sensitive lysophospholipid acyltransferase that is associated with the Golgi complex. Biochem Biophys Res Commun 2004; 313:681-6. [PMID: 14697244 DOI: 10.1016/j.bbrc.2003.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent studies have identified a novel lysophospholipid acyltransferase (LPAT) that is associated with the Golgi complex and that is sensitive to the previously characterized acyl-CoA cholesterol acyltransferase inhibitor, 2,2-methyl-N-(2,4,6-trimethoxyphenyl)dodecanamide (CI-976). Here we show that besides acting on exogenous lysophospholipid (LPL) substrates, the CI-976-sensitive LPAT is also capable of reacylating endogenous Golgi LPL substrates, preferentially lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE). Moreover, using exogenous substrates, we find that the CI-976-sensitive LPAT is capable of using a variety of fatty acyl-CoA donors ranging in chain length from 10 to 20 carbons. Additional characterization demonstrates that the CI-976-sensitive LPAT is ubiquitously expressed in rat tissues, is tightly associated with Golgi membranes, and has a pH optimum between pH 7.0 and 8.0. These studies further define a unique LPC/LPE-specific LPAT from Golgi membranes that likely has a novel function in membrane trafficking.
Collapse
Affiliation(s)
- Kimberly Chambers
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
48
|
Pathre P, Shome K, Blumental-Perry A, Bielli A, Haney CJ, Alber S, Watkins SC, Romero G, Aridor M. Activation of phospholipase D by the small GTPase Sar1p is required to support COPII assembly and ER export. EMBO J 2003; 22:4059-69. [PMID: 12912905 PMCID: PMC175780 DOI: 10.1093/emboj/cdg390] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The small GTPase Sar1p controls the assembly of the cytosolic COPII coat that mediates export from the endoplasmic reticulum (ER). Here we demonstrate that phospholipase D (PLD) activation is required to support COPII-mediated ER export. PLD activity by itself does not lead to the recruitment of COPII to the membranes or ER export. However, PLD activity is required to support Sar1p-dependent membrane tubulation, the subsequent Sar1p-dependent recruitment of Sec23/24 and Sec13/31 COPII complexes to ER export sites and ER export. Sar1p recruitment to the membrane is PLD independent, yet activation of Sar1p is required to stimulate PLD activity on ER membranes, thus PLD is temporally regulated to support ER export. Regulated modification of membrane lipid composition is required to support the cooperative interactions that enable selective transport, as we demonstrate here for the mammalian COPII coat.
Collapse
Affiliation(s)
- Purnima Pathre
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Drecktrah D, Chambers K, Racoosin EL, Cluett EB, Gucwa A, Jackson B, Brown WJ. Inhibition of a Golgi complex lysophospholipid acyltransferase induces membrane tubule formation and retrograde trafficking. Mol Biol Cell 2003; 14:3459-69. [PMID: 12925777 PMCID: PMC181581 DOI: 10.1091/mbc.e02-11-0711] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Recent studies have suggested that formation of Golgi membrane tubules involves the generation of membrane-associated lysophospholipids by a cytoplasmic Ca2+-independent phospholipase A2 (PLA2). Herein, we provide additional support for this idea by showing that inhibition of lysophospholipid reacylation by a novel Golgi-associated lysophosphatidylcholine acyltransferase (LPAT) induces the rapid tubulation of Golgi membranes, leading in their retrograde movement to the endoplasmic reticulum. Inhibition of the Golgi LPAT was achieved by 2,2-dimethyl-N-(2,4,6-trimethoxyphenyl)dodecanamide (CI-976), a previously characterized antagonist of acyl-CoA cholesterol acyltransferase. The effect of CI-976 was similar to that of brefeldin A, except that the coatomer subunit beta-COP remained on Golgi-derived membrane tubules. CI-976 also enhanced the cytosol-dependent formation of tubules from Golgi complexes in vitro and increased the levels of lysophosphatidylcholine in Golgi membranes. Moreover, preincubation of cells with PLA2 antagonists inhibited the ability of CI-976 to induce tubules. These results suggest that Golgi membrane tubule formation can result from increasing the content of lysophospholipids in membranes, either by stimulation of a PLA2 or by inhibition of an LPAT. These two opposing enzyme activities may help to coordinately regulate Golgi membrane shape and tubule formation.
Collapse
Affiliation(s)
- Daniel Drecktrah
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Grewal S, Ponnambalam S, Walker JH. Association of cPLA2-alpha and COX-1 with the Golgi apparatus of A549 human lung epithelial cells. J Cell Sci 2003; 116:2303-10. [PMID: 12711701 DOI: 10.1242/jcs.00446] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cytosolic phospholipase A2-alpha (cPLA2-alpha) is an 85 kDa, Ca2+-sensitive enzyme involved in receptor-mediated prostaglandin synthesis. In airway epithelial cells, the release of prostaglandins is crucial in regulating the inflammatory response. Although prostaglandin release has been studied in various epithelial cell models, the subcellular location of cPLA2-alpha in these cells is unknown. Using high-resolution confocal microscopy of the human A549 lung epithelial cell line, we show that cPLA2-alpha relocates from the cytosol and nuclei to a juxtanuclear region following stimulation with the Ca2+ ionophore A23187. Double staining with rhodamine-conjugated wheat germ agglutinin confirmed this region to be the Golgi apparatus. Markers specific for Golgi subcompartments revealed that cPLA2-alpha is predominantly located at the trans-Golgi stack and the trans-Golgi network following elevation of cytosolic Ca2+. Furthermore, treatment of cells with the Golgi-disrupting agent brefeldin A caused a redistribution of cPLA2-alpha, confirming that cPLA2-alpha associates with Golgi-derived membranes. Finally, a specific co-localization of cPLA2-alpha with cyclooxygenase-1 but not cyclooxygenase-2 was evident at the Golgi apparatus. These results, combined with recent data on the role of PLA2 activity in maintaining Golgi structure and function, suggest that Golgi localization of cPLA2-alpha may be involved in membrane trafficking in epithelial cells.
Collapse
Affiliation(s)
- Seema Grewal
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | | | |
Collapse
|