1
|
Nässel DR. A brief history of insect neuropeptide and peptide hormone research. Cell Tissue Res 2025; 399:129-159. [PMID: 39653844 PMCID: PMC11787221 DOI: 10.1007/s00441-024-03936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/14/2024] [Indexed: 02/02/2025]
Abstract
This review briefly summarizes 50 years of research on insect neuropeptide and peptide hormone (collectively abbreviated NPH) signaling, starting with the sequencing of proctolin in 1975. The first 25 years, before the sequencing of the Drosophila genome, were characterized by efforts to identify novel NPHs by biochemical means, mapping of their distribution in neurons, neurosecretory cells, and endocrine cells of the intestine. Functional studies of NPHs were predominantly dealing with hormonal aspects of peptides and many employed ex vivo assays. With the annotation of the Drosophila genome, and more specifically of the NPHs and their receptors in Drosophila and other insects, a new era followed. This started with matching of NPH ligands to orphan receptors, and studies to localize NPHs with improved detection methods. Important advances were made with introduction of a rich repertoire of innovative molecular genetic approaches to localize and interfere with expression or function of NPHs and their receptors. These methods enabled cell- or circuit-specific interference with NPH signaling for in vivo assays to determine roles in behavior and physiology, imaging of neuronal activity, and analysis of connectivity in peptidergic circuits. Recent years have seen a dramatic increase in reports on the multiple functions of NPHs in development, physiology and behavior. Importantly, we can now appreciate the pleiotropic functions of NPHs, as well as the functional peptidergic "networks" where state dependent NPH signaling ensures behavioral plasticity and systemic homeostasis.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, S-10691, Stockholm, Sweden.
| |
Collapse
|
2
|
Hevesi Z, Bakker J, Tretiakov EO, Adori C, Raabgrund A, Barde SS, Caramia M, Krausgruber T, Ladstätter S, Bock C, Hökfelt T, Harkany T. Transient expression of the neuropeptide galanin modulates peripheral‑to‑central connectivity in the somatosensory thalamus during whisker development in mice. Nat Commun 2024; 15:2762. [PMID: 38553447 PMCID: PMC10980825 DOI: 10.1038/s41467-024-47054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
The significance of transient neuropeptide expression during postnatal brain development is unknown. Here, we show that galanin expression in the ventrobasal thalamus of infant mice coincides with whisker map development and modulates subcortical circuit wiring. Time-resolved neuroanatomy and single-nucleus RNA-seq identified complementary galanin (Gal) and galanin receptor 1 (Galr1) expression in the ventrobasal thalamus and the principal sensory nucleus of the trigeminal nerve (Pr5), respectively. Somatodendritic galanin release from the ventrobasal thalamus was time-locked to the first postnatal week, when Gal1R+ Pr5 afferents form glutamatergic (Slc17a6+) synapses for the topographical whisker map to emerge. RNAi-mediated silencing of galanin expression disrupted glutamatergic synaptogenesis, which manifested as impaired whisker-dependent exploratory behaviors in infant mice, with behavioral abnormalities enduring into adulthood. Pharmacological probing of receptor selectivity in vivo corroborated that target recognition and synaptogenesis in the thalamus, at least in part, are reliant on agonist-induced Gal1R activation in inbound excitatory axons. Overall, we suggest a neuropeptide-dependent developmental mechanism to contribute to the topographical specification of a fundamental sensory neurocircuit in mice.
Collapse
Affiliation(s)
- Zsofia Hevesi
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Joanne Bakker
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden
| | - Evgenii O Tretiakov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Csaba Adori
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden
| | - Anika Raabgrund
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Swapnali S Barde
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden
| | - Martino Caramia
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Sabrina Ladstätter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Tomas Hökfelt
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden.
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
3
|
Romanov RA, Harkany T. Grabbing neuropeptide signals in the brain. Science 2023; 382:764-765. [PMID: 37972194 DOI: 10.1126/science.adl1788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Bioengineered sensors resolve the dynamics of neuropeptide action.
Collapse
Affiliation(s)
- Roman A Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
4
|
Mistareehi A, Bendowski KT, Bizanti A, Madas J, Zhang Y, Kwiat AM, Nguyen D, Kogut N, Ma J, Chen J, Cheng ZJ. Topographical distribution and morphology of SP-IR axons in the antrum, pylorus, and duodenum of mice. Auton Neurosci 2023; 246:103074. [PMID: 36804650 PMCID: PMC10515648 DOI: 10.1016/j.autneu.2023.103074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023]
Abstract
Substance-P (SP) is a commonly used marker of nociceptive afferent axons, and it plays an important role in a variety of physiological functions including the regulation of motility, gut secretion, and vascular flow. Previously, we found that SP-immunoreactive (SP-IR) axons densely innervated the pyloric antrum of the flat-mount of the mouse whole stomach muscular layer. However, the regional distribution and morphology of SP-IR axons in the submucosa and mucosa were not well documented. In this study, the mouse antrum-pylorus-duodenum (APD) were transversely and longitudinally sectioned. A Zeiss M2 imager was used to scan the serial sections of each APD (each section montage consisted of 50-100 all-in-focus maximal projection images). To determine the detailed structures of SP-IR axons and terminals, we used the confocal microscope to scan the regions of interest. We found that 1) SP-IR axons innervated the muscular, submucosal, and mucosal layers. 2) In the muscular layer, SP-IR varicose axons densely innervated the muscles and formed varicose terminals which encircled myenteric neurons. 3) In the submucosa, SP-IR axons innervated blood vessels and submucosal ganglia and formed a network in Brunner's glands. 4) In the mucosa, SP-IR axons innervated the muscularis mucosae. Some SP-IR axons entered the lamina propria. 5) The muscular layer of the antrum and duodenum showed a higher SP-IR axon density than the pyloric sphincter. 6) SP-IR axons were from extrinsic and intrinsic origins. This work provided a comprehensive view of the distribution and morphology of SP-IR axons in the APD at single cell/axon/varicosity scale. This data will be used to create a 3D scaffold of the SP-IR axon innervation of the APD.
Collapse
Affiliation(s)
- Anas Mistareehi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States of America
| | - Kohlton T Bendowski
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States of America
| | - Ariege Bizanti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States of America
| | - Jazune Madas
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States of America
| | - Yuanyuan Zhang
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States of America
| | - Andrew M Kwiat
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States of America
| | - Duyen Nguyen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States of America
| | - Nicole Kogut
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States of America
| | - Jichao Ma
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States of America
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States of America
| | - Zixi Jack Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States of America.
| |
Collapse
|
5
|
Francisco MA, Gibson BM, Simmons GH, Halliwill JR, Minson CT. Cholinergic nerve contribution to cutaneous active vasodilation during exercise is similar to whole body passive heating. J Appl Physiol (1985) 2023; 134:933-940. [PMID: 36825647 PMCID: PMC10069983 DOI: 10.1152/japplphysiol.00299.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/27/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Sympathetic cholinergic nerve cotransmission is widely accepted as the mechanism of cutaneous active vasodilation (CAVD) during whole body passive heating (passive heating). However, recent research suggests that there may be mechanistic differences in CAVD to heating, depending on the modality of thermal loading. It is unknown whether sympathetic cholinergic cotransmission explains CAVD during exercise. This study sought to confirm the role of cholinergic nerves in CAVD during passive heating and expand these findings to exercise. It was hypothesized that CAVD during both exercise and passive heating would be abolished by cholinergic nerve blockade. Eight young (18-30 yr) recreationally active individuals exercised (1 h seated cycling at 60% V̇o2peak) and were passively heated (∼1 h seated passive heating with mean skin temperature clamped at 39°C by water-perfused suit), in randomized order on separate days. Cholinergic nerves were blocked via Botox ∼2 wk prior to the study. Skin blood flow was assessed using laser Doppler flowmetry and expressed as percent of maximum cutaneous vascular conductance (%CVCmax). At the end of exercise/passive heating, internal temperature had increased by ∼0.7°C. The %CVCmax at the Botox-treated sites (exercise: 19 ± 6 and passive heating: 15 ± 14%CVCmax) was significantly less (P < 0.001) than at the untreated sites (exercise: 35 ± 11 and passive heating: 38 ± 6%CVCmax), but there were no differences between exercise and passive heating (modality, P = 0.909; modality-Botox interaction, P = 0.230). We conclude that CAVD during both exercise and passive heating is mediated by sympathetic cholinergic nerves, a critical thermoregulatory mechanism that appears to be independent of the thermal loading modality.NEW & NOTEWORTHY Our study establishes the primacy of cholinergic nerves to cutaneous active vasodilation during exercise and confirms this model during passive heating using a crossover study design. In addition, the mode of heating, whether passive or exercise induced, did not change the sensitivity of the cholinergic component of the thermoeffector response to increased internal temperature. Thus, cutaneous active vasodilator nerves are responsible for similar skin blood flow responses regardless of how thermal loading is accomplished.
Collapse
Affiliation(s)
- Michael A Francisco
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Brandon M Gibson
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Grant H Simmons
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - John R Halliwill
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Christopher T Minson
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| |
Collapse
|
6
|
Hanč P, Messou MA, Wang Y, von Andrian UH. Control of myeloid cell functions by nociceptors. Front Immunol 2023; 14:1127571. [PMID: 37006298 PMCID: PMC10064072 DOI: 10.3389/fimmu.2023.1127571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
The immune system has evolved to protect the host from infectious agents, parasites, and tumor growth, and to ensure the maintenance of homeostasis. Similarly, the primary function of the somatosensory branch of the peripheral nervous system is to collect and interpret sensory information about the environment, allowing the organism to react to or avoid situations that could otherwise have deleterious effects. Consequently, a teleological argument can be made that it is of advantage for the two systems to cooperate and form an “integrated defense system” that benefits from the unique strengths of both subsystems. Indeed, nociceptors, sensory neurons that detect noxious stimuli and elicit the sensation of pain or itch, exhibit potent immunomodulatory capabilities. Depending on the context and the cellular identity of their communication partners, nociceptors can play both pro- or anti-inflammatory roles, promote tissue repair or aggravate inflammatory damage, improve resistance to pathogens or impair their clearance. In light of such variability, it is not surprising that the full extent of interactions between nociceptors and the immune system remains to be established. Nonetheless, the field of peripheral neuroimmunology is advancing at a rapid pace, and general rules that appear to govern the outcomes of such neuroimmune interactions are beginning to emerge. Thus, in this review, we summarize our current understanding of the interaction between nociceptors and, specifically, the myeloid cells of the innate immune system, while pointing out some of the outstanding questions and unresolved controversies in the field. We focus on such interactions within the densely innervated barrier tissues, which can serve as points of entry for infectious agents and, where known, highlight the molecular mechanisms underlying these interactions.
Collapse
Affiliation(s)
- Pavel Hanč
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- *Correspondence: Pavel Hanč, ; Ulrich H. von Andrian,
| | - Marie-Angèle Messou
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Yidi Wang
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Ulrich H. von Andrian
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- *Correspondence: Pavel Hanč, ; Ulrich H. von Andrian,
| |
Collapse
|
7
|
Nestoros JN, Vallianatou NG. Infra-Low Frequency Neurofeedback rapidly ameliorates schizophrenia symptoms: A case report of the first session. Front Hum Neurosci 2022; 16:923695. [PMID: 36211131 PMCID: PMC9532604 DOI: 10.3389/fnhum.2022.923695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
A 38-year-old army officer started therapy in 2020 with a four-year history of auditory hallucinations and delusions of reference, persecution and grandeur, symptoms that were resistant to traditional antipsychotic medications. He follows an integrative psychotherapy program that aims to reduce his anxiety, continues his antipsychotic medications, and has Infra-Low Frequency Neurofeedback. After his initial assessment he had a 40 min session of Infra-Low Frequency Neurofeedback before any other kind of intervention. Before and immediately after the session he completed the SCL-90 scale and the Visual Analog Scale covering 20 aspects of his psychological and physical state as well as his schizophrenic symptoms. This first Neurofeedback session had dramatic effects on his psychotic symptoms, levels of anxiety and psychosomatic condition, before his first psychotherapy session and/or any changes in his antipsychotic medication. The above results have great importance due to the severity and chronicity of schizophrenia. Informed consent was obtained from the participant for the publication of this case report (including all data and images).
Collapse
|
8
|
Abstract
The neuropeptide system encompasses the most diverse family of neurotransmitters, but their expression, cellular localization, and functional role in the human brain have received limited attention. Here, we study human postmortem samples from prefrontal cortex (PFC), a key brain region, and employ RNA sequencing and RNAscope methods integrated with published single-cell data. Our aim is to characterize the distribution of peptides and their receptors in 17 PFC subregions and to explore their role in chemical signaling. The results suggest that the well-established anatomical and functional heterogeneity of human PFC is also reflected in the expression pattern of the neuropeptides. Our findings support ongoing efforts from academia and pharmaceutical companies to explore the potential of neuropeptide receptors as targets for drug development. Human prefrontal cortex (hPFC) is a complex brain region involved in cognitive and emotional processes and several psychiatric disorders. Here, we present an overview of the distribution of the peptidergic systems in 17 subregions of hPFC and three reference cortices obtained by microdissection and based on RNA sequencing and RNAscope methods integrated with published single-cell transcriptomics data. We detected expression of 60 neuropeptides and 60 neuropeptide receptors in at least one of the hPFC subregions. The results reveal that the peptidergic landscape in PFC consists of closely located and functionally different subregions with unique peptide/transmitter–related profiles. Neuropeptide-rich PFC subregions were identified, encompassing regions from anterior cingulate cortex/orbitofrontal gyrus. Furthermore, marked differences in gene expression exist between different PFC regions (>5-fold; cocaine and amphetamine–regulated transcript peptide) as well as between PFC regions and reference regions, for example, for somatostatin and several receptors. We suggest that the present approach allows definition of, still hypothetical, microcircuits exemplified by glutamatergic neurons expressing a peptide cotransmitter either as an agonist (hypocretin/orexin) or antagonist (galanin). Specific neuropeptide receptors have been identified as possible targets for neuronal afferents and, interestingly, peripheral blood-borne peptide hormones (leptin, adiponectin, gastric inhibitory peptide, glucagon-like peptides, and peptide YY). Together with other recent publications, our results support the view that neuropeptide systems may play an important role in hPFC and underpin the concept that neuropeptide signaling helps stabilize circuit connectivity and fine-tune/modulate PFC functions executed during health and disease.
Collapse
|
9
|
Benevento M, Hökfelt T, Harkany T. Ontogenetic rules for the molecular diversification of hypothalamic neurons. Nat Rev Neurosci 2022; 23:611-627. [PMID: 35906427 DOI: 10.1038/s41583-022-00615-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 11/09/2022]
Abstract
The hypothalamus is an evolutionarily conserved endocrine interface that, among other roles, links central homeostatic control to adaptive bodily responses by releasing hormones and neuropeptides from its many neuronal subtypes. In its preoptic, anterior, tuberal and mammillary subdivisions, a kaleidoscope of magnocellular and parvocellular neuroendocrine command neurons, local-circuit neurons, and neurons that project to extrahypothalamic areas are intermingled in partially overlapping patches of nuclei. Molecular fingerprinting has produced data of unprecedented mass and depth to distinguish and even to predict the synaptic and endocrine competences, connectivity and stimulus selectivity of many neuronal modalities. These new insights support eminent studies from the past century but challenge others on the molecular rules that shape the developmental segregation of hypothalamic neuronal subtypes and their use of morphogenic cues for terminal differentiation. Here, we integrate single-cell RNA sequencing studies with those of mouse genetics and endocrinology to describe key stages of hypothalamus development, including local neurogenesis, the direct terminal differentiation of glutamatergic neurons, transition cascades for GABAergic and GABAergic cell-derived dopamine cells, waves of local neuronal migration, and sequential enrichment in neuropeptides and hormones. We particularly emphasize how transcription factors determine neuronal identity and, consequently, circuit architecture, and whether their deviations triggered by environmental factors and hormones provoke neuroendocrine illnesses.
Collapse
Affiliation(s)
- Marco Benevento
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Tomas Hökfelt
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria. .,Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
10
|
Bechtel W. Reductionistic Explanations of Cognitive Information Processing: Bottoming Out in Neurochemistry. Front Integr Neurosci 2022; 16:944303. [PMID: 35859708 PMCID: PMC9292585 DOI: 10.3389/fnint.2022.944303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
A common motivation for engaging in reductionistic research is to ground explanations in the most basic processes operative in the mechanism responsible for the phenomenon to be explained. I argue for a different motivation—directing inquiry to the level of organization at which the components of a mechanism enable the work that results in the phenomenon. In the context of reductionistic accounts of cognitive information processing I argue that this requires going down to a level that is largely overlooked in these discussions, that of chemistry. In discussions of cognitive information processing, the brain is often viewed as essentially an electrical switching system and many theorists treat electrical switching as the level at which mechanistic explanations should bottom out. I argue, drawing on examples of peptidergic and monoaminergic neurons, that how information is processed is determined by the specific chemical reactions occurring in individual neurons. Accordingly, mechanistic explanations of cognitive information processing need to take into account the chemical reactions involved.
Collapse
|
11
|
Modulating the tachykinin: Role of substance P and neurokinin receptor expression in ocular surface disorders. Ocul Surf 2022; 25:142-153. [PMID: 35779793 DOI: 10.1016/j.jtos.2022.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 01/19/2023]
Abstract
Substance P (SP) is a tachykinin expressed by various cells in the nervous and immune systems. SP is predominantly released by neurons and exerts its biological and immunological effects through the neurokinin receptors, primarily the neurokinin-1 receptor (NK1R). SP is essential for maintaining ocular surface homeostasis, and its reduced levels in disorders like diabetic neuropathy disrupt the corneal tissue. It also plays an essential role in promoting corneal wound healing by promoting the migration of keratocytes. In this review, we briefly discuss the structure, expression, and function of SP and its principal receptor NK1R. In addition, SP induces pro-inflammatory effects through autocrine or paracrine action on the immune cells in various ocular surface pathologies, including dry eye disease, herpes simplex virus keratitis, and Pseudomonas keratitis. We provide an in-depth review of the pathogenic role of SP in various ocular surface diseases and several new approaches developed to counter the immune-mediated effects of SP either through modulating its production or blocking its target receptor.
Collapse
|
12
|
Eskenazi D, Malave L, Mingote S, Yetnikoff L, Ztaou S, Velicu V, Rayport S, Chuhma N. Dopamine Neurons That Cotransmit Glutamate, From Synapses to Circuits to Behavior. Front Neural Circuits 2021; 15:665386. [PMID: 34093138 PMCID: PMC8170480 DOI: 10.3389/fncir.2021.665386] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/16/2021] [Indexed: 11/21/2022] Open
Abstract
Discovered just over 20 years ago, dopamine neurons have the ability to cotransmit both dopamine and glutamate. Yet, the functional roles of dopamine neuron glutamate cotransmission and their implications for therapeutic use are just emerging. This review article encompasses the current body of evidence investigating the functions of dopamine neurons of the ventral midbrain that cotransmit glutamate. Since its discovery in dopamine neuron cultures, further work in vivo confirmed dopamine neuron glutamate cotransmission across species. From there, growing interest has led to research related to neural functioning including roles in synaptic signaling, development, and behavior. Functional connectome mapping reveals robust connections in multiple forebrain regions to various cell types, most notably to cholinergic interneurons in both the medial shell of the nucleus accumbens and the lateral dorsal striatum. Glutamate markers in dopamine neurons reach peak levels during embryonic development and increase in response to various toxins, suggesting dopamine neuron glutamate cotransmission may serve neuroprotective roles. Findings from behavioral analyses reveal prominent roles for dopamine neuron glutamate cotransmission in responses to psychostimulants, in positive valence and cognitive systems and for subtle roles in negative valence systems. Insight into dopamine neuron glutamate cotransmission informs the pathophysiology of neuropsychiatric disorders such as addiction, schizophrenia and Parkinson Disease, with therapeutic implications.
Collapse
Affiliation(s)
- Daniel Eskenazi
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Lauren Malave
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Susana Mingote
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, United States
| | - Leora Yetnikoff
- Department of Psychology, College of Staten Island, City University of New York, Staten Island, NY, United States
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, New York, NY, United States
| | - Samira Ztaou
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Vlad Velicu
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Stephen Rayport
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Nao Chuhma
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| |
Collapse
|
13
|
The Phosphoprotein Synapsin Ia Regulates the Kinetics of Dense-Core Vesicle Release. J Neurosci 2021; 41:2828-2841. [PMID: 33632727 DOI: 10.1523/jneurosci.2593-19.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/19/2022] Open
Abstract
Common fusion machinery mediates the Ca2+-dependent exocytosis of synaptic vesicles (SVs) and dense-core vesicles (DCVs). Previously, Synapsin Ia (Syn Ia) was found to localize to SVs, essential for mobilizing SVs to the plasma membrane through phosphorylation. However, whether (or how) the phosphoprotein Syn Ia plays a role in regulating DCV exocytosis remains unknown. To answer these questions, we measured the dynamics of DCV exocytosis by using single-vesicle amperometry in PC12 cells (derived from the pheochromocytoma of rats of unknown sex) overexpressing wild-type or phosphodeficient Syn Ia. We found that overexpression of phosphodeficient Syn Ia decreased the DCV secretion rate, specifically via residues previously shown to undergo calmodulin-dependent kinase (CaMK)-mediated phosphorylation (S9, S566, and S603). Moreover, the fusion pore kinetics during DCV exocytosis were found to be differentially regulated by Syn Ia and two phosphodeficient Syn Ia mutants (Syn Ia-S62A and Syn Ia-S9,566,603A). Kinetic analysis suggested that Syn Ia may regulate the closure and dilation of DCV fusion pores via these sites, implying the potential interactions of Syn Ia with certain DCV proteins involved in the regulation of fusion pore dynamics. Furthermore, we predicted the interaction of Syn Ia with several DCV proteins, including Synaptophysin (Syp) and soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins. By immunoprecipitation, we found that Syn Ia interacted with Syp via phosphorylation. Moreover, a proximity ligation assay (PLA) confirmed their phosphorylation-dependent, in situ interaction on DCVs. Together, these findings reveal a phosphorylation-mediated regulation of DCV exocytosis by Syn Ia.SIGNIFICANCE STATEMENT Although they exhibit distinct exocytosis dynamics upon stimulation, synaptic vesicles (SVs) and dense-core vesicles (DCVs) may undergo co-release in neurons and neuroendocrine cells through an undefined molecular mechanism. Synapsin Ia (Syn Ia) is known to recruit SVs to the plasma membrane via phosphorylation. Here, we examined whether Syn Ia also affects the dynamics of DCV exocytosis. We showed that Syn Ia regulates the DCV secretion rate and fusion pore kinetics during DCV exocytosis. Moreover, Syn Ia-mediated regulation of DCV exocytosis depends on phosphorylation. We further found that Syn Ia interacts with Synaptophysin (Syp) on DCVs in a phosphorylation-dependent manner. Thus, these results suggest that Syn Ia may regulate the release of DCVs via phosphorylation.
Collapse
|
14
|
Wang K, Wang S, Chen Y, Wu D, Hu X, Lu Y, Wang L, Bao L, Li C, Zhang X. Single-cell transcriptomic analysis of somatosensory neurons uncovers temporal development of neuropathic pain. Cell Res 2021; 31:904-918. [PMID: 33692491 DOI: 10.1038/s41422-021-00479-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/06/2021] [Indexed: 01/22/2023] Open
Abstract
Peripheral nerve injury could lead to chronic neuropathic pain. Understanding transcriptional changes induced by nerve injury could provide fundamental insights into the complex pathogenesis of neuropathic pain. Gene expression profiles of dorsal root ganglia (DRG) in neuropathic pain condition have been studied. However, little is known about transcriptomic changes in individual DRG neurons after peripheral nerve injury. Here we performed single-cell RNA sequencing on dissociated mouse DRG cells after spared nerve injury (SNI). In addition to DRG neuron types that are found under physiological conditions, we identified three SNI-induced neuronal clusters (SNIICs) characterized by the expression of Atf3/Gfra3/Gal (SNIIC1), Atf3/Mrgprd (SNIIC2) and Atf3/S100b/Gal (SNIIC3). These SNIICs originated from Cldn9+/Gal+, Mrgprd+ and Trappc3l+ DRG neurons, respectively. Interestingly, SNIIC2 switched to SNIIC1 by increasing Gal and reducing Mrgprd expression 2 days after nerve injury. Inferring the gene regulatory networks after nerve injury, we revealed that activated transcription factors Atf3 and Egr1 in SNIICs could enhance Gal expression while activated Cpeb1 in SNIIC2 might suppress Mrgprd expression within 2 days after SNI. Furthermore, we mined the transcriptomic changes in the development of neuropathic pain to identify potential analgesic targets. We revealed that cardiotrophin-like cytokine factor 1, which activates astrocytes in the dorsal horn of spinal cord, was upregulated in SNIIC1 neurons and contributed to SNI-induced mechanical allodynia. Therefore, our results provide a new landscape to understand the dynamic course of neuron type changes and their underlying molecular mechanisms during the development of neuropathic pain.
Collapse
Affiliation(s)
- Kaikai Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sashuang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Chen
- Research Unit of Pain, Chinese Academy of Medical Sciences, Institute of Brain-Intelligence Science and Technology, Zhangjiang Lab, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 200031, China
| | - Dan Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyu Hu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingjin Lu
- Research Unit of Pain, Chinese Academy of Medical Sciences, Institute of Brain-Intelligence Science and Technology, Zhangjiang Lab, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 200031, China.,Shanghai Clinical Research Center, Chinese Academy of Sciences, Xuhui Central Hospital, Shanghai, 200031, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lan Bao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Changlin Li
- Research Unit of Pain, Chinese Academy of Medical Sciences, Institute of Brain-Intelligence Science and Technology, Zhangjiang Lab, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 200031, China. .,Shanghai Clinical Research Center, Chinese Academy of Sciences, Xuhui Central Hospital, Shanghai, 200031, China.
| | - Xu Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Research Unit of Pain, Chinese Academy of Medical Sciences, Institute of Brain-Intelligence Science and Technology, Zhangjiang Lab, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 200031, China.
| |
Collapse
|
15
|
Rosa-Casillas M, de Jesús PM, Vicente Rodríguez LC, Habib MR, Croll RP, Miller MW. Identification and localization of a gonadotropin-releasing hormone-related neuropeptide in Biomphalaria, an intermediate host for schistosomiasis. J Comp Neurol 2021; 529:2347-2361. [PMID: 33368267 DOI: 10.1002/cne.25099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/22/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022]
Abstract
Freshwater snails of the genus Biomphalaria serve as obligatory hosts for the digenetic trematode Schistosoma mansoni, the causative agent for the most widespread form of intestinal schistosomiasis. Within Biomphalaria, S. mansoni larvae multiply and transform into the cercariae form that can infect humans. Trematode development and proliferation is thought to be facilitated by modifications of host behavior and physiological processes, including a reduction of reproduction known as "parasitic castration." As neuropeptides participate in the control of reproduction across phylogeny, a neural transcriptomics approach was undertaken to identify peptides that could regulate Biomphalaria reproductive physiology. The present study identified a transcript in Biomphalaria alexandrina that encodes a peptide belonging to the gonadotropin-releasing hormone (GnRH) superfamily. The precursor and the predicted mature peptide, pQIHFTPDWGNN-NH2 (designated Biom-GnRH), share features with peptides identified in other molluscan species, including panpulmonates, opisthobranchs, and cephalopods. An antibody generated against Biom-GnRH labeled neurons in the cerebral, pedal, and visceral ganglia of Biomphalaria glabrata. GnRH-like immunoreactive fiber systems projected to all central ganglia. In the periphery, immunoreactive material was detected in the ovotestis, oviduct, albumen gland, and nidamental gland. As these structures serve crucial roles in the production, transport, nourishment, and encapsulation of eggs, disruption of the GnRH system of Biomphalaria could contribute to reduced reproductive activity in infected snails.
Collapse
Affiliation(s)
- Mariela Rosa-Casillas
- Institute of Neurobiology and Department of Anatomy and Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Paola Méndez de Jesús
- Institute of Neurobiology and Department of Anatomy and Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | | | - Mohamed R Habib
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Roger P Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mark W Miller
- Institute of Neurobiology and Department of Anatomy and Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
16
|
Kreier F, Swaab DF. History of hypothalamic research: "The spring of primitive existence". HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:7-43. [PMID: 34225985 DOI: 10.1016/b978-0-12-819975-6.00031-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The central brain region of interest for neuroendocrinology is the hypothalamus, a name coined by Wilhelm His in 1893. Neuroendocrinology is the discipline that studies hormone production by neurons, the sensitivity of neurons for hormones, as well as the dynamic, bidirectional interactions between neurons and endocrine glands. These interactions do not only occur through hormones, but are also partly accomplished by the autonomic nervous system that is regulated by the hypothalamus and that innervates the endocrine glands. A special characteristic of the hypothalamus is that it contains neuroendocrine neurons projecting either to the neurohypophysis or to the portal vessels of the anterior lobe of the pituitary in the median eminence, where they release their neuropeptides or other neuroactive compounds into the bloodstream, which subsequently act as neurohormones. In the 1970s it was found that vasopressin and oxytocin not only are released as hormones in the circulation but that their neurons project to other neurons within and outside the hypothalamus and function as neurotransmitters or neuromodulators that regulate central functions, including the autonomic innervation of all our body organs. Recently magnocellular oxytocin neurons were shown to send not only an axon to the neurohypophysis, but also axon collaterals of the same neuroendocrine neuron to a multitude of brain areas. In this way, the hypothalamus acts as a central integrator for endocrine, autonomic, and higher brain functions. The history of neuroendocrinology is described in this chapter from the descriptions in De humani corporis fabrica by Vesalius (1537) to the present, with a timeline of the scientists and their findings.
Collapse
Affiliation(s)
- Felix Kreier
- Department Pediatrics, OLVG Hospitals, Amsterdam, The Netherlands.
| | - Dick F Swaab
- Department Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Dudás B, Merchenthaler I. Morphology and distribution of hypothalamic peptidergic systems. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:67-85. [PMID: 34225984 DOI: 10.1016/b978-0-12-819975-6.00002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neuropeptides participate in the regulation of numerous hypothalamic functions that are aimed for sustaining the homeostasis of the organism. These neuropeptides can act in two different levels. They can influence the release of hormones from the adenohypophysis via the portal circulation; in addition, they can act as neurotransmitters/neuromodulators modulating the functioning of numerous hypothalamic neurotransmitter systems. Indeed, most of these peptidergic systems form a complex network in the infundibular and periventricular nuclei of the human hypothalamus, communicating with each other by synaptic connections that may control fundamental physiologic functions. In the present chapter, we provide an overview of the distribution of neuropeptides in the human hypothalamus using immunohistochemistry and high-resolution, three-dimensional mapping.
Collapse
Affiliation(s)
- Bertalan Dudás
- Neuroendocrine Organization Laboratory, Lake Erie College of Osteopathic Medicine, Erie, PA, United States; Department of Anatomy, Histology and Embryology, University of Szeged, Szeged, Hungary.
| | - István Merchenthaler
- Department of Epidemiology and Public Health and of Anatomy and Neurobiology, University of Maryland Baltimore, Baltimore, MD, United States
| |
Collapse
|
18
|
Dudas B, Merchenthaler I. Thyrotropin-releasing hormone axonal varicosities appear to innervate dopaminergic neurons in the human hypothalamus. Brain Struct Funct 2020; 225:2193-2201. [PMID: 32737582 DOI: 10.1007/s00429-020-02120-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/23/2020] [Indexed: 01/25/2023]
Abstract
Thyrotropin-releasing hormone (TRH) has a critical role in the central regulation of thyroid-stimulating hormone (TSH) from the anterior pituitary, and subsequently, thyroid hormone secretion from the thyroid gland. In addition to its role in the regulation of HPT axis, TRH is a potent regulator of prolactin (PRL) secretion by stimulating PRL secretion either directly from lactotrophs or indirectly via its action on the tuberoinfundibular dopamine (TIDA) neurons. In rodents, the TRH neurons which regulate TSH and thyroid hormone secretion, called hypophysiotropic TRH neurons, are in the medial subdivision of the parvicellular paraventricular nucleus (PVN). In humans, the PVN also contains a large population of TRH neurons, especially in its medial part, but the location of hypophysiotropic TRH neurons is not yet known. In addition to regulating TSH and PRL secretion, TRH also functions as a neurotransmitter/neuromodulator. In rodents and teleosts, TRH axons densely innervate TIDA neurons to inhibit tyrosine hydroxylase (TH) biosynthesis, neuronal firing, and dopamine turnover which may contribute to increasing PRL secretion. No such connections have been reported in humans, although dopaminergic neurons express TRH receptors and TRH also regulates PRL secretion. The objectives of this study were to map TRH-IR and TH-IR structures in the human hypothalamus with single-label light microscopic immunocytochemistry and study their interaction with double-label light microscopic immunocytochemistry. We show that TRH-IR nerve terminals densely surround TH-IR neurons (perikarya and dendrites) in the infundibulum of the human hypothalamus. The micrographs illustrating these juxtapositions were taken by Olympus BX45 microscope equipped with a digital camera and with 100X oil immersion objective. Composite images were created from the consecutive micrographs if the neurons were larger than the frame of the camera, using Adobe Photoshop software. As no gaps between TRH-IR and TH-IR elements were seen, these contacts may be functional synapses by which TRH regulates the activity of dopaminergic neurons and subsequently TSH and PRL secretion.
Collapse
Affiliation(s)
- Bertalan Dudas
- Neuroendocrine Organization Laboratory (NEO), Lake Erie College of Osteopathic Medicine (LECOM), Erie, PA, 16509, USA
| | - Istvan Merchenthaler
- Department of Epidemiology and Public Health and Anatomy and Neurobiology, University of Maryland Baltimore, 10 South Pine Street MSTF 977, Baltimore, MD, 21201, USA.
| |
Collapse
|
19
|
Verkhratsky A, Zimmermann H, Abbracchio MP, Illes P, DiVirgilio F. In Memoriam Geoffrey Burnstock: Creator of Purinergic Signaling. FUNCTION 2020. [PMCID: PMC8788863 DOI: 10.1093/function/zqaa006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Geoff Burnstock (1929–2020) discovered purinergic signaling in a fastidious research that started in early 1960 and culminated in a concept of purinergic nerves in 1972. Subsequently, Geoff developed the concept of purinergic transmission and demonstrated ATP storage, release, and degradation in the context of cotransmission, which was another fundamental concept developed by him. Purinergic transmission contributes to the most fundamental physiological functions such as sensory transduction, regulation of heart rate, smooth muscle contraction, bile secretion, endocrine regulation, immune responses, as well as to various pathophysiological conditions, including inflammation, cancer, neuropathic pain, diabetes, and kidney failure.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Achucarro Centre for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain
| | - Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Goethe-University, Frankfurt am Main, Germany
| | - Maria P Abbracchio
- Department of Pharmacological Sciences, Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, University of Milan, Milan, Italy
| | - Peter Illes
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Germany
| | | |
Collapse
|
20
|
Abstract
Why did I choose this particular topic for my lecture rather than the history of neuroscience or the history of the neuron? Simply because I believe that every disciple has the obligation to pay homage to their mentors once in their lifetime. My formation as a neuroscientist involved three such mentors spanned across three countries. The first was Spain, where I was born, completed my medical studies, and had my first glimpse of neuroscience at the Cajal Institute with Fernando de Castro. It was him who, in 1961, advised me to spend some time abroad, and to that purpose he obtained me a scholarship from the French government, that allowed me to settle in Paris. Once in France I had the good fortune to meet Prof. René Couteaux, another generous mentor, who took care of my stay in the country. Two years later, he made me a proposition to which I could only answer in the affirmative by offering me a research position in France. I got married (the best thing that happened in my life), and spent the next 57 years working on the cerebellum. The third person I want to honor and remember in this presentation is Sanford Louis Palay who was my postdoc professor during the 2 years I worked at Harvard Medical School in Boston. And as it turns out, all three of my mentors have made positive contributions to the history of the synapse. So, without further delay, let us dive in. Anat Rec, 303:1252-1279, 2020. © 2020 American Association for Anatomy.
Collapse
Affiliation(s)
- Constantino Sotelo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Miguel Hernández (UMH), San Juan de Alicante, Spain
| |
Collapse
|
21
|
Francisco MA, Minson CT. Cutaneous active vasodilation as a heat loss thermoeffector. HANDBOOK OF CLINICAL NEUROLOGY 2019; 156:193-209. [PMID: 30454590 DOI: 10.1016/b978-0-444-63912-7.00012-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Human skin is the interface between the human body and the environment. As such, human temperature regulation relies largely on cutaneous vasomotor and sudomotor adjustments to appropriately thermoregulate. In particular, changes in skin blood flow can increase or decrease the convective heat transfer from internal tissues to the periphery where it can increase or prevent heat loss to the environment. Thermoregulatory control of the cutaneous vasculature is largely due to cutaneous sympathetic nerves. Sympathetic adrenergic nerves mediate vasoconstriction of the skin, similar to other vascular beds, whereas active vasodilator nerves in nonglabrous skin respond to changes in internal and peripheral temperatures and can profoundly increase skin blood flow. Activation of these vasodilator nerves is known as cutaneous active vasodilation and has been the subject of much recent research. This research has uncovered a highly complex system that involves the activation of multiple receptors and vasodilator pathways in a synergistic and sometimes redundant manner. This complexity and redundancy has left our understanding of cutaneous active vasodilation incomplete; however, the employment of new techniques and use of new pharmacologic agents have introduced many new insights into cutaneous active vasodilation.
Collapse
Affiliation(s)
- Michael A Francisco
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Christopher T Minson
- Department of Human Physiology, University of Oregon, Eugene, OR, United States.
| |
Collapse
|
22
|
Svensson E, Apergis-Schoute J, Burnstock G, Nusbaum MP, Parker D, Schiöth HB. General Principles of Neuronal Co-transmission: Insights From Multiple Model Systems. Front Neural Circuits 2019; 12:117. [PMID: 30728768 PMCID: PMC6352749 DOI: 10.3389/fncir.2018.00117] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022] Open
Abstract
It is now accepted that neurons contain and release multiple transmitter substances. However, we still have only limited insight into the regulation and functional effects of this co-transmission. Given that there are 200 or more neurotransmitters, the chemical complexity of the nervous system is daunting. This is made more-so by the fact that their interacting effects can generate diverse non-linear and novel consequences. The relatively poor history of pharmacological approaches likely reflects the fact that manipulating a transmitter system will not necessarily mimic its roles within the normal chemical environment of the nervous system (e.g., when it acts in parallel with co-transmitters). In this article, co-transmission is discussed in a range of systems [from invertebrate and lower vertebrate models, up to the mammalian peripheral and central nervous system (CNS)] to highlight approaches used, degree of understanding, and open questions and future directions. Finally, we offer some outlines of what we consider to be the general principles of co-transmission, as well as what we think are the most pressing general aspects that need to be addressed to move forward in our understanding of co-transmission.
Collapse
Affiliation(s)
- Erik Svensson
- BMC, Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - John Apergis-Schoute
- Department of Neurosciences, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Geoffrey Burnstock
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Michael P Nusbaum
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David Parker
- Department of Physiology, Development and Neuroscience, Faculty of Biology, University of Cambridge, Cambridge, United Kingdom
| | - Helgi B Schiöth
- BMC, Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden.,Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
23
|
Hökfelt T, Barde S, Xu ZQD, Kuteeva E, Rüegg J, Le Maitre E, Risling M, Kehr J, Ihnatko R, Theodorsson E, Palkovits M, Deakin W, Bagdy G, Juhasz G, Prud’homme HJ, Mechawar N, Diaz-Heijtz R, Ögren SO. Neuropeptide and Small Transmitter Coexistence: Fundamental Studies and Relevance to Mental Illness. Front Neural Circuits 2018; 12:106. [PMID: 30627087 PMCID: PMC6309708 DOI: 10.3389/fncir.2018.00106] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
Neuropeptides are auxiliary messenger molecules that always co-exist in nerve cells with one or more small molecule (classic) neurotransmitters. Neuropeptides act both as transmitters and trophic factors, and play a role particularly when the nervous system is challenged, as by injury, pain or stress. Here neuropeptides and coexistence in mammals are reviewed, but with special focus on the 29/30 amino acid galanin and its three receptors GalR1, -R2 and -R3. In particular, galanin's role as a co-transmitter in both rodent and human noradrenergic locus coeruleus (LC) neurons is addressed. Extensive experimental animal data strongly suggest a role for the galanin system in depression-like behavior. The translational potential of these results was tested by studying the galanin system in postmortem human brains, first in normal brains, and then in a comparison of five regions of brains obtained from depressed people who committed suicide, and from matched controls. The distribution of galanin and the four galanin system transcripts in the normal human brain was determined, and selective and parallel changes in levels of transcripts and DNA methylation for galanin and its three receptors were assessed in depressed patients who committed suicide: upregulation of transcripts, e.g., for galanin and GalR3 in LC, paralleled by a decrease in DNA methylation, suggesting involvement of epigenetic mechanisms. It is hypothesized that, when exposed to severe stress, the noradrenergic LC neurons fire in bursts and release galanin from their soma/dendrites. Galanin then acts on somato-dendritic, inhibitory galanin autoreceptors, opening potassium channels and inhibiting firing. The purpose of these autoreceptors is to act as a 'brake' to prevent overexcitation, a brake that is also part of resilience to stress that protects against depression. Depression then arises when the inhibition is too strong and long lasting - a maladaption, allostatic load, leading to depletion of NA levels in the forebrain. It is suggested that disinhibition by a galanin antagonist may have antidepressant activity by restoring forebrain NA levels. A role of galanin in depression is also supported by a recent candidate gene study, showing that variants in genes for galanin and its three receptors confer increased risk of depression and anxiety in people who experienced childhood adversity or recent negative life events. In summary, galanin, a neuropeptide coexisting in LC neurons, may participate in the mechanism underlying resilience against a serious and common disorder, MDD. Existing and further results may lead to an increased understanding of how this illness develops, which in turn could provide a basis for its treatment.
Collapse
Affiliation(s)
- Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Zhi-Qing David Xu
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Eugenia Kuteeva
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Joelle Rüegg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- The Center for Molecular Medicine, Stockholm, Sweden
- Swedish Toxicology Sciences Research Center, Swetox, Södertälje, Sweden
| | - Erwan Le Maitre
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Kehr
- Pronexus Analytical AB, Solna, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Ihnatko
- Department of Clinical Chemistry, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Elvar Theodorsson
- Department of Clinical Chemistry, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Miklos Palkovits
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - William Deakin
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, United Kingdom
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- NAP 2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, United Kingdom
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | | | - Naguib Mechawar
- Douglas Hospital Research Centre, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Sven Ove Ögren
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
|
25
|
Alpár A, Harkany T. Novel insights into the spatial and temporal complexity of hypothalamic organization through precision methods allowing nanoscale resolution. J Intern Med 2018; 284:568-580. [PMID: 30027599 DOI: 10.1111/joim.12815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mammalian hypothalamus contains an astounding heterogeneity of neurons to achieve its role in coordinating central responses to virtually any environmental stressor over the life-span of an individual. Therefore, while core features of intrahypothalamic neuronal modalities and wiring patterns are stable during vertebrate evolution, integration of the hypothalamus into hierarchical brain-wide networks evolved to coordinate its output with emotionality, cognition and conscious decision-making. The advent of single-cell technologies represents a recent milestone in the study of hypothalamic organization by allowing the dissection of cellular heterogeneity and establishing causality between opto- and chemogenetic activity modulation of molecularly-resolved neuronal contingents and specific behaviours. Thus, organizational rules to accumulate an unprecedented variety of hierarchical neuroendocrine command networks into a minimal brain volume are being unravelled. Here, we review recent understanding at nanoscale resolution on how neuronal heterogeneity in the mammalian hypothalamus underpins the diversification of hormonal and synaptic output and keeps those sufficiently labile for continuous adaptation to meet environmental demands. Particular emphasis is directed towards the dissection of neuronal circuitry for aggression and food intake. Mechanistic data encompass cell identities, synaptic connectivity within and outside the hypothalamus to link vegetative and conscious levels of innate behaviours, and context- and circadian rhythm-dependent rules of synaptic neurophysiology to distinguish hypothalamic foci that either tune the body's metabolic set-point or specify behaviours. Consequently, novel insights emerge to explain the evolutionary advantages of non-laminar organization for neuroendocrine circuits coincidently using fast neurotransmitters and neuropeptides. These are then accrued into novel therapeutic principles that meet therapeutic criteria for human metabolic diseases.
Collapse
Affiliation(s)
- A Alpár
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary.,Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - T Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.,Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
26
|
Abstract
Hybrid compounds (also known as chimeras, designed multiple ligands, bivalent compounds) are chemical units where two active components, usually possessing affinity and selectivity for distinct molecular targets, are combined as a single chemical entity. The rationale for using a chimeric approach is well documented as such novel drugs are characterized by their enhanced enzymatic stability and biological activity. This allows their use at lower concentrations, increasing their safety profile, particularly when considering undesirable side effects. In the group of synthetic bivalent compounds, drugs combining pharmacophores having affinities toward opioid and neurokinin-1 receptors have been extensively studied as potential analgesic drugs. Indeed, substance P is known as a major endogenous modulator of nociception both in the peripheral and central nervous systems. Hence, synthetic peptide fragments showing either agonism or antagonism at neurokinin 1 receptor were both assigned with analgesic properties. However, even though preclinical studies designated neurokinin-1 receptor antagonists as promising analgesics, early clinical studies revealed a lack of efficacy in human. Nevertheless, their molecular combination with enkephalin/endomorphin fragments has been considered as a valuable approach to design putatively promising ligands for the treatment of pain. This paper is aimed at summarizing a 20-year journey to the development of potent analgesic hybrid compounds involving an opioid pharmacophore and devoid of unwanted side effects. Additionally, the legitimacy of considering neurokinin-1 receptor ligands in the design of chimeric drugs is discussed.
Collapse
|
27
|
Abstract
Substance P (SP) is a highly conserved member of the tachykinin peptide family that is widely expressed throughout the animal kingdom. The numerous members of the tachykinin peptide family are involved in a multitude of neuronal signaling pathways, mediating sensations and emotional responses (Steinhoff et al. in Physiol Rev 94:265–301, 2014). In contrast to receptors for classical transmitters, such as glutamate (Parsons et al. in Handb Exp Pharmacol 249–303, 2005), only a minority of neurons in certain brain areas express neurokinin receptors (NKRs) (Mantyh in J Clin Psychiatry 63:6–10, 2002). SP is also expressed by a variety of non-neuronal cell types such as microglia, as well as immune cells (Mashaghi et al. in Cell Mol Life Sci 73:4249–4264, 2016). SP is an 11-amino acid neuropeptide that preferentially activates the neurokinin-1 receptor (NK1R). It transmits nociceptive signals via primary afferent fibers to spinal and brainstem second-order neurons (Cao et al. in Nature 392:390–394, 1998). Compounds that inhibit SP’s action are being investigated as potential drugs to relieve pain. More recently, SP and NKR have gained attention for their role in complex psychiatric processes. It is a key goal in the field of pain research to understand mechanisms involved in the transition between acute pain and chronic pain. The influence of emotional and cognitive inputs and feedbacks from different brain areas makes pain not only a perception but an experience (Zieglgänsberger et al. in CNS Spectr 10:298–308, 2005; Trenkwaldner et al. Sleep Med 31:78–85, 2017). This review focuses on functional neuronal plasticity in spinal dorsal horn neurons as a major relay for nociceptive information.
Collapse
|
28
|
Jékely G, Melzer S, Beets I, Kadow ICG, Koene J, Haddad S, Holden-Dye L. The long and the short of it - a perspective on peptidergic regulation of circuits and behaviour. J Exp Biol 2018; 221:jeb166710. [PMID: 29439060 DOI: 10.1242/jeb.166710] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neuropeptides are the most diverse class of chemical modulators in nervous systems. They contribute to extensive modulation of circuit activity and have profound influences on animal physiology. Studies on invertebrate model organisms, including the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, have enabled the genetic manipulation of peptidergic signalling, contributing to an understanding of how neuropeptides pattern the output of neural circuits to underpin behavioural adaptation. Electrophysiological and pharmacological analyses of well-defined microcircuits, such as the crustacean stomatogastric ganglion, have provided detailed insights into neuropeptide functions at a cellular and circuit level. These approaches can be increasingly applied in the mammalian brain by focusing on circuits with a defined and identifiable sub-population of neurons. Functional analyses of neuropeptide systems have been underpinned by systematic studies to map peptidergic networks. Here, we review the general principles and mechanistic insights that have emerged from these studies. We also highlight some of the challenges that remain for furthering our understanding of the functional relevance of peptidergic modulation.
Collapse
Affiliation(s)
- Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Sarah Melzer
- Howard Hughes Medical Institute, Department of Neurobiology, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Isabel Beets
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ilona C Grunwald Kadow
- Technical University of Munich, TUM School of Life Sciences, ZIEL - Institute for Food and Health, 85354 Freising, Germany
| | - Joris Koene
- Vrije Universiteit - Ecological Science, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Sara Haddad
- Volen Center for Complex Systems, Brandeis University, Mailstop 013, 415 South Street, Waltham, MA 02454, USA
| | - Lindy Holden-Dye
- Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
29
|
Abstract
Importance of the neuroendocrine brain for health and happiness has become clear since the 1960s. Foundations laid 100 years ago culminated in Geoffrey W Harris's model of control by the brain of secretion of anterior and posterior pituitary gland hormones through, respectively, releasing factors secreted into the hypothalamic-hypophysial portal system, and directly from axon terminals into the systemic circulation. Confirmation, expansion and deepening of knowledge and understanding have followed increasingly sophisticated technology. This allowed chemical characterisation of the posterior pituitary hormones, oxytocin and vasopressin, the releasing factors, their receptors and genes, location of the neurosecretory neurons in the hypothalamus, and how their activity is controlled, including by neural and hormonal feedback, and how hormone rhythms are generated. Wider roles of these neurons and their peptides in the brain are now recognised: in reproductive and social behaviours, emotions and appetite. Plasticity and epigenetic programming of neuroendocrine systems have emerged as important features.
Collapse
Affiliation(s)
- John A. Russell
- Professor Emeritus, Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, UK
| |
Collapse
|
30
|
Neurophysiological insights on flexibility improvements through motor imagery. Behav Brain Res 2017; 331:159-168. [DOI: 10.1016/j.bbr.2017.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 01/21/2023]
|
31
|
Bost A, Shaib AH, Schwarz Y, Niemeyer BA, Becherer U. Large dense-core vesicle exocytosis from mouse dorsal root ganglion neurons is regulated by neuropeptide Y. Neuroscience 2017; 346:1-13. [PMID: 28089870 DOI: 10.1016/j.neuroscience.2017.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/12/2022]
Abstract
Peptidergic dorsal root ganglion (DRG) neurons transmit sensory and nociceptive information from the periphery to the central nervous system. Their synaptic activity is profoundly affected by neuromodulatory peptides stored and released from large dense-core vesicles (LDCVs). However, the mechanism of peptide secretion from DRG neurons is poorly understood. Using total internal reflection fluorescence microscopy (TIRFM), we visualized individual LDCVs loaded with fluorescent neuropeptide Y (NPY) and analyzed their stimulation-dependent release. We tested several protocols and found an overall low stimulation-secretion coupling that increased after raising intracellular Ca2+ concentration by applying a weak pre-stimulus. Interestingly, the stimulation protocol also influenced the mechanism of LDCV fusion. Depolarization of DRG neurons with a solution containing 60mM KCl triggered full fusion, kiss-and-run, and kiss-and-stay exocytosis with equal frequency. In contrast, field electrode stimulation primarily induced full fusion exocytosis. Finally, our results indicate that NPY can promote LDCV secretion. These results shed new light on the mechanism of NPY action during modulation of DRG neuron activity, an important pathway in the treatment of chronic pain.
Collapse
Affiliation(s)
- Anneka Bost
- Institute of Physiology, CIPMM, Saarland University, 66421 Homburg/Saar, Germany
| | - Ali H Shaib
- Institute of Physiology, CIPMM, Saarland University, 66421 Homburg/Saar, Germany
| | - Yvonne Schwarz
- Institute of Physiology, CIPMM, Saarland University, 66421 Homburg/Saar, Germany
| | - Barbara A Niemeyer
- Molecular Biophysics, CIPMM, Saarland University, 66421 Homburg/Saar, Germany
| | - Ute Becherer
- Institute of Physiology, CIPMM, Saarland University, 66421 Homburg/Saar, Germany.
| |
Collapse
|
32
|
Abstract
This review article has for major main objectives to give an overlook of the major physiological effects of somatostatin on different organs. It will cover first the general aspect of the hormone, its cDNA and its protein maturation process, as well as its characterization in various organs. This aspect will be followed by the factors involved in the control of its secretion, its intracellular mode of action, and its general action on physiological processes. Secondly, the review will focus on the pancreas, looking at its in vivo and in vitro actions with special attention on its effects on normal pancreas growth and pancreatic tumors.
Collapse
Affiliation(s)
- Jean Morisset
- From the Département de Médecine, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
33
|
Mashaghi A, Marmalidou A, Tehrani M, Grace PM, Pothoulakis C, Dana R. Neuropeptide substance P and the immune response. Cell Mol Life Sci 2016; 73:4249-4264. [PMID: 27314883 PMCID: PMC5056132 DOI: 10.1007/s00018-016-2293-z] [Citation(s) in RCA: 300] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/25/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023]
Abstract
Substance P is a peptide mainly secreted by neurons and is involved in many biological processes, including nociception and inflammation. Animal models have provided insights into the biology of this peptide and offered compelling evidence for the importance of substance P in cell-to-cell communication by either paracrine or endocrine signaling. Substance P mediates interactions between neurons and immune cells, with nerve-derived substance P modulating immune cell proliferation rates and cytokine production. Intriguingly, some immune cells have also been found to secrete substance P, which hints at an integral role of substance P in the immune response. These communications play important functional roles in immunity including mobilization, proliferation and modulation of the activity of immune cells. This review summarizes current knowledge of substance P and its receptors, as well as its physiological and pathological roles. We focus on recent developments in the immunobiology of substance P and discuss the clinical implications of its ability to modulate the immune response.
Collapse
Affiliation(s)
- Alireza Mashaghi
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Anna Marmalidou
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Mohsen Tehrani
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Peter M. Grace
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO 80309 USA
| | - Charalabos Pothoulakis
- Division of Digestive Diseases, David Geffen School of Medicine, Inflammatory Bowel Disease Center, University of California, Los Angeles, Los Angeles, CA USA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
34
|
Abstract
It has recently become recognized that neuropathic forms of chronic pain represent true neurologic disease. Current investigations are largely molecular, yet knowledge of the anatomy and cell biology of pain is also important for the development of more effective medications. Although acute pain is beneficial, neuropathic pain is pathological and creates devastating disability. It occurs when an abnormal somatosensory system chronically transmits pain signals despite the absence of acute injury. Any type of lesion anywhere in the peripheral or central spinothalamic pathway can cause it. The most common scenario involves interruption of peripheral sensory axons with distal Wallerian degeneration. Regenerating peripheral sensory axons can develop ongoing spontaneous action potentials or ectopic mechano- and chemosensitivity that contribute to pain. Axotomy also induces morphological and functional alterations proximally that can contribute to pain. Central axon terminals can degenerate or sprout aberrantly within the dorsal horn. Higher order sensory neurons within the CNS can experience trans-synaptic damage. Lesions wholly within the CNS, such as stroke and multiple sclerosis, can also produce neuropathic pain. This review of a nascent field is presented in hopes of stimulating further investigation into this common, under-recognized medical problem. NEURO SCIENTIST 5:302-310, 1999
Collapse
Affiliation(s)
- Anne Louise Oaklander
- Departments of Anesthesiology and Neurology Massachusetts
General Hospital Harvard Medical School Boston, Massachusetts
| |
Collapse
|
35
|
Drummond PD. Mechanisms of Autonomic Disturbance in the Face During and Between Attacks of Cluster Headache. Cephalalgia 2016; 26:633-41. [PMID: 16686902 DOI: 10.1111/j.1468-2982.2006.01106.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Lacrimation and nasal secretion during attacks of cluster headache appear to be due to massive trigeminal-parasympathetic discharge. In addition, the presence of oculo-sympathetic deficit and loss of thermoregulatory sweating and flushing on the symptomatic side of the forehead indicate that the cervical sympathetic pathway to the face is injured in a subgroup of cluster headache patients. In this review, it is argued that a peripheral rather than a central lesion produces signs of cervical sympathetic deficit, probably resulting from compression of the sympathetic plexus around the internal carotid artery. Although trigeminal-parasympathetic discharge appears to be the main trigger for vasodilation during attacks, supersensitivity to neurotransmitters such as vasoactive intestinal polypeptide, together with release of sympathetic vasoconstrictor tone, may boost facial blood flow in patients with cervical sympathetic deficit. In addition, parasympathetic neural discharge may provoke aberrant facial sweating during attacks in patients with cervical sympathetic deficit. Although neither trigeminal-parasympathetic discharge nor cervical sympathetic deficit appears to be the primary trigger for attacks of cluster headache, these autonomic disturbances could contribute to the rapid escalation of pain once the attack begins. For example, a pericarotid inflammatory process that excites trigeminal nociceptors might initiate neurogenic inflammation and trigeminal-parasympathetic vasodilation. To complete the loop, neurogenic inflammation and trigeminal-parasympathetic vasodilation could provoke the release of mast cell products, which aggravate inflammation and intensify trigeminal discharge.
Collapse
Affiliation(s)
- P D Drummond
- School of Psychology, Murdoch University, Perth, Western Australia.
| |
Collapse
|
36
|
Wong BJ, Hollowed CG. Current concepts of active vasodilation in human skin. Temperature (Austin) 2016; 4:41-59. [PMID: 28349094 PMCID: PMC5356216 DOI: 10.1080/23328940.2016.1200203] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 10/30/2022] Open
Abstract
In humans, an increase in internal core temperature elicits large increases in skin blood flow and sweating. The increase in skin blood flow serves to transfer heat via convection from the body core to the skin surface while sweating results in evaporative cooling of the skin. Cutaneous vasodilation and sudomotor activity are controlled by a sympathetic cholinergic active vasodilator system that is hypothesized to operate through a co-transmission mechanism. To date, mechanisms of cutaneous active vasodilation remain equivocal despite many years of research by several productive laboratory groups. The purpose of this review is to highlight recent advancements in the field of cutaneous active vasodilation framed in the context of some of the historical findings that laid the groundwork for our current understanding of cutaneous active vasodilation.
Collapse
Affiliation(s)
- Brett J. Wong
- Department of Kinesiology & Health, Georgia State University, Atlanta, GA, USA
| | - Casey G. Hollowed
- Department of Kinesiology & Health, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
37
|
Varnäs K, Finnema SJ, Stepanov V, Takano A, Tóth M, Svedberg M, Møller Nielsen S, Khanzhin NA, Juhl K, Bang-Andersen B, Halldin C, Farde L. Neurokinin-3 Receptor Binding in Guinea Pig, Monkey, and Human Brain: In Vitro and in Vivo Imaging Using the Novel Radioligand, [18F]Lu AF10628. Int J Neuropsychopharmacol 2016; 19:pyw023. [PMID: 26993630 PMCID: PMC5006196 DOI: 10.1093/ijnp/pyw023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/10/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Previous autoradiography studies have suggested a marked interspecies variation in the neuroanatomical localization and expression levels of the neurokinin 3 receptor, with high density in the brain of rat, gerbil, and guinea pig, but at the time offered no conclusive evidence for its presence in the human brain. Hitherto available radioligands have displayed low affinity for the human neurokinin 3 receptor relative to the rodent homologue and may thus not be optimal for cross-species analyses of the expression of this protein. METHODS A novel neurokinin 3 receptor radioligand, [(18)F]Lu AF10628 ((S)-N-(cyclobutyl(3-fluorophenyl)methyl)-8-fluoro-2-((3-[(18)F]-fluoropropyl)amino)-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxamide), was synthesized and used for autoradiography studies in cryosections from guinea pig, monkey, and human brain as well as for positron emission tomography studies in guinea pig and monkey. RESULTS The results confirmed previous observations of interspecies variation in the neurokinin 3 receptor brain localization with more extensive distribution in guinea pig than in primate brain. In the human brain, specific binding to the neurokinin 3 receptor was highest in the amygdala and in the hypothalamus and very low in other regions examined. Positron emission tomography imaging showed a pattern consistent with that observed using autoradiography. The radioactivity was, however, found to accumulate in skull bone, which limits the use of this radioligand for in vivo quantification of neurokinin 3 receptor binding. CONCLUSION Species differences in the brain distribution of neurokinin 3 receptors should be considered when using animal models for predicting human neurokinin 3 receptor pharmacology. For positron emission tomography imaging of brain neurokinin 3 receptors, additional work is required to develop a radioligand with more favorable in vivo properties.
Collapse
Affiliation(s)
- Katarina Varnäs
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden (Drs Varnäs, Finnema, Stepanov, Takano, Tóth, Svedberg, Halldin, and Farde); Lundbeck Research, H. Lundbeck A/S, 9 Ottiliavej, DK-2500 Copenhagen-Valby, Denmark (Drs Møller Nielsen, Khanzhin, Juhl, and Bang-Andersen); AstraZeneca Translational Science Centre at Karolinska Institutet, PET CoE, Stockholm, Sweden (Dr Farde).Present address: Glycom A/S, Diplomvej 373, 1, DK-2800 Kgs. Lyngby, Denmark (N.A.K.).
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Gershan LA, Durham PL, Skidmore J, Shimizu J, Cady RJ, Sheng X, Maloney CG. The Role of Salivary Neuropeptides in Pediatrics: Potential Biomarkers for Integrated Therapies. Eur J Integr Med 2015; 7:372-377. [PMID: 26388958 PMCID: PMC4570571 DOI: 10.1016/j.eujim.2015.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Objective measures of symptom response to integrated complementary approaches in pediatrics are evolving. The purpose of this study was to document the concentration range of salivary neuropeptides in healthy controls and in children with cancer, to explore correlations between serum and salivary measurements for Calcitonin Gene-Related Peptide (CGRP) and Vasoactive Intestinal Polypeptide (VIP), and to determine whether there is a change in these salivary neuropeptide levels in response to integrated mind-body therapies. METHODS A non-randomized pragmatic study with three phases: Phase 1- Healthy Control Saliva-10 healthy controls provided saliva samples; Phase 2- Cancer Diagnosis Serum-Saliva- 16 mixed-type cancer patients provided blood and saliva samples; Phase 3- Acute Lymphocytic Leukemia (ALL) Saliva Intervention- 12 patients with ALL provided pre- and post-complementary intervention saliva samples. INTERVENTIONS 20-minutes of structured touch or scripted relaxation breathing were administered to patients in Phase 3; Phase 1 and 2 patients did not receive this intervention. OUTCOME MEASURES cortisol, CGRP, VIP, State/Trait Anxiety Scale, visual analogue scale, vital signs. RESULTS Salivary CGRP and VIP were similar for children in Phases 1 and 2. There was a correlation between serum and salivary VIP in the mixed cancer group, though not between serum and salivary CGRP. In Phase 3 children, following a complementary intervention, salivary CGRP, heart rate, and systolic blood pressure decreased. DISCUSSION/CONCLUSIONS These data provide evidence of a decrease in sympathetic output after integrative/complementary therapy intervention in children with cancer. The study underscores the potential role of salivary neuropeptides as non-invasive biomarkers for integrated therapies in pediatrics.
Collapse
Affiliation(s)
- Lynn A Gershan
- Department of Pediatrics, University of Utah Division of Pediatric Inpatient Medicine Primary Children's Hospital 100 N Mario Capecchi Drive Salt Lake City, UT 84113 United States
- Pediatric Integrative Medicine Service Primary Children's Hospital, 100 N Mario Capecchi Drive Salt Lake City, UT 84113 United States
| | - Paul L Durham
- Missouri State University, Center for Biomedical and Life Sciences Jordan Valley Innovation Center 524 N. Boonville Springfield, MO 65806 United States
| | - Jaci Skidmore
- University of Utah, Clinical Trials Office 295 Chipeta Way Salt Lake City, UT 84108 United States
| | - Joshua Shimizu
- University of Utah, Clinical Trials Office 295 Chipeta Way Salt Lake City, UT 84108 United States
| | - Ryan J Cady
- Missouri State University, Center for Biomedical and Life Sciences Jordan Valley Innovation Center 524 N. Boonville Springfield, MO 65806 United States
| | - Xiaoming Sheng
- Department of Pediatrics, University of Utah Division of Pediatric Inpatient Medicine Primary Children's Hospital 100 N Mario Capecchi Drive Salt Lake City, UT 84113 United States
| | - Christopher G Maloney
- Department of Pediatrics, University of Utah Division of Pediatric Inpatient Medicine Primary Children's Hospital 100 N Mario Capecchi Drive Salt Lake City, UT 84113 United States
| |
Collapse
|
40
|
Selcho M, Wegener C. Immunofluorescence and Genetic Fluorescent Labeling Techniques in the Drosophila Nervous System. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-1-4939-2313-7_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
41
|
Valente P, Orlando M, Raimondi A, Benfenati F, Baldelli P. Fine Tuning of Synaptic Plasticity and Filtering by GABA Released from Hippocampal Autaptic Granule Cells. Cereb Cortex 2015; 26:1149-67. [PMID: 25576534 DOI: 10.1093/cercor/bhu301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The functional consequence of γ-aminobutyric acid (GABA) release at mossy fiber terminals is still a debated topic. Here, we provide multiple evidence of GABA release in cultured autaptic hippocampal granule cells. In ∼50% of the excitatory autaptic neurons, GABA, VGAT, or GAD67 colocalized with vesicular glutamate transporter 1-positive puncta, where both GABAB and GABAA receptors (Rs) were present. Patch-clamp recordings showed a clear enhancement of autaptic excitatory postsynaptic currents in response to the application of the GABABR antagonist CGP58845 only in neurons positive to the selective granule cell marker Prox1, and expressing low levels of GAD67. Indeed, GCP non-responsive excitatory autaptic neurons were both Prox1- and GAD67-negative. Although the amount of released GABA was not sufficient to activate functional postsynaptic GABAARs, it effectively activated presynaptic GABABRs that maintain a tonic "brake" on the probability of release and on the size of the readily releasable pool and contributed to resting potential hyperpolarization possibly through extrasynaptic GABAAR activation. The autocrine inhibition exerted by GABABRs on glutamate release enhanced both paired-pulse facilitation and post-tetanic potentiation. Such GABABR-mediated changes in short-term plasticity confer to immature granule cells the capability to modulate their filtering properties in an activity-dependent fashion, with remarkable consequences on the dynamic behavior of neural circuits.
Collapse
Affiliation(s)
- Pierluigi Valente
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova 16163, Italy Department of Experimental Medicine, Section of Physiology, University of Genova, Genova 16132, Italy
| | - Marta Orlando
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Andrea Raimondi
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Fabio Benfenati
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova 16163, Italy Department of Experimental Medicine, Section of Physiology, University of Genova, Genova 16132, Italy
| | - Pietro Baldelli
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova 16163, Italy Department of Experimental Medicine, Section of Physiology, University of Genova, Genova 16132, Italy
| |
Collapse
|
42
|
Abstract
Clinical reports have suggested that patients with heart diseases may be particularly vulnerable to heat injury. This review examines the effects of heat stress on cardiovascular and autonomic functions in patients with chronic heart failure (CHF). Laboratory investigations have shown that cutaneous vasodilator responses to heating are impaired in patients, whereas activation of skin sympathetic nerve activation is not attenuated in CHF as compared to controls. Attenuated cutaneous vasodilation may increase the risk of a heat related illness when CHF subjects are exposed to hyperthermic conditions.
Collapse
|
43
|
Abstract
This article summarizes anatomical, neurophysiological, pharmacological, and brain imaging studies in humans and animals that have provided insights into the neural circuitry and neurotransmitter mechanisms controlling the lower urinary tract. The functions of the lower urinary tract to store and periodically eliminate urine are regulated by a complex neural control system in the brain, spinal cord, and peripheral autonomic ganglia that coordinates the activity of smooth and striated muscles of the bladder and urethral outlet. The neural control of micturition is organized as a hierarchical system in which spinal storage mechanisms are in turn regulated by circuitry in the rostral brain stem that initiates reflex voiding. Input from the forebrain triggers voluntary voiding by modulating the brain stem circuitry. Many neural circuits controlling the lower urinary tract exhibit switch-like patterns of activity that turn on and off in an all-or-none manner. The major component of the micturition switching circuit is a spinobulbospinal parasympathetic reflex pathway that has essential connections in the periaqueductal gray and pontine micturition center. A computer model of this circuit that mimics the switching functions of the bladder and urethra at the onset of micturition is described. Micturition occurs involuntarily in infants and young children until the age of 3 to 5 years, after which it is regulated voluntarily. Diseases or injuries of the nervous system in adults can cause the re-emergence of involuntary micturition, leading to urinary incontinence. Neuroplasticity underlying these developmental and pathological changes in voiding function is discussed.
Collapse
Affiliation(s)
- William C. de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine Pittsburgh, Pennsylvania
| | - Derek Griffiths
- Department of Medicine (Geriatrics), University of Pittsburgh, School of Medicine Pittsburgh, Pennsylvania
| | - Naoki Yoshimura
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine Pittsburgh, Pennsylvania
- Department of Urology, University of Pittsburgh, School of Medicine Pittsburgh, Pennsylvania
| |
Collapse
|
44
|
Johnson JM, Minson CT, Kellogg DL. Cutaneous vasodilator and vasoconstrictor mechanisms in temperature regulation. Compr Physiol 2014; 4:33-89. [PMID: 24692134 DOI: 10.1002/cphy.c130015] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this review, we focus on significant developments in our understanding of the mechanisms that control the cutaneous vasculature in humans, with emphasis on the literature of the last half-century. To provide a background for subsequent sections, we review methods of measurement and techniques of importance in elucidating control mechanisms for studying skin blood flow. In addition, the anatomy of the skin relevant to its thermoregulatory function is outlined. The mechanisms by which sympathetic nerves mediate cutaneous active vasodilation during whole body heating and cutaneous vasoconstriction during whole body cooling are reviewed, including discussions of mechanisms involving cotransmission, NO, and other effectors. Current concepts for the mechanisms that effect local cutaneous vascular responses to local skin warming and cooling are examined, including the roles of temperature sensitive afferent neurons as well as NO and other mediators. Factors that can modulate control mechanisms of the cutaneous vasculature, such as gender, aging, and clinical conditions, are discussed, as are nonthermoregulatory reflex modifiers of thermoregulatory cutaneous vascular responses.
Collapse
Affiliation(s)
- John M Johnson
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | | | | |
Collapse
|
45
|
Afroze S, Meng F, Jensen K, McDaniel K, Rahal K, Onori P, Gaudio E, Alpini G, Glaser SS. The physiological roles of secretin and its receptor. ANNALS OF TRANSLATIONAL MEDICINE 2014; 1:29. [PMID: 25332973 DOI: 10.3978/j.issn.2305-5839.2012.12.01] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/13/2012] [Indexed: 12/19/2022]
Abstract
Secretin is secreted by S cells in the small intestine and affects the function of a number of organ systems. Secretin receptors (SR) are expressed in the basolateral domain of several cell types. In addition to regulating the secretion of a number of epithelia (e.g., in the pancreas and biliary epithelium in the liver), secretin exerts trophic effects in several cell types. In this article, we will provide a comprehensive review on the multiple roles of secretin and SR signaling in the regulation of epithelial functions in various organ systems with particular emphasis in the liver. We will discuss the role of secretin and its receptor in health and biliary disease pathogenesis. Finally, we propose future areas of research for the further evaluation of the secretin/secretin receptor axis in liver pathophysiology.
Collapse
Affiliation(s)
- Syeda Afroze
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Fanyin Meng
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Kendal Jensen
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Kelly McDaniel
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Kinan Rahal
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Paolo Onori
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Eugenio Gaudio
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Gianfranco Alpini
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Shannon S Glaser
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| |
Collapse
|
46
|
Development of substance P-immunoreactive neurons in cranial sensory ganglia of the rat. Int J Dev Neurosci 2014; 2:451-63. [PMID: 24874240 DOI: 10.1016/0736-5748(84)90047-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/1984] [Indexed: 11/23/2022] Open
Abstract
Substance P-like immunoreactivity has been observed in fetal and adult cranial sensory ganglia. It first appears at day 16 of gestation in sensory neurons of trigeminal, superior-jugular, petrous and nodose ganglia, as well as in the autonomic myenteric plexus, and at day 17 in cervical dorsal root ganglion cells. Substance P immunoreactivity can be visualized much earlier (day 12) in the central nervous system. The ganglionic immunoreactivity subsequently increases during fetal life but drops at birth. The reactive material is first diffuse, then slowly becomes granular, and is mostly concentrated in coarse perinuclear inclusions in adult sensory neurons. Most substance P-positive neurons in trigeminal and superior-jugular ganglia are small, but medium-sized and large positive neurons are also observed in the trigeminal, petrous and nodose ganglia. Our observations give a precise picture of the development of substance P immunoreactivity in sensory neurons and are in general agreement with previous reports on some fetal and adult rat sensory ganglia. They indicate that in the rat, maturation of peripheral substance P-containing sensory neurons is slower than that of central substance P neurons or equivalent sensory neurons in other species. The examination of fetal material allows the observation of numerous immunoreactive sensory neurons which cannot be visualized after birth. We hypothesize a possible different embryonic origin (neural crest or placodal) for small nociceptive and larger substance P-containing neurons in rat cranial sensory ganglia.
Collapse
|
47
|
Quarta D, Smolders I. Rewarding, reinforcing and incentive salient events involve orexigenic hypothalamic neuropeptides regulating mesolimbic dopaminergic neurotransmission. Eur J Pharm Sci 2014; 57:2-10. [DOI: 10.1016/j.ejps.2014.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/19/2014] [Indexed: 12/22/2022]
|
48
|
Ackermann PW. Neuronal regulation of tendon homoeostasis. Int J Exp Pathol 2013; 94:271-86. [PMID: 23718724 PMCID: PMC3721458 DOI: 10.1111/iep.12028] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/16/2013] [Indexed: 12/25/2022] Open
Abstract
The regulation of tendon homoeostasis, including adaptation to loading, is still not fully understood. Accumulating data, however, demonstrates that in addition to afferent (sensory) functions, the nervous system, via efferent pathways which are associated with through specific neuronal mediators plays an active role in regulating pain, inflammation and tendon homeostasis. This neuronal regulation of intact-, healing- and tendinopathic tendons has been shown to be mediated by three major groups of molecules including opioid, autonomic and excitatory glutamatergic neuroregulators. In intact healthy tendons the neuromediators are found in the surrounding structures: paratenon, endotenon and epitenon, whereas the proper tendon itself is practically devoid of neurovascular supply. This neuroanatomy reflects that normal tendon homoeostasis is regulated from the tendon surroundings. After injury and during tendon repair, however, there is extensive nerve ingrowth into the tendon proper, followed by a time-dependent emergence of sensory, autonomic and glutamatergic mediators, which amplify and fine-tune inflammation and regulate tendon regeneration. In tendinopathic condition, excessive and protracted presence of sensory and glutamatergic neuromediators has been identified, suggesting involvement in inflammatory, nociceptive and hypertrophic (degenerative) tissue responses. Under experimental and clinical conditions of impaired (e.g. diabetes) as well as excessive (e.g. tendinopathy) neuromediator release, dysfunctional tendon homoeostasis develops resulting in chronic pain and gradual degeneration. Thus there is a prospect that in the future pharmacotherapy and tissue engineering approaches targeting neuronal mediators and their receptors may prove to be effective therapies for painful, degenerative and traumatic tendon disorders.
Collapse
Affiliation(s)
- Paul W Ackermann
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
49
|
Orexin neurons use endocannabinoids to break obesity-induced inhibition. Proc Natl Acad Sci U S A 2013; 110:9625-6. [PMID: 23720305 DOI: 10.1073/pnas.1307389110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
50
|
Cui J, Boehmer JP, Blaha C, Lucking R, Kunselman AR, Sinoway LI. Chronic heart failure does not attenuate the total activity of sympathetic outflow to skin during whole-body heating. Circ Heart Fail 2013; 6:271-8. [PMID: 23395933 DOI: 10.1161/circheartfailure.112.000135] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Previous studies show that the rise in skin blood flow and cutaneous vascular conductance during heat stress is substantially attenuated in chronic heart failure (CHF) patients. The mechanisms responsible for this finding are not clear. In particular, little is known regarding the responses of skin sympathetic nerve activity (SSNA) that control the skin blood flow during heat stress in CHF patients. We examined the effects of a modest heat stress to test the hypothesis that SSNA responses could be attenuated in CHF. METHODS AND RESULTS We assessed SSNA (microneurography) from the peroneal nerve and skin blood flow (forearm laser Doppler) in 9 patients with stable class II-III CHF and in matched healthy subjects during passive whole-body heating with a water-perfused suit. Whole-body heating induced similar increases in internal temperature (≈0.6 °C) in both groups. Whole-body heat stress evoked similar SSNA activation in CHF patients (Δ891±110 U/min) and the control subjects (Δ787±84 U/min; P=0.66), whereas the elevation in forearm cutaneous vascular conductance in patients with CHF was significantly lower than that in healthy control subjects (Δ131±29% vs. Δ623±131%; P=0.001). CONCLUSIONS The present data show that SSNA activation during a modest whole-body heat stress is not attenuated in CHF. Thus, the attenuated skin vasodilator response in CHF patients is not attributable to a reduction in total activity of sympathetic outflow to skin.
Collapse
Affiliation(s)
- Jian Cui
- Penn State Hershey Heart and Vascular Institute, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|