1
|
Goltstein PM, Laubender D, Bonhoeffer T, Hübener M. A column-like organization for ocular dominance in mouse visual cortex. Nat Commun 2025; 16:1926. [PMID: 40000624 PMCID: PMC11861588 DOI: 10.1038/s41467-025-56780-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The columnar organization of response properties is a fundamental feature of the mammalian visual cortex. However, columns have not been observed universally across all mammalian species. Here, we report the discovery of clusters of ipsilateral eye preferring neurons in layer 4 of the mouse primary visual cortex. These clusters extend into layer 2/3 and upper layer 5, forming a column-like pattern for ocular dominance. Our observation of such structures in this minute cortical area sets a new boundary condition for models explaining the emergence of functional organizations in the neocortex.
Collapse
Affiliation(s)
| | - David Laubender
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Tobias Bonhoeffer
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Mark Hübener
- Max Planck Institute for Biological Intelligence, Martinsried, Germany.
| |
Collapse
|
2
|
Poplawski J, Montina T, Metz GAS. Early life stress shifts critical periods and causes precocious visual cortex development. PLoS One 2024; 19:e0316384. [PMID: 39739746 DOI: 10.1371/journal.pone.0316384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025] Open
Abstract
The developing nervous system displays remarkable plasticity in response to sensory stimulation during critical periods of development. Critical periods may also increase the brain's vulnerability to adverse experiences. Here we show that early-life stress (ELS) in mice shifts the timing of critical periods in the visual cortex. ELS induced by animal transportation on postnatal day 12 accelerated the opening and closing of the visual cortex critical period along with earlier maturation of visual acuity. Staining of a molecular correlate that marks the end of critical period plasticity revealed premature emergence of inhibitory perineuronal nets (PNNs) following ELS. ELS also drove lasting changes in visual cortex mRNA expression affecting genes linked to psychiatric disease risk, with hemispheric asymmetries favoring the right side. NMR spectroscopy and a metabolomics approach revealed that ELS was accompanied by activated energy metabolism and protein biosynthesis. Thus, ELS may accelerate visual system development, resulting in premature opening and closing of critical period plasticity. Overall, the data suggest that ELS desynchronizes the orchestrated temporal sequence of regional brain development potentially leading to long-term functional deficiencies. These observations provide new insights into a neurodevelopmental expense to adaptative brain plasticity. These findings also suggest that shipment of laboratory animals during vulnerable developmental ages may result in long lasting phenotypes, introducing critical confounds to the experimental design.
Collapse
Affiliation(s)
- Janet Poplawski
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
- Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
3
|
Khvatov IA, Sokolov AY, Kharitonov AN. Ferrets ( Mustela furo) Are Aware of Their Dimensions. Animals (Basel) 2023; 13:ani13030444. [PMID: 36766333 PMCID: PMC9913545 DOI: 10.3390/ani13030444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Self-awareness is a complex phenomenon expressed as the ability of an individual to separate "self-entity" from "other entity". One of its earliest evolutionary components is body size awareness, namely, the ability to consider the boundaries of one's own body as factors influencing interaction with surrounding objects. For ferrets, Mustela furo, the task requiring the penetration of various holes is ecologically relevant. We designed an experimental study in which the ferrets were supposed to select one opening out of three to get the bait. The first experiment was aimed at studying whether ferrets would prefer the holes basing on the hole size. In the second experiment, we tested the ferrets' ability to select a single passable hole on the first try while the impassable ones were larger in area. Results from the first experiment show that when choosing from the three passable openings, the animals preferred the shortest path to the bait and ignored the size of the holes. In the second experiment, all tested ferrets preferred to penetrate the passable opening on the first attempt, even though the areas of the two impenetrable ones were larger. We argue that these data indicate that ferrets are aware of their own body size.
Collapse
Affiliation(s)
- Ivan A. Khvatov
- Center for Biopsychological Studies, Moscow Institute of Psychoanalysis, 121170 Moscow, Russia
- Correspondence: (I.A.K.); (A.N.K.); Tel.: +7-926-339-23-00 (I.A.K.); +7-916-370-3656 (A.N.K.)
| | - Alexey Yu. Sokolov
- Center for Biopsychological Studies, Moscow Institute of Psychoanalysis, 121170 Moscow, Russia
| | - Alexander N. Kharitonov
- Institute of Psychology, Russian Academy of Sciences, 129366 Moscow, Russia
- Correspondence: (I.A.K.); (A.N.K.); Tel.: +7-926-339-23-00 (I.A.K.); +7-916-370-3656 (A.N.K.)
| |
Collapse
|
4
|
Lee HK. Metaplasticity framework for cross-modal synaptic plasticity in adults. Front Synaptic Neurosci 2023; 14:1087042. [PMID: 36685084 PMCID: PMC9853192 DOI: 10.3389/fnsyn.2022.1087042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Sensory loss leads to widespread adaptation of neural circuits to mediate cross-modal plasticity, which allows the organism to better utilize the remaining senses to guide behavior. While cross-modal interactions are often thought to engage multisensory areas, cross-modal plasticity is often prominently observed at the level of the primary sensory cortices. One dramatic example is from functional imaging studies in humans where cross-modal recruitment of the deprived primary sensory cortex has been observed during the processing of the spared senses. In addition, loss of a sensory modality can lead to enhancement and refinement of the spared senses, some of which have been attributed to compensatory plasticity of the spared sensory cortices. Cross-modal plasticity is not restricted to early sensory loss but is also observed in adults, which suggests that it engages or enables plasticity mechanisms available in the adult cortical circuit. Because adult cross-modal plasticity is observed without gross anatomical connectivity changes, it is thought to occur mainly through functional plasticity of pre-existing circuits. The underlying cellular and molecular mechanisms involve activity-dependent homeostatic and Hebbian mechanisms. A particularly attractive mechanism is the sliding threshold metaplasticity model because it innately allows neurons to dynamically optimize their feature selectivity. In this mini review, I will summarize the cellular and molecular mechanisms that mediate cross-modal plasticity in the adult primary sensory cortices and evaluate the metaplasticity model as an effective framework to understand the underlying mechanisms.
Collapse
|
5
|
Li VJ, Chorghay Z, Ruthazer ES. A Guide for the Multiplexed: The Development of Visual Feature Maps in the Brain. Neuroscience 2023; 508:62-75. [PMID: 35952996 DOI: 10.1016/j.neuroscience.2022.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 01/17/2023]
Abstract
Neural maps are found ubiquitously in the brain, where they encode a wide range of behaviourally relevant features into neural space. Developmental studies have shown that animals devote a great deal of resources to establish consistently patterned organization in neural circuits throughout the nervous system, but what purposes maps serve beneath their often intricate appearance and composition is a topic of active debate and exploration. In this article, we review the general mechanisms of map formation, with a focus on the visual system, and then survey notable organizational properties of neural maps: the multiplexing of feature representations through a nested architecture, the interspersing of fine-scale heterogeneity within a globally smooth organization, and the complex integration at the microcircuit level that enables a high dimensionality of information encoding. Finally, we discuss the roles of maps in cortical functions, including input segregation, feature extraction and routing of circuit outputs for higher order processing, as well as the evolutionary basis for the properties we observe in neural maps.
Collapse
Affiliation(s)
- Vanessa J Li
- Montreal Neurological Institute-Hospital, McGill University, 3801 University St. Montreal, Quebec H3A 2B4, Canada
| | - Zahraa Chorghay
- Montreal Neurological Institute-Hospital, McGill University, 3801 University St. Montreal, Quebec H3A 2B4, Canada
| | - Edward S Ruthazer
- Montreal Neurological Institute-Hospital, McGill University, 3801 University St. Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
6
|
Kasai M, Isa T. Effects of Light Isoflurane Anesthesia on Organization of Direction and Orientation Selectivity in the Superficial Layer of the Mouse Superior Colliculus. J Neurosci 2022; 42:619-630. [PMID: 34872926 PMCID: PMC8805619 DOI: 10.1523/jneurosci.1196-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022] Open
Abstract
The superior colliculus (SC) is the midbrain center for integrating visual and multimodal sensory information. Neurons in the SC exhibit direction and orientation selectivity. Recent studies reported that neurons with similar preferences formed clusters in the mouse SC (Ahmadlou and Heimel, 2015; Feinberg and Meister, 2015; de Malmazet et al., 2018; Li et al., 2020). However, it remains controversial as to how these clusters are organized within the SC (Inayat et al., 2015; Chen et al., 2021). Here, we found that different brain states (i.e., awake or anesthetized with isoflurane) changed the selectivity of individual SC neurons and organizations of the neuronal population in both male and female mice. Using two-photon Ca2+ imaging, we examined both individual neuronal responses and the spatial patterns of their population responses. Under isoflurane anesthesia, orientation selectivity increased and a larger number of orientation-selective cells were observed when compared with the awake condition, whereas the proportions of direction-selective cells were similar in both conditions. Furthermore, direction- and orientation-selective cells located at closer positions showed more similar preferences, and cluster-like spatial patterns were enhanced. Inhibitory responses of direction-selective neurons were also reduced under isoflurane anesthesia. Thus, the changes in the spatial organization of response patterns were considered to be because of changes in the balance of excitation and inhibition, with excitation dominance, in the local circuits. These results provide new insights into the possibility that the functional organization of feature selectivity in the brain is affected by brain state.SIGNIFICANCE STATEMENT Recent large-scale recording studies are changing our view of visual maps in the superior colliculus (SC), including findings of cluster-like localizations of direction- and orientation-selective neurons. However, results from several laboratories are conflicting regarding the presence of cluster-like organization. Here, we demonstrated that light isoflurane anesthesia affected the direction- and orientation-tuning properties in the mouse superficial SC and that their cluster-like localization pattern was enhanced by the anesthesia. Furthermore, the effect of anesthesia on direction selectivity appeared to be different in the excitatory and inhibitory populations in the SC. Our results suggest that the functional organization of direction and orientation selectivity might be regulated by the excitation-inhibition balance that depends on the brain state.
Collapse
Affiliation(s)
- Masatoshi Kasai
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto 606-8501, Japan
| |
Collapse
|
7
|
Tan L, Ringach DL, Zipursky SL, Trachtenberg JT. Vision is required for the formation of binocular neurons prior to the classical critical period. Curr Biol 2021; 31:4305-4313.e5. [PMID: 34411526 PMCID: PMC8511080 DOI: 10.1016/j.cub.2021.07.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Depth perception emerges from the development of binocular neurons in primary visual cortex. Vision is required for these neurons to acquire their mature responses to visual stimuli. The prevailing view is that vision does not influence binocular circuitry until the onset of the critical period, about a week after eye opening, and that plasticity of visual responses is triggered by increased inhibition. Here, we show that vision is required to form binocular neurons and to improve binocular tuning and matching from eye opening until critical period closure. Enhancing inhibition does not accelerate this process. Vision soon after eye opening improves the tuning properties of binocular neurons by strengthening and sharpening ipsilateral eye cortical responses. This progressively changes the population of neurons in the binocular pool, and this plasticity is sensitive to interocular differences prior to critical period onset. Thus, vision establishes binocular circuitry and guides binocular plasticity from eye opening.
Collapse
Affiliation(s)
- Liming Tan
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Dario L Ringach
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - S Lawrence Zipursky
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Joshua T Trachtenberg
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
8
|
Retinotopic organization of visual cortex in human infants. Neuron 2021; 109:2616-2626.e6. [PMID: 34228960 DOI: 10.1016/j.neuron.2021.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/07/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022]
Abstract
Vision develops rapidly during infancy, yet how visual cortex is organized during this period is unclear. In particular, it is unknown whether functional maps that organize the mature adult visual cortex are present in the infant striate and extrastriate cortex. Here, we test the functional maturity of infant visual cortex by performing retinotopic mapping with functional magnetic resonance imaging (fMRI). Infants aged 5-23 months had retinotopic maps, with alternating preferences for vertical and horizontal meridians indicating the boundaries of visual areas V1 to V4 and an orthogonal gradient of preferences from high to low spatial frequencies. The presence of multiple visual maps throughout visual cortex in infants indicates a greater maturity of extrastriate cortex than previously appreciated. The areas showed subtle age-related fine-tuning, suggesting that early maturation undergoes continued refinement. This early maturation of area boundaries and tuning may scaffold subsequent developmental changes.
Collapse
|
9
|
Redolfi N, Lodovichi C. Spontaneous Afferent Activity Carves Olfactory Circuits. Front Cell Neurosci 2021; 15:637536. [PMID: 33767612 PMCID: PMC7985084 DOI: 10.3389/fncel.2021.637536] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Electrical activity has a key role in shaping neuronal circuits during development. In most sensory modalities, early in development, internally generated spontaneous activity sculpts the initial layout of neuronal wiring. With the maturation of the sense organs, the system relies more on sensory-evoked electrical activity. Stimuli-driven neuronal discharge is required for the transformation of immature circuits in the specific patterns of neuronal connectivity that subserve normal brain function. The olfactory system (OS) differs from this organizational plan. Despite the important role of odorant receptors (ORs) in shaping olfactory topography, odor-evoked activity does not have a prominent role in refining neuronal wiring. On the contrary, afferent spontaneous discharge is required to achieve and maintain the specific diagram of connectivity that defines the topography of the olfactory bulb (OB). Here, we provide an overview of the development of olfactory topography, with a focus on the role of afferent spontaneous discharge in the formation and maintenance of the specific synaptic contacts that result in the topographic organization of the OB.
Collapse
Affiliation(s)
- Nelly Redolfi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Claudia Lodovichi
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Neuroscience Institute CNR, Padua, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy.,Padova Neuroscience Center, University of Padua, Padua, Italy
| |
Collapse
|
10
|
Relationship of Sighting Ocular Dominance with Macular Photostress Test Time and Thickness of the Middle Macular Layers. Optom Vis Sci 2021; 98:285-288. [PMID: 33633023 DOI: 10.1097/opx.0000000000001654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
SIGNIFICANCE The mechanisms of sighting ocular dominance, which is particularly important in monovision therapies and sports vision, are not fully understood yet. Whether the macula affects ocular dominance or ocular dominance affects the macula is also a subject of interest. PURPOSE The aim of this study was to investigate the relationship of sighting ocular dominance with macular photostress test time and middle macular layer thickness. METHODS One-hundred eyes of 50 healthy adult volunteers were included in this cross-sectional study. Sighting eye dominance was decided by a hole-in-the-card test. The macular photostress test was performed by exposing the eye to the ophthalmoscope light for 10 seconds and measuring the time taken to return to visual acuity within one row of pre-light exposure acuity. The spectral-domain optical coherence tomography examinations were performed to measure thickness of middle macular layers (i.e., outer nuclear, outer plexiform, inner nuclear, and inner plexiform). Refractive error and intraocular pressure (IOP) measurements were also recorded. RESULTS The comparison of dominant and nondominant eyes in the aspect of refractive error, IOP, and macular photostress test time did not show statistically significant differences (P > .05). The thicknesses of macular outer nuclear, outer plexiform, inner nuclear, and inner plexiform layers were similar in the dominant and nondominant eyes (P > .05). In addition, macular photostress time was not statistically significantly correlated with the thickness of middle macular layers (P > .05). CONCLUSIONS The thickness of middle macular layers and macular photostress recovery time are similar in dominant and nondominant eyes.
Collapse
|
11
|
Moresco L, Bruschettini M, Calevo MG, Siri L. Pharmacological treatment for continuous spike-wave during slow wave sleep syndrome and Landau-Kleffner Syndrome. Cochrane Database Syst Rev 2020; 11:CD013132. [PMID: 33174224 PMCID: PMC8078191 DOI: 10.1002/14651858.cd013132.pub2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Continuous spike-wave during slow wave sleep syndrome (CSWS) and Landau-Kleffner syndrome (LKS) are two epileptic encephalopathies that present with neurocognitive regression, aphasia, and clinical seizures, typically presenting in children around five years of age. The pathophysiology of these conditions is not completely understood. Some studies suggest a common origin for both. No systematic reviews have assessed the efficacy of pharmacological interventions for these conditions. OBJECTIVES To assess the benefit and adverse effects of pharmacological interventions for the treatment of CSWS and LKS. SEARCH METHODS On 8 September 2020, we searched the Cochrane Register of Studies (CRS Web) and MEDLINE Ovid (1946 to September 04, 2020). We applied no language restrictions. CRS Web includes randomised or quasi-randomised, controlled trials from CENTRAL, PubMed, Embase, ClinicalTrials.gov, and the World Health Organization International Clinical Trials Registry Platform. SELECTION CRITERIA Randomised controlled trials, quasi-randomised controlled trials, and cluster-randomised trials comparing antiepileptic drugs alone, or with steroids or intravenous immunoglobulins, or both versus other antiepileptic drugs, or placebo, or no treatment, administered to children with CSWS and LKS. We planned to compare treatments for the two conditions separately. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies identified by the search strategy for inclusion. The primary outcomes considered in this review were neuropsychological-neurolinguistic functions. MAIN RESULTS Our search strategy yielded 18 references. Two review authors independently assessed all references. We did not find any completed studies to include. We identified one ongoing trial, which was terminated because of lack of enrolment. AUTHORS' CONCLUSIONS There was no evidence from trials to support or refute the use of pharmacological treatment for continuous spike-wave during slow wave sleep syndrome or Landau-Kleffner syndrome. Well-designed randomised controlled trials are needed to inform practice.
Collapse
Affiliation(s)
- Luca Moresco
- Pediatric and Neonatology Unit, Ospedale San Paolo, Savona, Italy
| | - Matteo Bruschettini
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Maria Grazia Calevo
- Epidemiology, Biostatistics Unit, IRCCS, Istituto Giannina Gaslini, Genoa, Italy
| | - Laura Siri
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
12
|
Issa NP. From computer vision to epilepsy, a comment on "The growth of cognition: Free energy minimization and the embryogenesis of cortical computation". Phys Life Rev 2020; 36:37-39. [PMID: 32883599 DOI: 10.1016/j.plrev.2020.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/18/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Naoum P Issa
- Adult Epilepsy Center, Department of Neurology, S. Maryland Ave., MC 2030, University of Chicago, Chicago, IL 60637, United States of America.
| |
Collapse
|
13
|
An Annotated Journey through Modern Visual Neuroscience. J Neurosci 2020; 40:44-53. [PMID: 31896562 DOI: 10.1523/jneurosci.1061-19.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/03/2019] [Indexed: 11/21/2022] Open
Abstract
Recent advances in microscopy, genetics, physiology, and data processing have expanded the scope and accelerated the pace of discovery in visual neuroscience. However, the pace of discovery and the ever increasing number of published articles can present a serious issue for both trainees and senior scientists alike: with each passing year the fog of progress thickens, making it easy to lose sight of important earlier advances. As part of this special issue of the Journal of Neuroscience commemorating the 50th anniversary of SfN, here, we provide a variation on Stephen Kuffler's Oldies but Goodies classic reading list, with the hope that by looking back at highlights in the field of visual neuroscience we can better define remaining gaps in our knowledge and thus guide future work. We also hope that this article can serve as a resource that will aid those new to the field to find their bearings.
Collapse
|
14
|
Self-Generated Whisker Movements Drive State-Dependent Sensory Input to Developing Barrel Cortex. Curr Biol 2020; 30:2404-2410.e4. [PMID: 32413304 DOI: 10.1016/j.cub.2020.04.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/25/2020] [Accepted: 04/16/2020] [Indexed: 01/02/2023]
Abstract
Cortical development is an activity-dependent process [1-3]. Regarding the role of activity in the developing somatosensory cortex, one persistent debate concerns the importance of sensory feedback from self-generated movements. Specifically, recent studies claim that cortical activity is generated intrinsically, independent of movement [3, 4]. However, other studies claim that behavioral state moderates the relationship between movement and cortical activity [5-7]. Thus, perhaps inattention to behavioral state leads to failures to detect movement-driven activity [8]. Here, we resolve this issue by associating local field activity (i.e., spindle bursts) and unit activity in the barrel cortex of 5-day-old rats with whisker movements during wake and myoclonic twitches of the whiskers during active (REM) sleep. Barrel activity increased significantly within 500 ms of whisker movements, especially after twitches. Also, higher-amplitude movements were more likely to trigger barrel activity; when we controlled for movement amplitude, barrel activity was again greater after a twitch than a wake movement. We then inverted the analysis to assess the likelihood that increases in barrel activity were preceded within 500 ms by whisker movements: at least 55% of barrel activity was attributable to sensory feedback from whisker movements. Finally, when periods with and without movement were compared, 70%-75% of barrel activity was movement related. These results confirm the importance of sensory feedback from movements in driving activity in sensorimotor cortex and underscore the necessity of monitoring sleep-wake states to ensure accurate assessments of the contributions of the sensory periphery to activity in developing somatosensory cortex.
Collapse
|
15
|
Nakamoto C, Durward E, Horie M, Nakamoto M. Nell2 regulates the contralateral-versus-ipsilateral visual projection as a domain-specific positional cue. Development 2019; 146:dev.170704. [PMID: 30745429 DOI: 10.1242/dev.170704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/29/2019] [Indexed: 01/15/2023]
Abstract
In mammals with binocular vision, retinal ganglion cell (RGC) axons from each eye project to eye-specific domains in the contralateral and ipsilateral dorsal lateral geniculate nucleus (dLGN), underpinning disparity-based stereopsis. Although domain-specific axon guidance cues that discriminate contralateral and ipsilateral RGC axons have long been postulated as a key mechanism for development of the eye-specific retinogeniculate projection, the molecular nature of such cues has remained elusive. Here, we show that the extracellular glycoprotein Nell2 (neural epidermal growth factor-like-like 2) is expressed in the dorsomedial region of the dLGN, which ipsilateral RGC axons terminate in and contralateral axons avoid. In Nell2 mutant mice, contralateral RGC axons abnormally invaded the ipsilateral domain of the dLGN, and ipsilateral axons terminated in partially fragmented patches, forming a mosaic pattern of contralateral and ipsilateral axon-termination zones. In vitro, Nell2 exerted inhibitory effects on contralateral, but not ipsilateral, RGC axons. These results provide evidence that Nell2 acts as a domain-specific positional label in the dLGN that discriminates contralateral and ipsilateral RGC axons, and that it plays essential roles in the establishment of the eye-specific retinogeniculate projection.
Collapse
Affiliation(s)
- Chizu Nakamoto
- Aberdeen Developmental Biology Group, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Elaine Durward
- Aberdeen Developmental Biology Group, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Masato Horie
- Department of CNS Research, Otsuka Pharmaceutical, 463-10 Kagasuno, Kawauchi-cho, Tokushima 771-0192, Japan
| | - Masaru Nakamoto
- Aberdeen Developmental Biology Group, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
16
|
Moresco L, Bruschettini M, Calevo MG, Siri L. Pharmacological treatment for Continuous spike-wave during Slow Wave Sleep and Landau-Kleffner Syndrome. Hippokratia 2018. [DOI: 10.1002/14651858.cd013132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Luca Moresco
- Ospedale San Paolo; Pediatric and Neonatology Unit; Savona Italy
| | - Matteo Bruschettini
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
| | - Maria Grazia Calevo
- Istituto Giannina Gaslini; Epidemiology, Biostatistics and Committees Unit; Genoa Italy 16147
| | - Laura Siri
- Ospedale San Paolo; Pediatric and Neurology Unit; Via Genova Savona Savona Italy 17100
| |
Collapse
|
17
|
Milleret C, Bui Quoc E. Beyond Rehabilitation of Acuity, Ocular Alignment, and Binocularity in Infantile Strabismus. Front Syst Neurosci 2018; 12:29. [PMID: 30072876 PMCID: PMC6058758 DOI: 10.3389/fnsys.2018.00029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/15/2018] [Indexed: 11/13/2022] Open
Abstract
Infantile strabismus impairs the perception of all attributes of the visual scene. High spatial frequency components are no longer visible, leading to amblyopia. Binocularity is altered, leading to the loss of stereopsis. Spatial perception is impaired as well as detection of vertical orientation, the fastest movements, directions of movement, the highest contrasts and colors. Infantile strabismus also affects other vision-dependent processes such as control of postural stability. But presently, rehabilitative therapies for infantile strabismus by ophthalmologists, orthoptists and optometrists are restricted to preventing or curing amblyopia of the deviated eye, aligning the eyes and, whenever possible, preserving or restoring binocular vision during the critical period of development, i.e., before ~10 years of age. All the other impairments are thus ignored; whether they may recover after strabismus treatment even remains unknown. We argue here that medical and paramedical professionals may extend their present treatments of the perceptual losses associated with infantile strabismus. This hypothesis is based on findings from fundamental research on visual system organization of higher mammals in particular at the cortical level. In strabismic subjects (as in normal-seeing ones), information about all of the visual attributes converge, interact and are thus inter-dependent at multiple levels of encoding ranging from the single neuron to neuronal assemblies in visual cortex. Thus if the perception of one attribute is restored this may help to rehabilitate the perception of other attributes. Concomitantly, vision-dependent processes may also improve. This could occur spontaneously, but still should be assessed and validated. If not, medical and paramedical staff, in collaboration with neuroscientists, will have to break new ground in the field of therapies to help reorganize brain circuitry and promote more comprehensive functional recovery. Findings from fundamental research studies in both young and adult patients already support our hypothesis and are reviewed here. For example, presenting different contrasts to each eye of a strabismic patient during training sessions facilitates recovery of acuity in the amblyopic eye as well as of 3D perception. Recent data also demonstrate that visual recoveries in strabismic subjects improve postural stability. These findings form the basis for a roadmap for future research and clinical development to extend presently applied rehabilitative therapies for infantile strabismus.
Collapse
Affiliation(s)
- Chantal Milleret
- Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique, College de France, INSERM, PSL Research University, Paris, France
| | - Emmanuel Bui Quoc
- Department of Ophthalmology, Robert Debré University Hospital, Assistance Publique - Hôpitaux de Paris Paris, France
| |
Collapse
|
18
|
Abstract
The thalamocortical pathway is the main route of communication between the eye and the cerebral cortex. During embryonic development, thalamocortical afferents travel to L4 and are sorted by receptive field position, eye of origin, and contrast polarity (i.e., preference for light or dark stimuli). In primates and carnivores, this sorting involves numerous afferents, most of which sample a limited region of the binocular field. Devoting abundant thalamocortical resources to process a limited visual field has a clear advantage: It allows many stimulus combinations to be sampled at each spatial location. Moreover, the sampling efficiency can be further enhanced by organizing the afferents in a cortical grid for eye input and contrast polarity. We argue that thalamocortical interactions within this eye-polarity grid can be used to represent multiple stimulus combinations found in nature and to build an accurate cortical map for multidimensional stimulus space.
Collapse
Affiliation(s)
- Jens Kremkow
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany.,Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Jose-Manuel Alonso
- Department of Biological and Visual Sciences, College of Optometry, State University of New York, New York, NY 10036, USA;
| |
Collapse
|
19
|
Seabrook TA, Dhande OS, Ishiko N, Wooley VP, Nguyen PL, Huberman AD. Strict Independence of Parallel and Poly-synaptic Axon-Target Matching during Visual Reflex Circuit Assembly. Cell Rep 2017; 21:3049-3064. [PMID: 29241535 PMCID: PMC6333306 DOI: 10.1016/j.celrep.2017.11.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/04/2017] [Accepted: 11/10/2017] [Indexed: 12/19/2022] Open
Abstract
The use of sensory information to drive specific behaviors relies on circuits spanning long distances that wire up through a range of axon-target recognition events. Mechanisms assembling poly-synaptic circuits and the extent to which parallel pathways can "cross-wire" to compensate for loss of one another remain unclear and are crucial to our understanding of brain development and models of regeneration. In the visual system, specific retinal ganglion cells (RGCs) project to designated midbrain targets connected to downstream circuits driving visuomotor reflexes. Here, we deleted RGCs connecting to pupillary light reflex (PLR) midbrain targets and discovered that axon-target matching is tightly regulated. RGC axons of the eye-reflex pathway avoided vacated PLR targets. Moreover, downstream PLR circuitry is maintained; hindbrain and peripheral components retained their proper connectivity and function. These findings point to a model in which poly-synaptic circuit development reflects independent, highly stringent wiring of each parallel pathway and downstream station.
Collapse
Affiliation(s)
- Tania A Seabrook
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Onkar S Dhande
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Nao Ishiko
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Victoria P Wooley
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Phong L Nguyen
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA; Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94303, USA; Bio-X, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Tong L, Xie Y, Yu H. The temporal-spatial dynamics of feature maps during monocular deprivation revealed by chronic imaging and self-organization model simulation. Neuroscience 2016; 339:571-586. [PMID: 27746342 DOI: 10.1016/j.neuroscience.2016.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 11/18/2022]
Abstract
Experiments on the adult visual cortex of cats, ferrets and monkeys have revealed organized spatial relationships between multiple feature maps which can also be reproduced by the Kohonen and elastic net self-organization models. However, attempts to apply these models to simulate the temporal kinetics of monocular deprivation (MD) during the critical period, and their effects on the spatial arrangement of feature maps, have led to conflicting results. In this study, we performed MD and chronic imaging in the ferret visual cortex during the critical period of ocular dominance (OD) plasticity. We also used the Kohonen model to simulate the effects of MD on OD and orientation map development. Both the experiments and simulations demonstrated two general parameter-insensitive findings. Specifically, our first finding demonstrated that the OD index shift resulting from MD, and its subsequent recovery during binocular vision (BV), were both nonlinear, with a significantly stronger shift occurring during the initial period. Meanwhile, spatial reorganization of feature maps led to globally unchanged but locally shifted map patterns. In detail, we found that the periodicity of OD and orientation maps remained unchanged during, and after, deprivation. Relationships between OD and orientation maps remained similar but were significantly weakened due to OD border shifts. These results indicate that orthogonal gradient relationships between maps may be preset and are only mildly modifiable during the critical period. The Kohonen model was able to reproduce these experimental results, hence its role is further extended to the description of cortical feature map dynamics during development.
Collapse
Affiliation(s)
- Lei Tong
- School of Life Sciences and the State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, 2005 Songhu Road, Shanghai, China
| | - Yang Xie
- School of Life Sciences and the State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, 2005 Songhu Road, Shanghai, China
| | - Hongbo Yu
- School of Life Sciences and the State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, 2005 Songhu Road, Shanghai, China.
| |
Collapse
|
21
|
Burbridge TJ, Xu HP, Ackman JB, Ge X, Zhang Y, Ye MJ, Zhou ZJ, Xu J, Contractor A, Crair MC. Visual circuit development requires patterned activity mediated by retinal acetylcholine receptors. Neuron 2014; 84:1049-64. [PMID: 25466916 DOI: 10.1016/j.neuron.2014.10.051] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2014] [Indexed: 01/17/2023]
Abstract
The elaboration of nascent synaptic connections into highly ordered neural circuits is an integral feature of the developing vertebrate nervous system. In sensory systems, patterned spontaneous activity before the onset of sensation is thought to influence this process, but this conclusion remains controversial, largely due to the inherent difficulty recording neural activity in early development. Here, we describe genetic and pharmacological manipulations of spontaneous retinal activity, assayed in vivo, that demonstrate a causal link between retinal waves and visual circuit refinement. We also report a decoupling of downstream activity in retinorecipient regions of the developing brain after retinal wave disruption. Significantly, we show that the spatiotemporal characteristics of retinal waves affect the development of specific visual circuits. These results conclusively establish retinal waves as necessary and instructive for circuit refinement in the developing nervous system and reveal how neural circuits adjust to altered patterns of activity prior to experience.
Collapse
Affiliation(s)
- Timothy J Burbridge
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Hong-Ping Xu
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - James B Ackman
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xinxin Ge
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yueyi Zhang
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mei-Jun Ye
- Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Z Jimmy Zhou
- Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jian Xu
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Anis Contractor
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Michael C Crair
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA; Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
22
|
Driscoll C. Constructive criticism: An evaluation of Buller and Hardcastle's genetic and neuroscientific arguments against Evolutionary Psychology. PHILOSOPHICAL PSYCHOLOGY 2014. [DOI: 10.1080/09515089.2013.785068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Sadeh S, Rotter S. Statistics and geometry of orientation selectivity in primary visual cortex. BIOLOGICAL CYBERNETICS 2014; 108:631-653. [PMID: 24248916 PMCID: PMC4228171 DOI: 10.1007/s00422-013-0576-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/23/2013] [Indexed: 06/02/2023]
Abstract
Orientation maps are a prominent feature of the primary visual cortex of higher mammals. In macaques and cats, for example, preferred orientations of neurons are organized in a specific pattern, where cells with similar selectivity are clustered in iso-orientation domains. However, the map is not always continuous, and there are pinwheel-like singularities around which all orientations are arranged in an orderly fashion. Although subject of intense investigation for half a century now, it is still not entirely clear how these maps emerge and what function they might serve. Here, we suggest a new model of orientation selectivity that combines the geometry and statistics of clustered thalamocortical afferents to explain the emergence of orientation maps. We show that the model can generate spatial patterns of orientation selectivity closely resembling the maps found in cats or monkeys. Without any additional assumptions, we further show that the pattern of ocular dominance columns is inherently connected to the spatial pattern of orientation.
Collapse
Affiliation(s)
- Sadra Sadeh
- Bernstein Center Freiburg, Faculty of Biology, University of Freiburg, Hansastr. 9a, 79104 Freiburg, Germany
| | - Stefan Rotter
- Bernstein Center Freiburg, Faculty of Biology, University of Freiburg, Hansastr. 9a, 79104 Freiburg, Germany
| |
Collapse
|
24
|
Neurobiology of continuous spike-wave in slow-wave sleep and Landau-Kleffner syndromes. Pediatr Neurol 2014; 51:287-96. [PMID: 25160535 DOI: 10.1016/j.pediatrneurol.2014.04.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 04/24/2014] [Accepted: 04/24/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Several pediatric seizure disorders have common electrophysiological features during slow-wave sleep that produce different syndromes based on which part of the developing brain is involved. These disorders, of which continuous spike-wave in slow-wave sleep and Landau-Kleffner are the most common, are characterized by continuous spike-wave activity during slow-wave sleep, developmentally regulated onset and termination of abnormal electrical activity, and loss of previously acquired skills. Over the last 20 years, a variety of basic science findings suggest how spike-wave activity during sleep can cause the observed clinical outcomes. METHODS Literature review and analysis. RESULTS The role of slow-wave sleep in normal cortical plasticity during developmental critical periods, how disruption of slow-wave sleep by electrographic seizures could affect cortical maps and development, and the organization and functional connectivity of the thalamic structures that when damaged are thought to produce these seizure disorders are reviewed. CONCLUSIONS Potential therapeutic directions are proposed based on the mechanisms of plasticity and anatomical structures involved in cortical plasticity during slow-wave sleep.
Collapse
|
25
|
Kawasaki H. Molecular investigations of the brain of higher mammals using gyrencephalic carnivore ferrets. Neurosci Res 2014; 86:59-65. [PMID: 24983876 DOI: 10.1016/j.neures.2014.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 11/17/2022]
Abstract
The brains of mammals such as carnivores and primates contain developed structures not found in the brains of mice. Uncovering the physiological importance, developmental mechanisms and evolution of these structures using carnivores and primates would greatly contribute to our understanding of the human brain and its diseases. Although the anatomical and physiological properties of the brains of carnivores and primates have been intensively examined, molecular investigations are still limited. Recently, genetic techniques that can be applied to carnivores and primates have been explored, and molecules whose expression patterns correspond to these structures were reported. Furthermore, to investigate the functional importance of these molecules, rapid and efficient genetic manipulation methods were established by applying electroporation to gyrencephalic carnivore ferrets. In this article, I review recent advances in molecular investigations of the brains of carnivores and primates, mainly focusing on ferrets (Mustela putorius furo).
Collapse
Affiliation(s)
- Hiroshi Kawasaki
- Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8640, Japan; Brain/Liver Interface Medicine Research Center, Kanazawa University, Ishikawa 920-8640, Japan.
| |
Collapse
|
26
|
Balmer TS, Pallas SL. Refinement but not maintenance of visual receptive fields is independent of visual experience. Cereb Cortex 2013; 25:904-17. [PMID: 24108803 DOI: 10.1093/cercor/bht281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Visual deprivation is reported to prevent or delay the development of mature receptive field (RF) properties in primary visual cortex (V1) in several species. In contrast, visual deprivation neither prevents nor delays refinement of RF size in the superior colliculus (SC) of Syrian hamsters, although vision is required for RF maintenance in the SC. Here, we report that, contrary to expectation, visual cortical RF refinement occurs normally in dark-reared animals. As in the SC, a brief period of visual experience is required to maintain V1 RF refinement in adulthood. Whereas in the SC, 3 days of visual experience within a sensitive period (P37-40) was sufficient to protect RFs from deprivation-induced enlargement in adulthood, 7 days (P33-40) were required for RF size maintenance in V1. Thus, spontaneous activity is sufficient for RF refinement at these 2 levels of the visual pathway, and visual input is necessary only to prevent deprivation-induced RF enlargement in adulthood. These studies show that sensory experience during a late juvenile sensitive period protects the visual pathway against sensory deprivation in adulthood, and suggest that more importance may have been placed on the role of early visual experience in visual RF development than is warranted.
Collapse
Affiliation(s)
- Timothy S Balmer
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Sarah L Pallas
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
27
|
Primary visual cortex projections to extrastriate cortices in enucleated and anophthalmic mice. Brain Struct Funct 2013; 219:2051-70. [PMID: 23942645 DOI: 10.1007/s00429-013-0623-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 07/29/2013] [Indexed: 10/26/2022]
Abstract
In the mouse, visual extrastriate areas are located within distinct acallosal zones. It has been proposed that the striate-extrastriate and callosal projections are interdependent. In visually deprived mice, the normal patterns of callosal and striate-extrastriate projections are disrupted. It remains unknown whether visual deprivation affects the topography of V1-extrastriate projections and their relationship with callosal projections. Two anterograde tracers were injected in V1 and multiple retrograde tracer injections were performed in the contralateral hemisphere of intact and enucleated C57BL/6 mice and in ZRDCT/An mice to determine the effects of prenatal and postnatal afferent sensory activity on the topography of V1-extrastriate and callosal projections. Greater topographic anomalies were found in striate-extrastriate projections of anophthalmic than enucleated mice. In enucleated mice, the relationship between striate-extrastriate projections and callosal zones was highly variable. In anophthalmic mice, there was also a greater overlap between these projections. These results suggest that the prenatal afferent sensory activity regulates some aspects of the distribution of V1-extrastriate and callosal projections, in addition to the development of a normal topographic representation in extrastriate areas.
Collapse
|
28
|
Je HS, Yang F, Ji Y, Potluri S, Fu XQ, Luo ZG, Nagappan G, Chan JP, Hempstead B, Son YJ, Lu B. ProBDNF and mature BDNF as punishment and reward signals for synapse elimination at mouse neuromuscular junctions. J Neurosci 2013; 33:9957-62. [PMID: 23761891 PMCID: PMC3682390 DOI: 10.1523/jneurosci.0163-13.2013] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/08/2013] [Accepted: 05/05/2013] [Indexed: 11/21/2022] Open
Abstract
During development, mammalian neuromuscular junctions (NMJs) transit from multiple-innervation to single-innervation through axonal competition via unknown molecular mechanisms. Previously, using an in vitro model system, we demonstrated that the postsynaptic secretion of pro-brain-derived neurotrophic factor (proBDNF) stabilizes or eliminates presynaptic axon terminals, depending on its proteolytic conversion at synapses. Here, using developing mouse NMJs, we obtained in vivo evidence that proBDNF and mature BDNF (mBDNF) play roles in synapse elimination. We observed that exogenous proBDNF promoted synapse elimination, whereas mBDNF infusion substantially delayed synapse elimination. In addition, pharmacological inhibition of the proteolytic conversion of proBDNF to mBDNF accelerated synapse elimination via activation of p75 neurotrophin receptor (p75(NTR)). Furthermore, the inhibition of both p75(NTR) and sortilin signaling attenuated synapse elimination. We propose a model in which proBDNF and mBDNF serve as potential "punishment" and "reward" signals for inactive and active terminals, respectively, in vivo.
Collapse
Affiliation(s)
- H Shawn Je
- Section on Neural Development and Plasticity, National Institute of Child Health and Human Development, and Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, Maryland 20892-3714, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Barone P, Lacassagne L, Kral A. Reorganization of the connectivity of cortical field DZ in congenitally deaf cat. PLoS One 2013; 8:e60093. [PMID: 23593166 PMCID: PMC3625188 DOI: 10.1371/journal.pone.0060093] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/25/2013] [Indexed: 02/07/2023] Open
Abstract
Psychophysics and brain imaging studies in deaf patients have revealed a functional crossmodal reorganization that affects the remaining sensory modalities. Similarly, the congenital deaf cat (CDC) shows supra-normal visual skills that are supported by specific auditory fields (DZ-dorsal zone and P-posterior auditory cortex) but not the primary auditory cortex (A1). To assess the functional reorganization observed in deafness we analyzed the connectivity pattern of the auditory cortex by means of injections of anatomical tracers in DZ and A1 in both congenital deaf and normally hearing cats. A quantitative analysis of the distribution of the projecting neurons revealed the presence of non-auditory inputs to both A1 and DZ of the CDC which were not observed in the hearing cats. Firstly, some visual (areas 19/20) and somatosensory (SIV) areas were projecting toward DZ of the CDC but not in the control. Secondly, A1 of the deaf cat received a weak projection from the visual lateral posterior nuclei (LP). Most of these abnormal projections to A1 and DZ represent only a small fraction of the normal inputs to these areas. In addition, most of the afferents to DZ and A1 appeared normal in terms of areal specificity and strength of projection, with preserved but smeared nucleotopic gradient of A1 in CDCs. In conclusion, while the abnormal projections revealed in the CDC can participate in the crossmodal compensatory mechanisms, the observation of a limited reorganization of the connectivity pattern of the CDC implies that functional reorganization in congenital deafness is further supported also by normal cortico-cortical connectivity.
Collapse
Affiliation(s)
- Pascal Barone
- Université Toulouse, CerCo, Université Paul Sabatier, Toulouse, France.
| | | | | |
Collapse
|
30
|
Alfano C, Studer M. Neocortical arealization: evolution, mechanisms, and open questions. Dev Neurobiol 2013; 73:411-47. [PMID: 23239642 DOI: 10.1002/dneu.22067] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 11/03/2012] [Accepted: 12/06/2012] [Indexed: 12/13/2022]
Abstract
The mammalian neocortex is a structure with no equals in the vertebrates and is the seat of the highest cerebral functions, such as thoughts and consciousness. It is radially organized into six layers and tangentially subdivided into functional areas deputed to the elaboration of sensory information, association between different stimuli, and selection and triggering of voluntary movements. The process subdividing the neocortical field into several functional areas is called "arealization". Each area has its own cytoarchitecture, connectivity, and peculiar functions. In the last century, several neuroscientists have investigated areal structure and the mechanisms that have led during evolution to the rising of the neocortex and its organization. The extreme conservation in the positioning and wiring of neocortical areas among different mammalian families suggests a conserved genetic program orchestrating neocortical patterning. However, the impressive plasticity of the neocortex, which is able to rewire and reorganize areal structures and connectivity after impairments of sensory pathways, argues for a more complex scenario. Indeed, even if genetics and molecular biology helped in identifying several genes involved in the arealization process, the logic underlying the neocortical bauplan is still beyond our comprehension. In this review, we will introduce the present knowledge and hypotheses on the ontogenesis and evolution of neocortical areas. Then, we will focus our attention on some open issues, which are still unresolved, and discuss some recent studies that might open new directions to be explored in the next few years.
Collapse
Affiliation(s)
- Christian Alfano
- Institute of Biology Valrose, iBV, UMR INSERM1091/CNRS7277/UNS, Nice, F-06108, France.
| | | |
Collapse
|
31
|
Srinivasa N, Jiang Q. Stable learning of functional maps in self-organizing spiking neural networks with continuous synaptic plasticity. Front Comput Neurosci 2013; 7:10. [PMID: 23450808 PMCID: PMC3583036 DOI: 10.3389/fncom.2013.00010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 02/09/2013] [Indexed: 11/13/2022] Open
Abstract
This study describes a spiking model that self-organizes for stable formation and maintenance of orientation and ocular dominance maps in the visual cortex (V1). This self-organization process simulates three development phases: an early experience-independent phase, a late experience-independent phase and a subsequent refinement phase during which experience acts to shape the map properties. The ocular dominance maps that emerge accommodate the two sets of monocular inputs that arise from the lateral geniculate nucleus (LGN) to layer 4 of V1. The orientation selectivity maps that emerge feature well-developed iso-orientation domains and fractures. During the last two phases of development the orientation preferences at some locations appear to rotate continuously through ±180° along circular paths and referred to as pinwheel-like patterns but without any corresponding point discontinuities in the orientation gradient maps. The formation of these functional maps is driven by balanced excitatory and inhibitory currents that are established via synaptic plasticity based on spike timing for both excitatory and inhibitory synapses. The stability and maintenance of the formed maps with continuous synaptic plasticity is enabled by homeostasis caused by inhibitory plasticity. However, a prolonged exposure to repeated stimuli does alter the formed maps over time due to plasticity. The results from this study suggest that continuous synaptic plasticity in both excitatory neurons and interneurons could play a critical role in the formation, stability, and maintenance of functional maps in the cortex.
Collapse
Affiliation(s)
- Narayan Srinivasa
- Center for Neural and Emergent Systems, HRL Laboratories LLC Malibu, CA, USA
| | | |
Collapse
|
32
|
Abstract
Cortical maturation is associated with a series of developmental programs encompassing neuronal and network-driven patterns. Thus, voltage-gated and synapse-driven ionic currents are very different in immature and adult neurons with slower kinetics in the former than in the latter. These features are neuron and developmental stage dependent. GABA, which is the main inhibitory neurotransmitter in adult brain, depolarizes and excites immature neurons and its actions are thought to exert a trophic role in developmental processes. Networks follow a parallel sequence with voltage-gated calcium currents followed by calcium plateaux and synapse-driven patterns in vitro. In vivo, early activity exhibits discontinuous temporal organization with alternating bursts. Early cortical patterns are driven by sensory input from the periphery providing a basis for activity-dependent modulation of the cortical networks formation. These features and notably the excitatory GABA underlie the high susceptibility of immature neurons to seizures. Alterations of these sequences play a central role in developmental malformations, notably migration disorders and associated neurological sequelae.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- INMED, INSERM U901, Université de la Méditerranée, Campus Scientifique de Luminy, Marseilles, France.
| |
Collapse
|
33
|
Lemonnier E, Degrez C, Phelep M, Tyzio R, Josse F, Grandgeorge M, Hadjikhani N, Ben-Ari Y. A randomised controlled trial of bumetanide in the treatment of autism in children. Transl Psychiatry 2012; 2:e202. [PMID: 23233021 PMCID: PMC3565189 DOI: 10.1038/tp.2012.124] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 10/07/2012] [Indexed: 02/08/2023] Open
Abstract
Gamma aminobutyric acid (GABA)-mediated synapses and the oscillations they orchestrate are altered in autism. GABA-acting benzodiazepines exert in some patients with autism paradoxical effects, raising the possibility that like in epilepsies, GABA excites neurons because of elevated intracellular concentrations of chloride. Following a successful pilot study,(1) we have now performed a double-blind clinical trial using the diuretic, chloride-importer antagonist bumetanide that reduces intracellular chloride reinforcing GABAergic inhibition. Sixty children with autism or Asperger syndrome (3-11 years old) received for 3 months placebo or bumetanide (1 mg daily), followed by 1-month wash out. Determination of the severity of autism was made with video films at day 0 (D0) and D90 by blind, independent evaluators. Bumetanide reduced significantly the Childhood Autism Rating Scale (CARS) (D90-D0; P<0.004 treated vs placebo), Clinical Global Impressions (P<0.017 treated vs placebo) and Autism Diagnostic Observation Schedule values when the most severe cases (CARS values above the mean ± s.d.; n=9) were removed (Wilcoxon test: P-value=0.031; Student's t-test: P-value=0.017). Side effects were restricted to an occasional mild hypokalaemia (3.0-3.5 mM l(-1) K(+)) that was treated with supplemental potassium. In a companion study, chronic bumetanide treatment significantly improved accuracy in facial emotional labelling, and increased brain activation in areas involved in social and emotional perception (Hadjikhani et al., submitted). Therefore, bumetanide is a promising novel therapeutic agent to treat autism. Larger trials are warranted to better determine the population best suited for this treatment.
Collapse
Affiliation(s)
- E Lemonnier
- Centre de Ressources Autisme de Bretagne, CHRU Brest Hôpital Bohars, Route de Ploudalmezeau, Bohars, France.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Tomita K, Sperling M, Cambridge SB, Bonhoeffer T, Hübener M. A Molecular Correlate of Ocular Dominance Columns in the Developing Mammalian Visual Cortex. Cereb Cortex 2012; 23:2531-41. [DOI: 10.1093/cercor/bhs232] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
35
|
Salami M, Talaei SA, Davari S, Hamidi G. Interaction of visual experience and melatonin in the spatial task learning. BIOL RHYTHM RES 2012. [DOI: 10.1080/09291016.2011.593849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
36
|
Hagmann P, Grant PE, Fair DA. MR connectomics: a conceptual framework for studying the developing brain. Front Syst Neurosci 2012; 6:43. [PMID: 22707934 PMCID: PMC3374479 DOI: 10.3389/fnsys.2012.00043] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 05/08/2012] [Indexed: 12/25/2022] Open
Abstract
THE COMBINATION OF ADVANCED NEUROIMAGING TECHNIQUES AND MAJOR DEVELOPMENTS IN COMPLEX NETWORK SCIENCE, HAVE GIVEN BIRTH TO A NEW FRAMEWORK FOR STUDYING THE BRAIN: "connectomics." This framework provides the ability to describe and study the brain as a dynamic network and to explore how the coordination and integration of information processing may occur. In recent years this framework has been used to investigate the developing brain and has shed light on many dynamic changes occurring from infancy through adulthood. The aim of this article is to review this work and to discuss what we have learned from it. We will also use this body of work to highlight key technical aspects that are necessary in general for successful connectome analysis using today's advanced neuroimaging techniques. We look to identify current limitations of such approaches, what can be improved, and how these points generalize to other topics in connectome research.
Collapse
Affiliation(s)
- Patric Hagmann
- Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL)Lausanne, Switzerland
- Signal Processing Laboratory 5, Ecole Polytechnique Fédérale de Lausanne (EPFL)Lausanne, Switzerland
| | - Patricia E. Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Children's Hospital Boston, BostonMA, USA
- Division of Newborn Medicine and Department of Radiology, Children's Hospital Boston, BostonMA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, MGH-Harvard, BostonMA, USA
| | - Damien A. Fair
- Department of Psychiatry, Oregon Health and Science University, PortlandOR, USA
| |
Collapse
|
37
|
Merlin S, Horng S, Marotte LR, Sur M, Sawatari A, Leamey CA. Deletion of Ten-m3 induces the formation of eye dominance domains in mouse visual cortex. ACTA ACUST UNITED AC 2012; 23:763-74. [PMID: 22499796 DOI: 10.1093/cercor/bhs030] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The visual system is characterized by precise retinotopic mapping of each eye, together with exquisitely matched binocular projections. In many species, the inputs that represent the eyes are segregated into ocular dominance columns in primary visual cortex (V1), whereas in rodents, this does not occur. Ten-m3, a member of the Ten-m/Odz/Teneurin family, regulates axonal guidance in the retinogeniculate pathway. Significantly, ipsilateral projections are expanded in the dorsal lateral geniculate nucleus and are not aligned with contralateral projections in Ten-m3 knockout (KO) mice. Here, we demonstrate the impact of altered retinogeniculate mapping on the organization and function of V1. Transneuronal tracing and c-fos immunohistochemistry demonstrate that the subcortical expansion of ipsilateral input is conveyed to V1 in Ten-m3 KOs: Ipsilateral inputs are widely distributed across V1 and are interdigitated with contralateral inputs into eye dominance domains. Segregation is confirmed by optical imaging of intrinsic signals. Single-unit recording shows ipsilateral, and contralateral inputs are mismatched at the level of single V1 neurons, and binocular stimulation leads to functional suppression of these cells. These findings indicate that the medial expansion of the binocular zone together with an interocular mismatch is sufficient to induce novel structural features, such as eye dominance domains in rodent visual cortex.
Collapse
Affiliation(s)
- Sam Merlin
- Discipline of Physiology, School of Medical Sciences and the Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | | | |
Collapse
|
38
|
Developmental sculpting of dendritic morphology of layer 4 neurons in visual cortex: influence of retinal input. J Neurosci 2011; 31:7456-70. [PMID: 21593329 DOI: 10.1523/jneurosci.5222-10.2011] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Dendritic morphology determines the kinds of input a neuron receives, having a profound impact on neural information processing. In the mammalian cerebral cortex, excitatory neurons have been ascribed to one of two main dendritic morphologies, either pyramidal or stellate, which differ mainly on the extent of the apical dendrite. Developmental mechanisms regulating the emergence and refinement of dendritic morphologies have been studied for cortical pyramidal neurons, but little is known for spiny stellate neurons. Using biolistics to label single cells on acute brain slices of the ferret primary visual cortex, we show that neurons in layer 4 develop in a two-step process: initially, all neurons appear pyramidal, growing a prominent apical dendrite and few small basal dendrites. Later, a majority of these neurons show a change in the relative extent of basal and apical dendrites that results in a gradual sculpting into a stellate morphology. We also find that ∼ 22% of neurons maintain the proportionality of their dendritic arbors, remaining as pyramidal cells at maturity. When ferrets were deprived of retinal input at early stages of postnatal development by binocular enucleation, a significant proportion of layer 4 spiny neurons failed to remodel their apical dendrites, and ∼ 55% remained as pyramidal neurons. Our results demonstrate that cortical spiny stellate neurons emerge by differential sculpting of the dendritic arborizations of an initial pyramidal morphology and that sensory input plays a fundamental role in this process.
Collapse
|
39
|
van Ooyen A. Using theoretical models to analyse neural development. Nat Rev Neurosci 2011; 12:311-26. [DOI: 10.1038/nrn3031] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Padmanabhan K, Eddy WF, Crowley JC. A novel algorithm for optimal image thresholding of biological data. J Neurosci Methods 2010; 193:380-4. [PMID: 20817033 DOI: 10.1016/j.jneumeth.2010.08.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/26/2010] [Accepted: 08/26/2010] [Indexed: 11/26/2022]
Abstract
With the proliferation of both in vivo and in vitro microscopy techniques in the neurosciences, increased attention has been placed on the development of image analysis techniques. As experiments can produce large numbers of high bit depth images, automated processing methods have become necessary for handling these data sets. Thresholding, whereby a high bit depth image is converted into a binary image in order to identify a feature of interest, is one such standard automated technique; but the method of selecting an appropriate threshold value is far from standard. We present a novel algorithm, maximum correlation thresholding (MCT), that thresholds images accurately and efficiently without relying on any assumptions of the statistics of the image. As MCT produces thresholded images that preserve the most salient elements in the image, the algorithm performs as well as a trained user on a range of neurobiological data and in a variety of noisy conditions or when preprocessing steps preceded the thresholding operation. Our method will thus allow neuroscientists to automate image thresholding using a robust, computationally efficient algorithm, ultimately aiding in accurate image quantification and analysis.
Collapse
Affiliation(s)
- Krishnan Padmanabhan
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
41
|
|
42
|
Talaei SA, Sheibani V, Salami M. Light deprivation improves melatonin related suppression of hippocampal plasticity. Hippocampus 2010; 20:447-55. [PMID: 19475653 DOI: 10.1002/hipo.20650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In early postnatal life, sensory inputs deeply influence development as well as function of the brain. Plasticity of synaptic transmission including its experimentally induced form, long-term potentiation (LTP), is affected by sensory deprivation in neocortex. This study is devoted to assess if dark rearing and a dark phase synthesized hormone melatonin influence LTP in the hippocampus, an area of brain involved in learning and memory. In vivo experiments were carried out on two groups of 45-days-old male Wistar rats kept in standard 12-h light/dark condition [light reared (LR) tested during the light phase] or in complete darkness [dark reared (DR)] since birth to testing. Each group, in turn, was divided to two, vehicle- and melatonin-treated, groups. Stimulating the Schaffer collaterals of CA3 area of hippocampus extracellular postsynaptic potentials (EPSPs) were recorded in the CA1 area. Having the stable baseline responses to the test pulses, the hippocampus was perfused by either vehicle or 2 microg melatonin and EPSPs were recorded for 30 min. Then, for induction of LTP, the tetanus was applied to the Schaffer collaterals and the field potentials were pooled for 120-min post-tetanus. The light deprivation resulted in a significant augmentation in the amplitude of baseline responses. Also, we observed a melatonin-induced increase in amplitude of the baseline recordings in either LR or DR animals. Tetanic stimulation elicited LTP of EPSPs in both LR and DR groups, robustly in the former where it lasted for about 90 min. Generally, melatonin inhibited the production of LTP in the two groups especially in the LR animals leading to a noticeable depression. We concluded that higher level of neuronal activity in the DR rats gives rise to a lower level of LTP. Weaker effect of melatonin on blocking the potentiation of post-tetanus EPSPs in the DR rats may be the result of a desensitization of melatonin receptors due to chronically increased levels of this hormone in the visually deprived rats.
Collapse
Affiliation(s)
- Sayyed Alireza Talaei
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, I. R. Iran
| | | | | |
Collapse
|
43
|
"Slow activity transients" in infant rat visual cortex: a spreading synchronous oscillation patterned by retinal waves. J Neurosci 2010; 30:4325-37. [PMID: 20335468 DOI: 10.1523/jneurosci.4995-09.2010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A primary feature of the preterm infant electroencephalogram is the presence of large infra-slow potentials containing rapid oscillations called slow activity transients (SATs). Such activity has not been described in animal models, and their generative mechanisms are unknown. Here we use direct-current and multisite extracellular, as well as whole-cell, recording in vivo to demonstrate the existence of regularly repeating SATs in the visual cortex of infant rats before eye opening. Present only in absence of anesthesia, SATs at postnatal day 10-11 were identifiable as a separate group of long-duration (approximately 10 s) events that consisted of large (>1 mV) negative local-field potentials produced by the summation of multiple bursts of rapid oscillatory activity (15-30 Hz). SATs synchronized the vast majority of neuronal activity (87%) in the visual cortex before eye opening. Enucleation eliminated SATs, and their duration, interevent interval, and sub-burst structure matched those of phase III retinal waves recorded in vitro. Retinal waves, however, lacked rapid oscillations, suggesting that they arise centrally. Multielectrode recordings showed that SATs spread horizontally in cortex and synchronize activity at coactive locales via the rapid oscillations. SATs were clearly different from ongoing cortical activity, which was observable as a separate class of short bursts from postnatal day 9. Together, our data suggest that, in vivo, early cortical activity is primarily determined by peripheral inputs-retinal waves in visual cortex-that provide excitatory input, and by thalamocortical circuitry, which transforms this input to beta oscillations. We propose that the synchronous oscillations of SATs participate in the formation of visual circuitry.
Collapse
|
44
|
Hanganu-Opatz IL. Between molecules and experience: role of early patterns of coordinated activity for the development of cortical maps and sensory abilities. ACTA ACUST UNITED AC 2010; 64:160-76. [PMID: 20381527 DOI: 10.1016/j.brainresrev.2010.03.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/22/2010] [Accepted: 03/29/2010] [Indexed: 10/19/2022]
Abstract
Sensory systems processing information from the environment rely on precisely formed and refined neuronal networks that build maps of sensory receptor epithelia at different subcortical and cortical levels. These sensory maps share similar principles of function and emerge according to developmental processes common in visual, somatosensory and auditory systems. Whereas molecular cues set the coarse organization of cortico-subcortical topography, its refinement is known to succeed under the influence of experience-dependent electrical activity during critical periods. However, coordinated patterns of activity synchronize the cortico-subcortical networks long before the meaningful impact of environmental inputs on sensory maps. Recent studies elucidated the cellular and network mechanisms underlying the generation of these early patterns of activity and highlighted their similarities across species. Moreover, the experience-independent activity appears to act as a functional template for the maturation of sensory networks and cortico-subcortical maps. A major goal for future research will be to analyze how this early activity interacts with the molecular cues and to determine whether it is permissive or rather supporting for the establishment of sensory topography.
Collapse
Affiliation(s)
- Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Center of Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Falkenried 94, Hamburg, Germany.
| |
Collapse
|
45
|
Borrell V. In vivo gene delivery to the postnatal ferret cerebral cortex by DNA electroporation. J Neurosci Methods 2010; 186:186-95. [DOI: 10.1016/j.jneumeth.2009.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 11/20/2009] [Accepted: 11/21/2009] [Indexed: 10/20/2022]
|
46
|
Lewkowicz DJ, Ghazanfar AA. The emergence of multisensory systems through perceptual narrowing. Trends Cogn Sci 2009; 13:470-8. [DOI: 10.1016/j.tics.2009.08.004] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Revised: 08/17/2009] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
|
47
|
Equalization of ocular dominance columns induced by an activity-dependent learning rule and the maturation of inhibition. J Neurosci 2009; 29:6514-25. [PMID: 19458222 DOI: 10.1523/jneurosci.0492-08.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Early in development, the cat primary visual cortex (V1) is dominated by inputs driven by the contralateral eye. The pattern then reorganizes into ocular dominance columns that are roughly equally distributed between inputs serving the two eyes. This reorganization does not occur if the eyes are kept closed. The mechanism of this equalization is unknown. It has been argued that it is unlikely to involve Hebbian activity-dependent learning rules, on the assumption that these would favor an initially dominant eye. The reorganization occurs at the onset of the critical period (CP) for monocular deprivation (MD), the period when MD can cause a shift of cortical innervation in favor of the nondeprived eye. In mice, the CP is opened by the maturation of cortical inhibition, which does not occur if the eyes are kept closed. Here we show how these observations can be united: under Hebbian rules of activity-dependent synaptic modification, strengthening of intracortical inhibition can lead to equalization of the two eyes' inputs. Furthermore, when the effects of homeostatic synaptic plasticity or certain other mechanisms are incorporated, activity-dependent learning can also explain how MD causes a shift toward the open eye during the CP despite the drive by inhibition toward equalization of the two eyes' inputs. Thus, assuming similar mechanisms underlie the onset of the CP in cats as in mice, this and activity-dependent learning rules can explain the interocular equalization observed in cat V1 and its failure to occur without visual experience.
Collapse
|
48
|
Leamey CA, Van Wart A, Sur M. Intrinsic patterning and experience-dependent mechanisms that generate eye-specific projections and binocular circuits in the visual pathway. Curr Opin Neurobiol 2009; 19:181-7. [PMID: 19502049 DOI: 10.1016/j.conb.2009.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 05/14/2009] [Accepted: 05/15/2009] [Indexed: 01/10/2023]
Abstract
A defining feature of the mammalian nervous system is its complex yet precise circuitry. The mechanisms which underlie the generation of neural connectivity are the topic of intense study in developmental neuroscience. The mammalian visual pathway demonstrates precise retinotopic organization in subcortical and cortical pathways, together with the alignment and matching of eye-specific projections, and sophisticated cortical circuitry that enables the extraction of features underlying vision. New approaches employing molecular-genetic analyses, transgenic mice, novel recombinant probes, and high-resolution imaging are contributing to rapid progress and a new synthesis in the field. These approaches are revealing the ways in which intrinsic patterning mechanisms act in concert with experience-dependent mechanisms to shape visual projections and circuits.
Collapse
Affiliation(s)
- Catherine A Leamey
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, University of Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
49
|
Merkul'eva NS, Makarov FN. Effects of transient and prolonged flashing light stimulation on the cytochrome oxidase module system in layer IV of the primary visual cortex of kittens. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2009; 39:449-55. [PMID: 19430973 DOI: 10.1007/s11055-009-9158-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 02/29/2008] [Indexed: 11/26/2022]
Abstract
Cytochrome oxidase spots in layer IV of field 17 of the primary visual cortex were studied in kittens aged 33, 49, and 93 days, stimulated with a light flashing at a frequency of 15 Hz. The kittens of one group received stimulation from the moment of eye opening until euthanasia (prolonged stimulation); other groups received stimulation for eight days starting from ages 26, 42, or 85 days (transient stimulation), again until euthanasia. Both types of stimulation were found not to alter the geometrical characteristics of cytochrome oxidase spots, but led to significant increases in the contrast of spots located in the splenial gyrus. Increases in spot contrast in the lateral gyrus occurred only after prolonged stimulation to age 93 days or after transient stimulation from age 26 days to age 33 days. Thus, stimulation of kittens of different ages with a light flashing at a frequency of 15 Hz led to structural-metabolic changes in the primary visual cortex. These changes were apparent to different extents in areas of the cortex responsible for central and peripheral vision. This may be explained, firstly, by the predominant activation of the Y conducting channel of the visual system and, secondly, by the increase in dominance of the contralateral input to the primary visual cortex.
Collapse
Affiliation(s)
- N S Merkul'eva
- Neuromorphology Laboratory, I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarov Bank, 199034, St. Petersburg, Russia.
| | | |
Collapse
|
50
|
Abstract
In some mammalian species, geniculocortical afferents serving each eye are segregated in layer 4C of striate cortex into stripes called ocular dominance columns. Having described the complete pattern of ocular dominance columns in the human brain, the authors enumerate here the principal enigmas that confront future investigators. Probably the overarching challenge is to explain the function, if any, of ocular dominance columns and why they are present in some species and not others. A satisfactory solution must account for the enormous natural variation, even within the same species, among individuals in column expression, pattern, periodicity, and alignment with other components of the functional architecture. Another major priority is to explain the development of ocular dominance columns. It has been established clearly that they form without visual experience, but the innate signals that guide their segregation and maturation are unknown. Experiments addressing the role of spontaneous retinal activity have yielded contradictory data. These studies must be reconciled, to pave the way for new insights into how columnar structure is generated in the cerebral cortex.
Collapse
Affiliation(s)
- Daniel L Adams
- Department of Cognitive Science, Center for Mind/Brain Sciences, University of Trento, Italy
| | | |
Collapse
|