1
|
Ciacciarelli EJ, Dunn SD, Gohar T, Joseph Sloand T, Niedringhaus M, West EA. Medial prefrontal cortex to nucleus reuniens circuit is critical for performance in an operant delayed nonmatch to position task. Neurobiol Learn Mem 2025; 217:108007. [PMID: 39586458 PMCID: PMC11769756 DOI: 10.1016/j.nlm.2024.108007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Working memory refers to the temporary retention of a small amount of information used in the execution of a cognitive task. The prefrontal cortex and its connections with thalamic subregions are thought to mediate specific aspects of working memory, including engaging with the hippocampus to mediate memory retrieval. We used an operant delayed-non match to position task, which does not require the hippocampus, to determine roles of the rodent medial prefrontal cortex (mPFC), the nucleus reuniens thalamic region (RE), and their connection. We found that transient inactivation of the mPFC and RE using the GABA-A agonist muscimol led to a delay-independent reduction in behavioral performance in the delayed non-match to position paradigm. We used a chemogenetic approach to determine the directionality of the necessary circuitry for behavioral performance reliant on working memory. Specifically, when we targeted mPFC neurons that project to the RE (mPFC-RE) we found a delay-independent reduction in the delayed non-match to position task, but not when we targeted RE neurons that project to the mPFC (RE-mPFC). Our results suggest a broader role for the mPFC-RE circuit in mediating working memory beyond the connection with the hippocampus.
Collapse
Affiliation(s)
- Evan J Ciacciarelli
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, United States; Rowan-Virtua School of Osteopathic Medicine, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, NJ, 08084, United States
| | - Scott D Dunn
- Rowan-Virtua School of Osteopathic Medicine, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, NJ, 08084, United States
| | - Taqdees Gohar
- Rowan-Virtua School of Osteopathic Medicine, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, NJ, 08084, United States; MARC Program, Rutgers University-Camden, Camden, NJ, 08102, United States
| | - T Joseph Sloand
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, United States; Rowan-Virtua School of Osteopathic Medicine, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, NJ, 08084, United States
| | - Mark Niedringhaus
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, United States; Rowan-Virtua School of Osteopathic Medicine, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, NJ, 08084, United States.
| | - Elizabeth A West
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, United States; Rowan-Virtua School of Osteopathic Medicine, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, NJ, 08084, United States.
| |
Collapse
|
2
|
Pujara MS, Murray EA. Prefrontal-Amygdala Pathways for Object and Social Value Representation. J Cogn Neurosci 2024; 36:2687-2696. [PMID: 38527093 PMCID: PMC11602012 DOI: 10.1162/jocn_a_02144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This special focus article was prepared to honor the memory of our National Institutes of Health colleague, friend, and mentor Leslie G. Ungerleider, who passed away in December 2020, and is based on a presentation given at a symposium held in her honor at the National Institutes of Health in September 2022. In this article, we describe an extension of Leslie Ungerleider's influential work on the object analyzer pathway in which the inferior temporal visual cortex interacts with the amygdala, and then discuss a broader role for the amygdala in stimulus-outcome associative learning in humans and nonhuman primates. We summarize extant data from our and others' laboratories regarding two distinct frontal-amygdala circuits that subserve nonsocial and social valuation processes. Both neuropsychological and neurophysiological data suggest a role for the OFC in nonsocial valuation and the ACC in social valuation. More recent evidence supports the possibility that the amygdala functions in conjunction with these frontal regions to subserve these distinct, complex valuation processes. We emphasize the dynamic nature of valuation processes and advocate for additional research on amygdala-frontal interactions in these domains.
Collapse
|
3
|
Yuan Z, Qi Z, Wang R, Cui Y, An S, Wu G, Feng Q, Lin R, Dai R, Li A, Gong H, Luo Q, Fu L, Luo M. A corticoamygdalar pathway controls reward devaluation and depression using dynamic inhibition code. Neuron 2023; 111:3837-3853.e5. [PMID: 37734380 DOI: 10.1016/j.neuron.2023.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/03/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Reward devaluation adaptively controls reward intake. It remains unclear how cortical circuits causally encode reward devaluation in healthy and depressed states. Here, we show that the neural pathway from the anterior cingulate cortex (ACC) to the basolateral amygdala (BLA) employs a dynamic inhibition code to control reward devaluation and depression. Fiber photometry and imaging of ACC pyramidal neurons reveal reward-induced inhibition, which weakens during satiation and becomes further attenuated in depression mouse models. Ablating or inhibiting these neurons desensitizes reward devaluation, causes reward intake increase and ultimate obesity, and ameliorates depression, whereas activating the cells sensitizes reward devaluation, suppresses reward consumption, and produces depression-like behaviors. Among various ACC neuron subpopulations, the BLA-projecting subset bidirectionally regulates reward devaluation and depression-like behaviors. Our study thus uncovers a corticoamygdalar circuit that encodes reward devaluation via blunted inhibition and suggests that enhancing inhibition within this circuit may offer a therapeutic approach for treating depression.
Collapse
Affiliation(s)
- Zhengwei Yuan
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; National Institute of Biological Sciences, Beijing 102206, China; Chinese Institute for Brain Research, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), Beijing 102206, China
| | - Zhongyang Qi
- National Institute of Biological Sciences, Beijing 102206, China; Wuhan National Laboratory for Optoelectronics-Huazhong, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruiyu Wang
- National Institute of Biological Sciences, Beijing 102206, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Yuting Cui
- National Institute of Biological Sciences, Beijing 102206, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Sile An
- Wuhan National Laboratory for Optoelectronics-Huazhong, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guoli Wu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qiru Feng
- National Institute of Biological Sciences, Beijing 102206, China
| | - Rui Lin
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), Beijing 102206, China
| | - Ruicheng Dai
- National Institute of Biological Sciences, Beijing 102206, China; School of Life Sciences, Peking University, Beijing 100871, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Anan Li
- Wuhan National Laboratory for Optoelectronics-Huazhong, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Gong
- Wuhan National Laboratory for Optoelectronics-Huazhong, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingming Luo
- Wuhan National Laboratory for Optoelectronics-Huazhong, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ling Fu
- Wuhan National Laboratory for Optoelectronics-Huazhong, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Minmin Luo
- National Institute of Biological Sciences, Beijing 102206, China; Chinese Institute for Brain Research, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), Beijing 102206, China; Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 100005, China; New Cornerstone Science Laboratory, Shenzhen 518054, China; Beijing Tiantan Hospital, 100070 Beijing, China.
| |
Collapse
|
4
|
Gohar T, Ciacciarelli EJ, Dunn SD, West EA. Transient strain differences in an operant delayed non-match to position task. Behav Processes 2023; 211:104932. [PMID: 37604215 PMCID: PMC10493892 DOI: 10.1016/j.beproc.2023.104932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Working memory refers to the temporary retention of a small amount of information used in the execution of a cognitive task. Working memory impairments are one of the common hallmarks of many neuropsychiatric and neurological disorders including schizophrenia and Alzheimer's disease. Here, we investigated Fischer 344 and Long-Evans rats for strain and sex differences in working memory using the operant-based DNMTP task. Rats were required to press one of two levers presented during a sample phase and followed by a 2-32 second delay, the rats were then required to press the opposite, nonmatch, lever during the choice phase. We found a transient strain difference with Fischer 344 rats performing better than Long-Evans early in training. The Fischer 344 strain showed stable performance across sessions while the performance of Long-Evans increased in the later sessions. Since different background rat strains are used for transgenic rat models, it is critical to be able to compare the behavioral performance across different strains. These findings have implications in behavioral neuroscience research as understanding the typical behavioral endpoints in different background strains will aid our understanding of how different models affect behavioral performance.
Collapse
Affiliation(s)
- Taqdees Gohar
- MARC Program, Rutgers University-Camden, Camden, NJ 08102, USA; Cell Biology and Neuroscience, USA
| | | | | | - Elizabeth A West
- Cell Biology and Neuroscience, USA; Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA.
| |
Collapse
|
5
|
Niedringhaus M, West EA. Prelimbic cortex neural encoding dynamically tracks expected outcome value. Physiol Behav 2022; 256:113938. [PMID: 35944659 PMCID: PMC11247951 DOI: 10.1016/j.physbeh.2022.113938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Animals must modify their behavior based on updated expected outcomes in a changing environment. Prelimbic cortex (PrL) neural encoding during learning predicts, and is necessary for, appropriately altering behavior based on a new expected outcome value following devaluation. We aimed to determine how PrL neural activity encodes reward predictive cues after the expected outcome value of those cues is decreased following conditioned taste aversion. In one post-devaluation session, rats were tested under extinction to determine their ability to alter their behavior to the expected outcome values (i.e., extinction test). In a second post-devaluation session, rats were tested with the newly devalued outcome delivered so that the rats experienced the updated outcome value within the session (i.e., re-exposure test). We found that PrL neural encoding of the cue associated with the devalued reward predicted the ability of rats to suppress behavior in the extinction test session, but not in the re-exposure test session. While all rats were able to successfully devalue the outcome during conditioned taste aversion, a subset of rats continued to consume the devalued outcome in the re-exposure test session. We found differential patterns of PrL neural encoding in the population of rats that did not avoid the devalued outcome during the re-exposure test compared to the rats that successfully avoided the devalued outcome. Our findings suggest that PrL neural encoding dynamically tracks expected outcome values, and differential neural encoding in the PrL to reward predictive cues following expected outcome value changes may contribute to distinct behavioral phenotypes.
Collapse
Affiliation(s)
- Mark Niedringhaus
- Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084
| | - Elizabeth A West
- Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084; Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084.
| |
Collapse
|
6
|
Wassum KM. Amygdala-cortical collaboration in reward learning and decision making. eLife 2022; 11:e80926. [PMID: 36062909 PMCID: PMC9444241 DOI: 10.7554/elife.80926] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/22/2022] [Indexed: 12/16/2022] Open
Abstract
Adaptive reward-related decision making requires accurate prospective consideration of the specific outcome of each option and its current desirability. These mental simulations are informed by stored memories of the associative relationships that exist within an environment. In this review, I discuss recent investigations of the function of circuitry between the basolateral amygdala (BLA) and lateral (lOFC) and medial (mOFC) orbitofrontal cortex in the learning and use of associative reward memories. I draw conclusions from data collected using sophisticated behavioral approaches to diagnose the content of appetitive memory in combination with modern circuit dissection tools. I propose that, via their direct bidirectional connections, the BLA and OFC collaborate to help us encode detailed, outcome-specific, state-dependent reward memories and to use those memories to enable the predictions and inferences that support adaptive decision making. Whereas lOFC→BLA projections mediate the encoding of outcome-specific reward memories, mOFC→BLA projections regulate the ability to use these memories to inform reward pursuit decisions. BLA projections to lOFC and mOFC both contribute to using reward memories to guide decision making. The BLA→lOFC pathway mediates the ability to represent the identity of a specific predicted reward and the BLA→mOFC pathway facilitates understanding of the value of predicted events. Thus, I outline a neuronal circuit architecture for reward learning and decision making and provide new testable hypotheses as well as implications for both adaptive and maladaptive decision making.
Collapse
Affiliation(s)
- Kate M Wassum
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
- Brain Research Institute, University of California, Los AngelesLos AngelesUnited States
- Integrative Center for Learning and Memory, University of California, Los AngelesLos AngelesUnited States
- Integrative Center for Addictive Disorders, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
7
|
Keefer SE, Kochli DE, Calu DJ. Inactivation of the Basolateral Amygdala to Insular Cortex Pathway Makes Sign-Tracking Sensitive to Outcome Devaluation. eNeuro 2022; 9:ENEURO.0156-22.2022. [PMID: 36127135 PMCID: PMC9522321 DOI: 10.1523/eneuro.0156-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/26/2022] [Accepted: 09/11/2022] [Indexed: 12/15/2022] Open
Abstract
Goal-tracking (GT) rats are sensitive to Pavlovian outcome devaluation while sign-tracking (ST) rats are devaluation insensitive. During outcome devaluation, GT rats flexibly modify responding to cues based on the current value of the associated outcome. However, ST rats rigidly respond to cues regardless of the current outcome value. Prior work demonstrated disconnection of the basolateral amygdala (BLA) and anterior insular cortex (aIC) decreased both GT and ST behaviors. Given the role of these regions in appetitive motivation and behavioral flexibility, we predicted that disrupting BLA to aIC pathway during outcome devaluation would reduce flexibility in GT rats and reduce rigid appetitive motivation in ST rats. We inhibited the BLA to aIC pathway by infusing inhibitory DREADDs (hM4Di-mcherry) or control (mCherry) virus into the BLA and implanted cannulae into the aIC to inhibit BLA terminals using intracranial injections of clozapine N-oxide (CNO). After training, we used a within-subject satiety-induced outcome devaluation procedure in which we sated rats on training pellets (devalued condition) or homecage chow (valued condition). All rats received bilateral CNO infusions into the aIC before brief nonreinforced test sessions. Contrary to our hypothesis, BLA-IC inhibition did not interfere with devaluation sensitivity in GT rats but did make ST behaviors sensitive to devaluation. Intermediate rats showed the opposite effect, showing rigid responding to cues with BLA-aIC pathway inactivation. Together, these results demonstrate BLA-IC projections mediate tracking-specific Pavlovian devaluation sensitivity and highlights the importance of considering individual differences in Pavlovian approach when evaluating circuitry contributions to behavioral flexibility.
Collapse
Affiliation(s)
- Sara E Keefer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Daniel E Kochli
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Donna J Calu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
8
|
Sivils A, Wang JQ, Chu XP. Striatonigrostriatal Spirals in Addiction. Front Neural Circuits 2021; 15:803501. [PMID: 34955762 PMCID: PMC8703003 DOI: 10.3389/fncir.2021.803501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
A biological reward system is integral to all animal life and humans are no exception. For millennia individuals have investigated this system and its influences on human behavior. In the modern day, with the US facing an ongoing epidemic of substance use without an effective treatment, these investigations are of paramount importance. It is well known that basal ganglia contribute to rewards and are involved in learning, approach behavior, economic choices, and positive emotions. This review aims to elucidate the physiological role of striatonigrostriatal (SNS) spirals, as part of basal ganglia circuits, in this reward system and their pathophysiological role in perpetuating addiction. Additionally, the main functions of neurotransmitters such as dopamine and glutamate and their receptors in SNS circuits will be summarized. With this information, the claim that SNS spirals are crucial intermediaries in the shift from goal-directed behavior to habitual behavior will be supported, making this circuit a viable target for potential therapeutic intervention in those with substance use disorders.
Collapse
Affiliation(s)
| | | | - Xiang-Ping Chu
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
9
|
Abstract
Here we argue that the assignment of subjective value to potential outcomes at the time of decision-making is an active process, in which individual features of a potential outcome of varying degrees of abstraction are represented hierarchically and integrated in a weighted fashion to produce an overall value judgment. We implicate the lateral orbital and medial prefrontal cortex in this function, situating these areas more broadly within a hierarchical integration process that takes place throughout the cortex for the ultimate purpose of valuing options to guide decisions.
Collapse
Affiliation(s)
- John P O'Doherty
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Kiyohito Iigaya
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
10
|
Delays to Reward Delivery Enhance the Preference for an Initially Less Desirable Option: Role for the Basolateral Amygdala and Retrosplenial Cortex. J Neurosci 2021; 41:7461-7478. [PMID: 34315810 DOI: 10.1523/jneurosci.0438-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 11/21/2022] Open
Abstract
Temporal costs influence reward-based decisions. This is commonly studied in temporal discounting tasks that involve choosing between cues signaling an imminent reward option or a delayed reward option. However, it is unclear whether the temporal delay before a reward can alter the value of that option. To address this, we identified the relative preference between different flavored rewards during a free-feeding test using male and female rats. Animals underwent training where either the initial preferred or the initial less preferred reward was delivered noncontingently. By manipulating the intertrial interval during training sessions, we could determine whether temporal delays impact reward preference in a subsequent free-feeding test. Rats maintained their initial preference if the same delays were used across all training sessions. When the initial less preferred option was delivered after short delays (high reward rate) and the initial preferred option was delivered after long delays (low reward rate), rats expectedly increased their preference for the initial less desirable option. However, rats also increased their preference for the initial less desirable option under the opposite training contingencies: delivering the initial less preferred reward after long delays and the initial preferred reward after short delays. These data suggest that sunk temporal costs enhance the preference for a less desirable reward option. Pharmacological and lesion experiments were performed to identify the neural systems responsible for this behavioral phenomenon. Our findings demonstrate the basolateral amygdala and retrosplenial cortex are required for temporal delays to enhance the preference for an initially less desirable reward.SIGNIFICANCE STATEMENT The goal of this study was to determine how temporal delays influence reward preference. We demonstrate that delivering an initially less desirable reward after long delays subsequently increases the consumption and preference for that reward. Furthermore, we identified the basolateral amygdala and the retrosplenial cortex as essential nuclei for mediating the change in reward preference elicited by sunk temporal costs.
Collapse
|
11
|
Keefer SE, Gyawali U, Calu DJ. Choose your path: Divergent basolateral amygdala efferents differentially mediate incentive motivation, flexibility and decision-making. Behav Brain Res 2021; 409:113306. [PMID: 33887310 PMCID: PMC8189324 DOI: 10.1016/j.bbr.2021.113306] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
To survive in a complex environment, individuals form associations between environmental stimuli and rewards to organize and optimize reward seeking behaviors. The basolateral amygdala (BLA) uses these learned associations to inform decision-making processes. In this review, we describe functional projections between BLA and its cortical and striatal targets that promote learning and motivational processes central to decision-making. Specifically, we compare and contrast divergent projections from the BLA to the orbitofrontal (OFC) and to the nucleus accumbens (NAc) and examine the roles of these pathways in associative learning, value-guided decision-making, choice behaviors, as well as cue and context-driven drug seeking. Finally, we consider how these projections are involved in disorders of motivation, with a focus on Substance Use Disorder.
Collapse
Affiliation(s)
- Sara E Keefer
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Utsav Gyawali
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, United States; Program in Neuroscience, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Donna J Calu
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, United States; Program in Neuroscience, University of Maryland, School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
12
|
West EA, Niedringhaus M, Ortega HK, Haake RM, Frohlich F, Carelli RM. Noninvasive Brain Stimulation Rescues Cocaine-Induced Prefrontal Hypoactivity and Restores Flexible Behavior. Biol Psychiatry 2021; 89:1001-1011. [PMID: 33678418 PMCID: PMC8106639 DOI: 10.1016/j.biopsych.2020.12.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND To obtain desirable goals, individuals must predict the outcome of specific choices, use that information to direct appropriate actions, and adjust behavior accordingly in changing environments (behavioral flexibility). Substance use disorders are marked by impairments in behavioral flexibility along with decreased prefrontal cortical function that limits the efficacy of treatment strategies. Restoring prefrontal hypoactivity, ideally in a noninvasive manner, is an intriguing target for improving flexible behavior and treatment outcomes. METHODS A behavioral flexibility task was used in Long-Evans male rats (n = 97) in conjunction with electrophysiology, optogenetics, and a novel rat model of transcranial alternating current stimulation (tACS) to examine the prelimbic cortex (PrL) to nucleus accumbens (NAc) core circuit in behavioral flexibility and determine whether tACS can restore cocaine-induced neural and cognitive dysfunction. RESULTS Optogenetic inactivation revealed that the PrL-NAc core circuit is necessary for the ability to learn strategies to flexibly shift behavior. Cocaine self-administration history caused aberrant PrL-NAc core neural encoding and deficits in flexibility. Optogenetics that selectively activated the PrL-NAc core pathway prior to learning rescued cocaine-induced cognitive flexibility deficits. Remarkably, tACS prior to learning the task reestablished adaptive signaling in the PrL-NAc circuit and restored flexible behavior in a relatively noninvasive and frequency-specific manner. CONCLUSIONS We establish a role of NAc core-projecting PrL neurons in behavioral flexibility and provide a novel noninvasive brain stimulation method in rats to rescue cocaine-induced frontal hypofunction and restore flexible behavior, supporting a role of tACS as a therapeutic to treat cognitive deficits in substance use disorders.
Collapse
Affiliation(s)
- Elizabeth A West
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, New Jersey.
| | - Mark Niedringhaus
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, New Jersey
| | - Heather K Ortega
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rachel M Haake
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Regina M Carelli
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
13
|
Elorette C, Aguilar BL, Novak V, Forcelli PA, Malkova L. Dysregulation of behavioral and autonomic responses to emotional and social stimuli following bidirectional pharmacological manipulation of the basolateral amygdala in macaques. Neuropharmacology 2020; 179:108275. [PMID: 32835765 DOI: 10.1016/j.neuropharm.2020.108275] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/24/2020] [Accepted: 08/13/2020] [Indexed: 11/28/2022]
Abstract
The amygdala is a key component of the neural circuits mediating the processing and response to emotionally salient stimuli. Amygdala lesions dysregulate social interactions, responses to fearful stimuli, and autonomic functions. In rodents, the basolateral and central nuclei of the amygdala have divergent roles in behavioral control. However, few studies have selectively examined these nuclei in the primate brain. Moreover, the majority of non-human primate studies have employed lesions, which only allow for unidirectional manipulation of amygdala activity. Thus, the effects of amygdala disinhibition on behavior in the primate are unknown. To address this gap, we pharmacologically inhibited by muscimol or disinhibited by bicuculline methiodide the basolateral complex of the amygdala (BLA; lateral, basal, and accessory basal) in nine awake, behaving male rhesus macaques (Macaca mulatta). We examined the effects of amygdala manipulation on: (1) behavioral responses to taxidermy snakes and social stimuli, (2) food competition and social interaction in dyads, (3) autonomic arousal as measured by cardiovascular response, and (4) prepulse inhibition of the acoustic startle (PPI) response. All modalities were impacted by pharmacological inhibition and/or disinhibition. Amygdala inhibition decreased fear responses to snake stimuli, increased examination of social stimuli, reduced competitive reward-seeking in dominant animals, decreased heart rate, and increased PPI response. Amygdala disinhibition restored fearful response after habituation to snakes, reduced competitive reward-seeking behavior in dominant animals, and lowered heart rate. Thus, both hypoactivity and hyperactivity of the basolateral amygdala can lead to dysregulated behavior, suggesting that a narrow range of activity is necessary for normal functions.
Collapse
Affiliation(s)
- Catherine Elorette
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, USA; Department of Pharmacology & Physiology, Georgetown University Medical Center, USA
| | - Brittany L Aguilar
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, USA; Department of Pharmacology & Physiology, Georgetown University Medical Center, USA
| | - Vera Novak
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| | - Patrick A Forcelli
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, USA; Department of Pharmacology & Physiology, Georgetown University Medical Center, USA; Department of Neuroscience, Georgetown University Medical Center, USA.
| | - Ludise Malkova
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, USA; Department of Pharmacology & Physiology, Georgetown University Medical Center, USA.
| |
Collapse
|
14
|
Fisher H, Pajser A, Pickens CL. Pre-training inactivation of basolateral amygdala and mediodorsal thalamus, but not orbitofrontal cortex or prelimbic cortex, impairs devaluation in a multiple-response/multiple-reinforcer cued operant task. Behav Brain Res 2019; 378:112159. [PMID: 31605743 DOI: 10.1016/j.bbr.2019.112159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/30/2019] [Accepted: 08/17/2019] [Indexed: 12/28/2022]
Abstract
Reinforcer devaluation is a task often used to model flexible goal-directed behavior. Here, we inactivated basolateral amygdala (BLA), orbitofrontal cortex (OFC), mediodorsal thalamus (MD) (Exp. 1) and prelimbic cortex (PL) (Exp. 3) in rats during multiple-response/multiple-reinforcer operant training with levers available to earn reinforcers during cued trials. After two training days with each lever-food relationship, a reinforcer was devalued through selective satiety and devaluation was assessed in a choice test with the brain areas non-inactivated. The control and OFC and PL inactivation groups exhibited a devaluation effect, but the BLA or MD groups did not. Since the OFC is proposed to be required in devaluation tasks when a discrete cue signals an outcome and PL is proposed to be required when responses based on lever spatial-location guide behavior, we ran new rats through a cue-switching experiment (Exp. 2) to determine the strategy rats use to complete our task (attending to the discrete light cue or spatial lever location). Both groups (cue switched and cue normal) showed a devaluation effect based on the lever spatial location, suggesting that rats rely on the spatial lever location to guide behavior. Future studies will determine whether OFC and PL can compensate for each other to show intact devaluation when the functioning of one of them is impaired.
Collapse
Affiliation(s)
- Hayley Fisher
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506, USA
| | - Alisa Pajser
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506, USA
| | - Charles L Pickens
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
15
|
Malvaez M, Shieh C, Murphy MD, Greenfield VY, Wassum KM. Distinct cortical-amygdala projections drive reward value encoding and retrieval. Nat Neurosci 2019; 22:762-769. [PMID: 30962632 PMCID: PMC6486448 DOI: 10.1038/s41593-019-0374-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 02/28/2019] [Indexed: 11/09/2022]
Abstract
The value of an anticipated rewarding event is a crucial component of the decision to engage in its pursuit. But little is known of the networks responsible for encoding and retrieving this value. By using biosensors and pharmacological manipulations, we found that basolateral amygdala (BLA) glutamatergic activity tracks and mediates encoding and retrieval of the state-dependent incentive value of a palatable food reward. Projection-specific, bidirectional chemogenetic and optogenetic manipulations revealed that the orbitofrontal cortex (OFC) supports the BLA in these processes. Critically, the function of ventrolateral and medial OFC→BLA projections is doubly dissociable. Whereas lateral OFC→BLA projections are necessary and sufficient for encoding of the positive value of a reward, medial OFC→BLA projections are necessary and sufficient for retrieving this value from memory. These data reveal a new circuit for adaptive reward valuation and pursuit and provide insight into the dysfunction in these processes that characterizes myriad psychiatric diseases.
Collapse
Affiliation(s)
- Melissa Malvaez
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christine Shieh
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael D Murphy
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Venuz Y Greenfield
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kate M Wassum
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA. .,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Santos VR, Kobayashi I, Hammack R, Danko G, Forcelli PA. Impact of strain, sex, and estrous cycle on gamma butyrolactone-evoked absence seizures in rats. Epilepsy Res 2018; 147:62-70. [PMID: 30261353 PMCID: PMC6226012 DOI: 10.1016/j.eplepsyres.2018.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/03/2018] [Accepted: 09/15/2018] [Indexed: 12/19/2022]
Abstract
Childhood absence epilepsy (CAE) is the most common pediatric epilepsy syndrome and is characterized by typical absence seizures (AS). AS are non-convulsive epileptic seizures characterized by a sudden loss of awareness and bilaterally generalized synchronous 2.5-4 Hz spike and slow-wave discharges (SWD). Gamma butyrolactone (GBL) is an acute pharmacological model of AS and induces bilaterally synchronous SWDs and behavioral arrest. Despite the long use of this model, little is known about its strain and sex-dependent features. We compared the dose-response profile of GBL-evoked SWDs in three rat strains (Long Evans, Sprague-Dawley, and Wistar), and examined the modulatory effects of estrous cycle on SWDs in female Wistar rats. We evaluated the number of seizures, the cumulative time seizing, and the average seizure duration as a function of dose, strain, and sex/estrous phase. Long Evans rats displayed the greatest sensitivity to GBL, followed by Wistar rats, and then by Sprague-Dawley rats. GBL-evoked SWDs were modulated by estrous cycle in female rats, with the lowest sensitivity to GBL occurring during metestrus. Wistar rats showed the greatest variability as a function of dose, and the least variability within dose; these features make this strain desirable for interventional studies. Moreover, our finding that the SWD response to GBL differs as a function of estrous cycle underscores the importance of cycle monitoring in studies examining female animals using this model. Together, these strain and sex-dependent findings provide guidance for future studies.
Collapse
Affiliation(s)
- Victor R Santos
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States
| | - Ihori Kobayashi
- Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, United States
| | - Robert Hammack
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States
| | - Gregory Danko
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States
| | - Patrick A Forcelli
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States; Department of Neuroscience, Georgetown University School of Medicine, United States; Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine, United States.
| |
Collapse
|
17
|
Parkes SL, Ravassard PM, Cerpa JC, Wolff M, Ferreira G, Coutureau E. Insular and Ventrolateral Orbitofrontal Cortices Differentially Contribute to Goal-Directed Behavior in Rodents. Cereb Cortex 2018; 28:2313-2325. [PMID: 28541407 DOI: 10.1093/cercor/bhx132] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/10/2017] [Indexed: 12/16/2023] Open
Abstract
The medial prefrontal cortex (mPFC) has long been considered a critical site in action control. However, recent evidence indicates that the contribution of cortical areas to goal-directed behavior likely extends beyond mPFC. Here, we examine the function of both insular (IC) and ventrolateral orbitofrontal (vlOFC) cortices in action-dependent learning. We used chemogenetics to study the consequences of IC or vlOFC inhibition on acquisition and performance of instrumental actions using the outcome devaluation task. Rats first learned to associate actions with desirable outcomes. Then, one of these outcomes was devalued and we assessed the rats' choice between the 2 actions. Typically, rats will bias their selection towards the action that delivers the still valued outcome. We show that chemogenetic-induced inhibition of IC during choice abolishes goal-directed control whereas inhibition during instrumental acquisition is without effect. IC is therefore necessary for action selection based on current outcome value. By contrast, vlOFC inhibition during acquisition or the choice test impaired goal-directed behavior but only following a shift in the instrumental contingencies. Our results provide clear evidence that vlOFC plays a critical role in action-dependent learning, which challenges the popular idea that this region of OFC is exclusively involved in stimulus-dependent behaviors.
Collapse
Affiliation(s)
- Shauna L Parkes
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Bordeaux, France
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France
- Universite de Bordeaux, Bordeaux, France
| | - Pascal M Ravassard
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Bordeaux, France
- Universite de Bordeaux, Bordeaux, France
| | - Juan-Carlos Cerpa
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Bordeaux, France
- Universite de Bordeaux, Bordeaux, France
| | - Mathieu Wolff
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Bordeaux, France
- Universite de Bordeaux, Bordeaux, France
| | - Guillaume Ferreira
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France
- Universite de Bordeaux, Bordeaux, France
| | - Etienne Coutureau
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Bordeaux, France
- Universite de Bordeaux, Bordeaux, France
| |
Collapse
|
18
|
Waguespack HF, Málková L, Forcelli PA, Turchi J. Effects of systemic cholinergic antagonism on reinforcer devaluation in macaques. Neurosci Lett 2018; 678:62-67. [PMID: 29729357 DOI: 10.1016/j.neulet.2018.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 11/16/2022]
Abstract
The capacity to adjust actions based on new information is a vital cognitive function. An animal's ability to adapt behavioral responses according to changes in reward value can be measured using a reinforcer devaluation task, wherein the desirability of a given object is reduced by decreasing the value of the associated food reinforcement. Elements of the neural circuits serving this ability have been studied in both rodents and nonhuman primates. Specifically, the basolateral amygdala, orbitofrontal cortex, nucleus accumbens, and mediodorsal thalamus have each been shown to play a critical role in the process of value updating, required for adaptive goal selection. As these regions receive dense cholinergic input, we investigated whether systemic injections of non-selective nicotinic or muscarinic acetylcholine receptor antagonists, mecamylamine and scopolamine, respectively, would impair performance on a reinforcer devaluation task. Here we demonstrate that in the presence of either a nicotinic or muscarinic antagonist, animals are able to shift their behavioral responses in an appropriate manner, suggesting that disruption of cholinergic neuromodulation is not sufficient to disrupt value updating, and subsequent goal selection, in rhesus macaques.
Collapse
Affiliation(s)
- Hannah F Waguespack
- Department of Pharmacology & Physiology, Georgetown University, New Research Bldg., 3970 Reservoir Rd. NW, Washington, DC 20007, USA.
| | - Ludise Málková
- Department of Pharmacology & Physiology, Georgetown University, New Research Bldg., 3970 Reservoir Rd. NW, Washington, DC 20007, USA.
| | - Patrick A Forcelli
- Department of Pharmacology & Physiology, Georgetown University, New Research Bldg., 3970 Reservoir Rd. NW, Washington, DC 20007, USA.
| | - Janita Turchi
- Laboratory of Neuropsychology, NIMH, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
A pilot study of the role of the claustrum in attention and seizures in rats. Epilepsy Res 2018; 140:97-104. [PMID: 29324357 DOI: 10.1016/j.eplepsyres.2018.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/07/2017] [Accepted: 01/03/2018] [Indexed: 11/21/2022]
Abstract
OBJECTIVE The claustrum has been implicated in consciousness, and MRIs of patients with status epilepticus have shown increased claustral signal intensity. In an attempt to investigate the role of claustrum in cognition and seizures, we (1) assessed the effect of high-frequency stimulation (HFS) of the claustrum on performance in the operant chamber; (2) studied interclaustral and claustrohippocampal connectivity through cerebro-cerebral evoked potentials (CCEPs); and (3) investigated the role of claustrum in kainate-induced (KA) seizures. METHODS Adult male Sprague-Dawley rats were trained in operant conditioning and implanted with electrodes in bilateral claustra and hippocampi. Claustrum HFS (50 Hz) was delivered bilaterally and unilaterally with increasing intensities from 50 to 1000 μA, and performance scores were assessed. CCEPs were studied by averaging the responses to bipolar stimulations, 1-ms wide pulses at 0.1 Hz to the claustrum. KA seizures were analyzed on video-EEG recordings. RESULTS Generalized Estimating Equations analysis revealed that claustral stimulation reduced task performance scores relative to rest sessions (bilateral: -15.8 percentage points, p < 0.0001; unilateral: -15.2, p < 0.0001). With some stimulations, the rats showed a stimulus-locked decrease in attentiveness and, occasionally, an inability to complete the operant task. CCEPs demonstrated interclaustral and claustrohippocampal connectivity. Some KA seizures appeared to originate from the claustrum. CONCLUSIONS Findings from the operant conditioning task suggest stimulation of the claustrum can alter attention or awareness. CCEPs demonstrated connectivity between the two claustra and between the claustrum and the hippocampi. Such connectivity may be part of the circuitry that underlies the alteration of awareness in limbic seizures. Lastly, KA seizures showed early involvement of the claustrum, a finding that also supports a possible role of the claustrum in the alteration of consciousness that accompanies dyscognitive seizures.
Collapse
|
20
|
Padoa-Schioppa C, Conen KE. Orbitofrontal Cortex: A Neural Circuit for Economic Decisions. Neuron 2017; 96:736-754. [PMID: 29144973 PMCID: PMC5726577 DOI: 10.1016/j.neuron.2017.09.031] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/14/2017] [Accepted: 09/20/2017] [Indexed: 11/24/2022]
Abstract
Economic choice behavior entails the computation and comparison of subjective values. A central contribution of neuroeconomics has been to show that subjective values are represented explicitly at the neuronal level. With this result at hand, the field has increasingly focused on the difficult question of where in the brain and how exactly subjective values are compared to make a decision. Here, we review a broad range of experimental and theoretical results suggesting that good-based decisions are generated in a neural circuit within the orbitofrontal cortex (OFC). The main lines of evidence supporting this proposal include the fact that goal-directed behavior is specifically disrupted by OFC lesions, the fact that different groups of neurons in this area encode the input and the output of the decision process, the fact that activity fluctuations in each of these cell groups correlate with choice variability, and the fact that these groups of neurons are computationally sufficient to generate decisions. Results from other brain regions are consistent with the idea that good-based decisions take place in OFC and indicate that value signals inform a variety of mental functions. We also contrast the present proposal with other leading models for the neural mechanisms of economic decisions. Finally, we indicate open questions and suggest possible directions for future research.
Collapse
Affiliation(s)
- Camillo Padoa-Schioppa
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Economics, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA.
| | - Katherine E Conen
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
21
|
Sharp WG, Allen AG, Stubbs KH, Criado KK, Sanders R, McCracken CE, Parsons RG, Scahill L, Gourley SL. Successful pharmacotherapy for the treatment of severe feeding aversion with mechanistic insights from cross-species neuronal remodeling. Transl Psychiatry 2017; 7. [PMID: 28632204 PMCID: PMC5537647 DOI: 10.1038/tp.2017.126] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Pediatric feeding disorders affect up to 5% of children, causing severe food intake problems that can result in serious medical and developmental outcomes. Behavioral intervention (BI) is effective in extinguishing feeding aversions, and also expert-dependent, time/labor-intensive and not well understood at a neurobiological level. Here we first conducted a double-blind, placebo-controlled trial comparing BI with BI plus d-cycloserine (DCS). DCS is a partial N-methyl-d-aspartate (NMDA) receptor agonist shown to augment extinction therapies in multiple anxiety disorders. We examined whether DCS enhanced extinction of feeding aversion in 15 children with avoidant/restrictive food intake disorder (ages 20-58 months). After five treatment days, BI improved feeding by 37%. By contrast, BI+DCS improved feeding by 76%. To gain insight into possible mechanisms of successful intervention, we next tested the neurobiological consequences of DCS in a murine model of feeding aversion and avoidance. In mice with conditioned food aversion, DCS enhanced avoidance extinction across a broad dose range. Confocal fluorescence microscopy and three-dimensional neuronal reconstruction indicated that DCS enlarged dendritic spine heads-the primary sites of excitatory plasticity in the brain-within the orbitofrontal prefrontal cortex, a sensory-cognition integration hub. DCS also increased phosphorylation of the plasticity-associated extracellular signal-regulated kinase 1/2. In summary, DCS successfully augments the extinction of food aversion in children and mice, an effect that may involve plasticity in the orbitofrontal cortex. These results warrant a larger-scale efficacy study of DCS for the treatment of pediatric feeding disorders and further investigations of neural mechanisms.
Collapse
Affiliation(s)
- W G Sharp
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA,Pediatric Psychology and Feeding Disorders Program, The Marcus Autism Center, Atlanta, GA, USA,Pediatric Psychology and Feeding Disorders Program, The Marcus Autism Center, 1920 Briarcliff Road, Atlanta, GA 30329, USA. E-mail:
| | - A G Allen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA,Yerkes National Primate Research Center, Atlanta, GA, USA
| | - K H Stubbs
- Pediatric Psychology and Feeding Disorders Program, The Marcus Autism Center, Atlanta, GA, USA
| | - K K Criado
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA,Pediatric Psychology and Feeding Disorders Program, The Marcus Autism Center, Atlanta, GA, USA
| | - R Sanders
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA
| | - C E McCracken
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - R G Parsons
- Graduate Program in Integrative Neuroscience and Program in Neuroscience, Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - L Scahill
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA,Pediatric Psychology and Feeding Disorders Program, The Marcus Autism Center, Atlanta, GA, USA
| | - S L Gourley
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA,Pediatric Psychology and Feeding Disorders Program, The Marcus Autism Center, Atlanta, GA, USA,Yerkes National Primate Research Center, Atlanta, GA, USA,Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
22
|
DePoy LM, Zimmermann KS, Marvar PJ, Gourley SL. Induction and Blockade of Adolescent Cocaine-Induced Habits. Biol Psychiatry 2017; 81:595-605. [PMID: 27871669 PMCID: PMC5359769 DOI: 10.1016/j.biopsych.2016.09.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 09/14/2016] [Accepted: 09/25/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cocaine use during adolescence increases vulnerability to drug dependence and decreases the likelihood that individuals will seek treatment as adults. Understanding how early-life cocaine exposure influences decision-making processes in adulthood is thus critically important. METHODS Adolescent or adult mice were exposed to subchronic cocaine, then behavioral sensitivity to changes in the predictive relationship between actions and their consequences was tested. Dendritic spines on the principal pyramidal neurons of the orbitofrontal prefrontal cortex (oPFC) were also imaged and enumerated. To determine whether cytoskeletal regulatory systems in the oPFC influenced decision-making strategies, we then inhibited the activity of Abl family and Rho kinases as well as NR2B-containing N-methyl-D-aspartate receptors. We also attempted to block the reinstatement of cocaine seeking in cocaine self-administering mice. RESULTS Adult mice with a history of subchronic cocaine exposure in adolescence engaged habit-based response strategies at the expense of goal-directed decision-making strategies and had fewer dendritic spines in the oPFC. Inhibition of the cytoskeletal regulatory Abl family kinases in the oPFC recapitulated these neurobehavioral deficiencies, whereas Rho kinase inhibition corrected response strategies. Additionally, the NR2B-selective N-methyl-D-aspartate receptor antagonists ifenprodil and CP-101,606 blocked cocaine-induced habits; this was dependent on Abl family signaling in the oPFC. Ifenprodil also mitigated cue-induced reinstatement of cocaine seeking in mice self-administering cocaine. CONCLUSIONS We suggest that adolescent cocaine exposure confers a bias toward habit-based behavior in adulthood via long-term cellular structural modifications in the oPFC. Treatments aimed at mitigating the durable consequences of early-life cocaine use may benefit from targeting cytoskeletal regulatory systems.
Collapse
Affiliation(s)
- Lauren M. DePoy
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine,Yerkes National Primate Research Center, Graduate Program in Neuroscience, Emory University
| | - Kelsey S. Zimmermann
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine,Yerkes National Primate Research Center, Graduate Program in Neuroscience, Emory University
| | - Paul J. Marvar
- Department of Pharmacology and Physiology, Department of Psychiatry and Behavioral Sciences, GW Institute for Neuroscience, The George Washington University
| | - Shannon L. Gourley
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine,Yerkes National Primate Research Center, Graduate Program in Neuroscience, Emory University,Contact: Shannon L. Gourley, PhD, Department of Pediatrics
- Graduate Program in Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta GA 30329, 404-727-2482,
| |
Collapse
|
23
|
Forcelli PA, Wellman LL, Malkova L. Blockade of glutamatergic transmission in the primate basolateral amygdala suppresses active behavior without altering social interaction. Behav Neurosci 2017; 131:192-200. [PMID: 28221080 DOI: 10.1037/bne0000187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The amygdala is an integrator of affective processing, and a key component of a network regulating social behavior. While decades of lesion studies in nonhuman primates have shown alterations in social interactions after amygdala damage, acute manipulations of the amygdala in primates have been underexplored. We recently reported (Wellman, Forcelli, Aguilar, & Malkova, 2016) that acute pharmacological inhibition of the basolateral complex of the amygdala (BLA) or the central nucleus of the amygdala increased affiliative social interactions in experimental dyads of macaques; this was achieved through microinjection of a GABA-A receptor agonist. Prior studies in rodents have shown similar effects achieved by blocking NMDA receptors or AMPA receptors within the BLA. Here, we sought to determine the role of these receptor systems in the primate BLA in the context of social behavior. In familiar dyads, we microinjected the NMDA receptor antagonist 2-amino-7-phosphonoheptanoic acid (AP7) or the AMPA receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) and observed behaviors and social interactions in the immediate postinjection period. In striking contrast with our prior report using GABA agonists, and in contrast with prior reports in rodents using glutamate antagonists, we found that neither NMDA nor AMPA blockade increase social interaction. Both treatments, however, were associated with decreases in locomotion and manipulation and increases in passive behavior. These data suggest that local blockade of glutamatergic neurotransmission in BLA is not the functional equivalent of local activation of GABAergic signaling, and raise interesting questions regarding the functional microcircuitry of the nonhuman primate amygdala in the context of social behavior. (PsycINFO Database Record
Collapse
Affiliation(s)
| | - Laurie L Wellman
- Department of Pharmacology and Physiology, Georgetown University
| | - Ludise Malkova
- Department of Pharmacology and Physiology, Georgetown University
| |
Collapse
|
24
|
Zimmermann KS, Yamin JA, Rainnie DG, Ressler KJ, Gourley SL. Connections of the Mouse Orbitofrontal Cortex and Regulation of Goal-Directed Action Selection by Brain-Derived Neurotrophic Factor. Biol Psychiatry 2017; 81:366-377. [PMID: 26786312 PMCID: PMC4871791 DOI: 10.1016/j.biopsych.2015.10.026] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 10/27/2015] [Accepted: 10/27/2015] [Indexed: 01/30/2023]
Abstract
BACKGROUND Distinguishing between actions that are more likely or less likely to be rewarded is a critical aspect of goal-directed decision making. However, neuroanatomic and molecular mechanisms are not fully understood. METHODS We used anterograde tracing, viral-mediated gene silencing, functional disconnection strategies, pharmacologic rescue, and designer receptors exclusively activated by designer drugs (DREADDs) to determine the anatomic and functional connectivity between the orbitofrontal cortex (OFC) and the amygdala in mice. In particular, we knocked down brain-derived neurotrophic factor (Bdnf) bilaterally in the OFC or generated an OFC-amygdala "disconnection" by pairing unilateral OFC Bdnf knockdown with lesions of the contralateral amygdala. We characterized decision-making strategies using a task in which mice selected actions based on the likelihood that they would be reinforced. Additionally, we assessed the effects of DREADD-mediated OFC inhibition on the consolidation of action-outcome conditioning. RESULTS As in other species, the OFC projects to the basolateral amygdala and dorsal striatum in mice. Bilateral Bdnf knockdown within the ventrolateral OFC and unilateral Bdnf knockdown accompanied by lesions of the contralateral amygdala impede goal-directed response selection, implicating BDNF-expressing OFC projection neurons in selecting actions based on their consequences. The tyrosine receptor kinase B agonist 7,8-dihydroxyflavone rescues action selection and increases dendritic spine density on excitatory neurons in the OFC. Rho-kinase inhibition also rescues goal-directed response strategies, linking neural remodeling with outcome-based decision making. Finally, DREADD-mediated OFC inhibition weakens new action-outcome memory. CONCLUSIONS Activity-dependent and BDNF-dependent neuroplasticity within the OFC coordinate outcome-based decision making through interactions with the amygdala. These interactions break reward-seeking habits, a putative factor in multiple psychopathologies.
Collapse
Affiliation(s)
- Kelsey S. Zimmermann
- Department of Pediatrics, Emory University, Atlanta, GA USA,Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA,Yerkes National Primate Research Center, Emory University, Atlanta, GA USA,Graduate Program in Neuroscience, Emory University, Atlanta, GA USA
| | - John A. Yamin
- Department of Pediatrics, Emory University, Atlanta, GA USA,Yerkes National Primate Research Center, Emory University, Atlanta, GA USA
| | - Donald G. Rainnie
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA,Yerkes National Primate Research Center, Emory University, Atlanta, GA USA,Graduate Program in Neuroscience, Emory University, Atlanta, GA USA
| | - Kerry J. Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA,Yerkes National Primate Research Center, Emory University, Atlanta, GA USA,Graduate Program in Neuroscience, Emory University, Atlanta, GA USA,Howard Hughes Medical Institute, Bethesda, MD, USA
| | - Shannon L. Gourley
- Department of Pediatrics, Emory University, Atlanta, GA USA,Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA,Yerkes National Primate Research Center, Emory University, Atlanta, GA USA,Graduate Program in Neuroscience, Emory University, Atlanta, GA USA
| |
Collapse
|
25
|
The Role of Orbitofrontal-Amygdala Interactions in Updating Action-Outcome Valuations in Macaques. J Neurosci 2017; 37:2463-2470. [PMID: 28148725 DOI: 10.1523/jneurosci.1839-16.2017] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/29/2016] [Accepted: 01/23/2017] [Indexed: 11/21/2022] Open
Abstract
A previous study revealed that, although monkeys with bilateral lesions of either the orbitofrontal cortex (OFC) or the amygdala could learn an action-outcome task, they could not adapt their choices in response to devalued outcomes. Specifically, they could not adjust their choice between two actions after the value of the outcome associated with one of the actions had decreased. Here, we investigated whether OFC needs to interact functionally with the amygdala in mediating such choices. Rhesus monkeys were trained to make two mutually exclusive actions on a touch-sensitive screen: "tap" and "hold." Taps led to the availability of one kind of food outcome; holds produced a different food. On each trial, monkeys could choose either a tap or a hold to earn the corresponding food reward. After consuming one of the two foods to satiety, monkeys were then tested on their ability to adapt their choices in response to the updated relative valuation of the two predicted outcomes. Whereas intact (control) monkeys shifted their choices toward the action associated with the higher value (nonsated) food, monkeys with crossed surgical disconnection of the amygdala and OFC did not. These findings demonstrate that amygdala-OFC interactions are necessary for choices among actions based on the updated value of predicted outcomes and they also have a bearing on the idea that OFC specializes in stimulus- or object-based choices in contrast to action- or response-based choices.SIGNIFICANCE STATEMENT Dysfunctional interactions between orbitofrontal cortex (OFC) and the amygdala underlie several mental health disorders, often related to value-based decision making. Understanding the underlying neural circuitry may help to develop therapies for those suffering from mood and anxiety disorders and provide insight into addiction. Here, we investigated whether the amygdala must interact with OFC to make adaptive choices. Monkeys learned to perform two different actions, "tap" for one kind of food reward and "hold" for another, and then one of the two foods was devalued temporarily. Intact monkeys shifted their choice to whichever action produced the higher-value food; monkeys with crossed surgical disconnection of OFC and the amygdala did not. Therefore, OFC and the amygdala must interact functionally to mediate adaptive choices.
Collapse
|
26
|
McCue DL, Kasper JM, Hommel JD. Regulation of motivation for food by neuromedin U in the paraventricular nucleus and the dorsal raphe nucleus. Int J Obes (Lond) 2017; 41:120-128. [PMID: 27748746 PMCID: PMC5209284 DOI: 10.1038/ijo.2016.178] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 09/02/2016] [Accepted: 09/13/2016] [Indexed: 12/02/2022]
Abstract
BACKGROUND Motivation for high-fat food is thought to contribute to excess caloric intake in obese individuals. A novel regulator of motivation for food may be neuromedin U (NMU), a highly-conserved neuropeptide that influences food intake. Although these effects of NMU have primarily been attributed to signaling in the paraventricular nucleus of the hypothalamus (PVN), NMU has also been found in other brain regions involved in both feeding behavior and motivation. We investigate the effects of NMU on motivation for food and food intake, and identify the brain regions mediating these effects. METHODS The motivational state for a particular reinforcer (e.g., high-fat food) can be assessed using a progressive-ratio schedule of reinforcement under which an increasing number of lever presses are required to obtain subsequent reinforcers. Here, we have used a progressive-ratio operant responding paradigm in combination with an assessment of cumulative food intake to evaluate the effects of NMU administration in rats, and identify the brain regions mediating these effects. RESULTS We found that peripheral administration of NMU decreases operant responding for high-fat food in rats. Evaluation of Fos-like immunoreactivity in response to peripheral NMU indicated the PVN and dorsal raphe nucleus (DRN) as sites of action for NMU. NMU infusion into either region mimics the effects of peripheral NMU on food intake and operant responding for food. NMU-containing projections from the lateral hypothalamus (LH) to the PVN and DRN were identified as an endogenous source of NMU. CONCLUSIONS These results identify the DRN as a site of action for NMU, demonstrate that the LH provides endogenous NMU to the PVN and DRN and implicate NMU signaling in the PVN and DRN as a novel regulator of motivation for high-fat foods.
Collapse
Affiliation(s)
- David L. McCue
- Department of Neuroscience, University of Texas Medical Branch, Galveston, TX 77555-0615
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555-0615
| | - James M. Kasper
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555-0615
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555-0615
| | - Jonathan D. Hommel
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555-0615
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555-0615
| |
Collapse
|
27
|
Umehara H, Fabbri R, Provensi G, Passani MB. The hypophagic factor oleoylethanolamide differentially increases c-fos expression in appetite regulating centres in the brain of wild type and histamine deficient mice. Pharmacol Res 2016; 113:100-107. [DOI: 10.1016/j.phrs.2016.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/27/2016] [Accepted: 08/16/2016] [Indexed: 01/12/2023]
|
28
|
Mannella F, Mirolli M, Baldassarre G. Goal-Directed Behavior and Instrumental Devaluation: A Neural System-Level Computational Model. Front Behav Neurosci 2016; 10:181. [PMID: 27803652 PMCID: PMC5067467 DOI: 10.3389/fnbeh.2016.00181] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/12/2016] [Indexed: 11/13/2022] Open
Abstract
Devaluation is the key experimental paradigm used to demonstrate the presence of instrumental behaviors guided by goals in mammals. We propose a neural system-level computational model to address the question of which brain mechanisms allow the current value of rewards to control instrumental actions. The model pivots on and shows the computational soundness of the hypothesis for which the internal representation of instrumental manipulanda (e.g., levers) activate the representation of rewards (or "action-outcomes", e.g., foods) while attributing to them a value which depends on the current internal state of the animal (e.g., satiation for some but not all foods). The model also proposes an initial hypothesis of the integrated system of key brain components supporting this process and allowing the recalled outcomes to bias action selection: (a) the sub-system formed by the basolateral amygdala and insular cortex acquiring the manipulanda-outcomes associations and attributing the current value to the outcomes; (b) three basal ganglia-cortical loops selecting respectively goals, associative sensory representations, and actions; (c) the cortico-cortical and striato-nigro-striatal neural pathways supporting the selection, and selection learning, of actions based on habits and goals. The model reproduces and explains the results of several devaluation experiments carried out with control rats and rats with pre- and post-training lesions of the basolateral amygdala, the nucleus accumbens core, the prelimbic cortex, and the dorso-medial striatum. The results support the soundness of the hypotheses of the model and show its capacity to integrate, at the system-level, the operations of the key brain structures underlying devaluation. Based on its hypotheses and predictions, the model also represents an operational framework to support the design and analysis of new experiments on the motivational aspects of goal-directed behavior.
Collapse
Affiliation(s)
- Francesco Mannella
- Laboratory of Computational Embodied Neuroscience, Institute of Cognitive Sciences and Technologies, National Research Council of Italy Rome, Italy
| | - Marco Mirolli
- Laboratory of Computational Embodied Neuroscience, Institute of Cognitive Sciences and Technologies, National Research Council of Italy Rome, Italy
| | - Gianluca Baldassarre
- Laboratory of Computational Embodied Neuroscience, Institute of Cognitive Sciences and Technologies, National Research Council of Italy Rome, Italy
| |
Collapse
|
29
|
Parkes SL, Ferreira G, Coutureau E. Acquisition of specific response–outcome associations requires NMDA receptor activation in the basolateral amygdala but not in the insular cortex. Neurobiol Learn Mem 2016; 128:40-5. [DOI: 10.1016/j.nlm.2015.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/17/2015] [Accepted: 12/20/2015] [Indexed: 10/22/2022]
|
30
|
West EA, Carelli RM. Nucleus Accumbens Core and Shell Differentially Encode Reward-Associated Cues after Reinforcer Devaluation. J Neurosci 2016; 36:1128-39. [PMID: 26818502 PMCID: PMC4728721 DOI: 10.1523/jneurosci.2976-15.2016] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/13/2015] [Accepted: 12/05/2015] [Indexed: 11/21/2022] Open
Abstract
Nucleus accumbens (NAc) neurons encode features of stimulus learning and action selection associated with rewards. The NAc is necessary for using information about expected outcome values to guide behavior after reinforcer devaluation. Evidence suggests that core and shell subregions may play dissociable roles in guiding motivated behavior. Here, we recorded neural activity in the NAc core and shell during training and performance of a reinforcer devaluation task. Long-Evans male rats were trained that presses on a lever under an illuminated cue light delivered a flavored sucrose reward. On subsequent test days, each rat was given free access to one of two distinctly flavored foods to consume to satiation and were then immediately tested on the lever pressing task under extinction conditions. Rats decreased pressing on the test day when the reinforcer earned during training was the sated flavor (devalued) compared with the test day when the reinforcer was not the sated flavor (nondevalued), demonstrating evidence of outcome-selective devaluation. Cue-selective encoding during training by NAc core (but not shell) neurons reliably predicted subsequent behavioral performance; that is, the greater the percentage of neurons that responded to the cue, the better the rats suppressed responding after devaluation. In contrast, NAc shell (but not core) neurons significantly decreased cue-selective encoding in the devalued condition compared with the nondevalued condition. These data reveal that NAc core and shell neurons encode information differentially about outcome-specific cues after reinforcer devaluation that are related to behavioral performance and outcome value, respectively. SIGNIFICANCE STATEMENT Many neuropsychiatric disorders are marked by impairments in behavioral flexibility. Although the nucleus accumbens (NAc) is required for behavioral flexibility, it is not known how NAc neurons encode this information. Here, we recorded NAc neurons during a training session in which rats learned that a cue predicted a specific reward and during a test session when that reward value was changed. Although encoding in the core during training predicted the ability of rats to change behavior after the reward value was altered, the NAc shell encoded information about the change in reward value during the test session. These findings suggest differential roles of the core and shell in behavioral flexibility.
Collapse
Affiliation(s)
- Elizabeth A West
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Regina M Carelli
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
31
|
Soper C, Wicker E, Kulick CV, N'Gouemo P, Forcelli PA. Optogenetic activation of superior colliculus neurons suppresses seizures originating in diverse brain networks. Neurobiol Dis 2015; 87:102-15. [PMID: 26721319 DOI: 10.1016/j.nbd.2015.12.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 11/17/2022] Open
Abstract
Because sites of seizure origin may be unknown or multifocal, identifying targets from which activation can suppress seizures originating in diverse networks is essential. We evaluated the ability of optogenetic activation of the deep/intermediate layers of the superior colliculus (DLSC) to fill this role. Optogenetic activation of DLSC suppressed behavioral and electrographic seizures in the pentylenetetrazole (forebrain+brainstem seizures) and Area Tempestas (forebrain/complex partial seizures) models; this effect was specific to activation of DLSC, and not neighboring structures. DLSC activation likewise attenuated seizures evoked by gamma butyrolactone (thalamocortical/absence seizures), or acoustic stimulation of genetically epilepsy prone rates (brainstem seizures). Anticonvulsant effects were seen with stimulation frequencies as low as 5 Hz. Unlike previous applications of optogenetics for the control of seizures, activation of DLSC exerted broad-spectrum anticonvulsant actions, attenuating seizures originating in diverse and distal brain networks. These data indicate that DLSC is a promising target for optogenetic control of epilepsy.
Collapse
Affiliation(s)
- Colin Soper
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC 20007
| | - Evan Wicker
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC 20007
| | - Catherine V Kulick
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC 20007
| | - Prosper N'Gouemo
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007; Department of Pediatrics, Georgetown University, Washington, DC 20007
| | - Patrick A Forcelli
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC 20007; Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007.
| |
Collapse
|
32
|
Wassum KM, Izquierdo A. The basolateral amygdala in reward learning and addiction. Neurosci Biobehav Rev 2015; 57:271-83. [PMID: 26341938 DOI: 10.1016/j.neubiorev.2015.08.017] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 12/22/2022]
Abstract
Sophisticated behavioral paradigms partnered with the emergence of increasingly selective techniques to target the basolateral amygdala (BLA) have resulted in an enhanced understanding of the role of this nucleus in learning and using reward information. Due to the wide variety of behavioral approaches many questions remain on the circumscribed role of BLA in appetitive behavior. In this review, we integrate conclusions of BLA function in reward-related behavior using traditional interference techniques (lesion, pharmacological inactivation) with those using newer methodological approaches in experimental animals that allow in vivo manipulation of cell type-specific populations and neural recordings. Secondly, from a review of appetitive behavioral tasks in rodents and monkeys and recent computational models of reward procurement, we derive evidence for BLA as a neural integrator of reward value, history, and cost parameters. Taken together, BLA codes specific and temporally dynamic outcome representations in a distributed network to orchestrate adaptive responses. We provide evidence that experiences with opiates and psychostimulants alter these outcome representations in BLA, resulting in long-term modified action.
Collapse
Affiliation(s)
- Kate M Wassum
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA; Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA
| | - Alicia Izquierdo
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA; Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
33
|
Hosking JG, Cocker PJ, Winstanley CA. Dissociable contributions of anterior cingulate cortex and basolateral amygdala on a rodent cost/benefit decision-making task of cognitive effort. Neuropsychopharmacology 2014; 39:1558-67. [PMID: 24496320 PMCID: PMC4023153 DOI: 10.1038/npp.2014.27] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/10/2014] [Accepted: 01/28/2014] [Indexed: 11/09/2022]
Abstract
Personal success often requires the choice to expend greater effort for larger rewards, and deficits in such effortful decision making accompany a number of illnesses including depression, schizophrenia, and attention-deficit/hyperactivity disorder. Animal models have implicated brain regions such as the basolateral amygdala (BLA) and anterior cingulate cortex (ACC) in physical effort-based choice, but disentangling the unique contributions of these two regions has proven difficult, and effort demands in industrialized society are predominantly cognitive in nature. Here we utilize the rodent cognitive effort task (rCET), a modification of the five-choice serial reaction-time task, wherein animals can choose to expend greater visuospatial attention to obtain larger sucrose rewards. Temporary inactivation (via baclofen-muscimol) of BLA and ACC showed dissociable effects: BLA inactivation caused hard-working rats to 'slack off' and 'slacker' rats to work harder, whereas ACC inactivation caused all animals to reduce willingness to expend mental effort. Furthermore, BLA inactivation increased the time needed to make choices, whereas ACC inactivation increased motor impulsivity. These data illuminate unique contributions of BLA and ACC to effort-based decision making, and imply overlapping yet distinct circuitry for cognitive vs physical effort. Our understanding of effortful decision making may therefore require expanding our models beyond purely physical costs.
Collapse
Affiliation(s)
- Jay G Hosking
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Paul J Cocker
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
34
|
Parkes SL, Balleine BW. Incentive memory: evidence the basolateral amygdala encodes and the insular cortex retrieves outcome values to guide choice between goal-directed actions. J Neurosci 2013; 33:8753-63. [PMID: 23678118 PMCID: PMC3717368 DOI: 10.1523/jneurosci.5071-12.2013] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 04/04/2013] [Accepted: 04/09/2013] [Indexed: 01/07/2023] Open
Abstract
Choice between goal-directed actions is determined by the relative value of their consequences. Such values are encoded during incentive learning and later retrieved to guide performance. Although the basolateral amygdala (BLA) and the gustatory region of insular cortex (IC) have been implicated in these processes, their relative contribution is still a matter of debate. Here we assessed whether these structures interact during incentive learning and retrieval to guide choice. In these experiments, rats were trained on two actions for distinct outcomes after which one of the two outcomes was devalued by specific satiety immediately before a choice extinction test. We first confirmed that, relative to appropriate controls, outcome devaluation recruited both the BLA and IC based on activation of the immediate early gene Arc; however, we found that infusion of the NMDAr antagonist ifenprodil into the BLA only abolished outcome devaluation when given before devaluation. In contrast, ifenprodil infusion into the IC was effective whether made before devaluation or test. We hypothesized that the BLA encodes and the IC retrieves incentive value for choice and, to test this, developed a novel sequential disconnection procedure. Blocking NMDAr activation unilaterally in the BLA before devaluation and then contralaterally in the IC before test abolished selective devaluation. In contrast, reversing the order of these infusions left devaluation intact. These results confirm that the BLA and IC form a circuit mediating the encoding and retrieval of outcome values, with the BLA encoding and the IC retrieving such values to guide choice.
Collapse
Affiliation(s)
- Shauna L. Parkes
- Brain and Mind Research Institute, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Bernard W. Balleine
- Brain and Mind Research Institute, University of Sydney, Camperdown, New South Wales 2050, Australia
| |
Collapse
|
35
|
Carelli RM, West EA. When a good taste turns bad: Neural mechanisms underlying the emergence of negative affect and associated natural reward devaluation by cocaine. Neuropharmacology 2013; 76 Pt B:360-9. [PMID: 23639430 DOI: 10.1016/j.neuropharm.2013.04.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/05/2013] [Accepted: 04/08/2013] [Indexed: 12/01/2022]
Abstract
An important feature of cocaine addiction in humans is the emergence of negative affect (e.g., dysphoria, irritability, anhedonia), postulated to play a key role in craving and relapse. Indeed, the DSM-IV recognizes that social, occupational and/or recreational activities become reduced as a consequence of repeated drug use where previously rewarding experiences (e.g., food, job, family) become devalued as the addict continues to seek and use drug despite serious negative consequences. Here, research in the Carelli laboratory is reviewed that examined neurobiological mechanisms that may underlie these processes using a novel animal model. Oromotor responses (taste reactivity) were examined as rats learned that intraoral infusion of a sweet (e.g., saccharin) predicts impending but delayed access to cocaine self-administration. We showed that rats exhibit aversive taste reactivity (i.e., gapes/rejection responses) during infusion of the sweet paired with impending cocaine, similar to aversive responses observed during infusion of quinine, a bitter tastant. Critically, the expression of this pronounced aversion to the sweet predicted the subsequent motivation to self-administer cocaine. Electrophysiology studies show that this shift in palatability corresponds to an alteration in nucleus accumbens (NAc) cell firing; neurons that previously responded with inhibition during infusion of the palatable sweet shifted to excitatory activity during infusion of the cocaine-devalued tastant. This excitatory response profile is typically observed during infusion of quinine, indicating that the once palatable sweet becomes aversive following its association with impending but delayed cocaine, and NAc neurons encode this aversive state. We also review electrochemical studies showing a shift (from increase to decrease) in rapid NAc dopamine release during infusion of the cocaine-paired tastant as the aversive state developed, again, resulting in responses similar to quinine infusion. Collectively, our findings suggest that cocaine-conditioned cues elicit a cocaine-need state that is aversive, is encoded by a distinct subset of NAc neurons and rapid dopamine signaling, and promotes cocaine-seeking behavior. Finally, we present data showing that experimentally induced abstinence (30 days) exacerbates this natural reward devaluation by cocaine, and this effect is correlated with a greater motivation to lever press during extinction. Dissecting the neural mechanisms underlying these detrimental consequences of addiction is critical since it may lead to novel treatments that ameliorate negative affective states associated with drug use and decrease the drive (craving) for the drug. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Regina M Carelli
- Department of Psychology, The University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, The University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
36
|
Differential effects of serotonin-specific and excitotoxic lesions of OFC on conditioned reinforcer devaluation and extinction in rats. Behav Brain Res 2013; 246:10-4. [PMID: 23458741 DOI: 10.1016/j.bbr.2013.02.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/07/2013] [Accepted: 02/14/2013] [Indexed: 12/28/2022]
Abstract
The orbitofrontal cortex (OFC) is critical for behavioral adaptation in response to changes in reward value. Here we investigated, in rats, the role of OFC and, specifically, serotonergic neurotransmission within OFC in a reinforcer devaluation task (which measures behavioral flexibility). This task used two visual cues, each predicting one of two foods, with the spatial position (left-right) of the cues above two levers pseudorandomized across trials. An instrumental action (lever press) was required for reinforcer delivery. After training, rats received either excitotoxic OFC lesions made by NMDA (N-methyl-d-aspartic acid), serotonin-specific OFC lesions made by 5,7-DHT (5,7-dihydroxytryptamine), or sham lesions. In sham-lesioned rats, devaluation of one food (by feeding to satiety) significantly decreased responding to the cue associated with that food, when both cues were presented simultaneously during extinction. Both types of OFC lesions disrupted the devaluation effect. In contrast, extinction learning was not affected by serotonin-specific lesions and was only mildly retarded in rats with excitotoxic lesions. Thus, serotonin within OFC is necessary for appropriately adjusting behavior toward cues that predict reward but not for reducing responses in the absence of reward. Our results are the first to demonstrate that serotonin in OFC is necessary for reinforcer devaluation, but not extinction.
Collapse
|