1
|
Gu W, Madrid DMDC, Clements S, Touchard L, Bivins N, Zane G, Zhou M, Lee K, Driver JP. Single-Cell Antigen Receptor Sequencing in Pigs with Influenza. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.617920. [PMID: 39464079 PMCID: PMC11507742 DOI: 10.1101/2024.10.13.617920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Understanding the pulmonary adaptive immune system of pigs is important as respiratory pathogens present a major challenge for swine producers and pigs are increasingly used to model human pulmonary diseases. Single-cell RNA sequencing (scRNAseq) has accelerated the characterization of cellular phenotypes in the pig respiratory tract under both healthy and diseased conditions. However, combining scRNAseq with recovery of paired T cell receptor (TCR) α and β chains as well as B cell receptor (BCR) heavy and light chains to interrogate their repertoires has not to our knowledge been demonstrated for pigs. Here, we developed primers to enrich porcine TCR α and β chains along with BCR κ and λ light chains and IgM, IgA, and IgG heavy chains that are compatible with the 10x Genomics VDJ sequencing protocol. Using these pig-specific assays, we sequenced the T and B cell receptors of cryopreserved lung cells from CD1D-expressing and -deficient pigs after one or two infections with influenza A virus (IAV) to examine whether natural killer T (NKT) cells alter pulmonary TCR and BCR repertoire selection. We also performed paired single-cell RNA and receptor sequencing of FACS-sorted T cells longitudinally sampled from the lungs of IAV-vaccinated and -infected pigs to track clonal expansion in response to IAV exposure. All pigs presented highly diverse repertoires. Pigs re-exposed to influenza antigens from either vaccination or infection exhibited higher numbers of expanded CD4 and CD8 T cell clonotypes with activated phenotypes, suggesting potential IAV reactive T cell populations. Our results demonstrate the utility of high throughput single-cell TCR and BCR sequencing in pigs.
Collapse
Affiliation(s)
- Weihong Gu
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Darling Melany de Carvahlo Madrid
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Sadie Clements
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Laurie Touchard
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Nathan Bivins
- Genomics Technology Core, University of Missouri, Columbia, MO, USA
| | - Grant Zane
- Genomics Technology Core, University of Missouri, Columbia, MO, USA
| | - Mingyi Zhou
- Genomics Technology Core, University of Missouri, Columbia, MO, USA
| | - Kiho Lee
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - John P. Driver
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
2
|
Gibadullin R, Morris RK, Niu J, Sidney J, Sette A, Gellman SH. Thioamide Analogues of MHC I Antigen Peptides. J Am Chem Soc 2023; 145:25559-25569. [PMID: 37968794 PMCID: PMC10782604 DOI: 10.1021/jacs.3c05300] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Short, synthetic peptides that are displayed by major histocompatibility complex I (MHC I) can stimulate CD8 T cells in vivo to destroy virus-infected or cancer cells. The development of such peptides as vaccines that provide protective immunity, however, is limited by rapid proteolytic degradation. Introduction of unnatural amino acid residues can suppress MHC I antigen proteolysis, but the modified peptides typically display lower affinity for MHC I and/or diminished ability to activate CD8 T cells relative to native antigen. Here, we report a new strategy for modifying MHC I antigens to enhance resistance to proteolysis while preserving MHC I affinity and T cell activation properties. This approach, replacing backbone amide groups with thioamides, was evaluated in two well-characterized antigens presented by HLA-A2, a common human MHC I. For each antigen, singly modified thioamide analogues retained affinity for HLA-A2 and activated T cells specific for the native antigen, as measured via interferon-γ secretion. In each system, we identified a highly potent triply substituted thioamide antigen ("thio-antigen") that displayed substantial resistance to proteolytic cleavage. Collectively, our results suggest that thio-antigens may represent a general and readily accessible source of potent vaccine candidates that resist degradation.
Collapse
Affiliation(s)
- Ruslan Gibadullin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Present address: Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Rylie K. Morris
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jiani Niu
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, United States
- Department of Medicine, University of California, San Diego, California 92093, United States
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
van de Sandt CE, Nguyen THO, Gherardin NA, Crawford JC, Samir J, Minervina AA, Pogorelyy MV, Rizzetto S, Szeto C, Kaur J, Ranson N, Sonda S, Harper A, Redmond SJ, McQuilten HA, Menon T, Sant S, Jia X, Pedrina K, Karapanagiotidis T, Cain N, Nicholson S, Chen Z, Lim R, Clemens EB, Eltahla A, La Gruta NL, Crowe J, Lappas M, Rossjohn J, Godfrey DI, Thomas PG, Gras S, Flanagan KL, Luciani F, Kedzierska K. Newborn and child-like molecular signatures in older adults stem from TCR shifts across human lifespan. Nat Immunol 2023; 24:1890-1907. [PMID: 37749325 PMCID: PMC10602853 DOI: 10.1038/s41590-023-01633-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/24/2023] [Indexed: 09/27/2023]
Abstract
CD8+ T cells provide robust antiviral immunity, but how epitope-specific T cells evolve across the human lifespan is unclear. Here we defined CD8+ T cell immunity directed at the prominent influenza epitope HLA-A*02:01-M158-66 (A2/M158) across four age groups at phenotypic, transcriptomic, clonal and functional levels. We identify a linear differentiation trajectory from newborns to children then adults, followed by divergence and a clonal reset in older adults. Gene profiles in older adults closely resemble those of newborns and children, despite being clonally distinct. Only child-derived and adult-derived A2/M158+CD8+ T cells had the potential to differentiate into highly cytotoxic epitope-specific CD8+ T cells, which was linked to highly functional public T cell receptor (TCR)αβ signatures. Suboptimal TCRαβ signatures in older adults led to less proliferation, polyfunctionality, avidity and recognition of peptide mutants, although displayed no signs of exhaustion. These data suggest that priming T cells at different stages of life might greatly affect CD8+ T cell responses toward viral infections.
Collapse
Affiliation(s)
- Carolien E van de Sandt
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Nicholas A Gherardin
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | | | - Jerome Samir
- School of Medical Sciences and The Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | | | - Mikhail V Pogorelyy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Simone Rizzetto
- School of Medical Sciences and The Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Christopher Szeto
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jasveen Kaur
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Nicole Ranson
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Sabrina Sonda
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Alice Harper
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Samuel J Redmond
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Tejas Menon
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sneha Sant
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kate Pedrina
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Theo Karapanagiotidis
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Natalie Cain
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Auda Eltahla
- School of Medical Sciences and The Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Nicole L La Gruta
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jane Crowe
- Deepdene Surgery, Deepdene, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jamie Rossjohn
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Dale I Godfrey
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephanie Gras
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Katie L Flanagan
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, Tasmania, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, Victoria, Australia
- Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, Tasmania, Australia
| | - Fabio Luciani
- School of Medical Sciences and The Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Yu B, Shi Q, Belk JA, Yost KE, Parker KR, Li R, Liu BB, Huang H, Lingwood D, Greenleaf WJ, Davis MM, Satpathy AT, Chang HY. Engineered cell entry links receptor biology with single-cell genomics. Cell 2022; 185:4904-4920.e22. [PMID: 36516854 PMCID: PMC9789208 DOI: 10.1016/j.cell.2022.11.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/31/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022]
Abstract
Cells communicate with each other via receptor-ligand interactions. Here, we describe lentiviral-mediated cell entry by engineered receptor-ligand interaction (ENTER) to display ligand proteins, deliver payloads, and record receptor specificity. We optimize ENTER to decode interactions between T cell receptor (TCR)-MHC peptides, antibody-antigen, and other receptor-ligand pairs. A viral presentation strategy allows ENTER to capture interactions between B cell receptor and any antigen. We engineer ENTER to deliver genetic payloads to antigen-specific T or B cells to selectively modulate cellular behavior in mixed populations. Single-cell readout of ENTER by RNA sequencing (ENTER-seq) enables multiplexed enumeration of antigen specificities, TCR clonality, cell type, and states of individual T cells. ENTER-seq of CMV-seropositive patient blood samples reveals the viral epitopes that drive effector memory T cell differentiation and inter-clonal vs. intra-clonal phenotypic diversity targeting the same epitope. ENTER technology enables systematic discovery of receptor specificity, linkage to cell fates, and antigen-specific cargo delivery.
Collapse
Affiliation(s)
- Bingfei Yu
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Quanming Shi
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Julia A Belk
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kathryn E Yost
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Kevin R Parker
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Betty B Liu
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Huang Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA; Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Daniel Lingwood
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | | | - Mark M Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA; Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Enhanced In Vitro and In Vivo Potency of a T Cell Epitope in the Ebola Virus Glycoprotein Following Amino Acid Replacement at HLA-A*02:01 Binding Positions. J Virol 2022; 96:e0116621. [PMID: 36069549 PMCID: PMC9517714 DOI: 10.1128/jvi.01166-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies on Ebola virus disease (EVD) survivors and clinical studies on Ebola virus (EBOV) vaccine candidates have pinpointed the importance of a strong antibody response in protection and survival from EBOV infection. However, little is known about the T cell responses to EBOV or EBOV vaccines. We used HLA-A*02:01 (HLA-A2) transgenic mice to study HLA-A2-specific T cell responses elicited following vaccination with EBOV glycoprotein (EBOV-GP) presented with three different systems: (i) recombinant protein (rEBOV-GP), (ii) vesicular stomatitis replication-competent recombinant virus (VSV-EBOV-GP), and (iii) modified vaccinia Ankara virus recombinant (MVA-EBOV-GP). T cells from immunized animals were analyzed using peptide pools representing the entire GP region and individual peptides. Regardless of the vaccine formulation, we identified a minimal 9mer epitope containing an HLA-A2 motif (FLDPATTS), which was confirmed through HLA-A2 binding affinity and immunization studies. Using binding prediction software, we identified substitutions surrounding position 9 (S9V, P10V, and Q11V) that predicted enhanced binding to the HLA-A2 molecule. This enhanced binding was confirmed through in vitro binding studies and enhanced potency was shown with in vivo immunization studies using the enhanced sequences and the wild-type sequence. Of note, in silico studies predicted the enhanced 9mer epitope carrying the S9V substitution as the best overall HLA-A2 epitope for the full-length EBOV-GP. These results suggest that EBOV-GP-S9V and EBOV-GP-P10V represent more potent in vivo immunogens. Identification and enhancement of EBOV-specific human HLA epitopes could lead to the development of tools and reagents to induce more robust T cell responses in human subjects. IMPORTANCE Vaccine efficacy and immunity to viral infection are often measured by neutralizing antibody titers. T cells are specialized subsets of immune cells with antiviral activity, but this response is variable and difficult to track. We showed that the HLA-A2-specific T cell response to the Ebola virus glycoprotein can be enhanced significantly by a single residue substitution designed to improve an epitope binding affinity to one of the most frequent MHC alleles in the human population. This strategy could be applied to improve T cell responses to Ebola vaccines designed to elicit antibodies and adapted to target MHC alleles of populations in regions where endemic infections, like Ebola virus disease, are still causing outbreaks with concerning pandemic potential.
Collapse
|
6
|
Tsang TK, Lam KT, Liu Y, Fang VJ, Mu X, Leung NHL, Peiris JSM, Leung GM, Cowling BJ, Tu W. Investigation of CD4 and CD8 T cell-mediated protection against influenza A virus in a cohort study. BMC Med 2022; 20:230. [PMID: 35858844 PMCID: PMC9301821 DOI: 10.1186/s12916-022-02429-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The protective effect of T cell-mediated immunity against influenza virus infections in natural settings remains unclear, especially in seasonal epidemics. METHODS To explore the potential of such protection, we analyzed the blood samples collected longitudinally in a community-based study and covered the first wave of pandemic H1N1 (pH1N1), two subsequent pH1N1 epidemics, and three seasonal H3N2 influenza A epidemics (H3N2) for which we measured pre-existing influenza virus-specific CD4 and CD8 T cell responses by intracellular IFN-γ staining assay for 965 whole blood samples. RESULTS Based on logistic regression, we found that higher pre-existing influenza virus-specific CD4 and CD8 T cell responses were associated with lower infection odds for corresponding subtypes. Every fold increase in H3N2-specific CD4 and CD8 T cells was associated with 28% (95% CI 8%, 44%) and 26% (95% CI 8%, 41%) lower H3N2 infection odds, respectively. Every fold increase in pre-existing seasonal H1N1 influenza A virus (sH1N1)-specific CD4 and CD8 T cells was associated with 28% (95% CI 11%, 41%) and 22% (95% CI 8%, 33%) lower pH1N1 infection odds, respectively. We observed the same associations for individuals with pre-epidemic hemagglutination inhibition (HAI) titers < 40. There was no correlation between pre-existing influenza virus-specific CD4 and CD8 T cell response and HAI titer. CONCLUSIONS We demonstrated homosubtypic and cross-strain protection against influenza infections was associated with T cell response, especially CD4 T cell response. These protections were independent of the protection associated with HAI titer. Therefore, T cell response could be an assessment of individual and population immunity for future epidemics and pandemics, in addition to using HAI titer.
Collapse
Affiliation(s)
- Tim K Tsang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, Special Administrative Region, China.,Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, New Territories, Hong Kong, Special Administrative Region, China
| | - Kwok-Tai Lam
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, Special Administrative Region, China
| | - Yinping Liu
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, Special Administrative Region, China
| | - Vicky J Fang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, Special Administrative Region, China
| | - Xiaofeng Mu
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, Special Administrative Region, China
| | - Nancy H L Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, Special Administrative Region, China.,Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, New Territories, Hong Kong, Special Administrative Region, China
| | - J S Malik Peiris
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, Special Administrative Region, China.,HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region, China.,Centre for Immunology and Infection, Hong Kong Science and Technology Park, New Territories, Hong Kong, Special Administrative Region, China
| | - Gabriel M Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, Special Administrative Region, China.,Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, New Territories, Hong Kong, Special Administrative Region, China
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, Special Administrative Region, China. .,Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, New Territories, Hong Kong, Special Administrative Region, China.
| | - Wenwei Tu
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, Special Administrative Region, China.
| |
Collapse
|
7
|
Carascal MB, Pavon RDN, Rivera WL. Recent Progress in Recombinant Influenza Vaccine Development Toward Heterosubtypic Immune Response. Front Immunol 2022; 13:878943. [PMID: 35663997 PMCID: PMC9162156 DOI: 10.3389/fimmu.2022.878943] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Flu, a viral infection caused by the influenza virus, is still a global public health concern with potential to cause seasonal epidemics and pandemics. Vaccination is considered the most effective protective strategy against the infection. However, given the high plasticity of the virus and the suboptimal immunogenicity of existing influenza vaccines, scientists are moving toward the development of universal vaccines. An important property of universal vaccines is their ability to induce heterosubtypic immunity, i.e., a wide immune response coverage toward different influenza subtypes. With the increasing number of studies and mounting evidence on the safety and efficacy of recombinant influenza vaccines (RIVs), they have been proposed as promising platforms for the development of universal vaccines. This review highlights the current progress and advances in the development of RIVs in the context of heterosubtypic immunity induction toward universal vaccine production. In particular, this review discussed existing knowledge on influenza and vaccine development, current hemagglutinin-based RIVs in the market and in the pipeline, other potential vaccine targets for RIVs (neuraminidase, matrix 1 and 2, nucleoprotein, polymerase acidic, and basic 1 and 2 antigens), and deantigenization process. This review also provided discussion points and future perspectives in looking at RIVs as potential universal vaccine candidates for influenza.
Collapse
Affiliation(s)
- Mark B Carascal
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines.,Clinical and Translational Research Institute, The Medical City, Pasig City, Philippines
| | - Rance Derrick N Pavon
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Windell L Rivera
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
8
|
Pieren DKJ, Smits NAM, Postel RJ, Kandiah V, de Wit J, van Beek J, van Baarle D, Guichelaar T. Co-Expression of TIGIT and Helios Marks Immunosenescent CD8+ T Cells During Aging. Front Immunol 2022; 13:833531. [PMID: 35651622 PMCID: PMC9148977 DOI: 10.3389/fimmu.2022.833531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Aging leads to alterations in the immune system that result in ineffective responsiveness against pathogens. Features of this process, collectively known as immunosenescence, accumulate in CD8+ T cells with age and have been ascribed to differentiation of these cells during the course of life. Here we aimed to identify novel markers in CD8+ T cells associated with immunosenescence. Furthermore, we assessed how these markers relate to the aging-related accumulation of highly differentiated CD27-CD28- cells. We found that co-expression of the transcription factor Helios and the aging-related marker TIGIT identifies CD8+ T cells that fail to proliferate and show impaired induction of activation markers CD69 and CD25 in response to stimulation in vitro. Despite this, in blood of older adults we found TIGIT+Helios+ T cells to become highly activated during an influenza-A virus infection, but these higher frequencies of activated TIGIT+Helios+ T cells associate with longer duration of coughing. Moreover, in healthy individuals, we found that TIGIT+Helios+ CD8+ T cells accumulate with age in the highly differentiated CD27-CD28- population. Interestingly, TIGIT+Helios+ CD8+ T cells also accumulate with age among the less differentiated CD27+CD28- T cells before their transit into the highly differentiated CD27-CD28- stage. This finding suggests that T cells with immunosenescent features become prominent at old age also within the earlier differentiation states of these cells. Our findings show that co-expression of TIGIT and Helios refines the definition of immunosenescent CD8+ T cells and challenge the current dogma of late differentiation stage as proxy for T-cell immunosenescence.
Collapse
Affiliation(s)
- Daan K. J. Pieren
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Noortje A. M. Smits
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Rimke J. Postel
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Vinitha Kandiah
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Jelle de Wit
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Josine van Beek
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Debbie van Baarle
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Teun Guichelaar
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
- *Correspondence: Teun Guichelaar,
| |
Collapse
|
9
|
Parent AV, Faleo G, Chavez J, Saxton M, Berrios DI, Kerper NR, Tang Q, Hebrok M. Selective deletion of human leukocyte antigens protects stem cell-derived islets from immune rejection. Cell Rep 2021; 36:109538. [PMID: 34407395 DOI: 10.1016/j.celrep.2021.109538] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/23/2021] [Accepted: 07/26/2021] [Indexed: 11/21/2022] Open
Abstract
Stem cell-based replacement therapies hold the promise to restore function of damaged or degenerated tissue such as the pancreatic islets in people with type 1 diabetes. Wide application of these therapies requires overcoming the fundamental roadblock of immune rejection. To address this issue, we use genetic engineering to create human pluripotent stem cells (hPSCs) in which the majority of the polymorphic human leukocyte antigens (HLAs), the main drivers of allogeneic rejection, are deleted. We retain the common HLA class I allele HLA-A2 and less polymorphic HLA-E/F/G to allow immune surveillance and inhibition of natural killer (NK) cells. We employ a combination of in vitro assays and humanized mouse models to demonstrate that these gene manipulations significantly reduce NK cell activity and T-cell-mediated alloimmune response against hPSC-derived islet cells. In summary, our approach produces hypoimmunogenic hPSCs that can be readily matched with recipients to avoid alloimmune rejection.
Collapse
Affiliation(s)
- Audrey V Parent
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Gaetano Faleo
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jessica Chavez
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael Saxton
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David I Berrios
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Natanya R Kerper
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Qizhi Tang
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
10
|
Efficient killing of tumor cells by CAR-T cells demands engagement of a larger number of CARs as opposed to TCRs. J Biol Chem 2021; 297:101033. [PMID: 34371020 PMCID: PMC8452787 DOI: 10.1016/j.jbc.2021.101033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/21/2023] Open
Abstract
Although CAR T cells are widely used to treat cancer, efficiency of CAR-T cell cytolytic responses has not been carefully examined. We engineered CAR specific for HMW-MAA (high molecular weight melanoma-associated antigen) and evaluated potency of CD8+ CAR-T cells to release cytolytic granules and to kill tissue-derived melanoma cells, which express different levels of HMW-MAA. CAR T cells efficiently killed melanoma cells expressing high level of HMW-MAA, but not melanoma cells with lower levels of HMW-MAA. The same melanoma cells presenting significantly lower level of stimulatory peptide-MHC ligand were readily lysed by T cells transduced with genes encoding α,β-TCR specific for the peptide-MHC ligand. The data suggest that higher level of targeted molecules is required to engage a larger number of CARs than TCRs to induce efficient cytolytic granule release and destruction of melanoma cells. Understanding the difference in molecular mechanisms controlling activation thresholds of CAR- versus TCR-mediated responses will contribute to improving efficiency of CAR T cells required to eliminate solid tumors presenting low levels of targeted molecules.
Collapse
|
11
|
Lipofection with Synthetic mRNA as a Simple Method for T-Cell Immunomonitoring. Viruses 2021; 13:v13071232. [PMID: 34202260 PMCID: PMC8310085 DOI: 10.3390/v13071232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 11/30/2022] Open
Abstract
The quantification of T-cell immune responses is crucial for the monitoring of natural and treatment-induced immunity, as well as for the validation of new immunotherapeutic approaches. The present study presents a simple method based on lipofection of synthetic mRNA in mononuclear cells as a method to determine in vitro T-cell responses. We compared several commercially available transfection reagents for their potential to transfect mRNA into human peripheral blood mononuclear cells and murine splenocytes. We also investigated the impact of RNA modifications in improving this method. Our results demonstrate that antigen-specific T-cell immunomonitoring can be easily and quickly performed by simple lipofection of antigen-coding mRNA in complex immune cell populations. Thus, our work discloses a convenient solution for the in vitro monitoring of natural or therapy-induced T-cell immune responses.
Collapse
|
12
|
Broad-Based Influenza-Specific CD8 + T Cell Response without the Typical Immunodominance Hierarchy and Its Potential Implication. Viruses 2021; 13:v13061080. [PMID: 34198851 PMCID: PMC8229067 DOI: 10.3390/v13061080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022] Open
Abstract
Syngeneic murine systems have pre-fixed MHC, making them an imperfect model for investigating the impact of MHC polymorphism on immunodominance in influenza A virus (IAV) infections. To date, there are few studies focusing on MHC allelic differences and its impact on immunodominance even though it is well documented that an individual’s HLA plays a significant role in determining immunodominance hierarchy. Here, we describe a broad-based CD8+ T cell response in a healthy individual to IAV infection rather than a typical immunodominance hierarchy. We used a systematic antigen screen approach combined with epitope prediction to study such a broad CD8+ T cell response to IAV infection. We show CD8+ T cell responses to nine IAV proteins and identify their minimal epitope sequences. These epitopes are restricted to HLA-B*44:03, HLA-A*24:02 and HLA-A*33:03 and seven out of the nine epitopes are novel (NP319–330# (known and demonstrated minimal epitope positions are subscripted; otherwise, amino acid positions are shown as normal text (for example NP 319–330 or NP 313–330)), M1124–134, M27–15, NA337–346, PB239–49, HA445–453 and NS1195–203). Additionally, most of these novel epitopes are highly conserved among H1N1 and H3N2 strains that circulated in Australia and other parts of the world.
Collapse
|
13
|
Pieren DKJ, Smits NAM, Hoeboer J, Kandiah V, Postel RJ, Mariman R, Beek J, Baarle D, Wit J, Guichelaar T. Regulatory KIR + RA + T cells accumulate with age and are highly activated during viral respiratory disease. Aging Cell 2021; 20:e13372. [PMID: 34043881 PMCID: PMC8208794 DOI: 10.1111/acel.13372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/18/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Severe respiratory viral infectious diseases such as influenza and COVID‐19 especially affect the older population. This is partly ascribed to diminished CD8+ T‐cell responses a result of aging. The phenotypical diversity of the CD8+ T‐cell population has made it difficult to identify the impact of aging on CD8+ T‐cell subsets associated with diminished CD8+ T‐cell responses. Here we identify a novel human CD8+ T‐cell subset characterized by expression of Killer‐cell Immunoglobulin‐like Receptors (KIR+) and CD45RA (RA+). These KIR+RA+ T cells accumulated with age in the blood of healthy individuals (20–82 years of age, n = 50), expressed high levels of aging‐related markers of T‐cell regulation, and were functionally capable of suppressing proliferation of other CD8+ T cells. Moreover, KIR+RA+ T cells were a major T‐cell subset becoming activated in older adults suffering from an acute respiratory viral infection (n = 36), including coronavirus and influenza virus infection. In addition, older adults with influenza A infection showed that higher activation status of their KIR+RA+ T cells associated with longer duration of respiratory symptoms. Together, our data indicate that KIR+RA+ T cells are a unique human T‐cell subset with regulatory properties that may explain susceptibility to viral respiratory disease at old age.
Collapse
Affiliation(s)
- Daan K. J. Pieren
- Centre for Infectious Disease Control National Institute for Public Health and the Environment Bilthoven The Netherlands
| | - Noortje A. M. Smits
- Centre for Infectious Disease Control National Institute for Public Health and the Environment Bilthoven The Netherlands
| | - Jeroen Hoeboer
- Centre for Infectious Disease Control National Institute for Public Health and the Environment Bilthoven The Netherlands
| | - Vinitha Kandiah
- Centre for Infectious Disease Control National Institute for Public Health and the Environment Bilthoven The Netherlands
| | - Rimke J. Postel
- Centre for Infectious Disease Control National Institute for Public Health and the Environment Bilthoven The Netherlands
| | - Rob Mariman
- Centre for Infectious Disease Control National Institute for Public Health and the Environment Bilthoven The Netherlands
| | - Josine Beek
- Centre for Infectious Disease Control National Institute for Public Health and the Environment Bilthoven The Netherlands
| | - Debbie Baarle
- Centre for Infectious Disease Control National Institute for Public Health and the Environment Bilthoven The Netherlands
- Center for Translational Immunology University Medical Center Utrecht Utrecht University Utrecht The Netherlands
| | - Jelle Wit
- Centre for Infectious Disease Control National Institute for Public Health and the Environment Bilthoven The Netherlands
| | - Teun Guichelaar
- Centre for Infectious Disease Control National Institute for Public Health and the Environment Bilthoven The Netherlands
| |
Collapse
|
14
|
Sekiya T, Ohno M, Nomura N, Handabile C, Shingai M, Jackson DC, Brown LE, Kida H. Selecting and Using the Appropriate Influenza Vaccine for Each Individual. Viruses 2021; 13:971. [PMID: 34073843 PMCID: PMC8225103 DOI: 10.3390/v13060971] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022] Open
Abstract
Despite seasonal influenza vaccines having been routinely used for many decades, influenza A virus continues to pose a global threat to humans, causing high morbidity and mortality each year. The effectiveness of the vaccine is largely dependent on how well matched the vaccine strains are with the circulating influenza virus strains. Furthermore, low vaccine efficacy in naïve populations such as young children, or in the elderly, who possess weakened immune systems, indicates that influenza vaccines need to be more personalized to provide broader community protection. Advances in both vaccine technologies and our understanding of influenza virus infection and immunity have led to the design of a variety of alternate vaccine strategies to extend population protection against influenza, some of which are now in use. In this review, we summarize the progress in the field of influenza vaccines, including the advantages and disadvantages of different strategies, and discuss future prospects. We also highlight some of the challenges to be faced in the ongoing effort to control influenza through vaccination.
Collapse
Affiliation(s)
- Toshiki Sekiya
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Marumi Ohno
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
| | - Naoki Nomura
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
| | - Chimuka Handabile
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
| | - Masashi Shingai
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
| | - David C. Jackson
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Lorena E. Brown
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Hiroshi Kida
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
- Collaborating Research Center for the Control of Infectious Diseases, Nagasaki University, Nagasaki 852-8521, Japan
| |
Collapse
|
15
|
Gibadullin R, Randall CJ, Sidney J, Sette A, Gellman SH. Backbone Modifications of HLA-A2-Restricted Antigens Induce Diverse Binding and T Cell Activation Outcomes. J Am Chem Soc 2021; 143:6470-6481. [PMID: 33881854 DOI: 10.1021/jacs.1c00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CD8+ T cells express T cell receptors (TCRs) that recognize short peptide antigens in the context of major histocompatibility class I (MHC I) molecules. This recognition process produces an array of cytokine-mediated signals that help to govern immunological responses. Design of biostable MHC I peptide vaccines containing unnatural subunits is desirable, and synthetic antigens in which a native α-amino acid residue is replaced by a homologous β-amino acid residue (native side chain but extended backbone) might be useful in this regard. We have evaluated the impact of α-to-β backbone modification at a single site on T cell-mediated recognition of six clinically important viral and tumor-associated antigens bound to an MHC I. Effects of this modification on MHC I affinity and T cell activation were measured. Many of these modifications diminish or prevent T cell response. However, a number of α/β-peptide antigens were found to mimic the activity of natural antigens or to enhance maximal T cell response, as measured by interferon-γ release. Results from this broad exploratory study advance our understanding of immunological responses to antigens bearing unnatural modifications and suggest that α/β-peptides could be a source of potent and proteolytically stable variants of native antigens.
Collapse
Affiliation(s)
- Ruslan Gibadullin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Caleb J Randall
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, United States.,Department of Medicine, University of California, San Diego, California 92093, United States
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
16
|
Identification of HLA-A*02:01-restricted candidate epitopes derived from the non-structural polyprotein 1a of SARS-CoV-2 that may be natural targets of CD8 + T cell recognition in vivo. J Virol 2021; 95:JVI.01837-20. [PMID: 33268522 PMCID: PMC8092843 DOI: 10.1128/jvi.01837-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
COVID-19 vaccines are being rapidly developed and human trials are underway. Almost all of these vaccines have been designed to induce antibodies targeting spike protein of SARS-CoV-2 in expectation of neutralizing activities. However, non-neutralizing antibodies are at risk of causing antibody-dependent enhancement. Further, the longevity of SARS-CoV-2-specific antibodies is very short. Therefore, in addition to antibody-induced vaccines, novel vaccines on the basis of SARS-CoV-2-specific cytotoxic T lymphocytes (CTLs) should be considered in the vaccine development. Here, we attempted to identify HLA-A*02:01-restricted CTL epitopes derived from the non-structural polyprotein 1a of SARS-CoV-2. Eighty-two peptides were firstly predicted as epitope candidates on bioinformatics. Fifty-four in 82 peptides showed high or medium binding affinities to HLA-A*02:01. HLA-A*02:01 transgenic mice were then immunized with each of the 54 peptides encapsulated into liposomes. The intracellular cytokine staining assay revealed that 18 out of 54 peptides were CTL epitopes because of the induction of IFN-γ-producing CD8+ T cells. In the 18 peptides, 10 peptides were chosen for the following analyses because of their high responses. To identify dominant CTL epitopes, mice were immunized with liposomes containing the mixture of the 10 peptides. Some peptides were shown to be statistically predominant over the other peptides. Surprisingly, all mice immunized with the liposomal 10 peptide mixture did not show the same reaction pattern to the 10 peptides. There were three response patterns, suggesting the existence of an immunodominance hierarchy following peptide vaccination, which may provide us more variations in the epitope selection for designing CTL-based COVID-19 vaccines.IMPORTANCE For the development of vaccines based on SARS-CoV-2-specific cytotoxic T lymphocytes (CTLs), we attempted to identify HLA-A*02:01-restricted CTL epitopes derived from the non-structural polyprotein 1a of SARS-CoV-2. Out of 82 peptides predicted on bioinformatics, 54 peptides showed good binding affinities to HLA-A*02:01. Using HLA-A*02:01 transgenic mice, 18 in 54 peptides were found to be CTL epitopes in the intracellular cytokine staining assay. Out of 18 peptides, 10 peptides were chosen for the following analyses because of their high responses. To identify dominant epitopes, mice were immunized with liposomes containing the mixture of the 10 peptides. Some peptides were shown to be statistically predominant. Surprisingly, all immunized mice did not show the same reaction pattern to the 10 peptides. There were three reaction patterns, suggesting the existence of an immunodominance hierarchy following peptide vaccination, which may provide us more variations in the epitope selection for designing CTL-based COVID-19 vaccines.
Collapse
|
17
|
Morita D, Iwashita C, Mizutani T, Mori N, Mikami B, Sugita M. Crystal structure of the ternary complex of TCR, MHC class I and lipopeptides. Int Immunol 2020; 32:805-810. [PMID: 32720986 DOI: 10.1093/intimm/dxaa050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/22/2020] [Indexed: 11/12/2022] Open
Abstract
The covalent conjugation of a 14-carbon fatty acid (myristic acid) to the N-terminal Gly residue, termed N-myristoylation, occurs in some viral proteins to dictate their pathological function. This protein lipidation reaction, however, is monitored by host cytotoxic T lymphocytes that are capable of recognizing N-terminal lipopeptide fragments in the context of major histocompatibility complex (MHC) class I molecules. In a rhesus model of human AIDS, for example, the classical MHC class I allomorph, Mamu-B*05104, was shown to bind SIV Nef-derived 4-mer lipopeptides (myristic acid-Gly-Gly-Ala-Ile; C14nef4) and present them to the CD8+ T-cell line, SN45. These lipopeptides accommodated in MHC class I molecules expose much shorter peptide chains than conventional MHC class I-presented 8-10-mer peptides, and the molecular mechanisms by which αβ T-cell receptors (TCRs) recognize lipopeptides currently remain unclear. An X-ray crystallographic analysis of the SN45 TCR α and β heterodimer in a form that was co-crystallized with the C14nef4-bound Mamu-B*05104 complex indicated that the amide group of the N-myristoylated glycine residue offered a primary T-cell epitope by establishing a sole hydrogen bond between its nitrogen atom and the side chain of Glu at position 101 of CDR3β. Accordingly, the Glu to Ala mutation at this position resulted in the loss of lipopeptide recognition. On the other hand, TCRs were positioned remotely from the peptide portion of C14nef4, and strong interactions were not observed. Thus, these observations provide novel structural insights into lipopeptide recognition by TCRs, which contrast sharply with the general molecular principle of peptide recognition.
Collapse
Affiliation(s)
- Daisuke Morita
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan.,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Chieri Iwashita
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan.,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Tatsuaki Mizutani
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan.,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Naoki Mori
- Laboratory of Chemical Ecology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, Japan
| | - Bunzo Mikami
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Masahiko Sugita
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan.,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
18
|
Toy R, Keenum MC, Pradhan P, Phang K, Chen P, Chukwu C, Nguyen LAH, Liu J, Jain S, Kozlowski G, Hosten J, Suthar MS, Roy K. TLR7 and RIG-I dual-adjuvant loaded nanoparticles drive broadened and synergistic responses in dendritic cells in vitro and generate unique cellular immune responses in influenza vaccination. J Control Release 2020; 330:866-877. [PMID: 33160004 DOI: 10.1016/j.jconrel.2020.10.060] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023]
Abstract
Although the existing flu vaccines elicit strong antigen-specific antibody responses, they fail to provide effective, long term protection - partly due to the absence of robust cellular memory immunity. We hypothesized that co-administration of combination adjuvants, mirroring the flu-virus related innate signaling pathways, could elicit strong cellular immunity. Here, we show that the small molecule adjuvant R848 and the RNA adjuvant PUUC, targeting endosomal TLR7s and cytoplasmic RLRs respectively, when delivered together in polymer nanoparticles (NP), elicits a broadened immune responses in mouse bone marrow-derived dendritic cells (mBMDCs) and a synergistic response in both mouse and human plasmacytoid dendritic cells (pDCs). In mBMDCs, NP-R848-PUUC induced both NF-κB and interferon signaling. Interferon responses to co-delivered R848 and PUUC were additive in human peripheral blood mononuclear cells (PBMCs) and synergistic in human FLT3-differentiated mBMDCs and CAL-1 pDCs. Vaccination with NPs loaded with H1N1 Flu antigen, R848, and PUUC increased percentage of CD8+ T-cells in the lungs, percentage of antigen-specific CD4-T-cells in the spleen, and enhanced overall cytokine-secreting T cell percentages upon antigen restimulation. Also, in the spleen, T lymphopenia, especially after in vitro restimulation with dual adjuvants, was observed, indicating highly antigen-reactive T cells. Our results demonstrate that simultaneous engagement of TLR7 and RIG-I pathways using particulate carriers is a potential approach to improve cellular immunity in flu vaccination.
Collapse
Affiliation(s)
- Randall Toy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - M Cole Keenum
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Pallab Pradhan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Katelynn Phang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Patrick Chen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Chinwendu Chukwu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Lily Anh H Nguyen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Jiaying Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Sambhav Jain
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Gabrielle Kozlowski
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Justin Hosten
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Mehul S Suthar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
19
|
Sharip A, Kunz J. Understanding the Pathogenesis of Spondyloarthritis. Biomolecules 2020; 10:biom10101461. [PMID: 33092023 PMCID: PMC7588965 DOI: 10.3390/biom10101461] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Spondyloarthritis comprises a group of inflammatory diseases of the joints and spine, with various clinical manifestations. The group includes ankylosing spondylitis, reactive arthritis, psoriatic arthritis, arthritis associated with inflammatory bowel disease, and undifferentiated spondyloarthritis. The exact etiology and pathogenesis of spondyloarthritis are still unknown, but five hypotheses explaining the pathogenesis exist. These hypotheses suggest that spondyloarthritis is caused by arthritogenic peptides, an unfolded protein response, HLA-B*27 homodimer formation, malfunctioning endoplasmic reticulum aminopeptidases, and, last but not least, gut inflammation and dysbiosis. Here we discuss the five hypotheses and the evidence supporting each. In all of these hypotheses, HLA-B*27 plays a central role. It is likely that a combination of these hypotheses, with HLA-B*27 taking center stage, will eventually explain the development of spondyloarthritis in predisposed individuals.
Collapse
MESH Headings
- Arthritis, Psoriatic/genetics
- Arthritis, Psoriatic/immunology
- Arthritis, Psoriatic/metabolism
- Arthritis, Psoriatic/pathology
- Arthritis, Reactive/genetics
- Arthritis, Reactive/immunology
- Arthritis, Reactive/metabolism
- Arthritis, Reactive/pathology
- HLA-B27 Antigen/genetics
- HLA-B27 Antigen/immunology
- Humans
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Inflammatory Bowel Diseases/genetics
- Inflammatory Bowel Diseases/immunology
- Inflammatory Bowel Diseases/metabolism
- Inflammatory Bowel Diseases/pathology
- Joints/immunology
- Joints/pathology
- Spine/immunology
- Spine/pathology
- Spondylarthritis/genetics
- Spondylarthritis/immunology
- Spondylarthritis/metabolism
- Spondylarthritis/pathology
- Spondylitis, Ankylosing/genetics
- Spondylitis, Ankylosing/immunology
- Spondylitis, Ankylosing/metabolism
- Spondylitis, Ankylosing/pathology
- Unfolded Protein Response/genetics
- Unfolded Protein Response/immunology
Collapse
|
20
|
Silva-Arrieta S, Goulder PJR, Brander C. In silico veritas? Potential limitations for SARS-CoV-2 vaccine development based on T-cell epitope prediction. PLoS Pathog 2020; 16:e1008607. [PMID: 32497149 PMCID: PMC7272002 DOI: 10.1371/journal.ppat.1008607] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Sandra Silva-Arrieta
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Philip J. R. Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- University of Vic–Central University of Catalonia, Catalonia, Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- * E-mail:
| |
Collapse
|
21
|
Shima Y, Morita D, Mizutani T, Mori N, Mikami B, Sugita M. Crystal structures of lysophospholipid-bound MHC class I molecules. J Biol Chem 2020; 295:6983-6991. [PMID: 32269076 PMCID: PMC7242709 DOI: 10.1074/jbc.ra119.011932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/03/2020] [Indexed: 01/07/2023] Open
Abstract
Newly synthesized major histocompatibility complex (MHC) class I proteins are stabilized in the endoplasmic reticulum (ER) by binding 8-10-mer-long self-peptide antigens that are provided by transporter associated with antigen processing (TAP). These MHC class I:peptide complexes then exit the ER and reach the plasma membrane, serving to sustain the steady-state MHC class I expression on the cell surface. A novel subset of MHC class I molecules that preferentially bind lipid-containing ligands rather than conventional peptides was recently identified. The primate classical MHC class I allomorphs, Mamu-B*098 and Mamu-B*05104, are capable of binding the N-myristoylated 5-mer (C14-Gly-Gly-Ala-Ile-Ser) or 4-mer (C14-Gly-Gly-Ala-Ile) lipopeptides derived from the N-myristoylated SIV Nef protein, respectively, and of activating lipopeptide antigen-specific cytotoxic T lymphocytes. We herein demonstrate that Mamu-B*098 samples lysophosphatidylethanolamine and lysophosphatidylcholine containing up to a C20 fatty acid in the ER. The X-ray crystal structures of Mamu-B*098 and Mamu-B*05104 complexed with lysophospholipids at high resolution revealed that the B and D pockets in the antigen-binding grooves of these MHC class I molecules accommodate these lipids through a monoacylglycerol moiety. Consistent with the capacity to bind cellular lipid ligands, these two MHC class I molecules did not require TAP function for cell-surface expression. Collectively, these results indicate that peptide- and lipopeptide-presenting MHC class I subsets use distinct sources of endogenous ligands.
Collapse
Affiliation(s)
- Yoko Shima
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Daisuke Morita
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan, To whom correspondence should be addressed:
Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan. E-mail:
| | - Tatsuaki Mizutani
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Naoki Mori
- Laboratory of Chemical Ecology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Bunzo Mikami
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masahiko Sugita
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
22
|
Rudraraju R, Mordant F, Subbarao K. How Live Attenuated Vaccines Can Inform the Development of Broadly Cross-Protective Influenza Vaccines. J Infect Dis 2020; 219:S81-S87. [PMID: 30715386 PMCID: PMC7313962 DOI: 10.1093/infdis/jiy703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Rajeev Rudraraju
- Department of Microbiology and Immunology, University of Melbourne
| | | | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne.,World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
23
|
Li X, Zhang L, Liu Y, Ma L, Zhang N, Xia C. Structures of the MHC-I molecule BF2*1501 disclose the preferred presentation of an H5N1 virus-derived epitope. J Biol Chem 2020; 295:5292-5306. [PMID: 32152225 PMCID: PMC7170506 DOI: 10.1074/jbc.ra120.012713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/06/2020] [Indexed: 01/05/2023] Open
Abstract
Lethal infections by strains of the highly-pathogenic avian influenza virus (HPAIV) H5N1 pose serious threats to both the poultry industry and public health worldwide. A lack of confirmed HPAIV epitopes recognized by cytotoxic T lymphocytes (CTLs) has hindered the utilization of CD8+ T-cell-mediated immunity and has precluded the development of effectively diversified epitope-based vaccination approaches. In particular, an HPAIV H5N1 CTL-recognized epitope based on the peptide MHC-I-β2m (pMHC-I) complex has not yet been designed. Here, screening a collection of selected peptides of several HPAIV strains against a specific pathogen-free pMHC-I (pBF2*1501), we identified a highly-conserved HPAIV H5N1 CTL epitope, named HPAIV-PA123-130 We determined the structure of the BF2*1501-PA123-130 complex at 2.1 Å resolution to elucidate the molecular mechanisms of a preferential presentation of the highly-conserved PA123-130 epitope in the chicken B15 lineage. Conformational characteristics of the PA123-130 epitope with a protruding Tyr-7 residue indicated that this epitope has great potential to be recognized by specific TCRs. Moreover, significantly increased numbers of CD8+ T cells specific for the HPAIV-PA123-130 epitope in peptide-immunized chickens indicated that a repertoire of CD8+ T cells can specifically respond to this epitope. We anticipate that the identification and structural characterization of the PA123-130 epitope reported here could enable further studies of CTL immunity against HPAIV H5N1. Such studies may aid in the development of vaccine development strategies using well-conserved internal viral antigens in chickens.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, People's Republic of China
| | - Lijie Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China
| | - Yanjie Liu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China; Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apiculture, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China
| | - Lizhen Ma
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100094, People's Republic of China.
| |
Collapse
|
24
|
Eichelberger MC. Peter's Paradigm and Pandemic Preparedness. Viral Immunol 2020; 33:208-210. [PMID: 32286173 PMCID: PMC7185340 DOI: 10.1089/vim.2019.0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Maryna C Eichelberger
- Division of Biological Standards and Quality Control, Office of Compliance and Biologics Quality, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland
| |
Collapse
|
25
|
Li EJ, Lu J, Dong SM, Zhang MZ, Cen S, Li LJ, Huang WH. Instability of Nucleic Acids in Airborne Microorganisms under Far Infrared Radiation. Health (London) 2020. [DOI: 10.4236/health.2020.128074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
Ryt-Hansen P, Larsen I, Kristensen CS, Krog JS, Larsen LE. Limited impact of influenza A virus vaccination of piglets in an enzootic infected sow herd. Res Vet Sci 2019; 127:47-56. [PMID: 31677416 DOI: 10.1016/j.rvsc.2019.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/15/2023]
Abstract
Recent studies have questioned the effect of maternal derived antibodies (MDAs) to protect piglets against infection with influenza A virus (IAV). The lack of protection against IAV infections provided by MDAs has encouraged alternative vaccination strategies targeting young piglets in an attempt to stimulate an early antibody response. There is a lack of studies documenting the efficacy of piglet vaccination. In the present study, we monitored a group of vaccinated and non-vaccinated piglets in a Danish sow herd that initiated piglet vaccination with ¼ dose of an inactivated swine influenza vaccine at the time of castration (day 3-4). A total of 160 piglets from 11 sows were included and either vaccinated with 0.5 mL inactivated swine influenza vaccine or sham-vaccinated. From week 0 until week 6, all included piglets were clinically examined and nasal swapped once per week and weighed at weeks 0, 3 and 6. Blood samples were collected from sows at week 0 and from piglets at week 3. Vaccination of piglets had limited effect on clinical signs, body weight, antibody development and viral shedding, within the first 6 weeks of life. At least 50% of all pigs of each treatment group tested positive for IAV at week 2, and very early onset of IAV shedding was observed. In total, 18 pigs were IAV positive in nasal swabs for more than one consecutive sampling time indicating prolonged shedding and 14 pigs were IAV positive with negative samplings in between indicating re-infection with the same IAV strain.
Collapse
Affiliation(s)
- Pia Ryt-Hansen
- National Veterinary Institute, Technical University of Denmark, Kemitorvet Building 204, DK-2800 Kongens Lyngby, Denmark.
| | - Inge Larsen
- Dpt. of Veterinary and Animal Sciences Grønnegårdsvej 2, University of Copenhagen, DK-1870 Frederiksberg C, Denmark.
| | | | - Jesper Schak Krog
- National Veterinary Institute, Technical University of Denmark, Kemitorvet Building 204, DK-2800 Kongens Lyngby, Denmark.
| | - Lars Erik Larsen
- National Veterinary Institute, Technical University of Denmark, Kemitorvet Building 204, DK-2800 Kongens Lyngby, Denmark; Dpt. of Veterinary and Animal Sciences Grønnegårdsvej 2, University of Copenhagen, DK-1870 Frederiksberg C, Denmark.
| |
Collapse
|
27
|
Auladell M, Jia X, Hensen L, Chua B, Fox A, Nguyen THO, Doherty PC, Kedzierska K. Recalling the Future: Immunological Memory Toward Unpredictable Influenza Viruses. Front Immunol 2019; 10:1400. [PMID: 31312199 PMCID: PMC6614380 DOI: 10.3389/fimmu.2019.01400] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/03/2019] [Indexed: 01/09/2023] Open
Abstract
Persistent and durable immunological memory forms the basis of any successful vaccination protocol. Generation of pre-existing memory B cell and T cell pools is thus the key for maintaining protective immunity to seasonal, pandemic and avian influenza viruses. Long-lived antibody secreting cells (ASCs) are responsible for maintaining antibody levels in peripheral blood. Generated with CD4+ T help after naïve B cell precursors encounter their cognate antigen, the linked processes of differentiation (including Ig class switching) and proliferation also give rise to memory B cells, which then can change rapidly to ASC status after subsequent influenza encounters. Given that influenza viruses evolve rapidly as a consequence of antibody-driven mutational change (antigenic drift), the current influenza vaccines need to be reformulated frequently and annual vaccination is recommended. Without that process of regular renewal, they provide little protection against “drifted” (particularly H3N2) variants and are mainly ineffective when a novel pandemic (2009 A/H1N1 “swine” flu) strain suddenly emerges. Such limitation of antibody-mediated protection might be circumvented, at least in part, by adding a novel vaccine component that promotes cross-reactive CD8+ T cells specific for conserved viral peptides, presented by widely distributed HLA types. Such “memory” cytotoxic T lymphocytes (CTLs) can rapidly be recalled to CTL effector status. Here, we review how B cells and follicular T cells are elicited following influenza vaccination and how they survive into a long-term memory. We describe how CD8+ CTL memory is established following influenza virus infection, and how a robust CTL recall response can lead to more rapid virus elimination by destroying virus-infected cells, and recovery. Exploiting long-term, cross-reactive CTL against the continuously evolving and unpredictable influenza viruses provides a possible mechanism for preventing a disastrous pandemic comparable to the 1918-1919 H1N1 “Spanish flu,” which killed more than 50 million people worldwide.
Collapse
Affiliation(s)
- Maria Auladell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Luca Hensen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Brendon Chua
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Annette Fox
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Anikeeva N, Fischer NO, Blanchette CD, Sykulev Y. Extent of MHC Clustering Regulates Selectivity and Effectiveness of T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2018; 202:591-597. [PMID: 30541879 DOI: 10.4049/jimmunol.1801196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/09/2018] [Indexed: 11/19/2022]
Abstract
MHC proteins that present peptide ligands for recognition by TCR form nanoscale clusters on the cell membrane of APCs. How the extent of MHC clustering controls productive TCR engagement and TCR-mediated signaling has not been systematically studied. To evaluate the role of MHC clustering, we exploited nanoscale discoidal membrane mimetics (nanolipoprotein particles) to capture and present peptide-MHC (pMHC) ligands at various densities. We examined the binding of these model membrane clusters to the surface of live human CD8+ T cells and the subsequent triggering of intracellular signaling. The data demonstrate that the proximity of pMHC ligands, high association rate of CD8-MHC interactions, and relatively long lifetime of cognate TCR-pMHC complexes emerge as essential parameters, explaining the significance of MHC clustering. Rapid rebinding of CD8 to MHC suggests a dual role of CD8 in facilitating the T cells' hunt for a rare foreign pMHC ligand and the induction of rapid T cell response. Thus, our findings provide a new understanding of how MHC clustering influences multivalent interactions of pMHC ligands with CD8 and TCR on live T cells that regulate Ag recognition, kinetics of intracellular signaling, and the selectivity and efficiency of T cell responses.
Collapse
Affiliation(s)
- Nadia Anikeeva
- Department of Microbiology and Immunology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Nicholas O Fischer
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551
| | - Craig D Blanchette
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551
| | - Yuri Sykulev
- Department of Microbiology and Immunology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107; and
| |
Collapse
|
29
|
McMichael AJ. Legacy of the influenza pandemic 1918: The host T cell response. Biomed J 2018; 41:242-248. [PMID: 30348267 PMCID: PMC6197988 DOI: 10.1016/j.bj.2018.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/03/2018] [Indexed: 01/05/2023] Open
Abstract
The influenza virus was instrumental in unravelling critical aspects of the antiviral T lymphocyte mediated immune response. A major finding was the demonstration that CD8 T lymphocytes recognize short viral peptides presented by class I molecules of the major histocompatibility complex. Studies of influenza specific T cells have also led to an understanding of their important role in recovery from influenza virus infection in humans.
Collapse
Affiliation(s)
- Andrew J McMichael
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Old Road Campus, Oxford, OX3 7FZ, UK.
| |
Collapse
|
30
|
Baldauf MC, Gerke JS, Kirschner A, Blaeschke F, Effenberger M, Schober K, Rubio RA, Kanaseki T, Kiran MM, Dallmayer M, Musa J, Akpolat N, Akatli AN, Rosman FC, Özen Ö, Sugita S, Hasegawa T, Sugimura H, Baumhoer D, Knott MML, Sannino G, Marchetto A, Li J, Busch DH, Feuchtinger T, Ohmura S, Orth MF, Thiel U, Kirchner T, Grünewald TGP. Systematic identification of cancer-specific MHC-binding peptides with RAVEN. Oncoimmunology 2018; 7:e1481558. [PMID: 30228952 PMCID: PMC6140548 DOI: 10.1080/2162402x.2018.1481558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 02/03/2023] Open
Abstract
Immunotherapy can revolutionize anti-cancer therapy if specific targets are available. Immunogenic peptides encoded by cancer-specific genes (CSGs) may enable targeted immunotherapy, even of oligo-mutated cancers, which lack neo-antigens generated by protein-coding missense mutations. Here, we describe an algorithm and user-friendly software named RAVEN (Rich Analysis of Variable gene Expressions in Numerous tissues) that automatizes the systematic and fast identification of CSG-encoded peptides highly affine to Major Histocompatibility Complexes (MHC) starting from transcriptome data. We applied RAVEN to a dataset assembled from 2,678 simultaneously normalized gene expression microarrays comprising 50 tumor entities, with a focus on oligo-mutated pediatric cancers, and 71 normal tissue types. RAVEN performed a transcriptome-wide scan in each cancer entity for gender-specific CSGs, and identified several established CSGs, but also many novel candidates potentially suitable for targeting multiple cancer types. The specific expression of the most promising CSGs was validated in cancer cell lines and in a comprehensive tissue-microarray. Subsequently, RAVEN identified likely immunogenic CSG-encoded peptides by predicting their affinity to MHCs and excluded sequence identity to abundantly expressed proteins by interrogating the UniProt protein-database. The predicted affinity of selected peptides was validated in T2-cell peptide-binding assays in which many showed binding-kinetics like a very immunogenic influenza control peptide. Collectively, we provide an exquisitely curated catalogue of cancer-specific and highly MHC-affine peptides across 50 cancer types, and a freely available software (https://github.com/JSGerke/RAVENsoftware) to easily apply our algorithm to any gene expression dataset. We anticipate that our peptide libraries and software constitute a rich resource to advance anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Michaela C. Baldauf
- Faculty of Medicine, Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany
| | - Julia S. Gerke
- Faculty of Medicine, Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany
| | - Andreas Kirschner
- Children’s Cancer Research Center, Technische Universität München (TUM), Munich, Germany
| | - Franziska Blaeschke
- Department of Pediatrics, Dr. von Hauner’sches Children’s Hospital, LMU Munich, Munich, Germany
| | - Manuel Effenberger
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Kilian Schober
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Rebeca Alba Rubio
- Faculty of Medicine, Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany
| | | | - Merve M. Kiran
- Department of Pathology, Medical Faculty, Yildirim Beyazit University, Ankara, Turkey
| | - Marlene Dallmayer
- Faculty of Medicine, Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany
| | - Julian Musa
- Faculty of Medicine, Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany
| | - Nurset Akpolat
- Department of Pathology, Turgut Ozal Medical Center, Inonu University, Malatya, Turkey
| | - Ayse N. Akatli
- Department of Pathology, Turgut Ozal Medical Center, Inonu University, Malatya, Turkey
| | - Fernando C. Rosman
- Department for Pathology, Hospital Municipal Jesus, Rio de Janeiro, Brazil
| | - Özlem Özen
- Department of Pathology, Medical Faculty, Başkent University Hospital, Ankara, Turkey
| | - Shintaro Sugita
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Tadashi Hasegawa
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu School of Medicine, Hamamatsu, Japan
| | - Daniel Baumhoer
- Bone Tumor Reference Center, Institute of Pathology of the University Hospital of Basel, Basel, Switzerland
| | - Maximilian M. L. Knott
- Faculty of Medicine, Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany
| | - Giuseppina Sannino
- Faculty of Medicine, Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany
| | - Aruna Marchetto
- Faculty of Medicine, Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany
| | - Jing Li
- Faculty of Medicine, Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Tobias Feuchtinger
- Department of Pediatrics, Dr. von Hauner’sches Children’s Hospital, LMU Munich, Munich, Germany
| | - Shunya Ohmura
- Faculty of Medicine, Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany
| | - Martin F. Orth
- Faculty of Medicine, Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany
| | - Uwe Thiel
- Children’s Cancer Research Center, Technische Universität München (TUM), Munich, Germany
| | - Thomas Kirchner
- Faculty of Medicine, Institute of Pathology, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas G. P. Grünewald
- Faculty of Medicine, Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany
- Faculty of Medicine, Institute of Pathology, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
31
|
Chua BY, Sekiya T, Jackson DC. Opinion: Making Inactivated and Subunit-Based Vaccines Work. Viral Immunol 2018; 31:150-158. [PMID: 29369750 DOI: 10.1089/vim.2017.0146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Empirically derived vaccines have in the past relied on the isolation and growth of disease-causing microorganisms that are then inactivated or attenuated before being administered. This is often done without prior knowledge of the mechanisms involved in conferring protective immunity. Recent advances in scientific technologies and in our knowledge of how protective immune responses are induced enable us to rationally design novel and safer vaccination strategies. Such advances have accelerated the development of inactivated whole-organism- and subunit-based vaccines. In this review, we discuss ideal attributes and criteria that need to be considered for the development of vaccines and some existing vaccine platforms. We focus on inactivated vaccines against influenza virus and ways by which vaccine efficacy can be improved with the use of adjuvants and Toll-like receptor-2 signaling.
Collapse
Affiliation(s)
- Brendon Y Chua
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia .,2 Research Center for Zoonosis Control, Hokkaido University , Sapporo, Japan .,3 Global Institution for Collaborative Research and Education, Hokkaido University , Sapporo, Japan
| | - Toshiki Sekiya
- 2 Research Center for Zoonosis Control, Hokkaido University , Sapporo, Japan .,3 Global Institution for Collaborative Research and Education, Hokkaido University , Sapporo, Japan
| | - David C Jackson
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia .,2 Research Center for Zoonosis Control, Hokkaido University , Sapporo, Japan .,3 Global Institution for Collaborative Research and Education, Hokkaido University , Sapporo, Japan
| |
Collapse
|
32
|
Mannering SI, So M, Elso CM, Kay TWH. Shuffling peptides to create T-cell epitopes: does the immune system play cards? Immunol Cell Biol 2017; 96:34-40. [PMID: 29359347 DOI: 10.1111/imcb.1015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 11/27/2022]
Abstract
For a long time, immunologists have believed that classical CD4+ and CD8+ T cells recognize peptides (referred to as epitopes), derived from protein antigens presented by MHC/HLA class I or II. Over the past 10-15 years, it has become clear that epitopes recognized by CD8+, and more recently CD4+ T cells, can be formed by protein splicing. Here, we review the discovery of spliced epitopes recognized by tumor-specific human CD8+ T cells. We discuss how these epitopes are formed and some of the unusual variants that have been reported. Now, over a decade since the first report, evidence is emerging that spliced CD8+ T-cell epitopes are much more common, and potentially much more important, than previously imagined. Recent work has shown that epitopes recognized by CD4+ T cells can also be formed by protein splicing. We discuss the recent discovery of spliced CD4+ T-cell epitopes and their potential role as targets of autoimmune T-cell responses. Finally, we highlight some of the new questions raised from our growing appreciation of T-cell epitopes formed by peptide splicing.
Collapse
Affiliation(s)
- Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Vic., Australia
| | - Michelle So
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Vic., Australia
| | - Colleen M Elso
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Vic., Australia
| | - Thomas W H Kay
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Vic., Australia
| |
Collapse
|
33
|
Yang X, Chen G, Weng NP, Mariuzza RA. Structural basis for clonal diversity of the human T-cell response to a dominant influenza virus epitope. J Biol Chem 2017; 292:18618-18627. [PMID: 28931605 DOI: 10.1074/jbc.m117.810382] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/08/2017] [Indexed: 12/20/2022] Open
Abstract
Influenza A virus (IAV) causes an acute infection in humans that is normally eliminated by CD8+ cytotoxic T lymphocytes. Individuals expressing the MHC class I molecule HLA-A2 produce cytotoxic T lymphocytes bearing T-cell receptors (TCRs) that recognize the immunodominant IAV epitope GILGFVFTL (GIL). Most GIL-specific TCRs utilize α/β chain pairs encoded by the TRAV27/TRBV19 gene combination to recognize this relatively featureless peptide epitope (canonical TCRs). However, ∼40% of GIL-specific TCRs express a wide variety of other TRAV/TRBV combinations (non-canonical TCRs). To investigate the structural underpinnings of this remarkable diversity, we determined the crystal structure of a non-canonical GIL-specific TCR (F50) expressing the TRAV13-1/TRBV27 gene combination bound to GIL-HLA-A2 to 1.7 Å resolution. Comparison of the F50-GIL-HLA-A2 complex with the previously published complex formed by a canonical TCR (JM22) revealed that F50 and JM22 engage GIL-HLA-A2 in markedly different orientations. These orientations are distinguished by crossing angles of TCR to peptide-MHC of 29° for F50 versus 69° for JM22 and by a focus by F50 on the C terminus rather than the center of the MHC α1 helix for JM22. In addition, F50, unlike JM22, uses a tryptophan instead of an arginine to fill a critical notch between GIL and the HLA-A2 α2 helix. The F50-GIL-HLA-A2 complex shows that there are multiple structurally distinct solutions to recognizing an identical peptide-MHC ligand with sufficient affinity to elicit a broad anti-IAV response that protects against viral escape and T-cell clonal loss.
Collapse
Affiliation(s)
- Xinbo Yang
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850.,the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| | - Guobing Chen
- the Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224
| | - Nan-Ping Weng
- the Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224
| | - Roy A Mariuzza
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850, .,the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| |
Collapse
|
34
|
Takagi A, Horiuchi Y, Matsui M. Characterization of the flow cytometric assay for ex vivo monitoring of cytotoxicity mediated by antigen-specific cytotoxic T lymphocytes. Biochem Biophys Res Commun 2017; 492:27-32. [PMID: 28818311 DOI: 10.1016/j.bbrc.2017.08.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/12/2017] [Indexed: 12/11/2022]
Abstract
Several non-radioactive methods have widely been utilized to detect antigen-specific cytotoxic T lymphocyte (CTL) responses instead of the classical 51Cr-release assay. These methods include intracellular cytokine staining, major histocompatibility complex-class I tetramers, and the CD107a mobilization assay. However, they do not directly measure target-cell death. In contrast, several attempts have been made to develop the flow cytometric CTL (FC-CTL) assay for evaluation of cytotoxicity. However, further improvement is necessary for it to become standardized. Here, we evaluated the characteristics of the FC-CTL assay based on the uptake of propidium iodide (PI) using target cell lines expressing the green fluorescent protein (GFP). The FC-CTL assay was found to be sensitive enough to detect primary CTL responses. The usage of a pre-established GFP-expressing target cell line facilitated the procedure of the assay, and enabled a clear discrimination between target and effector cells. Time-course analyses demonstrated that PI-stained target cells were detected as early as surface CD107a expression after antigenic stimulation. Thus, the PI/GFP-based FC-CTL assay is sufficiently sensitive to practically detect the early stages of target-cell death, and may have a great potential for becoming a standard tool to measure CTL activity.
Collapse
Affiliation(s)
- Akira Takagi
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495, Japan
| | - Yutaka Horiuchi
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495, Japan
| | - Masanori Matsui
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495, Japan.
| |
Collapse
|
35
|
Chen G, Yang X, Ko A, Sun X, Gao M, Zhang Y, Shi A, Mariuzza RA, Weng NP. Sequence and Structural Analyses Reveal Distinct and Highly Diverse Human CD8 + TCR Repertoires to Immunodominant Viral Antigens. Cell Rep 2017; 19:569-583. [PMID: 28423320 DOI: 10.1016/j.celrep.2017.03.072] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 02/02/2017] [Accepted: 03/24/2017] [Indexed: 01/07/2023] Open
Abstract
A diverse T cell receptor (TCR) repertoire is essential for controlling viral infections. However, information about TCR repertoires to defined viral antigens is limited. We performed a comprehensive analysis of CD8+ TCR repertoires for two dominant viral epitopes: pp65495-503 (NLV) of cytomegalovirus and M158-66 (GIL) of influenza A virus. The highly individualized repertoires (87-5,533 α or β clonotypes per subject) comprised thousands of unique TCRα and TCRβ sequences and dozens of distinct complementary determining region (CDR)3α and CDR3β motifs. However, diversity is effectively restricted by preferential V-J combinations, CDR3 lengths, and CDR3α/CDR3β pairings. Structures of two GIL-specific TCRs bound to GIL-HLA-A2 provided a potential explanation for the lower diversity of GIL-specific versus NLV-specific repertoires. These anti-viral TCRs occupied up to 3.4% of the CD8+ TCRβ repertoire, ensuring broad T cell responses to single epitopes. Our portrait of two anti-viral TCR repertoires may inform the development of predictors of immune protection.
Collapse
Affiliation(s)
- Guobing Chen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Xinbo Yang
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Annette Ko
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Xiaoping Sun
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Mingming Gao
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Yongqing Zhang
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Alvin Shi
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Roy A Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Nan-Ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|
36
|
Broad TCR repertoire and diverse structural solutions for recognition of an immunodominant CD8 + T cell epitope. Nat Struct Mol Biol 2017; 24:395-406. [PMID: 28250417 PMCID: PMC5383516 DOI: 10.1038/nsmb.3383] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/30/2017] [Indexed: 12/16/2022]
Abstract
A keystone of antiviral immunity is CD8 T-cell recognition of viral peptides bound to MHC-I proteins. The recognition mode of individual T cell receptors (TCRs) has been studied in some detail, but how TCR variation functions in providing a robust response to viral antigen is unclear. The influenza M1 epitope is an immunodominant target of CD8 T cells helping to control influenza in HLA-A2+ individuals. Here, we show that many distinct TCRs are used by CD8 T cells to recognize HLA-A2/M1, encoding different structural solutions to the problem of specifically recognizing a relatively featureless peptide antigen. The vast majority of responding TCRs target small clefts between peptide and MHC. These broad repertoires lead to plasticity in antigen recognition and protection against T cell clonal loss and viral escape.
Collapse
|
37
|
Dandekar S, Wijesuriya H, Geiger T, Hamm D, Mathern GW, Owens GC. Shared HLA Class I and II Alleles and Clonally Restricted Public and Private Brain-Infiltrating αβ T Cells in a Cohort of Rasmussen Encephalitis Surgery Patients. Front Immunol 2016; 7:608. [PMID: 28066418 PMCID: PMC5165278 DOI: 10.3389/fimmu.2016.00608] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/01/2016] [Indexed: 11/26/2022] Open
Abstract
Rasmussen encephalitis (RE) is a rare pediatric neuroinflammatory disease characterized by intractable seizures and unilateral brain atrophy. T cell infiltrates in affected brain tissue and the presence of circulating autoantibodies in some RE patients have indicated that RE may be an autoimmune disease. The strongest genetic links to autoimmunity reside in the MHC locus, therefore, we determined the human leukocyte antigen (HLA) class I and class II alleles carried by a cohort of 24 RE surgery cases by targeted in-depth genomic sequencing. Compared with a reference population the allelic frequency of three alleles, DQA1*04:01:01, DQB1*04:02:01, and HLA-C*07:02:01:01 indicated that they might confer susceptibility to the disease. It has been reported that HLA-C*07:02 is a risk factor for Graves disease. Further, eight patients in the study cohort carried HLA-A*03:01:01:01, which has been linked to susceptibility to multiple sclerosis. Four patients carried a combination of three HLA class II alleles that has been linked to type 1 diabetes (DQA1*05:01:01:01~DQB1*02:01:01~DRB1*03:01:01:01), and five patients carried a combination of HLA class II alleles that has been linked to the risk of contracting multiple sclerosis (DQA1*01:02:01:01, DQB1*06:02:01, DRB1*15:01:01:01). We also analyzed the diversity of αβ T cells in brain and blood specimens from 14 of these RE surgery cases by sequencing the third complementarity regions (CDR3s) of rearranged T cell receptor β genes. A total of 31 unique CDR3 sequences accounted for the top 5% of all CDR3 sequences in the 14 brain specimens. Thirteen of these sequences were found in sequencing data from healthy blood donors; the remaining 18 sequences were patient specific. These observations provide evidence for the clonal expansion of public and private T cells in the brain, which might be influenced by the RE patient’s HLA haplotype.
Collapse
Affiliation(s)
- Sugandha Dandekar
- Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles , Los Angeles, CA , USA
| | - Hemani Wijesuriya
- Pathology and Laboratory Medicine, David Geffen School of Medicine at the University of California Los Angeles , Los Angeles, CA , USA
| | - Tim Geiger
- Adaptive Biotechnologies Inc. , Seattle, WA , USA
| | - David Hamm
- Adaptive Biotechnologies Inc. , Seattle, WA , USA
| | - Gary W Mathern
- Department of Neurosurgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA; Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA; Brain Research Institute, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA; Mattel Children's Hospital, Los Angeles, CA, USA
| | - Geoffrey C Owens
- Department of Neurosurgery, David Geffen School of Medicine at the University of California Los Angeles , Los Angeles, CA , USA
| |
Collapse
|
38
|
Anikeeva N, Grosso D, Flomenberg N, Sykulev Y. Evaluating frequency and quality of pathogen-specific T cells. Nat Commun 2016; 7:13264. [PMID: 27786275 PMCID: PMC5095286 DOI: 10.1038/ncomms13264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 09/08/2016] [Indexed: 12/18/2022] Open
Abstract
It is generally accepted that enumeration and characterization of antigen-specific T cells provide essential information about potency of the immune response. Here, we report a new technique to determine the frequency and potency of antigen-specific CD8 T cells. The assay measures changes of intracellular Ca2+ in real time by fluorescent microscopy in individual CD8 T cells responding to cognate peptides. The T cells form continuous monolayer, enabling the cells to present the peptides to each other. This approach allows us to evaluate the kinetics of intracellular Ca2+ signalling that characterizes the quality of T cell response. We demonstrate the usefulness of the assay examining the frequency and quality of cytomegalovirus-specific CD8 T cells from healthy donor and patient after haploidentical stem cell transplantation. The new assay has a potential to provide essential information determining the status of the immune system, disease morbidity, potency of therapeutic intervention and vaccine efficacy. Characterization of T cell antigen specificity human blood is challenging due to the low clonal frequencies. Here the authors develop a fluorescent microscopy-based method to detect antigen-specific CD8 T cell activation, and apply it to characterize the anti-CMV repertoire.
Collapse
Affiliation(s)
- Nadia Anikeeva
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Dolores Grosso
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Neal Flomenberg
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.,The Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Yuri Sykulev
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.,Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.,The Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| |
Collapse
|
39
|
Abstract
Immunomics is a relatively new field of research which integrates the disciplines of immunology, genomics, proteomics, transcriptomics and bioinformatics to characterize the host-pathogen interface. Herein, we discuss how rapid advances in molecular immunology, sophisticated tools and molecular databases are facilitating in-depth exploration of the immunome. In our opinion, an immunomics-based approach presides over traditional antigen and vaccine discovery methods that have proved ineffective for highly complex pathogens such as the causative agents of malaria, tuberculosis and schistosomiasis that have evolved genetic and immunological host-parasite adaptations over time. By using an integrative multidisciplinary approach, immunomics offers enormous potential to advance 21st century antigen discovery and rational vaccine design against complex pathogens such as the Plasmodium parasite.
Collapse
|
40
|
Majji S, Wijayalath W, Shashikumar S, Pow-Sang L, Villasante E, Brumeanu TD, Casares S. Differential effect of HLA class-I versus class-II transgenes on human T and B cell reconstitution and function in NRG mice. Sci Rep 2016; 6:28093. [PMID: 27323875 PMCID: PMC4914985 DOI: 10.1038/srep28093] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/23/2016] [Indexed: 01/11/2023] Open
Abstract
Humanized mice expressing Human Leukocyte Antigen (HLA) class I or II transgenes have been generated, but the role of class I vs class II on human T and B cell reconstitution and function has not been investigated in detail. Herein we show that NRG (NOD.RagKO.IL2RγcKO) mice expressing HLA-DR4 molecules (DRAG mice) and those co-expressing HLA-DR4 and HLA-A2 molecules (DRAGA mice) did not differ in their ability to develop human T and B cells, to reconstitute cytokine-secreting CD4 T and CD8 T cells, or to undergo immunoglobulin class switching. In contrast, NRG mice expressing only HLA-A2 molecules (A2 mice) reconstituted lower numbers of CD4 T cells but similar numbers of CD8 T cells. The T cells from A2 mice were deficient at secreting cytokines, and their B cells could not undergo immunoglobulin class switching. The inability of A2 mice to undergo immunoglobulin class switching is due to deficient CD4 helper T cell function. Upon immunization, the frequency and cytotoxicity of antigen-specific CD8 T cells in DRAGA mice was significantly higher than in A2 mice. The results indicated a multifactorial effect of the HLA-DR4 transgene on development and function of human CD4 T cells, antigen-specific human CD8 T cells, and immunoglobulin class switching.
Collapse
Affiliation(s)
- Sai Majji
- US Military Malaria Vaccine Program, Naval Medical Research Center/Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Wathsala Wijayalath
- US Military Malaria Vaccine Program, Naval Medical Research Center/Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Soumya Shashikumar
- US Military Malaria Vaccine Program, Naval Medical Research Center/Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Luis Pow-Sang
- Department of Medicine, Uniformed Services University of Health Sciences, Bethesda, MD, USA
| | - Eileen Villasante
- US Military Malaria Vaccine Program, Naval Medical Research Center/Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Teodor D Brumeanu
- Department of Medicine, Uniformed Services University of Health Sciences, Bethesda, MD, USA
| | - Sofia Casares
- US Military Malaria Vaccine Program, Naval Medical Research Center/Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Department of Medicine, Uniformed Services University of Health Sciences, Bethesda, MD, USA
| |
Collapse
|
41
|
Di Mario G, Garulli B, Sciaraffia E, Facchini M, Donatelli I, Castrucci MR. A heat-inactivated H7N3 vaccine induces cross-reactive cellular immunity in HLA-A2.1 transgenic mice. Virol J 2016; 13:56. [PMID: 27036323 PMCID: PMC4815128 DOI: 10.1186/s12985-016-0513-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/23/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Cross-reactive immunity against heterologous strains of influenza virus has the potential to provide partial protection in individuals that lack the proper neutralizing antibodies. In particular, the boosting of memory CD8+ T cell responses to conserved viral proteins can attenuate disease severity caused by influenza virus antigenic variants or pandemic strains. However, little is yet known about which of these conserved internal antigens would better induce and/or recall memory CD8+ T cells after in vivo administration of an inactivated whole virus vaccine. METHODS We explored the CD8 + T cell responses to selected epitopes of the internal proteins of an H7N3 influenza virus that were cross-reactive with A/PR/8/34 virus in HLA-A2.1 transgenic (AAD) mice. RESULTS CD8+ T cells against dominant and subdominant epitopes were detected upon infection of mice with live H7N3 virus, whereas immunization with non-replicating virus elicited CD8+ T cell responses against mostly immunodominant epitopes, which were rapidly recalled following infection with A/PR/8/34 virus. These vaccine-induced T cell responses were able to reduce the lung viral load in mice challenged intranasally with the heterologous influenza virus. CONCLUSIONS A single immunization with non-replicating influenza virus vaccines may be able to elicit or recall cross-reactive CD8+ T cell responses to conserved immunodominant epitopes and, to some extent, counteract an infection by heterologous virus.
Collapse
Affiliation(s)
- Giuseppina Di Mario
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Bruno Garulli
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
| | - Ester Sciaraffia
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Marzia Facchini
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Isabella Donatelli
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Maria R Castrucci
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy.
| |
Collapse
|
42
|
Molecular basis for universal HLA-A*0201-restricted CD8+ T-cell immunity against influenza viruses. Proc Natl Acad Sci U S A 2016; 113:4440-5. [PMID: 27036003 DOI: 10.1073/pnas.1603106113] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Memory CD8(+)T lymphocytes (CTLs) specific for antigenic peptides derived from internal viral proteins confer broad protection against distinct strains of influenza A virus (IAV). However, immune efficacy can be undermined by the emergence of escape mutants. To determine how T-cell receptor (TCR) composition relates to IAV epitope variability, we used ex vivo peptide-HLA tetramer enrichment and single-cell multiplex analysis to compare TCRs targeted to the largely conserved HLA-A*0201-M158and the hypervariable HLA-B*3501-NP418antigens. The TCRαβs for HLA-B*3501-NP418 (+)CTLs varied among individuals and across IAV strains, indicating that a range of mutated peptides will prime different NP418-specific CTL sets. Conversely, a dominant public TRAV27/TRBV19(+)TCRαβ was selected in HLA-A*0201(+)donors responding to M158 This public TCR cross-recognized naturally occurring M158variants complexed with HLA-A*0201. Ternary structures showed that induced-fit molecular mimicry underpins TRAV27/TRBV19(+)TCR specificity for the WT and mutant M158peptides, suggesting the possibility of universal CTL immunity in HLA-A*0201(+)individuals. Combined with the high population frequency of HLA-A*0201, these data potentially explain the relative conservation of M158 Moreover, our results suggest that vaccination strategies aimed at generating broad protection should incorporate variant peptides to elicit cross-reactive responses against other specificities, especially those that may be relatively infrequent among IAV-primed memory CTLs.
Collapse
|
43
|
Identification of Immunodominant Responses to the Plasmodium falciparum Antigens PfUIS3, PfLSA1 and PfLSAP2 in Multiple Strains of Mice. PLoS One 2015; 10:e0144515. [PMID: 26659715 PMCID: PMC4676683 DOI: 10.1371/journal.pone.0144515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/19/2015] [Indexed: 01/09/2023] Open
Abstract
Malaria, caused by the Plasmodium parasite, remains a serious global public health concern. A vaccine could have a substantial impact on eliminating this disease, alongside other preventative measures. We recently described the development of three novel, viral vectored vaccines expressing either of the antigens PfUIS3, PfLSA1 and PfLSAP2. Each vaccination regimen provided high levels of protection against chimeric parasite challenge in a mouse model, largely dependent on CD8+ T cells. In this study we aimed to further characterize the induced cellular immune response to these vaccines. We utilized both the IFNγ enzyme-linked immunosorbent spot assay and intracellular cytokine staining to achieve this aim. We identified immunodominant peptide responses for CD4+ and CD8+ T cells for each of the antigens in BALB/c, C57BL/6 and HLA-A2 transgenic mice, creating a useful tool for researchers for subsequent study of these antigens. We also compared these immunodominant peptides with those generated from epitope prediction software, and found that only a small proportion of the large number of epitopes predicted by the software were identifiable experimentally. Furthermore, we characterized the polyfunctionality of the induced CD8+ T cell responses. These findings contribute to our understanding of the immunological mechanisms underlying these protective vaccines, and provide a useful basis for the assessment of these and related vaccines as clinical constructs.
Collapse
|
44
|
Dong T. CD8+ cytotoxic T lymphocytes in human influenza virus infection. Natl Sci Rev 2015; 2:264-265. [PMID: 26543667 DOI: 10.1093/nsr/nwv033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tao Dong
- MRC Human Immunology Unit, Weather all Institute of Molecular Medicine, Oxford University, UK ; CAMS-Oxford Joint Centre for Translational Immunology, China and UK
| |
Collapse
|
45
|
Cross-Reactivity Between Influenza Matrix- and HIV-1 P17-Specific CTL-A Large Cohort Study. J Acquir Immune Defic Syndr 2015; 69:528-35. [PMID: 25900164 DOI: 10.1097/qai.0000000000000657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND It has been reported that HIV-1-specific cytotoxic T cells (CTL) recognizing the HLA-A2-restricted p17 epitope SLYNTVATL (SL9) can cross-react with the HLA-A2-restricted influenza matrix epitope GILGFVFTL (GL9). So far, the prevalence of GL9-cross-reacting HIV-1-specific CTL in larger cohorts of HIV-1-infected patients is unknown, and there are no data yet on whether SL9/GL9-cross-reactive CTL may influence the course of HIV-1 infection. METHODS We analyzed the presence of SL9/GL9-cross-reacting CTL in a cohort of 175 HLA-A2-positive HIV-1-infected patients. Peripheral blood mononuclear cells were stimulated in vitro with SL9 and GL9 peptides, and outgrowing cell lines regarding cross-reactivity and recognition of viral variants in γ-interferon enzyme-linked immunospot assays were analyzed. RESULTS SL9- and GL9-specific CTL could be generated in 52.6% and 53.7% of 175 patients, respectively. Both SL9- and GL9-specific CTL were more frequently observed in patients on antiretroviral therapy (ART). Of the 92 SL9-specific CTL and the 94 GL9-specific CTL, 65.2% and 66%, respectively, showed at least partial SL9/GL9 cross-reactivity. SL9/GL9-cross-reactive CTL could be detected in 42.9% of the 175 patients. Recognition of SL9 was associated with lower viral loads and higher CD4 cell counts in patients on ART. Patients with GL9/SL9 cross-reactivity displayed similar CD4 cell counts than patients without GL9/SL9-cross-reactive cells. GL9/SL9-cross-reactive cells were associated with higher viral loads in patients on ART. CONCLUSIONS Partially SL9/GL9-cross-reactive CTL are frequently observed in HIV-1-infected patients. So far, we could not detect a significant influence of the presence of SL9/GL9-cross-reacting CTL on the course of HIV-1 infection.
Collapse
|
46
|
Herrmann VL, Hartmayer C, Planz O, Groettrup M. Cytotoxic T cell vaccination with PLGA microspheres interferes with influenza A virus replication in the lung and suppresses the infectious disease. J Control Release 2015; 216:121-31. [PMID: 26276509 DOI: 10.1016/j.jconrel.2015.08.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 10/23/2022]
Abstract
Current influenza virus vaccines aim to elicit antibodies directed toward viral surface glycoproteins, which however are prone to antigenic drift. Cytotoxic T lymphocytes (CTLs) can exhibit heterosubtypic immunity against most influenza A viruses. In our study, we encapsulated the highly conserved, immunodominant, HLA-A*0201 restricted epitope from the influenza virus matrix protein M158-66 together with TLR ligands in biodegradable poly(d,l-lactide-co-glycolide) (PLGA) microspheres. Subcutaneous immunization of transgenic mice expressing chimeric HLA-A*0201 molecules with these microspheres induced a strong and sustained CTL response which sufficed to prevent replication of a recombinant vaccinia virus expressing the influenza A virus (IAV) matrix protein but not the replication of IAV in the lung. However, subcutaneous priming followed by intranasal boosting with M158-66 bearing PLGA microspheres was able to induce vigorous CTL responses both in the lung and spleen of mice which interfered with IAV replication, weight loss, and infection-related death. Taken together, vaccination with well-defined and highly conserved IAV-derived CTL epitopes encapsulated into clinically compatible PLGA microspheres contribute to the control of influenza A virus infections. The promptitude and broad reactivity of the CTL response may help to attenuate pandemic outbreaks of influenza viruses.
Collapse
Affiliation(s)
- Valerie L Herrmann
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany.
| | - Carmen Hartmayer
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany.
| | - Oliver Planz
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany.
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280 Kreuzlingen, Switzerland.
| |
Collapse
|
47
|
Tan MP, Gerry AB, Brewer JE, Melchiori L, Bridgeman JS, Bennett AD, Pumphrey NJ, Jakobsen BK, Price DA, Ladell K, Sewell AK. T cell receptor binding affinity governs the functional profile of cancer-specific CD8+ T cells. Clin Exp Immunol 2015; 180:255-70. [PMID: 25496365 PMCID: PMC4408161 DOI: 10.1111/cei.12570] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2014] [Indexed: 12/17/2022] Open
Abstract
Antigen-specific T cell receptor (TCR) gene transfer via patient-derived T cells is an attractive approach to cancer therapy, with the potential to circumvent immune regulatory networks. However, high-affinity tumour-specific TCR clonotypes are typically deleted from the available repertoire during thymic selection because the vast majority of targeted epitopes are derived from autologous proteins. This process places intrinsic constraints on the efficacy of T cell-based cancer vaccines and therapeutic strategies that employ naturally generated tumour-specific TCRs. In this study, we used altered peptide ligands and lentivirus-mediated transduction of affinity-enhanced TCRs selected by phage display to study the functional properties of CD8(+) T cells specific for three different tumour-associated peptide antigens across a range of binding parameters. The key findings were: (i) TCR affinity controls T cell antigen sensitivity and polyfunctionality; (ii) supraphysiological affinity thresholds exist, above which T cell function cannot be improved; and (iii) T cells transduced with very high-affinity TCRs exhibit cross-reactivity with self-derived peptides presented by the restricting human leucocyte antigen. Optimal system-defined affinity windows above the range established for natural tumour-specific TCRs therefore allow the enhancement of T cell effector function without off-target effects. These findings have major implications for the rational design of novel TCR-based biologics underpinned by rigorous preclinical evaluation.
Collapse
Affiliation(s)
- M P Tan
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Measuring Cellular Immunity to Influenza: Methods of Detection, Applications and Challenges. Vaccines (Basel) 2015; 3:293-319. [PMID: 26343189 PMCID: PMC4494351 DOI: 10.3390/vaccines3020293] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 12/11/2022] Open
Abstract
Influenza A virus is a respiratory pathogen which causes both seasonal epidemics and occasional pandemics; infection continues to be a significant cause of mortality worldwide. Current influenza vaccines principally stimulate humoral immune responses that are largely directed towards the variant surface antigens of influenza. Vaccination can result in an effective, albeit strain-specific antibody response and there is a need for vaccines that can provide superior, long-lasting immunity to influenza. Vaccination approaches targeting conserved viral antigens have the potential to provide broadly cross-reactive, heterosubtypic immunity to diverse influenza viruses. However, the field lacks consensus on the correlates of protection for cellular immunity in reducing severe influenza infection, transmission or disease outcome. Furthermore, unlike serological methods such as the standardized haemagglutination inhibition assay, there remains a large degree of variation in both the types of assays and method of reporting cellular outputs. T-cell directed immunity has long been known to play a role in ameliorating the severity and/or duration of influenza infection, but the precise phenotype, magnitude and longevity of the requisite protective response is unclear. In order to progress the development of universal influenza vaccines, it is critical to standardize assays across sites to facilitate direct comparisons between clinical trials.
Collapse
|
49
|
Developing Universal Influenza Vaccines: Hitting the Nail, Not Just on the Head. Vaccines (Basel) 2015; 3:239-62. [PMID: 26343187 PMCID: PMC4494343 DOI: 10.3390/vaccines3020239] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/11/2015] [Accepted: 03/17/2015] [Indexed: 12/29/2022] Open
Abstract
Influenza viruses have a huge impact on public health. Current influenza vaccines need to be updated annually and protect poorly against antigenic drift variants or novel emerging subtypes. Vaccination against influenza can be improved in two important ways, either by inducing more broadly protective immune responses or by decreasing the time of vaccine production, which is relevant especially during a pandemic outbreak. In this review, we outline the current efforts to develop so-called “universal influenza vaccines”, describing antigens that may induce broadly protective immunity and novel vaccine production platforms that facilitate timely availability of vaccines.
Collapse
|
50
|
Collin JF, Wells JW, Czepulkowski B, Lyne L, Duriez PJ, Banham AH, Mufti GJ, Guinn BA. A novel zinc finger gene, ZNF465, is inappropriately expressed in acute myeloid leukaemia cells. Genes Chromosomes Cancer 2015; 54:288-302. [PMID: 25706801 DOI: 10.1002/gcc.22242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 01/12/2015] [Indexed: 11/08/2022] Open
Abstract
To increase our knowledge of leukaemia-associated antigens, especially in acute myeloid leukaemia (AML) M4, we prepared a phage display cDNA library using mRNA from the bone marrow cells of a patient with AML M4 at diagnosis. We immunoscreened 10(6) pfu with autologous sera and identified an antigen which we named GKT-AML8. The cDNA showed more than 99% similarity to a sequence on 2q21.2 and 95% sequence similarity to a sequence on 19q13.3. These genes were named ZNF465 and ZNF466, respectively, following HUGO Gene Nomenclature Committee (HGNC) guidelines. Expressed sequence tag data suggests that both genes are transcriptionally active. ZNF465 and ZNF466 encode a 5' krüppel associated box domain typical of negative regulators of gene transcription. We have confirmed the translational start site in the +1 frame in a near-Kozak sequence that produces a 102 amino acid polypeptide from ZNF465. The high level of sequence similarity between ZNF465 and ZNF466 makes their transcripts almost indistinguishable by real-time polymerase chain reaction (RT-PCR). However, GKT-AML8 showed most sequence similarity to ZNF465 and no transcript matching the 3' ZNF466 sequence could be detected in patient samples or healthy volunteers. ZNF465/466 expression was detectable in 12/13 AML and 10/14 chronic myeloid leukaemia patients' samples but not in normal donor peripheral blood (0/8) or 0/3 bone marrow samples which had been separated into CD34(+) and CD34(-) samples. The altered expression of ZNF465/466 in patients' samples and its absence in healthy donor haematopoietic samples indicate that ZNF465 is overexpressed in early myeloid disease and as such may represent a promising target for immunotherapy.
Collapse
Affiliation(s)
- Joseph F Collin
- Department of Haematological Medicine, Guy's, King's and St. Thomas' School of Medicine, King's College London, The Rayne Institute, London, UK
| | | | | | | | | | | | | | | |
Collapse
|