1
|
Inoue A, Outani H, Imura Y, Nakai S, Takami H, Kotani Y, Mae H, Okada S. AURKA/PLK1/CDC25C Axis as a Novel Therapeutic Target in INI1-Deficient Epithelioid Sarcoma. Cancer Sci 2025; 116:976-989. [PMID: 39789853 PMCID: PMC11967267 DOI: 10.1111/cas.16438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025] Open
Abstract
Effective therapeutic strategies for epithelioid sarcoma (EpS), a high-grade soft tissue sarcoma characterized by loss of integrase interactor 1 (INI1), have not yet been developed. The present study therefore investigated the association between INI1 loss and upregulation of the aurora kinase A (AURKA)/polo-like kinase 1 (PLK1)/cell division cycle 25C (CDC25C) axis, as well as the therapeutic relevance of this axis in EpS. Notably, our findings showed that the reintroduction of INI1 in VA-ES-BJ cells significantly reduced proliferation, mitigated tumorigenicity, and negatively regulated the expression of AURKA and its downstream effectors, as well as the activation of PLK1 and CDC25C. These results suggest that INI1 deficiency enhanced EpS growth by upregulating the AURKA/PLK1/CDC25C axis. AURKA silencing using siRNAs inhibited VA-ES-BJ and Asra-EPS cell proliferation by inactivating PLK1 and CDC25C. Alisertib, a selective AURKA inhibitor, exerted markedly greater antiproliferative effects on EpS cells than on normal human dermal fibroblasts, and these effects were dependent on INI1 deficiency. Inhibition of AURKA activity by alisertib induced G2/M cell cycle arrest and apoptosis via the inactivation of AURKA downstream effectors in EpS cells. Alisertib also significantly decreased VA-ES-BJ xenograft tumor growth. Taken together, our findings revealed that INI1 loss in EpS cells enhances the expression of AURKA and its downstream effectors and persistently activates PLK1 and CDC25C mediated by AURKA, making the cells reliant on the AURKA/PLK1/CDC25C axis. Therefore, the AURKA/PLK1/CDC25C axis activated by INI1 deficiency could serve as a novel therapeutic target for this devastating disease.
Collapse
Affiliation(s)
- Akitomo Inoue
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Hidetatsu Outani
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Yoshinori Imura
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Sho Nakai
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Haruna Takami
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Yuki Kotani
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Hirokazu Mae
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Seiji Okada
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
2
|
Kucharski TJ, Vlasac IM, Lyalina T, Higgs MR, Christensen BC, Bechstedt S, Compton DA. An Aurora kinase A-BOD1L1-PP2A B56 axis promotes chromosome segregation fidelity. Cell Rep 2025; 44:115317. [PMID: 39970043 PMCID: PMC11962599 DOI: 10.1016/j.celrep.2025.115317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/24/2024] [Accepted: 01/23/2025] [Indexed: 02/21/2025] Open
Abstract
Cancer cells are often aneuploid and frequently display elevated rates of chromosome mis-segregation, called chromosomal instability (CIN). CIN is caused by hyperstable kinetochore-microtubule (K-MT) attachments that reduce the correction efficiency of erroneous K-MT attachments. UMK57, a chemical agonist of the protein MCAK (mitotic centromere-associated kinesin), improves chromosome segregation fidelity in CIN cancer cells by destabilizing K-MT attachments, but cells rapidly develop resistance. To determine the mechanism, we performed unbiased screens, which revealed increased phosphorylation in cells adapted to UMK57 at Aurora kinase A phosphoacceptor sites on BOD1L1 (protein biorientation defective 1-like-1). BOD1L1 depletion or Aurora kinase A inhibition eliminated resistance to UMK57. BOD1L1 localizes to spindles/kinetochores during mitosis, interacts with the PP2A phosphatase, and regulates phosphorylation levels of kinetochore proteins, chromosome alignment, mitotic progression, and fidelity. Moreover, the BOD1L1 gene is mutated in a subset of human cancers, and BOD1L1 depletion reduces cell growth in combination with clinically relevant doses of Taxol or Aurora kinase A inhibitor.
Collapse
Affiliation(s)
- Thomas J Kucharski
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7 Canada
| | - Irma M Vlasac
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Tatiana Lyalina
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7 Canada
| | - Martin R Higgs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Susanne Bechstedt
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7 Canada; Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC H3G 0B1 Canada
| | - Duane A Compton
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
3
|
Zare R, Izadi L, Alarcón-Sánchez MA, Taghva M, Ranjbar MA. Aurora kinase A expression in pleomorphic adenoma, adenoid cystic carcinoma, and mucoepidermoid carcinoma of salivary glands: an immunohistochemical study. BMC Oral Health 2025; 25:89. [PMID: 39825351 PMCID: PMC11740330 DOI: 10.1186/s12903-024-05276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/28/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Aurora kinase A (AurkA) plays a vital role in mitosis and is therefore critical in tumors development and progression. There are a few studies on AurkA expression in salivary gland tumors. The aim of the present study was to evaluate the expression pattern of AurkA in the most common benign and malignant salivary gland tumors by immunohistochemistry. METHODS In this retrospective cross-sectional study, 68 cases including 25 pleomorphic adenomas (PAs), 21 adenoid cystic carcinomas (ADCa), 15 mucoepidermoid carcinomas (MEC), and 7 normal salivary glands (NSG) were enrolled from the archive of the Department of Pathology of Shiraz School of Dentistry, Iran. The expression of AurkA in the tissue samples was assessed by immunohistochemical method and was analyzed using statistical analysis (p < 0.05). RESULTS Of total cases analyzed, the majority of benign and malignant tumors were found to involve minor salivary glands compared to major salivary glands (p < 0.001). In addition, all lesions studied expressed AurkA. More than half of the tumor tissues showed AurkA staining percentages between 26 and 50% and 76-100% compared to NSG (p = 0.08). In 44.1% of cases, cells had a weak staining score, 27.9% a moderate score and the rest (27.9%) a strong score (p = 0.64). CONCLUSION Although AurkA was observed to be expressed in all tumor tissues, further studies are needed to clearly understand the role of AurkA and the possibility of using it as a diagnostic, prognostic and therapeutic factor.
Collapse
Affiliation(s)
- Razieh Zare
- Department of Maxillofacial Pathology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Izadi
- Undergraduate Student, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mario Alberto Alarcón-Sánchez
- Biomedical Science, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo de los Bravo 39087, Guerrero, Mexico
| | - Masumeh Taghva
- Department of Prosthodontics, School of Dentistry, Shiraz University of Medical Sciences, Qasr-Dasht st., Mehr Intersection, 71956-15878, Shiraz, Iran.
| | - Mohammad Ali Ranjbar
- Department of Maxillofacial Pathology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Cacioppo R, Rad D, Pagani G, Gandellini P, Lindon C. Post-transcriptional control drives Aurora kinase A expression in human cancers. PLoS One 2024; 19:e0310625. [PMID: 39527514 PMCID: PMC11554201 DOI: 10.1371/journal.pone.0310625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/03/2024] [Indexed: 11/16/2024] Open
Abstract
Aurora kinase A (AURKA) is a major regulator of the cell cycle. A prominent association exists between high expression of AURKA and cancer, and impairment of AURKA levels can trigger its oncogenic activity. In order to explore the contribution of post-transcriptional regulation to AURKA expression in different cancers, we carried out a meta-analysis of -omics data of 18 cancer types from The Cancer Genome Atlas (TCGA). Our study confirmed a general trend for increased AURKA mRNA in cancer compared to normal tissues and revealed that AURKA expression is highly dependent on post-transcriptional control in several cancers. Correlation and clustering analyses of AURKA mRNA and protein expression, and expression of AURKA-targeting hsa-let-7a miRNA, unveiled that hsa-let-7a is likely involved to varying extents in controlling AURKA expression in cancers. We then measured differences in the short/long ratio (SLR) of the two alternative cleavage and polyadenylation (APA) isoforms of AURKA mRNA across cancers compared to the respective healthy counterparts. We suggest that the interplay between APA and hsa-let-7a targeting of AURKA mRNA may influence AURKA expression in some cancers. hsa-let-7a and APA may also independently contribute to altered AURKA levels. Therefore, we argue that AURKA mRNA and protein expression are often discordant in cancer as a result of dynamic post-transcriptional regulation.
Collapse
Affiliation(s)
- Roberta Cacioppo
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Deniz Rad
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Giulia Pagani
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Heimdörfer D, Artamonova N, Culig Z, Heidegger I. Unraveling molecular characteristics and tumor microenvironment dynamics of neuroendocrine prostate cancer. J Cancer Res Clin Oncol 2024; 150:462. [PMID: 39412660 PMCID: PMC11485041 DOI: 10.1007/s00432-024-05983-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Prostate cancer (PCa) is the most prevalent malignancy and the second leading cause of cancer-related deaths among men. While adenocarcinoma of the prostate (adeno-PCa) is well-characterized, neuroendocrine prostate cancer (NEPC) remains poorly understood. Generally, NEPC is a rare but highly aggressive histological variant, however its limited patho-physiological understanding leads to insufficient treatment options associated with low survival rates for NEPC patients. Current treatments for NEPC, including platinum-based therapies, offer some efficacy, but there is a significant need for more targeted approaches. This review summarizes the molecular characteristics of NEPC in contrast to adeno-PCa, providing a comprehensive comparison. A significant portion of the discussion is dedicated to the tumor microenvironment (TME), which has recently been identified as a key factor in tumor progression. The TME includes various cells, signaling molecules, and the extracellular matrix surrounding the tumor, all of which play critical roles in cancer development and response to treatment. Understanding the TME's influence on NEPC could uncover new avenues for innovative treatment strategies, potentially improving outcomes for patients with this challenging variant of PCa.
Collapse
Affiliation(s)
- David Heimdörfer
- Department of Urology, Medical University Innsbruck, Innsbruck, Anichstreet 35, Innsbruck, A-6020, Austria
| | - Nastasiia Artamonova
- Department of Urology, Medical University Innsbruck, Innsbruck, Anichstreet 35, Innsbruck, A-6020, Austria
| | - Zoran Culig
- Department of Urology, Medical University Innsbruck, Innsbruck, Anichstreet 35, Innsbruck, A-6020, Austria
| | - Isabel Heidegger
- Department of Urology, Medical University Innsbruck, Innsbruck, Anichstreet 35, Innsbruck, A-6020, Austria.
| |
Collapse
|
6
|
Stockwell SR, Scott DE, Fischer G, Guarino E, Rooney TPC, Feng TS, Moschetti T, Srinivasan R, Alza E, Asteian A, Dagostin C, Alcaide A, Rocaboy M, Blaszczyk B, Higueruelo A, Wang X, Rossmann M, Perrior TR, Blundell TL, Spring DR, McKenzie G, Abell C, Skidmore J, Venkitaraman AR, Hyvönen M. Selective Aurora A-TPX2 Interaction Inhibitors Have In Vivo Efficacy as Targeted Antimitotic Agents. J Med Chem 2024; 67:15521-15536. [PMID: 39190548 PMCID: PMC11403621 DOI: 10.1021/acs.jmedchem.4c01165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Aurora A kinase, a cell division regulator, is frequently overexpressed in various cancers, provoking genome instability and resistance to antimitotic chemotherapy. Localization and enzymatic activity of Aurora A are regulated by its interaction with the spindle assembly factor TPX2. We have used fragment-based, structure-guided lead discovery to develop small molecule inhibitors of the Aurora A-TPX2 protein-protein interaction (PPI). Our lead compound, CAM2602, inhibits Aurora A:TPX2 interaction, binding Aurora A with 19 nM affinity. CAM2602 exhibits oral bioavailability, causes pharmacodynamic biomarker modulation, and arrests the growth of tumor xenografts. CAM2602 acts by a novel mechanism compared to ATP-competitive inhibitors and is highly specific to Aurora A over Aurora B. Consistent with our finding that Aurora A overexpression drives taxane resistance, these inhibitors synergize with paclitaxel to suppress the outgrowth of pancreatic cancer cells. Our results provide a blueprint for targeting the Aurora A-TPX2 PPI for cancer therapy and suggest a promising clinical utility for this mode of action.
Collapse
Affiliation(s)
- Simon R Stockwell
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, U.K
| | - Duncan E Scott
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Gerhard Fischer
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Estrella Guarino
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, U.K
| | - Timothy P C Rooney
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Tzu-Shean Feng
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Tommaso Moschetti
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Rajavel Srinivasan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Esther Alza
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Alice Asteian
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Claudio Dagostin
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Anna Alcaide
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Mathieu Rocaboy
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Beata Blaszczyk
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Alicia Higueruelo
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Xuelu Wang
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Maxim Rossmann
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | | | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | - David R Spring
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Grahame McKenzie
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, U.K
| | - Chris Abell
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - John Skidmore
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Ashok R Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, U.K
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| |
Collapse
|
7
|
Polverino F, Mastrangelo A, Guarguaglini G. Contribution of AurkA/TPX2 Overexpression to Chromosomal Imbalances and Cancer. Cells 2024; 13:1397. [PMID: 39195284 PMCID: PMC11353082 DOI: 10.3390/cells13161397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
The AurkA serine/threonine kinase is a key regulator of cell division controlling mitotic entry, centrosome maturation, and chromosome segregation. The microtubule-associated protein TPX2 controls spindle assembly and is the main AurkA regulator, contributing to AurkA activation, localisation, and stabilisation. Since their identification, AurkA and TPX2 have been described as being overexpressed in cancer, with a significant correlation with highly proliferative and aneuploid tumours. Despite the frequent occurrence of AurkA/TPX2 co-overexpression in cancer, the investigation of their involvement in tumorigenesis and cancer therapy resistance mostly arises from studies focusing only on one at the time. Here, we review the existing literature and discuss the mitotic phenotypes described under conditions of AurkA, TPX2, or AurkA/TPX2 overexpression, to build a picture that may help clarify their oncogenic potential through the induction of chromosome instability. We highlight the relevance of the AurkA/TPX2 complex as an oncogenic unit, based on which we discuss recent strategies under development that aim at disrupting the complex as a promising therapeutic perspective.
Collapse
Affiliation(s)
| | | | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; (F.P.); (A.M.)
| |
Collapse
|
8
|
Liu H, Cali Daylan AE, Yang J, Tanwar A, Borczuk A, Zhang D, Chau V, Li S, Ge X, Halmos B, Zang X, Cheng H. Aurora Kinase A Inhibition Potentiates Platinum and Radiation Cytotoxicity in Non-Small-Cell Lung Cancer Cells and Induces Expression of Alternative Immune Checkpoints. Cancers (Basel) 2024; 16:2805. [PMID: 39199578 PMCID: PMC11352996 DOI: 10.3390/cancers16162805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Despite major advances in non-small-cell lung cancer (NSCLC) treatment, the five-year survival rates for patients with non-oncogene-driven tumors remain low, necessitating combinatory approaches to improve outcomes. Our prior high-throughput RNAi screening identified Aurora kinase A (AURKA) as a potential key player in cisplatin resistance. In this study, we investigated AURKA's role in platinum and radiation sensitivity in multiple NSCLC cell lines and xenograft mouse models, as well as its effect on immune checkpoints, including PD-L1, B7x, B7-H3, and HHLA2. Of 94 NSCLC patient tumor specimens, 91.5% tested positive for AURKA expression, with 34% showing moderate-to-high levels. AURKA expression was upregulated following cisplatin treatment in NSCLC cell lines PC9 and A549. Both AURKA inhibition by alisertib and inducible AURKA knockdown potentiated the cytotoxic effects of cisplatin and radiation, leading to tumor regression in doxycycline-inducible xenograft mice. Co-treated cells exhibited increased DNA double-strand breaks, apoptosis, and senescence. Additionally, AURKA inhibition alone by alisertib increased PD-L1 and B7-H3 expression. In conclusion, our study demonstrates that AURKA inhibition enhances the efficacy of platinum-based chemotherapy in NSCLC cells and modulates the expression of multiple immune checkpoints. Therefore, combinatory regimens with AURKA inhibitors should be strategically designed and further studied within the evolving landscape of chemo-immunotherapy.
Collapse
Affiliation(s)
- Huijie Liu
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY 10461, USA; (H.L.); (J.Y.); (A.T.)
| | - Ayse Ece Cali Daylan
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY 10461, USA; (H.L.); (J.Y.); (A.T.)
| | - Jihua Yang
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY 10461, USA; (H.L.); (J.Y.); (A.T.)
| | - Ankit Tanwar
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY 10461, USA; (H.L.); (J.Y.); (A.T.)
| | - Alain Borczuk
- Department of Pathology, Northwell Health, Staten Island, NY 10305, USA
| | - Dongwei Zhang
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN 15705, USA;
| | - Vincent Chau
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY 10461, USA; (H.L.); (J.Y.); (A.T.)
| | - Shenduo Li
- Department of Medicine, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL 32224, USA;
| | - Xuan Ge
- Department of Hematology/Oncology, Kaiser Permanente, Modesto, CA 95356, USA
| | - Balazs Halmos
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY 10461, USA; (H.L.); (J.Y.); (A.T.)
| | - Xingxing Zang
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY 10461, USA; (H.L.); (J.Y.); (A.T.)
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Haiying Cheng
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY 10461, USA; (H.L.); (J.Y.); (A.T.)
| |
Collapse
|
9
|
Martinez A, Stemm-Wolf AJ, Sheridan RM, Taliaferro MJ, Pearson CG. The Unkempt RNA binding protein reveals a local translation program in centriole overduplication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605660. [PMID: 39131325 PMCID: PMC11312568 DOI: 10.1101/2024.07.29.605660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Excess centrosomes cause defects in mitosis, cell-signaling, and cell migration, and therefore their assembly is tightly regulated. Plk4 controls centriole duplication at the heart of centrosome assembly, and elevation of Plk4 promotes centrosome amplification (CA), a founding event of tumorigenesis. Here, we investigate the transcriptional consequences of elevated Plk4 and find Unkempt, a gene encoding an RNA binding protein with roles in translational regulation, to be one of only two upregulated mRNAs. Unk protein localizes to centrosomes and Cep131-positive centriolar satellites and is required for Plk4-induced centriole overduplication in an RNA-binding dependent manner. Translation is enriched at centrosomes and centriolar satellites with Unk and Cep131 promoting this localized translation. A transient centrosomal downregulation of translation occurs early in Plk4-induced CA. CNOT9, an Unk interactor and component of the translational inhibitory CCR4-NOT complex, localizes to centrosomes at this time. In summary, centriolar satellites and Unk promote local translation as part of a translational program that ensures centriole duplication.
Collapse
Affiliation(s)
- Abraham Martinez
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Alexander J. Stemm-Wolf
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Ryan M. Sheridan
- RNA Bioscience Initiative (RBI), University of Colorado, Anschutz Medical Campus, Aurora CO 80045
| | - Matthew J. Taliaferro
- RNA Bioscience Initiative (RBI), University of Colorado, Anschutz Medical Campus, Aurora CO 80045
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Chad G. Pearson
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
10
|
Bai C, Sun Y, Zhang X, Zuo Z. Assessment of AURKA expression and prognosis prediction in lung adenocarcinoma using machine learning-based pathomics signature. Heliyon 2024; 10:e33107. [PMID: 39022022 PMCID: PMC11253280 DOI: 10.1016/j.heliyon.2024.e33107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Objective This study aimed to develop quantitative feature-based models from histopathological images to assess aurora kinase A (AURKA) expression and predict the prognosis of patients with lung adenocarcinoma (LUAD). Methods A dataset of patients with LUAD was derived from the cancer genome atlas (TCGA) with information on clinical characteristics, RNA sequencing and histopathological images. The TCGA-LUAD cohort was randomly divided into training (n = 229) and testing (n = 98) sets. We extracted quantitative image features from histopathological slides of patients with LUAD using computational approaches, constructed a predictive model for AURKA expression in the training set, and estimated their predictive performance in the test set. A Cox proportional hazards model was used to assess whether the pathomic scores (PS) generated by the model independently predicted LUAD survival. Results High AURKA expression was an independent risk factor for overall survival (OS) in patients with LUAD (hazard ratio = 1.816, 95 % confidence intervals = 1.257-2.623, P = 0.001). The model based on histopathological image features had significant predictive value for AURKA expression: the area under the curve of the receiver operating characteristic curve in the training set and validation set was 0.809 and 0.739, respectively. Decision curve analysis showed that the model had clinical utility. Patients with high PS and low PS had different survival rates (P = 0.019). Multivariate analysis suggested that PS was an independent prognostic factor for LUAD (hazard ratio = 1.615, 95 % confidence intervals = 1.071-2.438, P = 0.022). Conclusion Pathomics models based on machine learning can accurately predict AURKA expression and the PS generated by the model can predict LUAD prognosis.
Collapse
Affiliation(s)
- Cuiqing Bai
- Department of Respiratory Disease, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yan Sun
- Department of Respiratory Disease, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiuqin Zhang
- Department of Respiratory Disease, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zhitong Zuo
- Department of Respiratory Disease, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Zhou Q, Tao C, Yuan J, Pan F, Wang R. Knowledge mapping of AURKA in Oncology:An advanced Bibliometric analysis (1998-2023). Heliyon 2024; 10:e31945. [PMID: 38912486 PMCID: PMC11190563 DOI: 10.1016/j.heliyon.2024.e31945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024] Open
Abstract
AURKA, also known as Aurora kinase A, is a key molecule involved in the occurrence and progression of cancer. It plays crucial roles in various cellular processes, including cell cycle regulation, mitosis, and chromosome segregation. Dysregulation of AURKA has been implicated in tumorigenesis, promoting cell proliferation, genomic instability, and resistance to apoptosis. In this study, we conducted an extensive bibliometric analysis of research focusing on Aurora-A in the context of cancer by utilizing the Web of Science literature database. Various sophisticated computational tools, such as VOSviewer, Citespace, Biblioshiny R, and Cytoscape, were employed for comprehensive literature analysis and big data mining from January 1998 to September 2023.The primary objectives of our study were multi-fold. Firstly, we aimed to explore the chronological development of AURKA research, uncovering the evolution of scientific understanding over time. Secondly, we investigated shifting trends in research topics, elucidating areas of increasing interest and emerging frontiers. Thirdly, we delved into intricate signaling pathways and protein interaction networks associated with AURKA, providing insights into its complex molecular mechanisms. To further enhance the value of our bibliometric analysis, we conducted a meta-analysis on the prognostic value of AURKA in terms of patient survival. The results were visually presented, offering a comprehensive overview and future perspectives on Aurora-A research in the field of oncology. This study not only contributes to the existing body of knowledge but also provides valuable guidance for researchers, clinicians, and pharmaceutical professionals. By harnessing the power of bibliometrics, our findings offer a deeper understanding of the role of AURKA in cancer and pave the way for innovative research directions and clinical applications.
Collapse
Affiliation(s)
- Qiong Zhou
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China
| | - Chunyu Tao
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China
| | - Jiakai Yuan
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China
| | - Fan Pan
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China
| | - Rui Wang
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China
| |
Collapse
|
12
|
Yang G, Lin Y, Sun X, Cheng D, Li H, Hu S, Chen M, Wang Y, Wang Y. Preclinical Evaluation of JAB-2485, a Potent AURKA Inhibitor with High Selectivity and Favorable Pharmacokinetic Properties. ACS OMEGA 2024; 9:21416-21425. [PMID: 38764682 PMCID: PMC11097369 DOI: 10.1021/acsomega.4c01752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/21/2024]
Abstract
As a critical mitotic regulator, Aurora kinase A (AURKA) is aberrantly activated in a wide range of cancers. Therapeutic targeting of AUKRA is a promising strategy for the treatment of solid tumors. In this study, we evaluated the preclinical characteristics of JAB-2485, a small-molecule inhibitor of AURKA currently in Phase I/IIa clinical trial in the US (NCT05490472). Biochemical studies demonstrated that JAB-2485 is potent and highly selective on AURKA, with subnanomolar IC50 and around 1500-fold selectivity over AURKB or AURKC. In addition, JAB-2485 exhibited favorable pharmacokinetic properties featured by low clearance and good bioavailability, strong dose-response relationship, as well as low risk for hematotoxicity and off-target liability. As a single agent, JAB-2485 effectively induced G2/M cell cycle arrest and apoptosis and inhibited the proliferation of small cell lung cancer, triple-negative breast cancer, and neuroblastoma cells. Furthermore, JAB-2485 exhibited robust in vivo antitumor activity both as monotherapy and in combination with chemotherapies or the bromodomain inhibitor JAB-8263 in xenograft models of various cancer types. Together, these encouraging preclinical data provide a strong basis for safety and efficacy evaluations of JAB-2485 in the clinical setting.
Collapse
Affiliation(s)
- Guiqun Yang
- Jacobio Pharmaceuticals
Co., Ltd., 105 Jinghai Third Street, Beijing 100176, China
| | - Yiwei Lin
- Jacobio Pharmaceuticals
Co., Ltd., 105 Jinghai Third Street, Beijing 100176, China
| | - Xin Sun
- Jacobio Pharmaceuticals
Co., Ltd., 105 Jinghai Third Street, Beijing 100176, China
| | - Dai Cheng
- Jacobio Pharmaceuticals
Co., Ltd., 105 Jinghai Third Street, Beijing 100176, China
| | - Haijun Li
- Jacobio Pharmaceuticals
Co., Ltd., 105 Jinghai Third Street, Beijing 100176, China
| | - Shizong Hu
- Jacobio Pharmaceuticals
Co., Ltd., 105 Jinghai Third Street, Beijing 100176, China
| | - Mingming Chen
- Jacobio Pharmaceuticals
Co., Ltd., 105 Jinghai Third Street, Beijing 100176, China
| | - Yinxiang Wang
- Jacobio Pharmaceuticals
Co., Ltd., 105 Jinghai Third Street, Beijing 100176, China
| | - Yanping Wang
- Jacobio Pharmaceuticals
Co., Ltd., 105 Jinghai Third Street, Beijing 100176, China
| |
Collapse
|
13
|
Naso FD, Polverino F, Cilluffo D, Latini L, Stagni V, Asteriti IA, Rosa A, Soddu S, Guarguaglini G. AurkA/TPX2 co-overexpression in nontransformed cells promotes genome instability through induction of chromosome mis-segregation and attenuation of the p53 signalling pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167116. [PMID: 38447882 DOI: 10.1016/j.bbadis.2024.167116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
The Aurora-A kinase (AurkA) and its major regulator TPX2 (Targeting Protein for Xklp2) are key mitotic players frequently co-overexpressed in human cancers, and the link between deregulation of the AurkA/TPX2 complex and tumourigenesis is actively investigated. Chromosomal instability, one of the hallmarks of cancer related to the development of intra-tumour heterogeneity, metastasis and chemo-resistance, has been frequently associated with TPX2-overexpressing tumours. In this study we aimed to investigate the actual contribution to chromosomal instability of deregulating the AurkA/TPX2 complex, by overexpressing it in nontransformed hTERT RPE-1 cells. Our results show that overexpression of both AurkA and TPX2 results in increased AurkA activation and severe mitotic defects, compared to AurkA overexpression alone. We also show that AurkA/TPX2 co-overexpression yields increased aneuploidy in daughter cells and the generation of micronucleated cells. Interestingly, the p53/p21 axis response is impaired in AurkA/TPX2 overexpressing cells subjected to different stimuli; consistently, cells acquire increased ability to proliferate after independent induction of mitotic errors, i.e. following nocodazole treatment. Based on our observation that increased levels of the AurkA/TPX2 complex affect chromosome segregation fidelity and interfere with the activation of a pivotal surveillance mechanism in response to altered cell division, we propose that co-overexpression of AurkA and TPX2 per se represents a condition promoting the generation of a genetically unstable context in nontransformed human cells.
Collapse
Affiliation(s)
- Francesco Davide Naso
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Federica Polverino
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Danilo Cilluffo
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Linda Latini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Venturina Stagni
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Signal Transduction Unit, Via del Fosso di Fiorano 64/65, 00143 Rome, Italy
| | - Italia Anna Asteriti
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Alessandro Rosa
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Viale Regina Elena, 291, 00161 Rome, Italy; Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy.
| |
Collapse
|
14
|
Kucharski TJ, Vlasac IM, Higgs MR, Christensen BC, Bechstedt S, Compton DA. An Aurora kinase A-BOD1L1-PP2A B56 Axis promotes chromosome segregation fidelity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.06.552174. [PMID: 37609141 PMCID: PMC10441337 DOI: 10.1101/2023.08.06.552174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Cancer cells are often aneuploid and frequently display elevated rates of chromosome missegregation in a phenomenon called chromosomal instability (CIN). CIN is commonly caused by hyperstable kinetochore-microtubule (K-MT) attachments that reduces the efficiency of correction of erroneous K-MT attachments. We recently showed that UMK57, a chemical agonist of MCAK (alias KIF2C) improves chromosome segregation fidelity in CIN cancer cells although cells rapidly develop adaptive resistance. To determine the mechanism of resistance we performed unbiased proteomic screens which revealed increased phosphorylation in cells adapted to UMK57 at two Aurora kinase A phosphoacceptor sites on BOD1L1 (alias FAM44A). BOD1L1 depletion or Aurora kinase A inhibition eliminated resistance to UMK57 in CIN cancer cells. BOD1L1 localizes to spindles/kinetochores during mitosis, interacts with the PP2A phosphatase, and regulates phosphorylation levels of kinetochore proteins, chromosome alignment, mitotic progression and fidelity. Moreover, the BOD1L1 gene is mutated in a subset of human cancers, and BOD1L1 depletion reduces cell growth in combination with clinically relevant doses of taxol or Aurora kinase A inhibitor. Thus, an Aurora kinase A -BOD1L1-PP2A axis promotes faithful chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Thomas J. Kucharski
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth
- Department of Anatomy and Cell Biology, McGill University, Montréal, Canada, H3A 0C7
| | - Irma M. Vlasac
- Department of Epidemiology, Geisel School of Medicine at Dartmouth
| | - Martin R. Higgs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Susanne Bechstedt
- Department of Anatomy and Cell Biology, McGill University, Montréal, Canada, H3A 0C7
| | - Duane A. Compton
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth
| |
Collapse
|
15
|
Treekitkarnmongkol W, Solis LM, Sankaran D, Gagea M, Singh PK, Mistry R, Nguyen T, Kai K, Liu J, Sasai K, Jitsumori Y, Liu J, Nagao N, Stossi F, Mancini MA, Wistuba II, Thompson AM, Lee JM, Cadiñanos J, Wong KK, Abbott CM, Sahin AA, Liu S, Katayama H, Sen S. eEF1A2 promotes PTEN-GSK3β-SCF complex-dependent degradation of Aurora kinase A and is inactivated in breast cancer. Sci Signal 2024; 17:eadh4475. [PMID: 38442201 PMCID: PMC12039992 DOI: 10.1126/scisignal.adh4475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 02/15/2024] [Indexed: 03/07/2024]
Abstract
The translation elongation factor eEF1A promotes protein synthesis. Its methylation by METTL13 increases its activity, supporting tumor growth. However, in some cancers, a high abundance of eEF1A isoforms is associated with a good prognosis. Here, we found that eEF1A2 exhibited oncogenic or tumor-suppressor functions depending on its interaction with METTL13 or the phosphatase PTEN, respectively. METTL13 and PTEN competed for interaction with eEF1A2 in the same structural domain. PTEN-bound eEF1A2 promoted the ubiquitination and degradation of the mitosis-promoting Aurora kinase A in the S and G2 phases of the cell cycle. eEF1A2 bridged the interactions between the SKP1-CUL1-FBXW7 (SCF) ubiquitin ligase complex, the kinase GSK3β, and Aurora-A, thereby facilitating the phosphorylation of Aurora-A in a degron site that was recognized by FBXW7. Genetic ablation of Eef1a2 or Pten in mice resulted in a greater abundance of Aurora-A and increased cell cycling in mammary tumors, which was corroborated in breast cancer tissues from patients. Reactivating this pathway using fimepinostat, which relieves inhibitory signaling directed at PTEN and increases FBXW7 expression, combined with inhibiting Aurora-A with alisertib, suppressed breast cancer cell proliferation in culture and tumor growth in vivo. The findings demonstrate a therapeutically exploitable, tumor-suppressive role for eEF1A2 in breast cancer.
Collapse
Affiliation(s)
- Warapen Treekitkarnmongkol
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Luisa M. Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Deivendran Sankaran
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mihai Gagea
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pankaj K. Singh
- Center for Translational Cancer Research, Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX 77030, USA
| | - Ragini Mistry
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tristian Nguyen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kazuharu Kai
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiajun Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Kaori Sasai
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yoshimi Jitsumori
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Norio Nagao
- Department of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, 727-0023, Japan
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael A. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Jonathan M. Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Juan Cadiñanos
- Fundación Centro Médico de Asturias, 33193 Oviedo, Spain
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), 33193 Oviedo, Spain
| | - Kwong-Kwok Wong
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Catherine M. Abbott
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Aysegul A. Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Suyu Liu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hiroshi Katayama
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Subrata Sen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
16
|
Tanaka M, Yamada M, Mushiake M, Tsuda M, Miwa M. Elucidating Differences in Early-Stage Centrosome Amplification in Primary and Immortalized Mouse Cells. Int J Mol Sci 2023; 25:383. [PMID: 38203554 PMCID: PMC10778991 DOI: 10.3390/ijms25010383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
The centrosome is involved in cytoplasmic microtubule organization during interphase and in mitotic spindle assembly during cell division. Centrosome amplification (abnormal proliferation of centrosome number) has been observed in several types of cancer and in precancerous conditions. Therefore, it is important to elucidate the mechanism of centrosome amplification in order to understand the early stage of carcinogenesis. Primary cells could be used to better understand the early stage of carcinogenesis rather than immortalized cells, which tend to have various genetic and epigenetic changes. Previously, we demonstrated that a poly(ADP-ribose) polymerase (PARP) inhibitor, 3-aminobenzamide (3AB), which is known to be nontoxic and nonmutagenic, could induce centrosome amplification and chromosomal aneuploidy in CHO-K1 cells. In this study, we compared primary mouse embryonic fibroblasts (MEF) and immortalized MEF using 3AB. Although centrosome amplification was induced with 3AB treatment in immortalized MEF, a more potent PARP inhibitor, AG14361, was required for primary MEF. However, after centrosome amplification, neither 3AB in immortalized MEF nor AG14361 in primary MEF caused chromosomal aneuploidy, suggesting that further genetic and/or epigenetic change(s) are required to exhibit aneuploidy. The DNA-damaging agents doxorubicin and γ-irradiation can cause cancer and centrosome amplification in experimental animals. Although doxorubicin and γ-irradiation induced centrosome amplification and led to decreased p27Kip protein levels in immortalized MEF and primary MEF, the phosphorylation ratio of nucleophosmin (Thr199) increased in immortalized MEF, whereas it decreased in primary MEF. These results suggest that there exists a yet unidentified pathway, different from the nucleophosmin phosphorylation pathway, which can cause centrosome amplification in primary MEF.
Collapse
Affiliation(s)
- Masakazu Tanaka
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama 526-0829, Japan (M.M.)
| | - Masaki Yamada
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama 526-0829, Japan (M.M.)
| | - Masatoshi Mushiake
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama 526-0829, Japan (M.M.)
| | - Masataka Tsuda
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama 526-0829, Japan (M.M.)
| | - Masanao Miwa
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama 526-0829, Japan (M.M.)
| |
Collapse
|
17
|
Godbole SS, Dokholyan NV. Allosteric regulation of kinase activity in living cells. eLife 2023; 12:RP90574. [PMID: 37943025 PMCID: PMC10635643 DOI: 10.7554/elife.90574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
The dysregulation of protein kinases is associated with multiple diseases due to the kinases' involvement in a variety of cell signaling pathways. Manipulating protein kinase function, by controlling the active site, is a promising therapeutic and investigative strategy to mitigate and study diseases. Kinase active sites share structural similarities, making it difficult to specifically target one kinase, and allosteric control allows specific regulation and study of kinase function without directly targeting the active site. Allosteric sites are distal to the active site but coupled via a dynamic network of inter-atomic interactions between residues in the protein. Establishing an allosteric control over a kinase requires understanding the allosteric wiring of the protein. Computational techniques offer effective and inexpensive mapping of the allosteric sites on a protein. Here, we discuss the methods to map and regulate allosteric communications in proteins, and strategies to establish control over kinase functions in live cells and organisms. Protein molecules, or 'sensors,' are engineered to function as tools to control allosteric activity of the protein as these sensors have high spatiotemporal resolution and help in understanding cell phenotypes after immediate activation or inactivation of a kinase. Traditional methods used to study protein functions, such as knockout, knockdown, or mutation, cannot offer a sufficiently high spatiotemporal resolution. We discuss the modern repertoire of tools to regulate protein kinases as we enter a new era in deciphering cellular signaling and developing novel approaches to treat diseases associated with signal dysregulation.
Collapse
Affiliation(s)
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of MedicineHersheyUnited States
- Department of Biomedical Engineering, Penn State University, University ParkHersheyUnited States
- Department of Engineering Science and Mechanics, Penn State University, University ParkHersheyUnited States
- Department of Biochemistry & Molecular Biology, Penn State College of MedicineHersheyUnited States
- Department of Chemistry, Penn State University, University ParkHersheyUnited States
| |
Collapse
|
18
|
Godbole S, Dokholyan NV. Allosteric regulation of kinase activity in living cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549709. [PMID: 37503033 PMCID: PMC10370130 DOI: 10.1101/2023.07.19.549709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The dysregulation of protein kinases is associated with multiple diseases due to the kinases' involvement in a variety of cell signaling pathways. Manipulating protein kinase function, by controlling the active site, is a promising therapeutic and investigative strategy to mitigate and study diseases. Kinase active sites share structural similarities making it difficult to specifically target one kinase, allosteric control allows specific regulation and study of kinase function without directly targeting the active site. Allosteric sites are distal to the active site but coupled via a dynamic network of inter-atomic interactions between residues in the protein. Establishing an allosteric control over a kinase requires understanding the allosteric wiring of the protein. Computational techniques offer effective and inexpensive mapping of the allosteric sites on a protein. Here, we discuss methods to map and regulate allosteric communications in proteins, and strategies to establish control over kinase functions in live cells and organisms. Protein molecules, or "sensors" are engineered to function as tools to control allosteric activity of the protein as these sensors have high spatiotemporal resolution and help in understanding cell phenotypes after immediate activation or inactivation of a kinase. Traditional methods used to study protein functions, such as knockout, knockdown, or mutation, cannot offer a sufficiently high spatiotemporal resolution. We discuss the modern repertoire of tools to regulate protein kinases as we enter a new era in deciphering cellular signaling and developing novel approaches to treat diseases associated with signal dysregulation.
Collapse
Affiliation(s)
- Shivani Godbole
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
- Department of Engineering Science and Mechanics, Penn State University, University Park, PA 16802, USA
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
- Department of Chemistry, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
19
|
Milletti G, Colicchia V, Cecconi F. Cyclers' kinases in cell division: from molecules to cancer therapy. Cell Death Differ 2023; 30:2035-2052. [PMID: 37516809 PMCID: PMC10482880 DOI: 10.1038/s41418-023-01196-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
Faithful eucaryotic cell division requires spatio-temporal orchestration of multiple sequential events. To ensure the dynamic nature of these molecular and morphological transitions, a swift modulation of key regulatory pathways is necessary. The molecular process that most certainly fits this description is phosphorylation, the post-translational modification provided by kinases, that is crucial to allowing the progression of the cell cycle and that culminates with the separation of two identical daughter cells. In detail, from the early stages of the interphase to the cytokinesis, each critical step of this process is tightly regulated by multiple families of kinases including the Cyclin-dependent kinases (CDKs), kinases of the Aurora, Polo, Wee1 families, and many others. While cell-cycle-related CDKs control the timing of the different phases, preventing replication machinery errors, the latter modulate the centrosome cycle and the spindle function, avoiding karyotypic abnormalities typical of chromosome instability. Such chromosomal abnormalities may result from replication stress (RS) and chromosome mis-segregation and are considered a hallmark of poor prognosis, therapeutic resistance, and metastasis in cancer patients. Here, we discuss recent advances in the understanding of how different families of kinases concur to govern cell cycle, preventing RS and mitotic infidelity. Additionally, considering the growing number of clinical trials targeting these molecules, we review to what extent and in which tumor context cell-cycle-related kinases inhibitors are worth exploiting as an effective therapeutic strategy.
Collapse
Affiliation(s)
- Giacomo Milletti
- DNA Replication and Cancer Group, Danish Cancer Institute, 2100, Copenhagen, Denmark.
- Department of Pediatric Hematology and Oncology and of Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy.
| | - Valeria Colicchia
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- IRBM S.p.A., Via Pontina Km 30.60, 00070, Pomezia, Italy
| | - Francesco Cecconi
- Cell Stress and Survival Group, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Institute, Copenhagen, Denmark.
- Università Cattolica del Sacro Cuore and Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
20
|
Cacioppo R, Akman HB, Tuncer T, Erson-Bensan AE, Lindon C. Differential translation of mRNA isoforms underlies oncogenic activation of cell cycle kinase Aurora A. eLife 2023; 12:RP87253. [PMID: 37384380 DOI: 10.7554/elife.87253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
Aurora Kinase A (AURKA) is an oncogenic kinase with major roles in mitosis, but also exerts cell cycle- and kinase-independent functions linked to cancer. Therefore, control of its expression, as well as its activity, is crucial. A short and a long 3'UTR isoform exist for AURKA mRNA, resulting from alternative polyadenylation (APA). We initially observed that in triple-negative breast cancer, where AURKA is typically overexpressed, the short isoform is predominant and this correlates with faster relapse times of patients. The short isoform is characterized by higher translational efficiency since translation and decay rate of the long isoform are targeted by hsa-let-7a tumor-suppressor miRNA. Additionally, hsa-let-7a regulates the cell cycle periodicity of translation of the long isoform, whereas the short isoform is translated highly and constantly throughout interphase. Finally, disrupted production of the long isoform led to an increase in proliferation and migration rates of cells. In summary, we uncovered a new mechanism dependent on the cooperation between APA and miRNA targeting likely to be a route of oncogenic activation of human AURKA.
Collapse
Affiliation(s)
- Roberta Cacioppo
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Hesna Begum Akman
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Taner Tuncer
- Department of Biology, Ondokuz Mayis Universitesi, Samsun, Turkey
| | | | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
21
|
Zhang B, Wang Q, Lin Z, Zheng Z, Zhou S, Zhang T, Zheng D, Chen Z, Zheng S, Zhang Y, Lin X, Dong R, Chen J, Qian H, Hu X, Zhuang Y, Zhang Q, Jin Z, Jiang S, Ma Y. A novel glycolysis-related gene signature for predicting the prognosis of multiple myeloma. Front Cell Dev Biol 2023; 11:1198949. [PMID: 37333985 PMCID: PMC10272536 DOI: 10.3389/fcell.2023.1198949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023] Open
Abstract
Background: Metabolic reprogramming is an important hallmark of cancer. Glycolysis provides the conditions on which multiple myeloma (MM) thrives. Due to MM's great heterogeneity and incurability, risk assessment and treatment choices are still difficult. Method: We constructed a glycolysis-related prognostic model by Least absolute shrinkage and selection operator (LASSO) Cox regression analysis. It was validated in two independent external cohorts, cell lines, and our clinical specimens. The model was also explored for its biological properties, immune microenvironment, and therapeutic response including immunotherapy. Finally, multiple metrics were combined to construct a nomogram to assist in personalized prediction of survival outcomes. Results: A wide range of variants and heterogeneous expression profiles of glycolysis-related genes were observed in MM. The prognostic model behaved well in differentiating between populations with various prognoses and proved to be an independent prognostic factor. This prognostic signature closely coordinated with multiple malignant features such as high-risk clinical features, immune dysfunction, stem cell-like features, cancer-related pathways, which was associated with the survival outcomes of MM. In terms of treatment, the high-risk group showed resistance to conventional drugs such as bortezomib, doxorubicin and immunotherapy. The joint scores generated by the nomogram showed higher clinical benefit than other clinical indicators. The in vitro experiments with cell lines and clinical subjects further provided convincing evidence for our study. Conclusion: We developed and validated the utility of the MM glycolysis-related prognostic model, which provides a new direction for prognosis assessment, treatment options for MM patients.
Collapse
Affiliation(s)
- Bingxin Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Quanqiang Wang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhili Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ziwei Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shujuan Zhou
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tianyu Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dong Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zixing Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sisi Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuanru Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rujiao Dong
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Chen
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Honglan Qian
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xudong Hu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianying Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhouxiang Jin
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Songfu Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongyong Ma
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, Zhejiang, China
- Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, Zhejiang, China
| |
Collapse
|
22
|
Kim C, Ludewig H, Hadzipasic A, Kutter S, Nguyen V, Kern D. A biophysical framework for double-drugging kinases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533217. [PMID: 36993258 PMCID: PMC10055307 DOI: 10.1101/2023.03.17.533217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Orthosteric inhibition of kinases has been challenging due to the conserved active site architecture of kinases and emergence of resistance mutants. Simultaneous inhibition of distant orthosteric and allosteric sites, which we refer to as "double-drugging", has recently been shown to be effective in overcoming drug resistance. However, detailed biophysical characterization of the cooperative nature between orthosteric and allosteric modulators has not been undertaken. Here, we provide a quantitative framework for double-drugging of kinases employing isothermal titration calorimetry, Förster resonance energy transfer, coupled-enzyme assays, and X-ray crystallography. We discern positive and negative cooperativity for Aurora A kinase (AurA) and Abelson kinase (Abl) with different combinations of orthosteric and allosteric modulators. We find that a conformational equilibrium shift is the main principle governing this cooperative effect. Notably, for both kinases, we find a synergistic decrease of the required orthosteric and allosteric drug dosages when used in combination to inhibit kinase activities to clinically relevant inhibition levels. X-ray crystal structures of the doubledrugged kinase complexes reveal the molecular principles underlying the cooperative nature of double-drugging AurA and Abl with orthosteric and allosteric inhibitors. Finally, we observe the first fully-closed conformation of Abl when bound to a pair of positively cooperative orthosteric and allosteric modulators, shedding light onto the puzzling abnormality of previously solved closed Abl structures. Collectively, our data provide mechanistic and structural insights into rational design and evaluation of doubledrugging strategies.
Collapse
Affiliation(s)
- C. Kim
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA 02454, USA
| | - H. Ludewig
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA 02454, USA
| | - A. Hadzipasic
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA 02454, USA
| | - S. Kutter
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA 02454, USA
| | - V. Nguyen
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA 02454, USA
| | - D. Kern
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA 02454, USA
| |
Collapse
|
23
|
Wang Q, Wang T, Liang S, Zhou L. Ox-LDL-Induced Vascular Smooth Muscle Cell Dysfunction Partly Depends on the Circ_0044073/miR-377-3p/AURKA Axis in Atherosclerosis. Int Heart J 2023; 64:252-262. [PMID: 37005319 DOI: 10.1536/ihj.22-148] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Atherosclerosis (AS) is the main reason for most cardiovascular diseases. Circular RNA hsa_circ_0044073 (circ_0044073) has been found to promote AS progression. However, the specific regulatory mechanism of circ_0044073 in AS progression remains unclear.In this study, oxidized low-density lipoprotein (Ox-LDL) -stimulated human vascular smooth muscle cells (VSMCs) were used as AS cell models. The expression changes of circ_0044073 in serum samples and Ox-LDL-stimulated human VSMCs were assessed via real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability, proliferation, colony formation, migration, and invasion were assessed using 3- (4,5-Dimethylthiazol-2-yl) -2,5-Diphenyltetrazolium Bromide (MTT), 5-ethynyl-2'-deoxyuridine (EDU), colony formation, and transwell assays. Some protein levels were detected via Western blotting. The regulatory mechanism of circ_0044073 was predicted using bioinformatics analysis and validated by dual-luciferase reporter and RNA pull-down assays.We observed an overt increase in circ_0044073 expression in serum samples derived from AS patients and Ox-LDL-stimulated human VSMCs. Circ_0044073 was identified as a miR-377-3p sponge. Either circ_0044073 knockdown or miR-377-3p overexpression could impair Ox-LDL-induced human VSMC proliferation, migration, invasion, and inflammation. AURKA served as a miR-377-3p target, and circ_0044073 regulated AURKA expression by adsorbing miR-377-3p. Furthermore, AURKA overexpression partly reversed the effects of circ_0044073 inhibition on Ox-LDL-induced human VSMC proliferation, migration, invasion, and inflammation.Circ_0044073 promoted AS progression by elevating AURKA expression by functioning as a miR-377-3p sponge. Providing a proof-of-concept demonstration to support circ_0044073 might be a target for AS treatment.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Vascular Surgery, Taizhou University Affiliated Municipal Hospital
| | - Tao Wang
- Department of Vascular Surgery, Taizhou University Affiliated Municipal Hospital
| | - Siyuan Liang
- Department of Vascular Surgery, Taizhou University Affiliated Municipal Hospital
| | - Long Zhou
- Department of Vascular Surgery, Taizhou University Affiliated Municipal Hospital
| |
Collapse
|
24
|
Swamy P M G, Abbas N, Dhiwar PS, Singh E, Ghara A, Das A. Discovery of potential Aurora-A kinase inhibitors by 3D QSAR pharmacophore modeling, virtual screening, docking, and MD simulation studies. J Biomol Struct Dyn 2023; 41:125-146. [PMID: 34809538 DOI: 10.1080/07391102.2021.2004236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Aurora-kinase family comprises of cell cycle-regulated serine/threonine kinases playing a vital role during mitosis. Aurora-A kinase is involved in multiple mitotic events in cell cycle and is a major regulator of centrosome function during mitosis. Aurora-A is overexpressed in breast, lung, colon, ovarian, glial, and pancreatic cancer. Hence, Aurora-A kinase is a promising target in cancer therapy. In our current study, a four-point 3D QSAR pharmacophore model has been generated using substituted pyrimidine class of Aurora-A kinase inhibitors. It had a fixed cost value 88.7429. The model mapped well to the external test set comprising of clinically active molecules, with a correlation coefficient r = 0.99. From the mapping, it was found that the hydrophobic features (HY) of a molecule play an important role for Aurora-A kinase inhibitory activity, whereas the ring aromatic feature provides geometric constraint for spatial alignment of different functional group. The hypothesis, with one hydrogen bond acceptor, two ring aromatic features, and one hydrophobic feature, was selected to screen miniMaybridge database. The screened ligands were filtered on the basis of activity, shape, and drug likeliness. This led to the identification of five top hits. These identified potential leads were further subjected to docking with the ATP-binding site of Aurora-A kinase. The molecular dynamic simulation studies of top lead molecules having diverse scaffolds endorsed that the identified molecules had distinctive ability to inhibit Aurora-A kinase. Thus, this study may facilitate the medicinal chemists to design promising ligands with various scaffolds to inhibit Aurora-A kinase. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gurubasavaraja Swamy P M
- Integrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Nahid Abbas
- Integrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Prasad Sanjay Dhiwar
- Integrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Ekta Singh
- Integrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Abhishek Ghara
- Integrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Arka Das
- Integrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| |
Collapse
|
25
|
Zhao Z, Wang H, Kang N, Wang Z, Hou X, Hu L, Qie S, Guo J, Wei S, Ruan X, Zheng X. Aurora kinase a promotes the progression of papillary thyroid carcinoma by activating the mTORC2-AKT signalling pathway. Cell Biosci 2022; 12:195. [PMID: 36471438 PMCID: PMC9721059 DOI: 10.1186/s13578-022-00934-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Treatment failure is the main cause of death from papillary thyroid carcinoma (PTC). It is urgent to look for new intervention targets and to develop new therapies for treating PTC. Aurora-A kinase (AURKA) functionally regulates cell mitosis and is closely related to the occurrence and development of a variety of tumours. However, the expression and potential functions of AURKA in PTC remain largely elusive. RESULTS Clinicopathologically, AURKA is highly expressed in PTC tissues compared to normal tissues and is correlated with lymph node metastasis, TNM stage and patient prognosis. Biologically, AURKA functions as an oncoprotein to promote the proliferation and migration of PTC cells. Mechanistically, AURKA directly binds to SIN1 and compromises CUL4B-based E3 ligase-mediated ubiquitination and subsequent degradation of SIN1, leading to hyperactivation of the mTORC2-AKT pathway in PTC cells. CONCLUSIONS We found that AURKA plays critical roles in regulating the progression of PTC by activating the mTORC2-AKT pathway, highlighting the potential of targeting AURKA to treat PTC.
Collapse
Affiliation(s)
- Zewei Zhao
- grid.411918.40000 0004 1798 6427Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Huijuan Wang
- grid.411918.40000 0004 1798 6427Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Ning Kang
- grid.411918.40000 0004 1798 6427Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Zhongyu Wang
- grid.411918.40000 0004 1798 6427Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Xiukun Hou
- grid.411918.40000 0004 1798 6427Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Linfei Hu
- grid.411918.40000 0004 1798 6427Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Shuo Qie
- grid.411918.40000 0004 1798 6427Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Jianping Guo
- grid.412615.50000 0004 1803 6239Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510275 Guangdong China
| | - Songfeng Wei
- grid.411918.40000 0004 1798 6427Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Xianhui Ruan
- grid.411918.40000 0004 1798 6427Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Xiangqian Zheng
- grid.411918.40000 0004 1798 6427Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| |
Collapse
|
26
|
Singh M, Haque MA, Tikhomirov AS, Shchekotikhin AE, Das U, Kaur P. Computational and Biophysical Characterization of Heterocyclic Derivatives of Anthraquinone against Human Aurora Kinase A. ACS OMEGA 2022; 7:39603-39618. [PMID: 36385832 PMCID: PMC9647706 DOI: 10.1021/acsomega.2c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Human Aurora kinase A (AurA) has recently garnered the attention of researchers worldwide as a promising effective mitotic drug target for its involvement in cancer and related inflammatory anomalies. This study has explored the binding affinity of newly identified heteroarene-fused anthraquinone derivatives against AurA. Molecular docking analyses showed that all the heteroanthraquinone compounds bind to AurA with different affinities. Molecular dynamics simulation studies revealed that the compounds maintained relatively stable binding modes in the active site pocket while inducing minimal conformational changes in the AurA structure, interacting with key residues through several noncovalent interactions, including hydrogen bonds. Fluorescence spectroscopy and biolayer interferometry binding assays with synthesized compounds against recombinantly expressed AurA further verified their binding efficacy. Naphthoisatine 3 proved to be the best binder, with compounds anthraimidazole 5 and anthrathiophene 2 showing comparable results. Overall, this study indicates decent binding of heterocyclic derivatives of anthraquinone with the target AurA, which can further be assessed by performing enzymatic assays and cellular studies. The studies also highlight the applicability of the heteroarene-fused anthraquinone scaffold to construct selective and potent inhibitors of Aurora kinases after necessary structural modifications for the development of new anticancer drugs.
Collapse
Affiliation(s)
- Mandeep Singh
- Department
of Biophysics, All India Institute of Medical
Sciences, New Delhi, Delhi110029, India
| | - Md. Anzarul Haque
- Department
of Biophysics, All India Institute of Medical
Sciences, New Delhi, Delhi110029, India
| | | | | | - Uddipan Das
- Department
of Biophysics, All India Institute of Medical
Sciences, New Delhi, Delhi110029, India
| | - Punit Kaur
- Department
of Biophysics, All India Institute of Medical
Sciences, New Delhi, Delhi110029, India
| |
Collapse
|
27
|
Jiang Y, Wang T, Sheng D, Han C, Xu T, Zhang P, You W, Fan W, Zhang Z, Jin T, Duan X, Yuan X, Liu X, Zhang K, Ruan K, Shi J, Guo J, Cheng A, Yang Z. Aurora A-mediated pyruvate kinase M2 phosphorylation promotes biosynthesis with glycolytic metabolites and tumor cell cycle progression. J Biol Chem 2022; 298:102561. [PMID: 36198360 PMCID: PMC9637814 DOI: 10.1016/j.jbc.2022.102561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer cells have distinctive demands for intermediates from glucose metabolism for biosynthesis and energy in different cell cycle phases. However, how cell cycle regulators and glycolytic enzymes coordinate to orchestrate the essential metabolic processes are still poorly characterized. Here, we report a novel interaction between the mitotic kinase, Aurora A, and the glycolytic enzyme, pyruvate kinase M2 (PKM2), in the interphase of the cell cycle. We found Aurora A-mediated phosphorylation of PKM2 at threonine 45. This phosphorylation significantly attenuated PKM2 enzymatic activity by reducing its tetramerization and also promoted glycolytic flux and the branching anabolic pathways. Replacing the endogenous PKM2 with a nonphosphorylated PKM2 T45A mutant inhibited glycolysis, glycolytic branching pathways, and tumor growth in both in vitro and in vivo models. Together, our study revealed a new protumor function of Aurora A through modulating a rate-limiting glycolytic enzyme, PKM2, mainly during the S phase of the cell cycle. Our findings also showed that although both Aurora A and Aurora B kinase phosphorylate PKM2 at the same residue, the spatial and temporal regulations of the specific kinase and PKM2 interaction are context dependent, indicating intricate interconnectivity between cell cycle and glycolytic regulators.
Collapse
Affiliation(s)
- Ya Jiang
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China; MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei, China
| | - Ting Wang
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei, China
| | - Dandan Sheng
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei, China
| | - Chaoqiang Han
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China
| | - Tian Xu
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei, China
| | - Peng Zhang
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei, China
| | - Weiyi You
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei, China
| | - Weiwei Fan
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei, China
| | - Zhiyong Zhang
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei, China
| | - Tengchuan Jin
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China
| | - Xiaotao Duan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiao Yuan
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology &CAS Center of Excellence in Molecular Cell Sciences, Hefei, Anhui, China
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology &CAS Center of Excellence in Molecular Cell Sciences, Hefei, Anhui, China
| | - Kaiguang Zhang
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China
| | - Ke Ruan
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei, China
| | - Jue Shi
- Department of Physics and Department of Biology, Center for Quantitative Systems Biology, Hong Kong Baptist University, Hong Kong, China
| | - Jing Guo
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China
| | - Aoxing Cheng
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China.
| | - Zhenye Yang
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China; MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, China.
| |
Collapse
|
28
|
Stefani A, Piro G, Schietroma F, Strusi A, Vita E, Fiorani S, Barone D, Monaca F, Sparagna I, Valente G, Ferrara MG, D’Argento E, Di Salvatore M, Carbone C, Tortora G, Bria E. Unweaving the mitotic spindle: A focus on Aurora kinase inhibitors in lung cancer. Front Oncol 2022; 12:1026020. [PMID: 36387232 PMCID: PMC9647054 DOI: 10.3389/fonc.2022.1026020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/17/2022] [Indexed: 07/30/2023] Open
Abstract
Lung cancer is one of the most aggressive malignancies, classified into two major histological subtypes: non-small cell lung cancer (NSCLC), that accounts for about 85% of new diagnosis, and small cell lung cancer (SCLC), the other 15%. In the case of NSCLC, comprehensive genome sequencing has allowed the identification of an increasing number of actionable targets, which have become the cornerstone of treatment in the advanced setting. On the other hand, the concept of oncogene-addiction is lacking in SCLC, and the only innovation of the last 30 years has been the introduction of immune checkpoint inhibitors in extensive stage disease. Dysregulation of cell cycle is a fundamental step in carcinogenesis, and Aurora kinases (AURKs) are a family of serine/threonine kinases that play a crucial role in the correct advance through the steps of the cycle. Hyperexpression of Aurora kinases is a common protumorigenic pathway in many cancer types, including NSCLC and SCLC; in addition, different mechanisms of resistance to anticancer drugs rely on AURK expression. Hence, small molecule inhibitors of AURKs have been developed in recent years and tested in several malignancies, with different results. The aim of this review is to analyze the current evidences of AURK inhibition in lung cancer, starting from preclinical rationale to finish with clinical trials available up to now.
Collapse
Affiliation(s)
- Alessio Stefani
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Geny Piro
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Schietroma
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Strusi
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Emanuele Vita
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simone Fiorani
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Diletta Barone
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federico Monaca
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ileana Sparagna
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giustina Valente
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Miriam Grazia Ferrara
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ettore D’Argento
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mariantonietta Di Salvatore
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carmine Carbone
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giampaolo Tortora
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
29
|
A Comparative Cross-Platform Analysis to Identify Potential Biomarker Genes for Evaluation of Teratozoospermia and Azoospermia. Genes (Basel) 2022; 13:genes13101721. [PMID: 36292606 PMCID: PMC9602071 DOI: 10.3390/genes13101721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Male infertility is a global public health concern. Teratozoospermia is a qualitative anomaly of spermatozoa morphology, contributing significantly to male infertility, whereas azoospermia is the complete absence of spermatozoa in the ejaculate. Thus, there is a serious need for unveiling the common origin and/or connection between both of these diseases, if any. This study aims to identify common potential biomarker genes of these two diseases via an in silico approach using a meta-analysis of microarray data. In this study, a differential expression analysis of genes was performed on four publicly available RNA microarray datasets, two each from teratozoospermia (GSE6872 and GSE6967) and azoospermia (GSE145467 and GSE25518). From the analysis, 118 DEGs were found to be common to teratozoospermia and azoospermia, and, interestingly, sperm autoantigenic protein 17 (SPA17) was found to possess the highest fold change value among all the DEGs (9.471), while coiled-coil domain-containing 90B (CCDC90B) and coiled-coil domain-containing 91 (CCDC91) genes were found to be common among three of analyses, i.e., Network Analyst, ExAtlas, and GEO2R. This observation indicates that SPA17, CCDC90B, and CCDC91 genes might have significant roles to play as potential biomarkers for teratozoospermia and azoospermia. Thus, our study opens a new window of research in this area and can provide an important theoretical basis for the diagnosis and treatment of both these diseases.
Collapse
|
30
|
Chen JA, Huynh JC, Wu CY, Yu AM, Matsukuma K, Semrad TJ, Gandara DR, Li T, Riess JW, Tam K, Mack PC, Martinez A, Mahaffey N, Kelly KL, Kim EJ. A phase I dose escalation, dose expansion and pharmacokinetic trial of gemcitabine and alisertib in advanced solid tumors and pancreatic cancer. Cancer Chemother Pharmacol 2022; 90:217-228. [PMID: 35907014 PMCID: PMC9402746 DOI: 10.1007/s00280-022-04457-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Aurora Kinase A (AKA) inhibition with gemcitabine represents a potentially synergistic cancer treatment strategy via mitotic catastrophe. The feasibility, safety, and preliminary efficacy of alisertib (MLN8237), an oral AKA inhibitor, with gemcitabine was evaluated in this open-label phase I trial with dose escalation and expansion. METHODS Key inclusion criteria included advanced solid tumor with any number of prior chemotherapy regimens in the dose escalation phase, and advanced pancreatic adenocarcinoma with up to two prior chemotherapy regimens. Four dose levels (DLs 1-4) of alisertib (20, 30, 40, or 50 mg) were evaluated in 3 + 3 design with gemcitabine 1000 mg/m2 on days 1, 8, and 15 in 28-day cycles. RESULTS In total, 21 subjects were treated in dose escalation and 5 subjects were treated in dose expansion at DL4. Dose-limiting toxicities were observed in 1 of 6 subjects each in DL3 and DL4. All subjects experienced treatment-related adverse events. Grade ≥ 3 treatment-related adverse events were observed in 73% of subjects, with neutropenia observed in 54%. Out of 22 subjects evaluable for response, 2 subjects (9%) had partial response and 14 subjects (64%) had stable disease. Median PFS was 4.1 months (95% CI 2.1-4.5). No significant changes in pharmacokinetic parameters for gemcitabine or its metabolite dFdU were observed with alisertib co-administration. CONCLUSIONS This trial established the recommended phase 2 dose of alisertib 50 mg to be combined with gemcitabine. Gemcitabine and alisertib are a feasible strategy with potential for disease control in multiple heavily pre-treated tumors, though gastrointestinal and hematologic toxicity was apparent.
Collapse
Affiliation(s)
- Justin A Chen
- Division of Hematology and Oncology, Davis Comprehensive Cancer Center, University of California, 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA
| | - Jasmine C Huynh
- Division of Hematology and Oncology, Davis Comprehensive Cancer Center, University of California, 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA
| | - Chun-Yi Wu
- Bioanalysis and Pharmacokinetics Core Facility, University of California, Sacramento, CA, 95817, USA
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA, 95817, USA
| | - Karen Matsukuma
- Department of Pathology and Laboratory Medicine, University of California, Sacramento, CA, 95817, USA
| | - Thomas J Semrad
- Gene Upshaw Memorial Tahoe Forest Cancer Center, Truckee, CA, 96161, USA
| | - David R Gandara
- Division of Hematology and Oncology, Davis Comprehensive Cancer Center, University of California, 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA
| | - Tianhong Li
- Division of Hematology and Oncology, Davis Comprehensive Cancer Center, University of California, 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA
| | - Jonathan W Riess
- Division of Hematology and Oncology, Davis Comprehensive Cancer Center, University of California, 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA
| | - Kit Tam
- Division of Hematology and Oncology, Davis Comprehensive Cancer Center, University of California, 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA
| | - Philip C Mack
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anthony Martinez
- Office of Clinical Research, Davis Comprehensive Cancer Center, University of California, Sacramento, CA, 95817, USA
| | - Nichole Mahaffey
- Office of Clinical Research, Davis Comprehensive Cancer Center, University of California, Sacramento, CA, 95817, USA
| | - Karen L Kelly
- Division of Hematology and Oncology, Davis Comprehensive Cancer Center, University of California, 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA
| | - Edward J Kim
- Division of Hematology and Oncology, Davis Comprehensive Cancer Center, University of California, 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA.
| |
Collapse
|
31
|
Yang Y, Santos DM, Pantano L, Knipe R, Abe E, Logue A, Pronzati G, Black KE, Spinney JJ, Giacona F, Bieler M, Godbout C, Nicklin P, Wyatt D, Tager AM, Seither P, Herrmann FE, Medoff BD. Screening for Inhibitors of YAP Nuclear Localization Identifies Aurora Kinase A as a Modulator of Lung Fibrosis. Am J Respir Cell Mol Biol 2022; 67:36-49. [PMID: 35377835 PMCID: PMC9798384 DOI: 10.1165/rcmb.2021-0428oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/04/2022] [Indexed: 01/01/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive lung disease with limited therapeutic options that is characterized by pathological fibroblast activation and aberrant lung remodeling with scar formation. YAP (Yes-associated protein) is a transcriptional coactivator that mediates mechanical and biochemical signals controlling fibroblast activation. We previously identified HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase inhibitors (statins) as YAP inhibitors based on a high-throughput small-molecule screen in primary human lung fibroblasts. Here we report that several Aurora kinase inhibitors were also identified from the top hits of this screen. MK-5108, a highly selective inhibitor for AURKA (Aurora kinase A), induced YAP phosphorylation and cytoplasmic retention and significantly reduced profibrotic gene expression in human lung fibroblasts. The inhibitory effect on YAP nuclear translocation and profibrotic gene expression is specific to inhibition of AURKA, but not Aurora kinase B or C, and is independent of the Hippo pathway kinases LATS1 and LATS2 (Large Tumor Suppressor 1 and 2). Further characterization of the effects of MK-5108 demonstrate that it inhibits YAP nuclear localization indirectly via effects on actin polymerization and TGFβ (Transforming Growth Factor β) signaling. In addition, MK-5108 treatment reduced lung collagen deposition in the bleomycin mouse model of pulmonary fibrosis. Our results reveal a novel role for AURKA in YAP-mediated profibrotic activity in fibroblasts and highlight the potential of small-molecule screens for YAP inhibitors for identification of novel agents with antifibrotic activity.
Collapse
Affiliation(s)
- Yang Yang
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Daniela M Santos
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lorena Pantano
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Rachel Knipe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elizabeth Abe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amanda Logue
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gina Pronzati
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Katharine E Black
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jillian J Spinney
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Francesca Giacona
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | - Andrew M Tager
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Franziska E Herrmann
- Immunology and Respiratory Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Benjamin D Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
32
|
Hong Luo G, Zhao Xu T, Li X, Jiang W, Hong Duo Y, Zhong Tang B. Cellular organelle-targeted smart AIEgens in tumor detection, imaging and therapeutics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
33
|
Miller JL, Bartlett AP, Harman RM, Majhi PD, Jerry DJ, Van de Walle GR. Induced mammary cancer in rat models: pathogenesis, genetics, and relevance to female breast cancer. J Mammary Gland Biol Neoplasia 2022; 27:185-210. [PMID: 35904679 DOI: 10.1007/s10911-022-09522-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 10/16/2022] Open
Abstract
Mammary cancer, or breast cancer in women, is a polygenic disease with a complex etiopathogenesis. While much remains elusive regarding its origin, it is well established that chemical carcinogens and endogenous estrogens contribute significantly to the initiation and progression of this disease. Rats have been useful models to study induced mammary cancer. They develop mammary tumors with comparable histopathology to humans and exhibit differences in resistance or susceptibility to mammary cancer depending on strain. While some rat strains (e.g., Sprague-Dawley) readily form mammary tumors following treatment with the chemical carcinogen, 7,12-dimethylbenz[a]-anthracene (DMBA), other strains (e.g., Copenhagen) are resistant to DMBA-induced mammary carcinogenesis. Genetic linkage in inbred strains has identified strain-specific quantitative trait loci (QTLs) affecting mammary tumors, via mechanisms that act together to promote or attenuate, and include 24 QTLs controlling the outcome of chemical induction, 10 QTLs controlling the outcome of estrogen induction, and 4 QTLs controlling the outcome of irradiation induction. Moreover, and based on shared factors affecting mammary cancer etiopathogenesis between rats and humans, including orthologous risk regions between both species, rats have served as useful models for identifying methods for breast cancer prediction and treatment. These studies in rats, combined with alternative animal models that more closely mimic advanced stages of breast cancer and/or human lifestyles, will further improve our understanding of this complex disease.
Collapse
Affiliation(s)
- James L Miller
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 14853, Ithaca, NY, USA
| | - Arianna P Bartlett
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 14853, Ithaca, NY, USA
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 14853, Ithaca, NY, USA
| | - Prabin Dhangada Majhi
- Department of Veterinary & Animal Sciences, University of Massachusetts, 01003, Amherst, MA, USA
| | - D Joseph Jerry
- Department of Veterinary & Animal Sciences, University of Massachusetts, 01003, Amherst, MA, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 14853, Ithaca, NY, USA.
| |
Collapse
|
34
|
Aurora kinase A inhibition induces synthetic lethality in SMAD4-deficient colorectal cancer cells via spindle assembly checkpoint activation. Oncogene 2022; 41:2734-2748. [PMID: 35393542 DOI: 10.1038/s41388-022-02293-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023]
Abstract
SMAD4 loss-of-function mutations have been frequently observed in colorectal cancer (CRC) and are recognized as a drug target for therapeutic exploitation. In this study, we performed a synthetic lethal drug screening with SMAD4-isogenic CRC cells and found that aurora kinase A (AURKA) inhibition is synthetic lethal with SMAD4 loss. Inhibition of AURKA selectively inhibited the growth of SMAD4-/- CRC in vitro and in vivo. Mechanistically, SMAD4 negatively regulated AURKA level, resulting in the significant elevation of AURKA in SMAD4-/- CRC cells. Inhibition of AURKA induced G2/M cell cycle delay in SMAD4+/+ CRC cells, but induced apoptosis in SMAD4-/- CRC cells. We further observed that a high level of AURKA in SMAD4-/- CRC cells led to abnormal mitotic spindles, leading to cellular aneuploidy. Moreover, SMAD4-/- CRC cells expressed high levels of spindle assembly checkpoint (SAC) proteins, suggesting the hyperactivation of SAC. The silencing of key SAC proteins significantly rescued the AURKA inhibition-induced cell death in SMAD4-/- cells, suggesting that SMAD4-/- CRC cells are hyper-dependent on AURKA activity for mitotic exit and survival during SAC hyperactivation. This study presents a unique synthetic lethal interaction between SMAD4 and AURKA and suggests that AURKA could be a potential drug target in SMAD4-deficient CRC.
Collapse
|
35
|
Guo J, Li W, Cheng L, Gao X. Identification and Validation of Hub Genes with Poor Prognosis in Hepatocellular Carcinoma by Integrated Bioinformatical Analysis. Int J Gen Med 2022; 15:3933-3941. [PMID: 35431572 PMCID: PMC9012340 DOI: 10.2147/ijgm.s353708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/01/2022] [Indexed: 12/24/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the reason for the world’s second largest cancer-related death. It is clinically valuable to study the molecular mechanisms of HCC occurrence and development for formulating more effective diagnosis and treatment strategies. Methods The five microarray data sets GSE45267, GSE101685, GSE84402, GSE62232 and GSE45267 were downloaded from Gene Expression Omnibus (GEO) database, including 165 HCC tissues and 73 normal tissues. Differential expressed genes (DEGs) between HCC tissues and normal tissues were determined by GEO2R. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and the protein–protein interaction network (PPI) network analysis were employed to identify DEGs and to evaluate the clinical significance in prognosis of HCC. Results A total of 152 genes differentially expressed in HCC tissues and normal tissues were identified. GO and KEGG functional enrichment analysis revealed that 39 up-regulated genes were mainly enriched in mitosis, cell cycle and oocyte meiosis, while those down-regulated genes (113) were concentrated in exogenous drug catabolism and the metabolism of cytochrome P450 on exogenous drugs. Totally, 19 hub genes were chosen by PPI network and module analysis and verified by The Cancer Genome Atlas (TCGA) database. Finally, 8 hub genes were selected, including CDK1, CYP2C8, CCNB1, AURKA, CYP2C9, BUB1B, MAD2L1 and TTK, which were associated with the overall survival rate of HCC patients. Conclusion This study presented eight target genes connected to the prognosis of HCC patients. Those mainly exists in cell cycle and drug catabolism, which may be latent targets for clinical treatment.
Collapse
Affiliation(s)
- Jiang Guo
- Department of Interventional Oncology, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Wei Li
- Center of Liver Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Long Cheng
- Department of Interventional Oncology, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Xuesong Gao
- Department of General Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
- Correspondence: Xuesong Gao, Department of General Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China, Tel +86 13718689825, Fax +861084322146, Email
| |
Collapse
|
36
|
Ashrafizadeh M, Paskeh MDA, Mirzaei S, Gholami MH, Zarrabi A, Hashemi F, Hushmandi K, Hashemi M, Nabavi N, Crea F, Ren J, Klionsky DJ, Kumar AP, Wang Y. Targeting autophagy in prostate cancer: preclinical and clinical evidence for therapeutic response. J Exp Clin Cancer Res 2022; 41:105. [PMID: 35317831 PMCID: PMC8939209 DOI: 10.1186/s13046-022-02293-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer is a leading cause of death worldwide and new estimates revealed prostate cancer as the leading cause of death in men in 2021. Therefore, new strategies are pertinent in the treatment of this malignant disease. Macroautophagy/autophagy is a “self-degradation” mechanism capable of facilitating the turnover of long-lived and toxic macromolecules and organelles. Recently, attention has been drawn towards the role of autophagy in cancer and how its modulation provides effective cancer therapy. In the present review, we provide a mechanistic discussion of autophagy in prostate cancer. Autophagy can promote/inhibit proliferation and survival of prostate cancer cells. Besides, metastasis of prostate cancer cells is affected (via induction and inhibition) by autophagy. Autophagy can affect the response of prostate cancer cells to therapy such as chemotherapy and radiotherapy, given the close association between autophagy and apoptosis. Increasing evidence has demonstrated that upstream mediators such as AMPK, non-coding RNAs, KLF5, MTOR and others regulate autophagy in prostate cancer. Anti-tumor compounds, for instance phytochemicals, dually inhibit or induce autophagy in prostate cancer therapy. For improving prostate cancer therapy, nanotherapeutics such as chitosan nanoparticles have been developed. With respect to the context-dependent role of autophagy in prostate cancer, genetic tools such as siRNA and CRISPR-Cas9 can be utilized for targeting autophagic genes. Finally, these findings can be translated into preclinical and clinical studies to improve survival and prognosis of prostate cancer patients. • Prostate cancer is among the leading causes of death in men where targeting autophagy is of importance in treatment; • Autophagy governs proliferation and metastasis capacity of prostate cancer cells; • Autophagy modulation is of interest in improving the therapeutic response of prostate cancer cells; • Molecular pathways, especially involving non-coding RNAs, regulate autophagy in prostate cancer; • Autophagy possesses both diagnostic and prognostic roles in prostate cancer, with promises for clinical application.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 1417466191, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Jun Ren
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.,Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Daniel J Klionsky
- Life Sciences Institute & Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
37
|
de Castro CML, Pereira COB, Aprigio J, Costa Lima MA, Ribeiro MG, Amorim MR. Aurora kinase genetic polymorphisms: an association study in Down syndrome and spontaneous abortion. Hum Cell 2022; 35:849-855. [PMID: 35218477 DOI: 10.1007/s13577-022-00686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/10/2022] [Indexed: 11/04/2022]
Abstract
Aneuploidies, such as Down syndrome (DS), are the leading cause of pregnancy loss. Abnormalities in aurora kinase proteins result in genomic instability and aneuploidy, mainly in tumors. Thus, polymorphisms in Aurora kinase genes could influence the occurrence of DS and spontaneous abortion. A case-control study was conducted including 124 mothers of DS children (DSM) and 219 control mothers (CM) to investigate DS risk according to AURKA and AURKC polymorphisms. Genotyping was performed using TaqMan real-time PCR. The minor allele frequency (MAF) observed in AURKA rs2273535 was, respectively, 0.23 in DSM and 0.20 in CM, whereas the frequency of the AURKC rs758099 T allele was 0.32 in case and 0.33 in control mothers. Statistical analysis showed no significant difference in the distribution of genotypes and allele frequencies between DSM and CM. According to previous history of spontaneous abortion, the AURKA rs2273535 genotypes (TT + AT vs. AA: OR 2.54, 95% CI 1.13-5.71, p = 0.02; AT vs. AA: OR 2.39, 95% CI 1.03-5.51, p = 0.04; T vs. A: OR 2.08, 95% CI 1.12-3.90, p = 0.02) and AURKC rs758099 (TT vs. CC: OR 4.34, 95% CI 1.03-18.02, p = 0.04; TT + CT vs. CC: OR 2.52, 95% CI 1.02-6.23, p = 0.04; T vs. C: OR 2.03, 95% CI 1.09-3.80, p = 0.02) were observed as risk factors for spontaneous abortion in case mothers. Our study suggests a possible relationship between AURKA/AURKC variants and increased risk of spontaneous abortion within Down syndrome mothers.
Collapse
Affiliation(s)
- Carolina Monteiro Leite de Castro
- Laboratório de Genética Humana, Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense, Rua Prof. Marcos Waldemar de Freitas Reis-São Domingos, Niterói, RJ, 24210-201, Brazil.,Programa de Pós-Graduação em Medicina, Neurologia/Neurociências, HUAP, Universidade Federal Fluminense (UFF), Niterói, Rio de Janeiro, Brazil
| | - Carolina Oliveto Bastos Pereira
- Laboratório de Genética Humana, Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense, Rua Prof. Marcos Waldemar de Freitas Reis-São Domingos, Niterói, RJ, 24210-201, Brazil
| | - Joissy Aprigio
- Laboratório de Genética Humana, Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense, Rua Prof. Marcos Waldemar de Freitas Reis-São Domingos, Niterói, RJ, 24210-201, Brazil
| | - Marcelo A Costa Lima
- Departamento de Genética, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, PHLC, Maracanã, Rio de Janeiro, RJ, 20550-900, Brazil
| | - Márcia G Ribeiro
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Rua Bruno Lobo 50, Cidade Universitária-Ilha Do Fundão, Rio de Janeiro, RJ, 21941-912, Brazil
| | - Márcia Rodrigues Amorim
- Laboratório de Genética Humana, Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense, Rua Prof. Marcos Waldemar de Freitas Reis-São Domingos, Niterói, RJ, 24210-201, Brazil. .,Programa de Pós-Graduação em Medicina, Neurologia/Neurociências, HUAP, Universidade Federal Fluminense (UFF), Niterói, Rio de Janeiro, Brazil.
| |
Collapse
|
38
|
Keep Calm and Carry on with Extra Centrosomes. Cancers (Basel) 2022; 14:cancers14020442. [PMID: 35053604 PMCID: PMC8774008 DOI: 10.3390/cancers14020442] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Precise chromosome segregation during mitosis is a vital event orchestrated by formation of bipolar spindle poles. Supernumerary centrosomes, caused by centrosome amplification, deteriorates mitotic processes, resulting in segregation defects leading to chromosomal instability (CIN). Centrosome amplification is frequently observed in various types of cancer and considered as a significant contributor to destabilization of chromosomes. This review provides a comprehensive overview of causes and consequences of centrosome amplification thoroughly describing molecular mechanisms. Abstract Aberrations in the centrosome number and structure can readily be detected at all stages of tumor progression and are considered hallmarks of cancer. Centrosome anomalies are closely linked to chromosome instability and, therefore, are proposed to be one of the driving events of tumor formation and progression. This concept, first posited by Boveri over 100 years ago, has been an area of interest to cancer researchers. We have now begun to understand the processes by which these numerical and structural anomalies may lead to cancer, and vice-versa: how key events that occur during carcinogenesis could lead to amplification of centrosomes. Despite the proliferative advantages that having extra centrosomes may confer, their presence can also lead to loss of essential genetic material as a result of segregational errors and cancer cells must deal with these deadly consequences. Here, we review recent advances in the current literature describing the mechanisms by which cancer cells amplify their centrosomes and the methods they employ to tolerate the presence of these anomalies, focusing particularly on centrosomal clustering.
Collapse
|
39
|
Baltzer S, Bulatov T, Schmied C, Krämer A, Berger BT, Oder A, Walker-Gray R, Kuschke C, Zühlke K, Eichhorst J, Lehmann M, Knapp S, Weston J, von Kries JP, Süssmuth RD, Klussmann E. Aurora Kinase A Is Involved in Controlling the Localization of Aquaporin-2 in Renal Principal Cells. Int J Mol Sci 2022; 23:ijms23020763. [PMID: 35054947 PMCID: PMC8776063 DOI: 10.3390/ijms23020763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/30/2021] [Accepted: 01/08/2022] [Indexed: 02/01/2023] Open
Abstract
The cAMP-dependent aquaporin-2 (AQP2) redistribution from intracellular vesicles into the plasma membrane of renal collecting duct principal cells induces water reabsorption and fine-tunes body water homeostasis. However, the mechanisms controlling the localization of AQP2 are not understood in detail. Using immortalized mouse medullary collecting duct (MCD4) and primary rat inner medullary collecting duct (IMCD) cells as model systems, we here discovered a key regulatory role of Aurora kinase A (AURKA) in the control of AQP2. The AURKA-selective inhibitor Aurora-A inhibitor I and novel derivatives as well as a structurally different inhibitor, Alisertib, prevented the cAMP-induced redistribution of AQP2. Aurora-A inhibitor I led to a depolymerization of actin stress fibers, which serve as tracks for the translocation of AQP2-bearing vesicles to the plasma membrane. The phosphorylation of cofilin-1 (CFL1) inactivates the actin-depolymerizing function of CFL1. Aurora-A inhibitor I decreased the CFL1 phosphorylation, accounting for the removal of the actin stress fibers and the inhibition of the redistribution of AQP2. Surprisingly, Alisertib caused an increase in actin stress fibers and did not affect CFL1 phosphorylation, indicating that AURKA exerts its control over AQP2 through different mechanisms. An involvement of AURKA and CFL1 in the control of the localization of AQP2 was hitherto unknown.
Collapse
Affiliation(s)
- Sandrine Baltzer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (S.B.); (R.W.-G.); (C.K.); (K.Z.)
- Institute of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany; (T.B.); (R.D.S.)
| | - Timur Bulatov
- Institute of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany; (T.B.); (R.D.S.)
| | - Christopher Schmied
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (C.S.); (A.O.); (J.E.); (M.L.); (J.P.v.K.)
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany; (A.K.); (B.-T.B.); (S.K.)
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
- DKTK (German Translational Research Network), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
| | - Benedict-Tilman Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany; (A.K.); (B.-T.B.); (S.K.)
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - Andreas Oder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (C.S.); (A.O.); (J.E.); (M.L.); (J.P.v.K.)
| | - Ryan Walker-Gray
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (S.B.); (R.W.-G.); (C.K.); (K.Z.)
| | - Christin Kuschke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (S.B.); (R.W.-G.); (C.K.); (K.Z.)
| | - Kerstin Zühlke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (S.B.); (R.W.-G.); (C.K.); (K.Z.)
| | - Jenny Eichhorst
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (C.S.); (A.O.); (J.E.); (M.L.); (J.P.v.K.)
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (C.S.); (A.O.); (J.E.); (M.L.); (J.P.v.K.)
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany; (A.K.); (B.-T.B.); (S.K.)
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
- DKTK (German Translational Research Network), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany
| | - John Weston
- JQuest Consulting, Carl-Orff-Weg 25, 65779 Kelkheim, Germany;
| | - Jens Peter von Kries
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (C.S.); (A.O.); (J.E.); (M.L.); (J.P.v.K.)
| | - Roderich D. Süssmuth
- Institute of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany; (T.B.); (R.D.S.)
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (S.B.); (R.W.-G.); (C.K.); (K.Z.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Correspondence: ; Tel.: +49-30-9406-2596
| |
Collapse
|
40
|
Abstract
ABSTRACT The Aurora kinases (AURKA and AURKB) have attracted attention as therapeutic targets in head and neck squamous cell carcinomas. Aurora kinases were first defined as regulators of mitosis that localization to the centrosome (AURKA) and centromere (AURKB), governing formation of the mitotic spindle, chromatin condensation, activation of the core mitotic kinase CDK1, alignment of chromosomes at metaphase, and other processes. Subsequently, additional roles for Aurora kinases have been defined in other phases of cell cycle, including regulation of ciliary disassembly and DNA replication. In cancer, elevated expression and activity of Aurora kinases result in enhanced or neomorphic locations and functions that promote aggressive disease, including promotion of MYC expression, oncogenic signaling, stem cell identity, epithelial-mesenchymal transition, and drug resistance. Numerous Aurora-targeted inhibitors have been developed and are being assessed in preclinical and clinical trials, with the goal of improving head and neck squamous cell carcinoma treatment.
Collapse
|
41
|
Jane EP, Premkumar DR, Rajasundaram D, Thambireddy S, Reslink MC, Agnihotri S, Pollack IF. Reversing tozasertib resistance in glioma through inhibition of pyruvate dehydrogenase kinases. Mol Oncol 2022; 16:219-249. [PMID: 34058053 PMCID: PMC8732347 DOI: 10.1002/1878-0261.13025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/23/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Acquired resistance to conventional chemotherapeutic agents limits their effectiveness and can cause cancer treatment to fail. Because enzymes in the aurora kinase family are vital regulators of several mitotic events, we reasoned that targeting these kinases with tozasertib, a pan-aurora kinase inhibitor, would not only cause cytokinesis defects, but also induce cell death in high-grade pediatric and adult glioma cell lines. We found that tozasertib induced cell cycle arrest, increased mitochondrial permeability and reactive oxygen species generation, inhibited cell growth and migration, and promoted cellular senescence and pro-apoptotic activity. However, sustained exposure to tozasertib at clinically relevant concentrations conferred resistance, which led us to examine the mechanistic basis for the emergence of drug resistance. RNA-sequence analysis revealed a significant upregulation of the gene encoding pyruvate dehydrogenase kinase isoenzyme 4 (PDK4), a pyruvate dehydrogenase (PDH) inhibitory kinase that plays a crucial role in the control of metabolic flexibility under various physiological conditions. Upregulation of PDK1, PDK2, PDK3, or PDK4 protein levels was positively correlated with tozasertib-induced resistance through inhibition of PDH activity. Tozasertib-resistant cells exhibited increased mitochondrial mass as measured by 10-N-nonyl-Acridine Orange. Inhibition of PDK with dichloroacetate resulted in increased mitochondrial permeability and cell death in tozasertib-resistant glioma cell lines. Based on these results, we believe that PDK is a selective target for the tozasertib resistance phenotype and should be considered for further preclinical evaluations.
Collapse
Affiliation(s)
- Esther P Jane
- Department of Neurosurgery, University of Pittsburgh School of Medicine, PA, USA
| | - Daniel R Premkumar
- Department of Neurosurgery, University of Pittsburgh School of Medicine, PA, USA
- Department of Neurosurgery, UPMC Hillman Cancer Center, PA, USA
| | | | - Swetha Thambireddy
- Department of Neurosurgery, University of Pittsburgh School of Medicine, PA, USA
| | - Matthew C Reslink
- Department of Neurosurgery, University of Pittsburgh School of Medicine, PA, USA
| | - Sameer Agnihotri
- Department of Neurosurgery, University of Pittsburgh School of Medicine, PA, USA
- Department of Neurosurgery, UPMC Hillman Cancer Center, PA, USA
| | - Ian F Pollack
- Department of Neurosurgery, University of Pittsburgh School of Medicine, PA, USA
- Department of Neurosurgery, UPMC Hillman Cancer Center, PA, USA
| |
Collapse
|
42
|
Molecular targets and therapeutics in chemoresistance of triple-negative breast cancer. Med Oncol 2021; 39:14. [PMID: 34812991 DOI: 10.1007/s12032-021-01610-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is a specific subtype of breast cancer (BC), which shows immunohistochemically negative expression of hormone receptor i.e., Estrogen receptor and Progesterone receptor along with the absence of Human Epidermal Growth Factor Receptor-2 (HER2/neu). In Indian scenario the prevalence of BC is 26.3%, whereas, in West Bengal the cases are of 18.4%. But the rate of TNBC has increased up to 31% and shows 27% of total BC. Conventional chemotherapy is effective only in the initial stages but with progression of the disease the effectivity gets reduced and shown almost no effect in later or advanced stages of TNBC. Thus, TNBC patients frequently develop resistance and metastasis, due to its peculiar triple-negative nature most of the hormonal therapies also fails. Development of chemoresistance may involve various factors, such as, TNBC heterogeneity, cancer stem cells (CSCs), signaling pathway deregulation, DNA repair mechanism, hypoxia, and other molecular factors. To overcome the challenges to treat TNBC various targets and molecules have been exploited including CSCs modulator, drug efflux transporters, hypoxic factors, apoptotic proteins, and regulatory signaling pathways. Moreover, to improve the targets and efficacy of treatments researchers are emphasizing on targeted therapy for TNBC. In this review, an effort has been made to focus on phenotypic and molecular variations in TNBC along with the role of conventional as well as newly identified pathways and strategies to overcome challenge of chemoresistance.
Collapse
|
43
|
Synthetic Heterocyclic Derivatives as Kinase Inhibitors Tested for the Treatment of Neuroblastoma. Molecules 2021; 26:molecules26237069. [PMID: 34885651 PMCID: PMC8658969 DOI: 10.3390/molecules26237069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022] Open
Abstract
In the last few years, small molecules endowed with different heterocyclic scaffolds have been developed as kinase inhibitors. Some of them are being tested at preclinical or clinical levels for the potential treatment of neuroblastoma (NB). This disease is the most common extracranial solid tumor in childhood and is responsible for 10% to 15% of pediatric cancer deaths. Despite the availability of some treatments, including the use of very toxic cytotoxic chemotherapeutic agents, high-risk (HR)-NB patients still have a poor prognosis and a survival rate below 50%. For these reasons, new pharmacological options are urgently needed. This review focuses on synthetic heterocyclic compounds published in the last five years, which showed at least some activity on this severe disease and act as kinase inhibitors. The specific mechanism of action, selectivity, and biological activity of these drug candidates are described, when established. Moreover, the most remarkable clinical trials are reported. Importantly, kinase inhibitors approved for other diseases have shown to be active and endowed with lower toxicity compared to conventional cytotoxic agents. The data collected in this article can be particularly useful for the researchers working in this area.
Collapse
|
44
|
Wang K, Muñoz KJ, Tan M, Sütterlin C. Chlamydia and HPV induce centrosome amplification in the host cell through additive mechanisms. Cell Microbiol 2021; 23:e13397. [PMID: 34716742 DOI: 10.1111/cmi.13397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/15/2022]
Abstract
Based on epidemiology studies, Chlamydia trachomatis has been proposed as a co-factor for human papillomavirus (HPV) in the development of cervical cancer. These two intracellular pathogens have been independently reported to induce the production of extra centrosomes, or centrosome amplification, which is a hallmark of cancer cells. We developed a cell culture model to systematically measure the individual and combined effects of Chlamydia and HPV on the centrosome in the same host cell. We found that C. trachomatis caused centrosome amplification in a greater proportion of cells than HPV and that the effects of the two pathogens on the centrosome were additive. Furthermore, centrosome amplification induced by Chlamydia, but not by HPV, strongly correlated with multinucleation and required progression through mitosis. Our results suggest that C. trachomatis and HPV induce centrosome amplification through different mechanisms, with the chlamydial effect being largely due to a failure in cytokinesis that also results in multinucleation. Our findings provide support for C. trachomatis as a co-factor for HPV in carcinogenesis and offer mechanistic insights into how two infectious agents may cooperate to promote cancer. TAKE AWAYS: • Chlamydia and HPV induce centrosome amplification in an additive manner. • Chlamydia-induced centrosome amplification is linked to host cell multinucleation. • Chlamydia-induced centrosome amplification requires cell cycle progression. • Chlamydia and HPV cause centrosome amplification through different mechanisms. • This study supports Chlamydia as a co-factor for HPV in carcinogenesis.
Collapse
Affiliation(s)
- Kevin Wang
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, USA
| | - Karissa J Muñoz
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Ming Tan
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, USA.,Department of Medicine, University of California, Irvine, California, USA
| | - Christine Sütterlin
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| |
Collapse
|
45
|
ISL1 promoted tumorigenesis and EMT via Aurora kinase A-induced activation of PI3K/AKT signaling pathway in neuroblastoma. Cell Death Dis 2021; 12:620. [PMID: 34131100 PMCID: PMC8206128 DOI: 10.1038/s41419-021-03894-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 11/21/2022]
Abstract
Neuroblastoma (NB) is the most common extracranial solid malignancy in children and its mortality rate is relatively high. However, driver genes of NB are not clearly identified. Using bioinformatics analysis, we determined the top 8 differentially expressed genes (DEGs) in NB, including GFAP, PAX6, FOXG1, GAD1, PTPRC, ISL1, GRM5, and GATA3. Insulin gene enhancer binding protein 1 (ISL1) is a LIM homeodomain transcription factor which has been found to be highly expressed in a variety of malignant tumors, but the function of ISL1 in NB has not been fully elucidated. We identified ISL1 as an oncogene in NB. ISL1 is preferentially upregulated in NB tissues compared with normal tissues. High ISL1 expression is significantly associated with poor outcome of NB patients. Knockdown of ISL1 markedly represses proliferation and induces cell apoptosis in vitro, and suppresses tumorigenicity in vivo, while overexpression of ISL1 has the opposite effects. Mechanistically, we demonstrate that ISL1 promotes cell proliferation and EMT transformation through PI3K/AKT signaling pathway by upregulating Aurora kinase A (AURKA), a serine-threonine kinase that is essential for the survival of NB cells. The blockade of AURKA attenuates the function of ISL1 overexpression in the regulation of cell proliferation and migration, Conclusively, this study showed that ISL1 targeted AURKA to facilitate the development of NB, which provided new insights into the tumorigenesis of NB. Thus, ISL1 may be a promising therapeutic target in the future.
Collapse
|
46
|
Yi JS, Sias-Garcia O, Nasholm N, Hu X, Iniguez AB, Hall MD, Davis M, Guha R, Moreno-Smith M, Barbieri E, Duong K, Koach J, Qi J, Bradner JE, Stegmaier K, Weiss WA, Gustafson WC. The synergy of BET inhibitors with aurora A kinase inhibitors in MYCN-amplified neuroblastoma is heightened with functional TP53. Neoplasia 2021; 23:624-633. [PMID: 34107377 PMCID: PMC8192452 DOI: 10.1016/j.neo.2021.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 11/29/2022]
Abstract
Amplification of MYCN is a poor prognostic feature in neuroblastoma (NBL) indicating aggressive disease. We and others have shown BET bromodomain inhibitors (BETi) target MYCN indirectly by downregulating its transcription. Here we sought to identify agents that synergize with BETi and to identify biomarkers of resistance. We previously performed a viability screen of ∼1,900 oncology-focused compounds combined with BET bromodomain inhibitors against MYCN-amplified NBL cell lines. Reanalysis of our screening results prominently identified inhibitors of aurora kinase A (AURKAi) to be highly synergistic with BETi. We confirmed the anti-proliferative effects of several BETi+AURKAi combinations in MYCN-amplified NBL cell lines. Compared to single agents, these combinations cooperated to decrease levels of N-myc. We treated both TP53-wild type and mutant, MYCN-amplified cell lines with the BETi JQ1 and the AURKAi Alisertib. The combination had improved efficacy in the TP53-WT context, notably driving apoptosis in both genetic backgrounds. JQ1+Alisertib combination treatment of a MYCN-amplified, TP53-null or TP53-restored genetically engineered mouse model of NBL prolonged survival better than either single agent. This was most profound with TP53 restored, with marked tumor shrinkage and apoptosis induction in response to combination JQ1+Alisertib. BETi+AURKAi in MYCN-amplified NBL, particularly in the context of functional TP53, provided anti-tumor benefits in preclinical models. This combination should be studied more closely in a pediatric clinical trial.
Collapse
Affiliation(s)
- Joanna S Yi
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, Texas, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts, USA.
| | - Oscar Sias-Garcia
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, Texas, USA
| | - Nicole Nasholm
- Department of Pediatrics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Xiaoyu Hu
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, Texas, USA
| | - Amanda Balboni Iniguez
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts, USA; Broad Institute, Cambridge, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Mindy Davis
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Rajarshi Guha
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Myrthala Moreno-Smith
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, Texas, USA
| | - Eveline Barbieri
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, Texas, USA
| | - Kevin Duong
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, Texas, USA
| | - Jessica Koach
- Department of Pediatrics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA; Department of Neurology and Neurological Surgery, University of California, San Francisco, California, USA
| | - Jun Qi
- Broad Institute, Cambridge, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - James E Bradner
- Broad Institute, Cambridge, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts, USA; Broad Institute, Cambridge, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - William A Weiss
- Department of Pediatrics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA; Department of Neurology and Neurological Surgery, University of California, San Francisco, California, USA
| | - W Clay Gustafson
- Department of Pediatrics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA.
| |
Collapse
|
47
|
Naso FD, Boi D, Ascanelli C, Pamfil G, Lindon C, Paiardini A, Guarguaglini G. Nuclear localisation of Aurora-A: its regulation and significance for Aurora-A functions in cancer. Oncogene 2021; 40:3917-3928. [PMID: 33981003 PMCID: PMC8195736 DOI: 10.1038/s41388-021-01766-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
The Aurora-A kinase regulates cell division, by controlling centrosome biology and spindle assembly. Cancer cells often display elevated levels of the kinase, due to amplification of the gene locus, increased transcription or post-translational modifications. Several inhibitors of Aurora-A activity have been developed as anti-cancer agents and are under evaluation in clinical trials. Although the well-known mitotic roles of Aurora-A point at chromosomal instability, a hallmark of cancer, as a major link between Aurora-A overexpression and disease, recent evidence highlights the existence of non-mitotic functions of potential relevance. Here we focus on a nuclear-localised fraction of Aurora-A with oncogenic roles. Interestingly, this pool would identify not only non-mitotic, but also kinase-independent functions of the kinase. We review existing data in the literature and databases, examining potential links between Aurora-A stabilisation and localisation, and discuss them in the perspective of a more effective targeting of Aurora-A in cancer therapy.
Collapse
Affiliation(s)
- Francesco Davide Naso
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Dalila Boi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Georgiana Pamfil
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| | | | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
48
|
Omran Z, H. Dalhat M, Abdullah O, Kaleem M, Hosawi S, A Al-Abbasi F, Wu W, Choudhry H, Alhosin M. Targeting Post-Translational Modifications of the p73 Protein: A Promising Therapeutic Strategy for Tumors. Cancers (Basel) 2021; 13:1916. [PMID: 33921128 PMCID: PMC8071514 DOI: 10.3390/cancers13081916] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 01/11/2023] Open
Abstract
The tumor suppressor p73 is a member of the p53 family and is expressed as different isoforms with opposing properties. The TAp73 isoforms act as tumor suppressors and have pro-apoptotic effects, whereas the ΔNp73 isoforms lack the N-terminus transactivation domain and behave as oncogenes. The TAp73 protein has a high degree of similarity with both p53 function and structure, and it induces the regulation of various genes involved in the cell cycle and apoptosis. Unlike those of the p53 gene, the mutations in the p73 gene are very rare in tumors. Cancer cells have developed several mechanisms to inhibit the activity and/or expression of p73, from the hypermethylation of its promoter to the modulation of the ratio between its pro- and anti-apoptotic isoforms. The p73 protein is also decorated by a panel of post-translational modifications, including phosphorylation, acetylation, ubiquitin proteasomal pathway modifications, and small ubiquitin-related modifier (SUMO)ylation, that regulate its transcriptional activity, subcellular localization, and stability. These modifications orchestrate the multiple anti-proliferative and pro-apoptotic functions of TAp73, thereby offering multiple promising candidates for targeted anti-cancer therapies. In this review, we summarize the current knowledge of the different pathways implicated in the regulation of TAp73 at the post-translational level. This review also highlights the growing importance of targeting the post-translational modifications of TAp73 as a promising antitumor strategy, regardless of p53 status.
Collapse
Affiliation(s)
- Ziad Omran
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (Z.O.); (O.A.)
| | - Mahmood H. Dalhat
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Omeima Abdullah
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (Z.O.); (O.A.)
| | - Mohammed Kaleem
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Salman Hosawi
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Fahd A Al-Abbasi
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, CA 94143, USA;
| | - Hani Choudhry
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Mahmoud Alhosin
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| |
Collapse
|
49
|
Fragliasso V, Tameni A, Inghirami G, Mularoni V, Ciarrocchi A. Cytoskeleton Dynamics in Peripheral T Cell Lymphomas: An Intricate Network Sustaining Lymphomagenesis. Front Oncol 2021; 11:643620. [PMID: 33928032 PMCID: PMC8076600 DOI: 10.3389/fonc.2021.643620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/17/2021] [Indexed: 12/04/2022] Open
Abstract
Defects in cytoskeleton functions support tumorigenesis fostering an aberrant proliferation and promoting inappropriate migratory and invasive features. The link between cytoskeleton and tumor features has been extensively investigated in solid tumors. However, the emerging genetic and molecular landscape of peripheral T cell lymphomas (PTCL) has unveiled several alterations targeting structure and function of the cytoskeleton, highlighting its role in cell shape changes and the aberrant cell division of malignant T cells. In this review, we summarize the most recent evidence about the role of cytoskeleton in PTCLs development and progression. We also discuss how aberrant signaling pathways, like JAK/STAT3, NPM-ALK, RhoGTPase, and Aurora Kinase, can contribute to lymphomagenesis by modifying the structure and the signaling properties of cytoskeleton.
Collapse
Affiliation(s)
- Valentina Fragliasso
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Annalisa Tameni
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Valentina Mularoni
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
50
|
Colón-Marrero S, Jusino S, Rivera-Rivera Y, Saavedra HI. Mitotic kinases as drivers of the epithelial-to-mesenchymal transition and as therapeutic targets against breast cancers. Exp Biol Med (Maywood) 2021; 246:1036-1044. [PMID: 33601912 DOI: 10.1177/1535370221991094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biological therapies against breast cancer patients with tumors positive for the estrogen and progesterone hormone receptors and Her2 amplification have greatly improved their survival. However, to date, there are no effective biological therapies against breast cancers that lack these three receptors or triple-negative breast cancers (TNBC). TNBC correlates with poor survival, in part because they relapse following chemo- and radio-therapies. TNBC is intrinsically aggressive since they have high mitotic indexes and tend to metastasize to the central nervous system. TNBCs are more likely to display centrosome amplification, an abnormal phenotype that results in defective mitotic spindles and abnormal cytokinesis, which culminate in aneuploidy and chromosome instability (known causes of tumor initiation and chemo-resistance). Besides their known role in cell cycle control, mitotic kinases have been also studied in different types of cancer including breast, especially in the context of epithelial-to-mesenchymal transition (EMT). EMT is a cellular process characterized by the loss of cell polarity, reorganization of the cytoskeleton, and signaling reprogramming (upregulation of mesenchymal genes and downregulation of epithelial genes). Previously, we and others have shown the effects of mitotic kinases like Nek2 and Mps1 (TTK) on EMT. In this review, we focus on Aurora A, Aurora B, Bub1, and highly expressed in cancer (Hec1) as novel targets for therapeutic interventions in breast cancer and their effects on EMT. We highlight the established relationships and interactions of these and other mitotic kinases, clinical trial studies involving mitotic kinases, and the importance that represents to develop drugs against these proteins as potential targets in the primary care therapy for TNBC.
Collapse
Affiliation(s)
- Stephanie Colón-Marrero
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, 6650Ponce Health Sciences University/Ponce Research Institute, Ponce, PR 00732, USA
| | - Shirley Jusino
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, 6650Ponce Health Sciences University/Ponce Research Institute, Ponce, PR 00732, USA
| | - Yainyrette Rivera-Rivera
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, 6650Ponce Health Sciences University/Ponce Research Institute, Ponce, PR 00732, USA
| | - Harold I Saavedra
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, 6650Ponce Health Sciences University/Ponce Research Institute, Ponce, PR 00732, USA
| |
Collapse
|