1
|
Guvenc F, Danska JS. The intestinal microbiome in type 1 diabetes: bridging early childhood exposures with translational advances. Curr Opin Immunol 2025; 94:102553. [PMID: 40179800 DOI: 10.1016/j.coi.2025.102553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/05/2025]
Abstract
Type 1 diabetes (T1D) results from T cell-mediated destruction of pancreatic β-cells, requiring lifelong insulin therapy and glycemic monitoring. While genetic risk, particularly HLA class II, is well established, rising T1D incidence and earlier onset suggest environmental modifiers. Mouse models show that microbiome alterations influence β-cell autoimmunity, and human studies link microbiome composition to T1D, though specific microbial regulators remain unidentified. We examine host-microbiome interactions, including studies implicating enteroviruses in modulating islet autoimmunity. Mechanistic discoveries of microbial effects on diabetes have emerged from mouse model studies. We consider clinical applications, including microbiota-targeted therapies and biomarkers of microbiome-immune crosstalk. Future research should integrate microbial, genetic, environmental, and immune data using multi-omic approaches. Collaborative efforts combining immunology, microbiology, and clinical metadata will drive discovery and precision medicine in T1D.
Collapse
Affiliation(s)
- Furkan Guvenc
- Hospital for Sick Children Research Institute, Program in Genetics and Genome Biology, Department of Immunology, University of Toronto, ON, Canada
| | - Jayne S Danska
- Hospital for Sick Children Research Institute, Program in Genetics and Genome Biology, Department of Immunology, University of Toronto, ON, Canada; Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, ON, Canada.
| |
Collapse
|
2
|
Mauvais FX, van Endert PM. Type 1 Diabetes: A Guide to Autoimmune Mechanisms for Clinicians. Diabetes Obes Metab 2025. [PMID: 40375390 DOI: 10.1111/dom.16460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/27/2025] [Accepted: 04/30/2025] [Indexed: 05/18/2025]
Abstract
Type 1 diabetes (T1D) results from the destruction of pancreatic beta cells by autoreactive T lymphocytes, leading to insulin deficiency and lifelong insulin dependence. It develops in genetically predisposed individuals, triggered by environmental or immunological factors. Although the exact causes of T1D remain unknown, the autoimmune pathogenesis of the disease is clearly indicated by the genetic risk conferred by allelic human leukocyte antigens (HLA), the almost obligatory presence of islet cell autoantibodies (AAbs) and immune cell infiltration of pancreatic islets from patients. At the same time, epidemiological data point to a role of environmental factors, notably enteroviral infections, in the disease, although precise causative links between specific pathogens and T1D have been difficult to establish. Studies of human pancreas organs from patients made available through repositories and the advent of high-dimensional high-throughput technologies for genomic and proteomic studies have significantly elucidated our understanding of the disease in recent years and provided mechanistic insights that can be exploited for innovative targeted therapeutic approaches. This short overview will summarise current salient knowledge on immune cell and beta cell dysfunction in T1D pathogenesis. PLAIN LANGUAGE SUMMARY: Type 1 diabetes (T1D) is a chronic disease where the body's own immune system attacks and destroys the insulin-producing beta cells in the pancreas. This leads to a lack of insulin, a hormone essential for regulating blood sugar, which means people with T1D need insulin for life. The disease can develop at any age but is most diagnosed in children and young adults. Despite advances in treatment, T1D still significantly reduces life expectancy, especially in countries with fewer healthcare resources. T1D develops in people with a genetic predisposition, often triggered by environmental factors such as viral infections or changes in the gut microbiome. The disease progresses silently through three stages: Stage 1: Autoantibodies to beta cell components appear, signalling the immune system is reacting against the pancreas, but there are no symptoms; Stage 2: Beta cell function starts to decline, but fasting blood sugar is still normal; Stage 3: Enough beta cells are destroyed that fasting blood sugar rises, and symptoms of diabetes appear. The risk of progressing from stage 1 to full-blown diabetes is about 35-50% within five years, and even higher from stage 2. Over 60 genes are linked to T1D risk, most of which affect how the immune system works. The strongest genetic risk comes from specific versions of histocompatibility genes, which help the immune system distinguish between the body's own cells and invaders. Some types of these genes make it easier for the immune system to mistakenly attack beta cells. However, 90% of people diagnosed with T1D have no family member with T1D, showing that genetics is only part of the story. Environmental factors also play a big role. For example, certain viral infections, especially with viruses infecting the intestine, are associated with a higher risk of developing T1D. The gut microbiome - the community of bacteria living in our intestines - also influences risk, with healthier, more diverse microbiomes appearing to offer some protection. In T1D, immune cells - especially so-called T lymphocytes - mistake beta cells in the pancreas for threats and destroy them. This process is called autoimmunity. The attack is often reflected by the presence of autoantibodies against proteins found in beta cells. Over time, as more beta cells are lost, the body can no longer produce enough insulin, leading to the symptoms of diabetes. Interestingly, not all people with T1D have the same pattern of disease. For example, children diagnosed before age 7 often have more aggressive disease, more autoantibodies, and stronger genetic risk factors than those diagnosed later. Much of our understanding of T1D has come from studying animal models, but new technologies now allow researchers to study human pancreas tissue and blood immune cells in greater detail. Scientists are also exploring how the gut microbiome, diet, and environmental exposures contribute to T1D risk and progression. Treatment currently focuses on replacing insulin, but researchers are working on therapies that target the immune system or aim to protect or replace beta cells. Strategies include immunotherapy, gene therapy, and even modifying the gut microbiome. The goal is to prevent or reverse the disease, not just manage its symptoms. In summary, T1D is a complex autoimmune disease influenced by both genes and the environment. It progresses silently before symptoms appear, and while insulin therapy is life-saving, new research is paving the way for treatments that could one day halt or even prevent the disease.
Collapse
Affiliation(s)
- François-Xavier Mauvais
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Service de Physiologie - Explorations Fonctionnelles Pédiatriques, AP-HP, Hôpital Universitaire Robert Debré, Paris, France
| | - Peter M van Endert
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker - Enfants Malades, Paris, France
| |
Collapse
|
3
|
Turicek DP, Wan X. Decoding autoimmunity: HLA-DQβ and type 1 diabetes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf070. [PMID: 40294373 DOI: 10.1093/jimmun/vkaf070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/30/2025]
Affiliation(s)
- David P Turicek
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, United States
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, United States
| | - Xiaoxiao Wan
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, United States
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, United States
| |
Collapse
|
4
|
Kodama Y, Okabe T, Sasaki S, Yokomizo H, Sakamoto R, Niimi K, Ogawa Y. Anti-GAD antibody-negative, anti-IA2 antibody-positive slowly progressive insulin-dependent diabetes mellitus and Graves' disease preceded by childhood-onset minimal change nephrotic syndrome: a case report. Diabetol Int 2025; 16:421-426. [PMID: 40166451 PMCID: PMC11954764 DOI: 10.1007/s13340-024-00787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/18/2024] [Indexed: 04/02/2025]
Abstract
It is rare for a patient to have minimal change nephrotic syndrome, slowly progressive insulin-dependent diabetes mellitus, and Graves' disease in combination. In this case, a patient developed idiopathic nephrotic syndrome at the age of 11 years. She was diagnosed with frequently relapsing nephrotic syndrome and steroid-dependent nephrotic syndrome after repeated increases in urinary protein levels with prednisolone reduction. At the age of 14 years, steroid-induced diabetes was suspected because she was negative for anti-glutamic acid decarboxylase (GAD) antibody, and her glycemic control improved after medication. At the age of 16 years, her nephrotic syndrome was in remission, but even after discontinuation of cyclosporine, her glycemic control did not improve. Decreased insulin secretion and positive anti-insulinoma-associated protein-2 (IA2) antibody were found, and therefore she was diagnosed as having slowly progressive insulin-dependent diabetes mellitus (SPIDDM). Although her glycemic control was stable with insulin therapy, she was diagnosed with asymptomatic Graves' disease at the age of 28 years and started treatment. Human leukocyte antigen testing (HLA) was performed to evaluate the etiology of the disease, which revealed A*02:01, B*35:01, DQA1*03:01, DQB1*03:02, DQB1*04:01, DRB1*04:05, DRB1*08:02, and DPB1*05:01, suggesting genetic involvement of HLA for each disease susceptibility.
Collapse
Affiliation(s)
- Yoshimi Kodama
- Fukuoka Central Hospital, 6-11-2 Yakuin, Chuou-ku, Fukuoka, 810-0022 Japan
| | - Taijiro Okabe
- Fukuoka Central Hospital, 6-11-2 Yakuin, Chuou-ku, Fukuoka, 810-0022 Japan
- Fukuoka Sanno Hospital, 3-6-45 Momochihama, Sawara-ku, Fukuoka, 814-0001 Japan
| | - Shuji Sasaki
- Sasaki Diabetes Clinic, 5-15-13 Nishijin, Sawara-ku, Fukuoka, 814-0002 Japan
| | - Hisashi Yokomizo
- Department of Endocrinology and Diabetes, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180 Japan
| | - Ryuichi Sakamoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Kazuhiko Niimi
- Fukuoka Sanno Hospital, 3-6-45 Momochihama, Sawara-ku, Fukuoka, 814-0001 Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| |
Collapse
|
5
|
Rendell M. Pharmacotherapy of type 1 diabetes - part 2 Today. Expert Opin Pharmacother 2025; 26:719-730. [PMID: 40082213 DOI: 10.1080/14656566.2025.2479598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
INTRODUCTION In the 100 years since isolation and administration of animal insulin to sustain life in Type 1 diabetes, there has been increasing progress in the administration of exogenous insulin to lower glucose levels. AREAS COVERED We reviewed using standard search engines and PubMed present-day techniques of management of type 1 diabetes. EXPERT OPINION Long-acting insulin formulations have been developed to maintain basal glucose levels in the normal range, while rapid acting insulins have been synthesized to address the sharp rise in glucose levels after a meal. Insulin pumps administer insulin continuously subcutaneously guided by continuous glucose monitoring systems. These almost closed loop systems achieve near normal glucose levels other than at meal times where the rapid glucose rise and then fall pose a significant challenge due to the extended duration of subcutaneous insulin depots. Implanted insulin pumps with intraperitoneal delivery may eventually permit improved post meal glucose control. Type 1 diabetes has now been redefined as an autoimmune disease which may be diagnosed purely from the presence of anti-beta cell antibodies with no abnormality of glucose levels. The future will see an intensification of efforts to combat the immune process which destroys beta cells.
Collapse
Affiliation(s)
- Marc Rendell
- The Association of Diabetes Investigators, Omaha, NE, USA
- The Rose Salter Medica Research Foundation, Newport Coast, CA, USA
| |
Collapse
|
6
|
Park Y, Ko KS, Rhee BD. New Perspectives in Studying Type 1 Diabetes Susceptibility Biomarkers. Int J Mol Sci 2025; 26:3249. [PMID: 40244115 PMCID: PMC11989529 DOI: 10.3390/ijms26073249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Type 1 diabetes (T1D) is generally viewed as an etiologic subtype of diabetes caused by the autoimmune destruction of the insulin-secreting β-cells. It has been known that autoreactive T cells unfortunately destroy healthy β-cells. However, there has been a notion of etiologic heterogeneity around the world implicating a varying incidence of a non-autoimmune subgroup of T1D related to insulin deficiency associated with decreased β cell mass, in which the β-cell is the key contributor to the disease. Beta cell dysfunction, reduced mass, and apoptosis may lead to insufficient insulin secretion and ultimately to the development of T1D. Interestingly, Korean as well as other ethnic genetic results have also suggested that genes related with insulin deficiency, let alone those of immune regulation, were associated with the risk of T1D in the young. Genes related with insulin secretion may influence the phenotype of diabetes differentially and different genes may be working on different steps of T1D development. Although we admit the consensus that islet autoimmunity is an essential component in the pathogenesis of T1D, however, dysfunction might occur not only in the immune system but also in the β-cells, the defect of which may induce further dysfunction of the immune system. These arguments stem from the fact that the β-cell might be the trigger of an autoimmune response. This emergent view has many parallels with the fact that by their nature and function, β-cells are prone to biosynthetic stress with limited measures for self-defense. Beta cell stress may induce an immune attack that has considerable negative effects on the production of a vital hormone, insulin. If then, both β-cell stress and islet autoimmunity can be harnessed as targets for intervention strategies. This also may explain why immunotherapy at best delays the progression of T1D and suggests the use of alternative therapies to expand β-cells, in combination with immune intervention strategies, to reverse the disease. Future research should extend to further investigate β-cell biology, in addition to studies of immunologic areas, to find appropriate biomarkers of T1D susceptibility. This will help to decipher β-cell characteristics and the factors regulating their function to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Yongsoo Park
- Department of Internal Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul 01757, Republic of Korea; (K.S.K.); (B.D.R.)
| | | | | |
Collapse
|
7
|
Zhao LP, Papadopoulos GK, Skyler JS, Kwok WW, Bondinas GP, Moustakas AK, Wang R, Pyo CW, Nelson WC, Geraghty DE, Lernmark Å. Two DRB3 residues predictively associate with the progression to type 1 diabetes among DR3 carriers. JCI Insight 2025; 10:e184348. [PMID: 40036070 PMCID: PMC11981622 DOI: 10.1172/jci.insight.184348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 02/21/2025] [Indexed: 03/06/2025] Open
Abstract
HLA-DR genes are associated with the progression from stage 1 and stage 2 to onset of stage 3 type 1 diabetes (T1D), after accounting HLA-DQ genes with which they are in high linkage disequilibrium. Based on an integrated cohort of participants from 2 completed clinical trials, this investigation finds that, sharing a haplotype with the DRB1*03:01 (DR3) allele, DRB3*01:01:02 and *02:02:01 have respectively negative and positive associations with the progression. Furthermore, we uncovered 2 residues (β11, β26, participating in pockets 6 and 4, respectively) on the DRB3 molecule responsible for the progression among DR3 carriers; motif RY and LF respectively delay and promote the progression (hazard ratio [HR] = 0.73 and 2.38, P = 0.039 and 0.017, respectively). Two anchoring pockets 6 and 4 probably bind differential autoantigenic epitopes. We further investigated the progression association with the motifs RY and LF among carriers of DR3 and found that carriers of the motif LF have significantly faster progression than carriers of RY (HR = 1.48, P = 0.019 in unadjusted analysis; HR = 1.39, P = 0.047 in adjusted analysis), results of which provide an impetus to examine the possible role of specific DRB3-binding peptides in the progression to T1D.
Collapse
Affiliation(s)
- Lue Ping Zhao
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- School of Public Health, University of Washington, Seattle, Washington, USA
| | - George K. Papadopoulos
- Laboratory of Biophysics, Biochemistry, Biomaterials and Bioprocessing, Faculty of Agricultural Technology, Technological Educational Institute (TEI) of Epirus, Arta, Greece
| | - Jay S. Skyler
- Diabetes Research Institute and Division of Endocrinology, Diabetes & Metabolism, University of Miami Miler School of Medicine, Miami, Florida, USA
| | | | - George P. Bondinas
- Department of Food Science and Technology, Faculty of Environmental Sciences, Ionian University, Argostoli, Cephalonia, Greece
| | - Antonis K. Moustakas
- Department of Food Science and Technology, Faculty of Environmental Sciences, Ionian University, Argostoli, Cephalonia, Greece
| | - Ruihan Wang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Chul-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Wyatt C. Nelson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Daniel E. Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
8
|
Lernmark Å, Agardh D, Akolkar B, Gesualdo P, Hagopian WA, Haller MJ, Hyöty H, Johnson SB, Elding Larsson H, Liu E, Lynch KF, McKinney EF, McIndoe R, Melin J, Norris JM, Rewers M, Rich SS, Toppari J, Triplett E, Vehik K, Virtanen SM, Ziegler AG, Schatz DA, Krischer J. Looking back at the TEDDY study: lessons and future directions. Nat Rev Endocrinol 2025; 21:154-165. [PMID: 39496810 PMCID: PMC11825287 DOI: 10.1038/s41574-024-01045-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/06/2024]
Abstract
The goal of the TEDDY (The Environmental Determinants of Diabetes in the Young) study is to elucidate factors leading to the initiation of islet autoimmunity (first primary outcome) and those related to progression to type 1 diabetes mellitus (T1DM; second primary outcome). This Review outlines the key findings so far, particularly related to the first primary outcome. The background, history and organization of the study are discussed. Recruitment and follow-up (from age 4 months to 15 years) of 8,667 children showed high retention and compliance. End points of the presence of autoantibodies against insulin, GAD65, IA-2 and ZnT8 revealed the HLA-associated early appearance of insulin autoantibodies (1-3 years of age) and the later appearance of GAD65 autoantibodies. Competing autoantibodies against tissue transglutaminase (marking coeliac disease autoimmunity) also appeared early (2-4 years). Genetic and environmental factors, including enterovirus infection and gastroenteritis, support mechanistic differences underlying one phenotype of autoimmunity against insulin and another against GAD65. Infant growth and both probiotics and high protein intake affect the two phenotypes differently, as do serious life events during pregnancy. As the end of the TEDDY sampling phase is approaching, major omics approaches are in progress to further dissect the mechanisms that might explain the two possible endotypes of T1DM.
Collapse
Affiliation(s)
- Åke Lernmark
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden.
| | - Daniel Agardh
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden
| | - Beena Akolkar
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patricia Gesualdo
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, USA
| | - William A Hagopian
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael J Haller
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Heikki Hyöty
- Department of Virology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Suzanne Bennett Johnson
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Helena Elding Larsson
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden
| | - Edwin Liu
- Digestive Health Institute, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristian F Lynch
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Eoin F McKinney
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Richard McIndoe
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jessica Melin
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marian Rewers
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jorma Toppari
- Department of Paediatrics, Turku University Hospital, Turku, Finland
- Institute of Biomedicine, Research Centre for Integrated Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Eric Triplett
- University of Florida, Department of Microbiology and Cell Science, Gainesville, FL, USA
| | - Kendra Vehik
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Suvi M Virtanen
- Center for Child Health Research, Tampere University and University Hospital and Research, Tampere, Finland
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Munich, Germany
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München and e.V., Munich, Germany
| | - Desmond A Schatz
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Jeffrey Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
9
|
Arshad S, Cameron B, Joglekar AV. Immunopeptidomics for autoimmunity: unlocking the chamber of immune secrets. NPJ Syst Biol Appl 2025; 11:10. [PMID: 39833247 PMCID: PMC11747513 DOI: 10.1038/s41540-024-00482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
T cells mediate pathogenesis of several autoimmune disorders by recognizing self-epitopes presented on Major Histocompatibility Complex (MHC) or Human Leukocyte Antigen (HLA) complex. The majority of autoantigens presented to T cells in various autoimmune disorders are not known, which has impeded autoantigen identification. Recent advances in immunopeptidomics have started to unravel the repertoire of antigenic epitopes presented on MHC. In several autoimmune diseases, immunopeptidomics has led to the identification of novel autoantigens and has enhanced our understanding of the mechanisms behind autoimmunity. Especially, immunopeptidomics has provided key evidence to explain the genetic risk posed by HLA alleles. In this review, we shed light on how immunopeptidomics can be leveraged to discover potential autoantigens. We highlight the application of immunopeptidomics in Type 1 Diabetes (T1D), Systemic Lupus Erythematosus (SLE), and Rheumatoid Arthritis (RA). Finally, we highlight the practical considerations of implementing immunopeptidomics successfully and the technical challenges that need to be addressed. Overall, this review will provide an important context for using immunopeptidomics for understanding autoimmunity.
Collapse
Affiliation(s)
- Sanya Arshad
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin Cameron
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alok V Joglekar
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Herascu A, Avram VF, Gaita L, Alexandra S, Reurean-Pintilei DV, Timar B. Interventions Targeting Insulin Resistance in Patients with Type 1 Diabetes: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:2067. [PMID: 39768947 PMCID: PMC11678706 DOI: 10.3390/medicina60122067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025]
Abstract
Background and Objectives: Insulin resistance (IR) is the most important factor involved in the pathogenesis of type 2 diabetes but may also develop in type 1 diabetes (T1DM). Developing IR in patients with T1DM may generate a burden in achieving glycemic targets and may deteriorate the overall prognosis. This review aims to describe the pathogenesis of IR in T1DM, summarize the common associations of IR with other conditions in patients with T1DM, describe the consequences of developing IR in these patients, and present the interventions that target IR in people with T1DM. Results: The occurrence of IR in T1DM is multifactorial; however, it is frequently linked to overweight or obesity and sedentary lifestyle. Besides impairments in glycemic control and increased insulin requirements, the presence of IR is associated with an increased cardiovascular risk in patients with T1DM. Considering that patients with T1DM are insulin-treated, IR may be evaluated only using surrogate biomarkers, the most frequently used being the estimated glucose disposal rate. The most important interventions that are shown to be feasible in improving insulin sensitivity in patients with T1DM are lifestyle optimizations, including nutrition therapy or physical activity and pharmacotherapy with metformin, sodium-glucose cotransporter-2 inhibitors, glucagon-like peptide-1 receptor agonists, and thiazolidinediones. Conclusions: Targeting the improvement of IR in patients with T1DM is a key element in achieving optimal glycemic control, as well as improving the overall patient's prognosis besides glycemic control.
Collapse
Affiliation(s)
- Andreea Herascu
- Doctoral School of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Department of Diabetes, “Pius Brinzeu” Emergency Hospital, 300723 Timisoara, Romania; (L.G.); (S.A.); (B.T.)
- Centre for Molecular Research in Nephrology and Vascular Disease, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Vlad-Florian Avram
- Department of Diabetes, “Pius Brinzeu” Emergency Hospital, 300723 Timisoara, Romania; (L.G.); (S.A.); (B.T.)
- Centre for Molecular Research in Nephrology and Vascular Disease, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Laura Gaita
- Department of Diabetes, “Pius Brinzeu” Emergency Hospital, 300723 Timisoara, Romania; (L.G.); (S.A.); (B.T.)
- Centre for Molecular Research in Nephrology and Vascular Disease, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Sima Alexandra
- Department of Diabetes, “Pius Brinzeu” Emergency Hospital, 300723 Timisoara, Romania; (L.G.); (S.A.); (B.T.)
- Centre for Molecular Research in Nephrology and Vascular Disease, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Delia-Viola Reurean-Pintilei
- Department of Medical-Surgical and Complementary Sciences, Faculty of Medicine and Biological Sciences, “Stefan cel Mare” University, 720229 Suceava, Romania;
- Department of Diabetes, Nutrition and Metabolic Diseases, Consultmed Medical Centre, 700544 Iasi, Romania
| | - Bogdan Timar
- Department of Diabetes, “Pius Brinzeu” Emergency Hospital, 300723 Timisoara, Romania; (L.G.); (S.A.); (B.T.)
- Centre for Molecular Research in Nephrology and Vascular Disease, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
11
|
Caron L, Vdovenko D, Lombard-Vadnais F, Lesage S. NOD alleles at Idd1 and Idd2 loci drive exocrine pancreatic inflammation. Immunogenetics 2024; 76:323-333. [PMID: 39207501 DOI: 10.1007/s00251-024-01352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Non-obese diabetic (NOD) mice spontaneously develop autoimmune diabetes and have enabled the identification of several loci associated with diabetes susceptibility, termed insulin-dependent diabetes (Idd). The generation of congenic mice has allowed the characterization of the impact of several loci on disease susceptibility. For instance, NOD.B6-Idd1 and B6.NOD-Idd1 congenic mice were instrumental in demonstrating that susceptibility alleles at the MHC locus (known as Idd1) are necessary but not sufficient for autoimmune diabetes progression. We previously showed that diabetes resistance alleles at the Idd2 locus provide significant protection from autoimmune diabetes onset, second to Idd1. In search of the minimal genetic factors required for T1D onset, we generated B6.Idd1.Idd2 double-congenic mice. Although the combination of Idd1 and Idd2 is not sufficient to induce diabetes onset, we observed immune infiltration in the exocrine pancreas of B6.Idd2 mice, as well as an increase in neutrophils and pancreatic tissue fibrosis. In addition, we observed phenotypic differences in T-cell subsets from B6.Idd1.Idd2 mice relative to single-congenic mice, suggesting epistatic interaction between Idd1 and Idd2 in modulating T-cell function. Altogether, these data show that Idd1 and Idd2 susceptibility alleles are not sufficient for autoimmune diabetes but contribute to inflammation and immune infiltration in the pancreas.
Collapse
Affiliation(s)
- Laurence Caron
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | - Daria Vdovenko
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | - Félix Lombard-Vadnais
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | - Sylvie Lesage
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada.
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada.
| |
Collapse
|
12
|
Srivastava N, Vomund AN, Peterson OJ, Abousaway O, Li T, Kain L, Stone P, Clement CC, Sharma S, Zhang B, Liu C, Joglekar AV, Campisi L, Hsieh CS, Santambrogio L, Teyton L, Arbelaez AM, Lichti CF, Wan X. A post-translational cysteine-to-serine conversion in human and mouse insulin generates a diabetogenic neoepitope. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622538. [PMID: 39605669 PMCID: PMC11601459 DOI: 10.1101/2024.11.07.622538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Type 1 diabetes (T1D) affects a genetically susceptible population that develops autoreactive T cells attacking insulin-producing pancreatic β cells. Increasingly, neoantigens are recognized as critical drivers of this autoimmune response. Here, we report a novel insulin neoepitope generated via post-translational cysteine-to-serine conversion (C>S) in human patients, which is also seen in the autoimmune-prone non-obese diabetic (NOD) mice. This modification is driven by oxidative stress within the microenvironment of pancreatic β cells and is further amplified by T1D-relevant inflammatory cytokines, enhancing neoantigen formation in both pancreatic β cells and dendritic cells. We discover that C>S-modified insulin is specifically recognized by CD4 + T cells in human T1D patients and NOD mice. In humans with established T1D, HLA-DQ8-restricted, C>S-specific CD4 + T cells exhibit an activated memory phenotype and lack regulatory signatures. In NOD mice, these neoepitope-specific T cells can orchestrate islet infiltration and promote diabetes progression. Collectively, these data advance a concept that microenvironment-driven and context-dependent post-translational modifications (PTMs) can generate neoantigens that contribute to organ-specific autoimmunity.
Collapse
|
13
|
Taka A, Härkönen T, Vähäsalo P, Vatanen T, Lempainen J, Veijola R, Turtinen M, Ilonen J, Knip M, the Finnish Pediatric Diabetes Register. Characteristics of Type 1 Diabetes Among Patients Carrying the Protective HLA-DQB1*06:02 Allele. HLA 2024; 104:e15720. [PMID: 39564779 PMCID: PMC11586155 DOI: 10.1111/tan.15720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 11/21/2024]
Abstract
We set out to examine in an observational study characteristics of type 1 diabetes at the time of diagnosis among paediatric patients carrying the protective HLA class II DQB1*06:02 allele. We compared characteristics of type 1 diabetes among 5530 Finnish children aged 0-14 years diagnosed between 2003 and 2018. Seventy-five children with type 1 diabetes carried the DQB1*06:02 allele. The carriers of DQB1*06:02 allele were compared to all children with type 1 diabetes without this allele and those with a high-risk genotype. We also analysed, how does the genotype of a high-risk haplotype paired with DQB1*06:02 affect the phenotype of patients with newly diagnosed type 1 diabetes. Carriers of the DQB1*06:02 allele were diagnosed at an older age than those with any other HLA class II genotype (p = 0.003) or the high-risk genotype (p < 0.001). After adjusting the results for age and sex, no significant differences in clinical markers were observed. Glutamic acid decarboxylase autoantibody (GADA) levels were higher among carriers of DQB1*06:02 when compared to those with other genotypes (p = 0.033). Having a high-risk haplotype paired with DQB1*06:02-positive haplotype was associated with higher levels of islet antigen 2 autoantibodies (IA-2A) (p < 0.001) and somewhat shorter duration of symptoms (p = 0.043). The association between the protective DQB1*06:02 allele and an older age at diagnosis as well as higher levels of GADA at diagnosis of type 1 diabetes was confirmed. The effects of the DQB1*06:02-positive haplotype seem to dominate when paired with a high-risk haplotype.
Collapse
Affiliation(s)
- Antti‐Mathias Taka
- Pediatric Research Center, New Children's HospitalHelsinki University HospitalHelsinkiFinland
- Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Taina Härkönen
- Pediatric Research Center, New Children's HospitalHelsinki University HospitalHelsinkiFinland
| | - Paula Vähäsalo
- Research Unit of Clinical MedicineUniversity of OuluOuluFinland
- Medical Research CenterOulu University Hospital and University of OuluOuluFinland
| | - Tommi Vatanen
- Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Liggins InstituteUniversity of AucklandAucklandNew Zealand
| | - Johanna Lempainen
- Immunogenetics Laboratory, Institute of BiomedicineUniversity of TurkuTurkuFinland
- Department of PediatricsUniversity of Turku and Turku University HospitalTurkuFinland
- Clinical MicrobiologyTurku University HospitalTurkuFinland
| | - Riitta Veijola
- Research Unit of Clinical MedicineUniversity of OuluOuluFinland
- Medical Research CenterOulu University Hospital and University of OuluOuluFinland
| | - Maaret Turtinen
- Pediatric Research Center, New Children's HospitalHelsinki University HospitalHelsinkiFinland
- Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Tampere Center for Child Health ResearchTampere University HospitalTampereFinland
| | | |
Collapse
|
14
|
Mitchell JS, Spanier JA, Dwyer AJ, Knutson TP, Alkhatib MH, Qian G, Weno ME, Chen Y, Shaheen ZR, Tucker CG, Kangas TO, Morales MS, Silva N, Kaisho T, Farrar MA, Fife BT. CD4 + T cells reactive to a hybrid peptide from insulin-chromogranin A adopt a distinct effector fate and are pathogenic in autoimmune diabetes. Immunity 2024; 57:2399-2415.e8. [PMID: 39214091 DOI: 10.1016/j.immuni.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/04/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
T cell-mediated islet destruction is a hallmark of autoimmune diabetes. Here, we examined the dynamics and pathogenicity of CD4+ T cell responses to four different insulin-derived epitopes during diabetes initiation in non-obese diabetic (NOD) mice. Single-cell RNA sequencing of tetramer-sorted CD4+ T cells from the pancreas revealed that islet-antigen-specific T cells adopted a wide variety of fates and required XCR1+ dendritic cells for their activation. Hybrid-insulin C-chromogranin A (InsC-ChgA)-specific CD4+ T cells skewed toward a distinct T helper type 1 (Th1) effector phenotype, whereas the majority of insulin B chain and hybrid-insulin C-islet amyloid polypeptide-specific CD4+ T cells exhibited a regulatory phenotype and early or weak Th1 phenotype, respectively. InsC-ChgA-specific CD4+ T cells were uniquely pathogenic upon transfer, and an anti-InsC-ChgA:IAg7 antibody prevented spontaneous diabetes. Our findings highlight the heterogeneity of T cell responses to insulin-derived epitopes in diabetes and argue for the feasibility of antigen-specific therapies that blunts the response of pathogenic CD4+ T cells causing autoimmunity.
Collapse
Affiliation(s)
- Jason S Mitchell
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Justin A Spanier
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA; Center for Autoimmune Disease Research, University of Minnesota, Minneapolis, MN, USA
| | - Alexander J Dwyer
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA
| | - Todd P Knutson
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Mohannad H Alkhatib
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA
| | - Gina Qian
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA
| | - Matthew E Weno
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA
| | - Yixin Chen
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA
| | - Zachary R Shaheen
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, Division of Pediatric Rheumatology, Allergy, & Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Christopher G Tucker
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA
| | - Takashi O Kangas
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA
| | - Milagros Silva Morales
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA
| | - Nubia Silva
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA
| | - Tsuneyasu Kaisho
- Department of Immunology Institute for Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Michael A Farrar
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Brian T Fife
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA; Center for Autoimmune Disease Research, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
15
|
Tanaka K, Kato K, Nonaka N, Seita J. Efficient HLA imputation from sequential SNPs data by transformer. J Hum Genet 2024; 69:533-540. [PMID: 39095607 PMCID: PMC11422163 DOI: 10.1038/s10038-024-01278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
Human leukocyte antigen (HLA) genes are associated with a variety of diseases, yet the direct typing of HLA alleles is both time-consuming and costly. Consequently, various imputation methods leveraging sequential single nucleotide polymorphisms (SNPs) data have been proposed, employing either statistical or deep learning models, such as the convolutional neural network (CNN)-based model, DEEP*HLA. However, these methods exhibit limited imputation efficiency for infrequent alleles and necessitate a large size of reference dataset. In this context, we have developed a Transformer-based model to HLA allele imputation, named "HLA Reliable IMpuatioN by Transformer (HLARIMNT)" designed to exploit the sequential nature of SNPs data. We evaluated HLARIMNT's performance using two distinct reference panels; Pan-Asian reference panel (n = 530) and Type 1 Diabetes genetics Consortium (T1DGC) reference panel (n = 5225), alongside a combined panel (n = 1060). HLARIMNT demonstrated superior accuracy to DEEP*HLA across several indices, particularly for infrequent alleles. Furthermore, we explored the impact of varying training data sizes on imputation accuracy, finding that HLARIMNT consistently outperformed across all data size. These findings suggest that Transformer-based models can efficiently impute not only HLA types but potentially other gene types from sequential SNPs data.
Collapse
Affiliation(s)
- Kaho Tanaka
- Faculty of Engineering, Kyoto University, Kyoto, Japan
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, RIKEN, Tokyo, Japan
| | - Kosuke Kato
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, RIKEN, Tokyo, Japan
| | - Naoki Nonaka
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, RIKEN, Tokyo, Japan
| | - Jun Seita
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, RIKEN, Tokyo, Japan.
| |
Collapse
|
16
|
Hu H, Vomund AN, Peterson OJ, Srivastava N, Li T, Kain L, Beatty WL, Zhang B, Hsieh CS, Teyton L, Lichti CF, Unanue ER, Wan X. Crinophagic granules in pancreatic β cells contribute to mouse autoimmune diabetes by diversifying pathogenic epitope repertoire. Nat Commun 2024; 15:8318. [PMID: 39333495 PMCID: PMC11437215 DOI: 10.1038/s41467-024-52619-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
Autoimmune attack toward pancreatic β cells causes permanent loss of glucose homeostasis in type 1 diabetes (T1D). Insulin secretory granules store and secrete insulin but are also thought to be tissue messengers for T1D. Here, we show that the crinophagic granules (crinosome), a minor set of vesicles formed by fusing lysosomes with the conventional insulin dense-core granules (DCG), are pathogenic in T1D development in mouse models. Pharmacological inhibition of crinosome formation in β cells delays T1D progression without affecting the dominant DCGs. Mechanistically, crinophagy inhibition diminishes the epitope repertoire in pancreatic islets, including cryptic, modified and disease-relevant epitopes derived from insulin. These unconventional insulin epitopes are largely undetectable in the MHC-II epitope repertoire of the thymus, where only canonical insulin epitopes are presented. CD4+ T cells targeting unconventional insulin epitopes display autoreactive phenotypes, unlike tolerized T cells recognizing epitopes presented in the thymus. Thus, the crinophagic pathway emerges as a tissue-intrinsic mechanism that transforms insulin from a signature thymic self-protein to a critical autoantigen by creating a peripheral-thymic mismatch in the epitope repertoire.
Collapse
Affiliation(s)
- Hao Hu
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anthony N Vomund
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Orion J Peterson
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Neetu Srivastava
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Tiandao Li
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lisa Kain
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Wandy L Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Luc Teyton
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Cheryl F Lichti
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Emil R Unanue
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoxiao Wan
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
17
|
Noble JA. Fifty years of HLA-associated type 1 diabetes risk: history, current knowledge, and future directions. Front Immunol 2024; 15:1457213. [PMID: 39328411 PMCID: PMC11424550 DOI: 10.3389/fimmu.2024.1457213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024] Open
Abstract
More than 50 years have elapsed since the association of human leukocyte antigens (HLA) with type 1 diabetes (T1D) was first reported. Since then, methods for identification of HLA have progressed from cell based to DNA based, and the number of recognized HLA variants has grown from a few to tens of thousands. Current genotyping methodology allows for exact identification of all HLA-encoding genes in an individual's genome, with statistical analysis methods evolving to digest the enormous amount of data that can be produced at an astonishing rate. The HLA region of the genome has been repeatedly shown to be the most important genetic risk factor for T1D, and the original reported associations have been replicated, refined, and expanded. Even with the remarkable progress through 50 years and over 5,000 reports, a comprehensive understanding of all effects of HLA on T1D remains elusive. This report represents a summary of the field as it evolved and as it stands now, enumerating many past and present challenges, and suggests possible paradigm shifts for moving forward with future studies in hopes of finally understanding all the ways in which HLA influences the pathophysiology of T1D.
Collapse
Affiliation(s)
- Janelle A. Noble
- Children’s Hospital Oakland Research Institute,
Oakland, CA, United States
- University of California San Francisco, Oakland,
CA, United States
| |
Collapse
|
18
|
Nóvoa-Medina Y, Marcelino-Rodriguez I, Suárez NM, Barreiro-Bautista M, Rivas-García E, Sánchez-Alonso S, González-Martínez G, Quinteiro-González S, Domínguez Á, Cabrera M, López S, Pavlovic S, Flores C, Wägner AM. Does HLA explain the high incidence of childhood-onset type 1 diabetes in the Canary Islands? The role of Asp57 DQB1 molecules. BMC Pediatr 2024; 24:569. [PMID: 39243072 PMCID: PMC11378579 DOI: 10.1186/s12887-024-04983-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/29/2024] [Indexed: 09/09/2024] Open
Abstract
The Canary Islands inhabitants, a recently admixed population with significant North African genetic influence, has the highest incidence of childhood-onset type 1 diabetes (T1D) in Spain and one of the highest in Europe. HLA accounts for half of the genetic risk of T1D. AIMS To characterize the classical HLA-DRB1 and HLA-DQB1 alleles in children from Gran Canaria with and without T1D. METHODS We analyzed classic HLA-DRB1 and HLA-DQB1 alleles in childhood-onset T1D patients (n = 309) and control children without T1D (n = 222) from the island of Gran Canaria. We also analyzed the presence or absence of aspartic acid at position 57 in the HLA-DQB1 gene and arginine at position 52 in the HLA-DQA1 gene. Genotyping of classical HLA-DQB1 and HLA-DRB1 alleles was performed at two-digit resolution using Luminex technology. The chi-square test (or Fisher's exact test) and odds ratio (OR) were computed to assess differences in allele and genotype frequencies between patients and controls. Logistic regression analysis was also used. RESULTS Mean age at diagnosis of T1D was 7.4 ± 3.6 years (46% female). Mean age of the controls was 7.6 ± 1.1 years (55% female). DRB1*03 (OR = 4.2; p = 2.13-13), DRB1*04 (OR = 6.6; p ≤ 2.00-16), DRB1* 07 (OR = 0.37; p = 9.73-06), DRB1*11 (OR = 0.17; p = 6.72-09), DRB1*12, DRB1*13 (OR = 0.38; p = 1.21-05), DRB1*14 (OR = 0.0; p = 0.0024), DRB1*15 (OR = 0.13; p = 7.78-07) and DRB1*16 (OR = 0.21; p = 0.003) exhibited significant differences in frequency between groups. Among the DQB1* alleles, DQB1*02 (OR: 2.3; p = 5.13-06), DQB1*03 (OR = 1.7; p = 1.89-03), DQB1*05 (OR = 0.64; p = 0.027) and DQB1*06 (OR = 0.19; p = 6.25-14) exhibited significant differences. A total of 58% of the studied HLA-DQB1 genes in our control population lacked aspartic acid at position 57. CONCLUSIONS In this population, the overall distributions of the HLA-DRB1 and HLA-DQB1 alleles are similar to those in other European populations. However, the frequency of the non-Asp-57 HLA-DQB1 molecules is greater than that in other populations with a lower incidence of T1D. Based on genetic, historical and epidemiological data, we propose that a common genetic background might help explain the elevated pediatric T1D incidence in the Canary Islands, North-Africa and middle eastern countries.
Collapse
Affiliation(s)
- Yeray Nóvoa-Medina
- Unidad de Endocrinología Pediátrica, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
- Asociación Canaria para la Investigación Pediátrica (ACIP canarias), Las Palmas, Spain.
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| | - Itahisa Marcelino-Rodriguez
- Preventive Medicine and Public Health Area, University of La Laguna, Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Nicolás M Suárez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Marta Barreiro-Bautista
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Eva Rivas-García
- Servicio de Inmunología, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Santiago Sánchez-Alonso
- Servicio de Inmunología, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Gema González-Martínez
- Servicio de Inmunología, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Sofía Quinteiro-González
- Unidad de Endocrinología Pediátrica, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ángela Domínguez
- Unidad de Endocrinología Pediátrica, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - María Cabrera
- Unidad de Endocrinología Pediátrica, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Sara López
- Unidad de Endocrinología Pediátrica, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Svetlana Pavlovic
- Servicio de Pediatría Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Carlos Flores
- Institute of Biomedical Technologies, University of La Laguna, Santa Cruz de Tenerife, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando de Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Ana M Wägner
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Servicio de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
19
|
Dwyer AJ, Shaheen ZR, Fife BT. Antigen-specific T cell responses in autoimmune diabetes. Front Immunol 2024; 15:1440045. [PMID: 39211046 PMCID: PMC11358097 DOI: 10.3389/fimmu.2024.1440045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Autoimmune diabetes is a disease characterized by the selective destruction of insulin-secreting β-cells of the endocrine pancreas by islet-reactive T cells. Autoimmune disease requires a complex interplay between host genetic factors and environmental triggers that promote the activation of such antigen-specific T lymphocyte responses. Given the critical involvement of self-reactive T lymphocyte in diabetes pathogenesis, understanding how these T lymphocyte populations contribute to disease is essential to develop targeted therapeutics. To this end, several key antigenic T lymphocyte epitopes have been identified and studied to understand their contributions to disease with the aim of developing effective treatment approaches for translation to the clinical setting. In this review, we discuss the role of pathogenic islet-specific T lymphocyte responses in autoimmune diabetes, the mechanisms and cell types governing autoantigen presentation, and therapeutic strategies targeting such T lymphocyte responses for the amelioration of disease.
Collapse
Affiliation(s)
- Alexander J. Dwyer
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Zachary R. Shaheen
- Center for Immunology, Department of Pediatrics, Pediatric Rheumatology, Allergy, & Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Brian T. Fife
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
20
|
McGrail C, Sears TJ, Kudtarkar P, Carter H, Gaulton K. Genetic association and machine learning improves discovery and prediction of type 1 diabetes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.31.24311310. [PMID: 39132494 PMCID: PMC11312647 DOI: 10.1101/2024.07.31.24311310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Type 1 diabetes (T1D) has a large genetic component, and expanded genetic studies of T1D can lead to novel biological and therapeutic discovery and improved risk prediction. In this study, we performed genetic association and fine-mapping analyses in 817,718 European ancestry samples genome-wide and 29,746 samples at the MHC locus, which identified 165 independent risk signals for T1D of which 19 were novel. We used risk variants to train a machine learning model (named T1GRS) to predict T1D, which highly differentiated T1D from non-disease and type 2 diabetes (T2D) in Europeans as well as African Americans at or beyond the level of current standards. We identified extensive non-linear interactions between risk loci in T1GRS, for example between HLA-DQB1*57 and INS, coding and non-coding HLA alleles, and DEXI, INS and other beta cell loci, that provided mechanistic insight and improved risk prediction. T1D individuals formed distinct clusters based on genetic features from T1GRS which had significant differences in age of onset, HbA1c, and renal disease severity. Finally, we provided T1GRS in formats to enhance accessibility of risk prediction to any user and computing environment. Overall, the improved genetic discovery and prediction of T1D will have wide clinical, therapeutic, and research applications.
Collapse
Affiliation(s)
- Carolyn McGrail
- Biomedical sciences graduate program, University of California San Diego, La Jolla CA
| | - Timothy J. Sears
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla CA
| | - Parul Kudtarkar
- Department of Pediatrics, University of California San Diego, La Jolla CA
| | - Hannah Carter
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla CA
- Moore’s Cancer Center, University of California San Diego, La Jolla CA
- Department of Medicine, University of California San Diego, La Jolla CA
| | - Kyle Gaulton
- Department of Pediatrics, University of California San Diego, La Jolla CA
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla CA
| |
Collapse
|
21
|
Yau C, Danska JS. Cracking the type 1 diabetes code: Genes, microbes, immunity, and the early life environment. Immunol Rev 2024; 325:23-45. [PMID: 39166298 DOI: 10.1111/imr.13362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Type 1 diabetes (T1D) results from a complex interplay of genetic predisposition, immunological dysregulation, and environmental triggers, that culminate in the destruction of insulin-secreting pancreatic β cells. This review provides a comprehensive examination of the multiple factors underpinning T1D pathogenesis, to elucidate key mechanisms and potential therapeutic targets. Beginning with an exploration of genetic risk factors, we dissect the roles of human leukocyte antigen (HLA) haplotypes and non-HLA gene variants associated with T1D susceptibility. Mechanistic insights gleaned from the NOD mouse model provide valuable parallels to the human disease, particularly immunological intricacies underlying β cell-directed autoimmunity. Immunological drivers of T1D pathogenesis are examined, highlighting the pivotal contributions of both effector and regulatory T cells and the multiple functions of B cells and autoantibodies in β-cell destruction. Furthermore, the impact of environmental risk factors, notably modulation of host immune development by the intestinal microbiome, is examined. Lastly, the review probes human longitudinal studies, unveiling the dynamic interplay between mucosal immunity, systemic antimicrobial antibody responses, and the trajectories of T1D development. Insights garnered from these interconnected factors pave the way for targeted interventions and the identification of biomarkers to enhance T1D management and prevention strategies.
Collapse
Affiliation(s)
- Christopher Yau
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jayne S Danska
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Robertson CC, Elgamal RM, Henry-Kanarek BA, Arvan P, Chen S, Dhawan S, Eizirik DL, Kaddis JS, Vahedi G, Parker SCJ, Gaulton KJ, Soleimanpour SA. Untangling the genetics of beta cell dysfunction and death in type 1 diabetes. Mol Metab 2024; 86:101973. [PMID: 38914291 PMCID: PMC11283044 DOI: 10.1016/j.molmet.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a complex multi-system disease which arises from both environmental and genetic factors, resulting in the destruction of insulin-producing pancreatic beta cells. Over the past two decades, human genetic studies have provided new insight into the etiology of T1D, including an appreciation for the role of beta cells in their own demise. SCOPE OF REVIEW Here, we outline models supported by human genetic data for the role of beta cell dysfunction and death in T1D. We highlight the importance of strong evidence linking T1D genetic associations to bona fide candidate genes for mechanistic and therapeutic consideration. To guide rigorous interpretation of genetic associations, we describe molecular profiling approaches, genomic resources, and disease models that may be used to construct variant-to-gene links and to investigate candidate genes and their role in T1D. MAJOR CONCLUSIONS We profile advances in understanding the genetic causes of beta cell dysfunction and death at individual T1D risk loci. We discuss how genetic risk prediction models can be used to address disease heterogeneity. Further, we present areas where investment will be critical for the future use of genetics to address open questions in the development of new treatment and prevention strategies for T1D.
Collapse
Affiliation(s)
- Catherine C Robertson
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Ruth M Elgamal
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Belle A Henry-Kanarek
- Department of Internal Medicine and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Peter Arvan
- Department of Internal Medicine and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA; Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - John S Kaddis
- Department of Diabetes and Cancer Discovery Science, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Golnaz Vahedi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
| | - Kyle J Gaulton
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| | - Scott A Soleimanpour
- Department of Internal Medicine and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
23
|
Kajita R, Takahashi H, Yoshino S, Matsumoto S, Horiguchi K, Okada S, Yamada M, Yamada E. Characteristics of Human Leukocyte Antigen Class II Genes in Japanese Patients with Type 1 Diabetes and Autoimmune Thyroid Disease. TOHOKU J EXP MED 2024; 263:133-139. [PMID: 38692862 DOI: 10.1620/tjem.2024.j027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Genetic factors, particularly human leukocyte antigen (HLA) class II genes, are known to significantly influence the onset of type 1 diabetes (T1D). Additionally, patients with T1D often develop autoimmune thyroid diseases (AITD). Despite this association, comprehensive research on individuals with both AITD and T1D in Japan, especially regarding the influence of specific HLA alleles, remains insufficient. In this retrospective study, we analyzed 44 inpatients diagnosed with T1D. These patients were predominantly female, with an average onset age of 35 years, poor blood sugar control, and approximately 43.2% had concurrent AITD. We observed significant associations of HLA-DRB1*04:05, HLA-DRB1*09:01 and HLA-DRB1*15:02 alleles with T1D regardless of AITD presence, which had been previously established for T1D in Japanese. In this context, comparing Japanese patients with AITD alone, we noted AITD comorbidity with T1D results in alterations in the frequencies of HLA-DRB1*09:01, HLA-DRB1*04:03, and HLA-DRB1*15:02. Furthermore, HLA-DRB1*04:05, HLA-DRB1*09:01, HLA-DRB1*13:02, and HLA-DRB1*15:01 alleles may be alleles whose susceptibility varies for both conditions. These findings underscore the importance of understanding the relationship between T1D, AITD, and HLA genetics, which may inform personalized treatment strategies and facilitate the development of targeted therapies. Future research endeavors should aim to elucidate underlying mechanisms and validate these findings in larger cohorts.
Collapse
Affiliation(s)
- Risa Kajita
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine
| | - Haruna Takahashi
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine
| | - Satoshi Yoshino
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine
| | - Shunichi Matsumoto
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine
| | - Kazuhiko Horiguchi
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine
| | - Shuichi Okada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine
| | - Masanobu Yamada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine
| | - Eijiro Yamada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine
| |
Collapse
|
24
|
Dai YD, Du W, Wang Y, Hu WY. A Targeted Deep Sequencing Method to Quantify Endogenous Retrovirus Gag Sequence Variants and Open Reading Frames Expressed in Nonobese Diabetic Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:15-22. [PMID: 38738929 DOI: 10.4049/jimmunol.2300660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
Endogenous retroviruses (ERVs) are involved in autoimmune diseases such as type 1 diabetes (T1D). ERV gene products homologous to murine leukemia retroviruses are expressed in the pancreatic islets of NOD mice, a model of T1D. One ERV gene, Gag, with partial or complete open reading frames (ORFs), is detected in the islets, and it contains many sequence variants. An amplicon deep sequencing analysis was established by targeting a conserved region within the Gag gene to compare NOD with T1D-resistant mice or different ages of prediabetic NOD mice. We observed that the numbers of different Gag variants and ORFs are linked to T1D susceptibility. More importantly, these numbers change during the course of diabetes development and can be quantified to calculate the levels of disease progression. Sequence alignment analysis led to identification of additional markers, including nucleotide mismatching and amino acid consensus at specific positions that can distinguish the early and late stages, before diabetes onset. Therefore, the expression of sequence variants and ORFs of ERV genes, particularly Gag, can be quantified as biomarkers to estimate T1D susceptibility and disease progression.
Collapse
Affiliation(s)
- Yang D Dai
- Biomedical Research Institute of Southern California, Oceanside, CA
- HERV Laboratory, San Diego, CA
| | | | | | | |
Collapse
|
25
|
Herold KC, Delong T, Perdigoto AL, Biru N, Brusko TM, Walker LSK. The immunology of type 1 diabetes. Nat Rev Immunol 2024; 24:435-451. [PMID: 38308004 PMCID: PMC7616056 DOI: 10.1038/s41577-023-00985-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 02/04/2024]
Abstract
Following the seminal discovery of insulin a century ago, treatment of individuals with type 1 diabetes (T1D) has been largely restricted to efforts to monitor and treat metabolic glucose dysregulation. The recent regulatory approval of the first immunotherapy that targets T cells as a means to delay the autoimmune destruction of pancreatic β-cells highlights the critical role of the immune system in disease pathogenesis and tends to pave the way for other immune-targeted interventions for T1D. Improving the efficacy of such interventions across the natural history of the disease will probably require a more detailed understanding of the immunobiology of T1D, as well as technologies to monitor residual β-cell mass and function. Here we provide an overview of the immune mechanisms that underpin the pathogenesis of T1D, with a particular emphasis on T cells.
Collapse
Affiliation(s)
- Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT, USA.
- Department of Internal Medicine, Yale University, New Haven, CT, USA.
| | - Thomas Delong
- Anschutz Medical Campus, University of Colorado, Denver, CO, USA
| | - Ana Luisa Perdigoto
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Internal Medicine, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Noah Biru
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, University College London, London, UK.
- Division of Infection & Immunity, University College London, London, UK.
| |
Collapse
|
26
|
Yamada E, Kajita R, Takahashi H, Horiguchi K, Yoshino S, Matsumoto S, Okada S, Yamada M. Exploring potential correlations between HLA class II and the risk of microvascular complications in Japanese patients with type 1 diabetes. J Diabetes Complications 2024; 38:108763. [PMID: 38696976 DOI: 10.1016/j.jdiacomp.2024.108763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/13/2024] [Accepted: 04/28/2024] [Indexed: 05/04/2024]
Abstract
Managing complications in Type 1 diabetes (T1D) remains challenging. HLA genes, particularly DR and DQ, are linked to T1D susceptibility. We studied 48 Japanese T1D inpatients and revealed associations between DRB1*04:05-DQB1*04:01 and DRB1*09:01-DQB1*03:03 haplotypes and complications, offering a new perspective for future research.
Collapse
Affiliation(s)
- Eijiro Yamada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan.
| | - Risa Kajita
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Haruna Takahashi
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Kazuhiko Horiguchi
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Satoshi Yoshino
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Shunichi Matsumoto
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Shuichi Okada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Masanobu Yamada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| |
Collapse
|
27
|
Michalek DA, Tern C, Zhou W, Robertson CC, Farber E, Campolieto P, Chen WM, Onengut-Gumuscu S, Rich SS. A multi-ancestry genome-wide association study in type 1 diabetes. Hum Mol Genet 2024; 33:958-968. [PMID: 38453145 PMCID: PMC11102596 DOI: 10.1093/hmg/ddae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 02/09/2023] [Indexed: 03/09/2024] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by destruction of the pancreatic β-cells. Genome-wide association (GWAS) and fine mapping studies have been conducted mainly in European ancestry (EUR) populations. We performed a multi-ancestry GWAS to identify SNPs and HLA alleles associated with T1D risk and age at onset. EUR families (N = 3223), and unrelated individuals of African (AFR, N = 891) and admixed (Hispanic/Latino) ancestry (AMR, N = 308) were genotyped using the Illumina HumanCoreExome BeadArray, with imputation to the TOPMed reference panel. The Multi-Ethnic HLA reference panel was utilized to impute HLA alleles and amino acid residues. Logistic mixed models (T1D risk) and frailty models (age at onset) were used for analysis. In GWAS meta-analysis, seven loci were associated with T1D risk at genome-wide significance: PTPN22, HLA-DQA1, IL2RA, RNLS, INS, IKZF4-RPS26-ERBB3, and SH2B3, with four associated with T1D age at onset (PTPN22, HLA-DQB1, INS, and ERBB3). AFR and AMR meta-analysis revealed NRP1 as associated with T1D risk and age at onset, although NRP1 variants were not associated in EUR ancestry. In contrast, the PTPN22 variant was significantly associated with risk only in EUR ancestry. HLA alleles and haplotypes most significantly associated with T1D risk in AFR and AMR ancestry differed from that seen in EUR ancestry; in addition, the HLA-DRB1*08:02-DQA1*04:01-DQB1*04:02 haplotype was 'protective' in AMR while HLA-DRB1*08:01-DQA1*04:01-DQB1*04:02 haplotype was 'risk' in EUR ancestry, differing only at HLA-DRB1*08. These results suggest that much larger sample sizes in non-EUR populations are required to capture novel loci associated with T1D risk.
Collapse
Affiliation(s)
- Dominika A Michalek
- Center for Public Health Genomics, University of Virginia, 1330 Jefferson Park Avenue, Charlottesville, VA 22908, United States
| | - Courtney Tern
- Center for Public Health Genomics, University of Virginia, 1330 Jefferson Park Avenue, Charlottesville, VA 22908, United States
| | - Wei Zhou
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, United States
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, 185 Cambridge Street, Boston, MA 02114, United States
| | - Catherine C Robertson
- Center for Public Health Genomics, University of Virginia, 1330 Jefferson Park Avenue, Charlottesville, VA 22908, United States
| | - Emily Farber
- Center for Public Health Genomics, University of Virginia, 1330 Jefferson Park Avenue, Charlottesville, VA 22908, United States
| | - Paul Campolieto
- Center for Public Health Genomics, University of Virginia, 1330 Jefferson Park Avenue, Charlottesville, VA 22908, United States
| | - Wei-Min Chen
- Center for Public Health Genomics, University of Virginia, 1330 Jefferson Park Avenue, Charlottesville, VA 22908, United States
- Department of Public Health Sciences, University of Virginia, 1330 Jefferson Park Avenue, Charlottesville, VA 22908, United States
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, 1330 Jefferson Park Avenue, Charlottesville, VA 22908, United States
- Department of Public Health Sciences, University of Virginia, 1330 Jefferson Park Avenue, Charlottesville, VA 22908, United States
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, 1330 Jefferson Park Avenue, Charlottesville, VA 22908, United States
- Department of Public Health Sciences, University of Virginia, 1330 Jefferson Park Avenue, Charlottesville, VA 22908, United States
| |
Collapse
|
28
|
Costanzo A, Clarke D, Holt M, Sharma S, Nagy K, Tan X, Kain L, Abe B, Luce S, Boitard C, Wyseure T, Mosnier LO, Su AI, Grimes C, Finn MG, Savage PB, Gottschalk M, Pettus J, Teyton L. Repositioning the Early Pathology of Type 1 Diabetes to the Extraislet Vasculature. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1094-1104. [PMID: 38426888 PMCID: PMC10944819 DOI: 10.4049/jimmunol.2300769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
Type 1 diabetes (T1D) is a prototypic T cell-mediated autoimmune disease. Because the islets of Langerhans are insulated from blood vessels by a double basement membrane and lack detectable lymphatic drainage, interactions between endocrine and circulating T cells are not permitted. Thus, we hypothesized that initiation and progression of anti-islet immunity required islet neolymphangiogenesis to allow T cell access to the islet. Combining microscopy and single cell approaches, the timing of this phenomenon in mice was situated between 5 and 8 wk of age when activated anti-insulin CD4 T cells became detectable in peripheral blood while peri-islet pathology developed. This "peri-insulitis," dominated by CD4 T cells, respected the islet basement membrane and was limited on the outside by lymphatic endothelial cells that gave it the attributes of a tertiary lymphoid structure. As in most tissues, lymphangiogenesis seemed to be secondary to local segmental endothelial inflammation at the collecting postcapillary venule. In addition to classic markers of inflammation such as CD29, V-CAM, and NOS, MHC class II molecules were expressed by nonhematopoietic cells in the same location both in mouse and human islets. This CD45- MHC class II+ cell population was capable of spontaneously presenting islet Ags to CD4 T cells. Altogether, these observations favor an alternative model for the initiation of T1D, outside of the islet, in which a vascular-associated cell appears to be an important MHC class II-expressing and -presenting cell.
Collapse
Affiliation(s)
- Anne Costanzo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Don Clarke
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Marie Holt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Siddhartha Sharma
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Kenna Nagy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Xuqian Tan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Lisa Kain
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Brian Abe
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | | | | | - Tine Wyseure
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Laurent O. Mosnier
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Andrew I. Su
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Catherine Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE
| | - M. G. Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT
| | - Michael Gottschalk
- Rady Children’s Hospital, University of California San Diego, San Diego, CA
| | - Jeremy Pettus
- UC San Diego School of Medicine, University of California San Diego, San Diego, CA
| | - Luc Teyton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
29
|
Ilonen J, Kiviniemi M, El-Amir MI, Nygård L, Härkönen T, Lempainen J, Knip M. Increased Frequency of the HLA-DRB1*04:04-DQA1*03-DQB1*03:02 Haplotype Among HLA-DQB1*06:02-Positive Children With Type 1 Diabetes. Diabetes 2024; 73:306-311. [PMID: 37934957 DOI: 10.2337/db23-0387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
HLA-DR/DQ haplotypes largely define genetic susceptibility to type 1 diabetes (T1D). The DQB1*06:02-positive haplotype (DR15-DQ602) common in individuals of European ancestry is very rare among children with T1D. Among 4,490 children with T1D in the Finnish Pediatric Diabetes Register, 57 (1.3%) case patients with DQB1*06:02 were identified, in comparison with 26.1% of affected family-based association control participants. There were no differences between DQB1*06:02-positive and -negative children with T1D regarding sex, age, islet autoantibody distribution, or autoantibody levels, but significant differences were seen in the frequency of second class II HLA haplotypes. The most prevalent haplotype present with DQB1*06:02 was DRB1*04:04-DQA1*03-DQB1*03:02, which was found in 27 (47.4%) of 57 children, compared with only 797 (18.0%) of 4,433 among DQB1*06:02-negative case patients (P < 0.001 by χ2 test). The other common risk-associated haplotypes, DRB1*04:01-DQA1*03-DQB1*03:02 and (DR3)-DQA1*05-DQB1*02, were less prevalent in DQB1*06:02-positive versus DQB1*06:02-negative children (P < 0.001). HLA-B allele frequencies did not differ by DQB1*06:02 haplotype between children with T1D and control participants or by DRB1*04:04-DQA1*03-DQB1*03:02 haplotype between DQB1*06:02-positive and -negative children with T1D. The increased frequency of the DRB1*04:04 allele among DQB1*06:02-positive case patients may indicate a preferential ability of the DR404 molecule to present islet antigen epitopes despite competition by DQ602. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Minna Kiviniemi
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Mostafa I El-Amir
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Medical Microbiology and Immunology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Lucas Nygård
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Taina Härkönen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Lempainen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
- Departments of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
30
|
Caramalho I, Matoso P, Ligeiro D, Paixão T, Sobral D, Fitas AL, Limbert C, Demengeot J, Penha-Gonçalves C. The rare DRB1*04:08-DQ8 haplotype is the main HLA class II genetic driver and discriminative factor of Early-onset Type 1 diabetes in the Portuguese population. Front Immunol 2024; 14:1299609. [PMID: 38318503 PMCID: PMC10839680 DOI: 10.3389/fimmu.2023.1299609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/06/2023] [Indexed: 02/07/2024] Open
Abstract
Introduction Early-onset Type 1 diabetes (EOT1D) is considered a disease subtype with distinctive immunological and clinical features. While both Human Leukocyte Antigen (HLA) and non-HLA variants contribute to age at T1D diagnosis, detailed analyses of EOT1D-specific genetic determinants are still lacking. This study scrutinized the involvement of the HLA class II locus in EOT1D genetic control. Methods We conducted genetic association and regularized logistic regression analyses to evaluate genotypic, haplotypic and allelic variants in DRB1, DQA1 and DQB1 genes in children with EOT1D (diagnosed at ≤5 years of age; n=97), individuals with later-onset disease (LaOT1D; diagnosed 8-30 years of age; n=96) and nondiabetic control subjects (n=169), in the Portuguese population. Results Allelic association analysis of EOT1D and LaOT1D unrelated patients in comparison with controls, revealed that the rare DRB1*04:08 allele is a distinctive EOT1D susceptibility factor (corrected p-value=7.0x10-7). Conversely, the classical T1D risk allele DRB1*04:05 was absent in EOT1D children while was associated with LaOT1D (corrected p-value=1.4x10-2). In corroboration, HLA class II haplotype analysis showed that the rare DRB1*04:08-DQ8 haplotype is specifically associated with EOT1D (corrected p-value=1.4x10-5) and represents the major HLA class II genetic driver and discriminative factor in the development of early onset disease. Discussion This study uncovered that EOT1D holds a distinctive spectrum of HLA class II susceptibility loci, which includes risk factors overlapping with LaOT1D and discriminative genetic configurations. These findings warrant replication studies in larger multicentric settings encompassing other ethnicities and may impact target screening strategies and follow-up of young children with high T1D genetic risk as well as personalized therapeutic approaches.
Collapse
Affiliation(s)
- Iris Caramalho
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Paula Matoso
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Dário Ligeiro
- Centro de Sangue e Transplantação de Lisboa, Instituto Português do Sangue e Transplantação, Unidade de Imunocirurgia e Imunoterapia, Fundação Champalimaud, Lisboa, Portugal
| | - Tiago Paixão
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Ana Laura Fitas
- Pediatric Endocrinology Unit, Hospital de Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central (CHULC)/Nova Medical School, Lisbon, Portugal
| | - Catarina Limbert
- Pediatric Endocrinology Unit, Hospital de Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central (CHULC)/Nova Medical School, Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal
| | | | | |
Collapse
|
31
|
Onengut-Gumuscu S, Webb-Robertson BJM, Sarkar S, Manichaikul A, Hu X, Frazer-Abel A, Holers VM, Rewers MJ, Rich SS. Genetic variants in the complement system and their potential link in the aetiology of type 1 diabetes. Diabetes Metab Res Rev 2024; 40:e3716. [PMID: 37649398 DOI: 10.1002/dmrr.3716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
Type 1 diabetes is an autoimmune disease in which one's own immune system destroys insulin-secreting beta cells in the pancreas. This process results in life-long dependence on exogenous insulin for survival. Both genetic and environmental factors play a role in disease initiation, progression, and ultimate clinical diagnosis of type 1 diabetes. This review will provide background on the natural history of type 1 diabetes and the role of genetic factors involved in the complement system, as several recent studies have identified changes in levels of these proteins as the disease evolves from pre-clinical through to clinically apparent disease.
Collapse
Affiliation(s)
- Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Bobbie-Jo M Webb-Robertson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Xiaowei Hu
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Ashley Frazer-Abel
- Exsera BioLabs, Division of Rheumatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - V Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marian J Rewers
- Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
32
|
Khadilkar A, Oza C, Mondkar SA. Insulin Resistance in Adolescents and Youth With Type 1 Diabetes: A Review of Problems and Solutions. Clin Med Insights Endocrinol Diabetes 2023; 16:11795514231206730. [PMID: 37901890 PMCID: PMC10604500 DOI: 10.1177/11795514231206730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
Though insulin resistance (IR) was previously considered a feature of only type 2 Diabetes (T2DM), its development in type 1 Diabetes (T1DM) is not an uncommon occurrence, the causes of which are multifactorial (gender, pubertal status, diabetes duration, ethnicity, genetics, adiposity, glycemic control, chronic inflammation). Despite improvements in glucose, blood pressure and lipid profile, vascular complications (coronary artery disease and nephropathy) continue to remain common causes of morbidity and mortality in T1DM. Aggressive glycemic control reduces but does not eliminate the risk of IR. IR accelerates the development of micro and macrovascular complications, many of which can be potentially reversed if diagnosed and managed early. Lack of endogenous insulin production makes estimation of insulin sensitivity in T1DM difficult. As hyperinsulinemic-euglycemic clamp studies are cumbersome and invasive, the use of prediction equations for calculating estimated insulin sensitivity may prove to be useful. Along with intensive insulin therapy, dietary modifications and increasing physical activity, the role of Metformin in managing IR in T1DM is becoming increasingly popular. Metformin adjunct therapy in T1DM has been shown to improve insulin sensitivity, glycemic control, lipid profile, body composition, vascular smooth muscle function, thereby reducing the risk of vascular complications, as well as reversal of early vascular dysfunction. However, further studies to assess long-term efficacy and safety of Metformin use in adolescents and youth with T1DM are needed. This review aims at revisiting the pathophysiology of IR in T1DM and techniques of identifying those at risk so as to put into action various strategies for management of the same.
Collapse
Affiliation(s)
- Anuradha Khadilkar
- Hirabai Cowasji Jehangir Medical Research Institute, Jehangir Hospital, Pune, Maharashtra, India
- Interdisciplinary School of Health Sciences, Savitribai Phule University, Pune, Maharashtra, India
| | - Chirantap Oza
- Hirabai Cowasji Jehangir Medical Research Institute, Jehangir Hospital, Pune, Maharashtra, India
| | - Shruti A Mondkar
- Hirabai Cowasji Jehangir Medical Research Institute, Jehangir Hospital, Pune, Maharashtra, India
| |
Collapse
|
33
|
Shang W, Ou G, Ji X, Chen J, Wang J, Jiang Y. Investigating the Correlation Between HLA-II Gene Polymorphism and RhE Alloimmunization in Pregnant Chinese Women. Indian J Hematol Blood Transfus 2023; 39:662-669. [PMID: 37786831 PMCID: PMC10542046 DOI: 10.1007/s12288-023-01632-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
The Rhesus (Rh) blood group is a significant and complicated biological system in humans. Incompatible transfusion or pregnancy with Rh antigens can lead to the production of alloantibodies, among which the anti-E antibody is prevalent. The relationship between Anti-E antibody and HLA-II gene polymorphism in Chinese pregnant women is worth exploring. Our aim in this study was to verify the correlation between HLA-II gene polymorphisms and RhE alloimmunization in pregnant Chinese women through HLA-II typing and DR-RhE structural prediction. In total, 94 anti-E-negative pregnant women and 103 anti-E-positive pregnant women were enrolled from Southwest China Second Hospital, and HLA-II genotyping was performed using next-generation sequencing. NetMHCpan software was used to predict the binding of E -derived anchoring peptides to HLA-DRB1 molecules. AlphaFold was used to analyze the differences in antigen presentation based on the structure of major histocompatibility complex peptides. The HLA-DRB1*09:01-DQA1*03:02-DQB1*03:03 haplotype showed a significant positive association with anti-E. One E-derived anchoring peptide (219FWPSVNSPL227) was predicted to bind to the HLA-DRB1*09:01 molecule. The interaction between the 60Ser of DR9 and 226pro of RhE comprised one hydrogen bond. This study demonstrated that HLA-II haplotypes are associated with allo-anti-E antibodies in pregnant women from Sichuan Province, China. The HLA-DRB1*09:01-DQA1*03:02-DQB1*03:03 phenotype may enhance the formation of anti-E alloantibodies, and the HLA-DRB1*09:01 molecule may play a key role in alloimmunity.
Collapse
Affiliation(s)
- Wenling Shang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Ren Min Nan Lu, Chengdu, 610041 Sichuan China
| | - Guojin Ou
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Ren Min Nan Lu, Chengdu, 610041 Sichuan China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children, (Sichuan University), Chengdu, Sichuan China
| | - Xin Ji
- Clinical Blood Transfusion Research Center, Institute of Blood Transfusion, CAMS and PUMC, No. 26 Hua-Cai Road, Chengdu, 610052 Sichuan China
- Key Laboratory of Transfusion Adverse Reactions, CAMS and PUMC, Chengdu, Sichuan China
| | - Jian Chen
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Ren Min Nan Lu, Chengdu, 610041 Sichuan China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children, (Sichuan University), Chengdu, Sichuan China
| | - Jue Wang
- Clinical Blood Transfusion Research Center, Institute of Blood Transfusion, CAMS and PUMC, No. 26 Hua-Cai Road, Chengdu, 610052 Sichuan China
- Key Laboratory of Transfusion Adverse Reactions, CAMS and PUMC, Chengdu, Sichuan China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Ren Min Nan Lu, Chengdu, 610041 Sichuan China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children, (Sichuan University), Chengdu, Sichuan China
| |
Collapse
|
34
|
Kumar S, Gupta MK, Gupta SK, Katara P. Investigation of molecular interaction and conformational stability of disease concomitant to HLA-DRβ3. J Biomol Struct Dyn 2023; 41:8417-8431. [PMID: 36245311 DOI: 10.1080/07391102.2022.2134211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/03/2022] [Indexed: 10/24/2022]
Abstract
Human leucocyte antigen DRβ3 is associated with specific autoimmune thyroid disease and plays a vital role in the progression of Grave's disease. The available crystallographic structure of the HLA DRA, DRβ3*0101, was selected and used to generate mutation at position 57 from valine amino acid to Aspartic acid (D), Glutamic acid (E), Alanine (A), and Serine (S) amino acids by computational modeling approach. Mutant models were minimized, and stable conformation was chosen based on the lowest root mean square deviation value. Molecular docking assessed the best binding affinity of ligands C1, C2, C3, and C4 with wild-type and mutant HLA-DRβ3 models. Molecular dynamics simulation studies were executed to evaluate the stability of selected hits with wild-type and mutant dock complexes. The C3 has shown good binding affinity with wild-type and selected mutants; V57A, V57E, and V57D. Structural and molecular dynamics insights reveal the differences between wild-type and mutant-type HLA-DRβ3, which could help design novel antagonist molecules against autoimmune thyroid disorder.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Bioinformatics, University Institute of Engineering and Technology, Chhatrapati Shahu Ji Maharaj University Kanpur, Kanpur, Uttar Pradesh, India
| | - Manish Kumar Gupta
- Department of Biotechnology, Faculty of Science, Veer Bahadur Singh Purvanchal University Jaunpur, Jaunpur, Uttar Pradesh, India
| | - Sunil Kumar Gupta
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Pramod Katara
- Centre of Bioinformatics, IIDS, University of Allahabad, Allahabad, Uttar Pradesh, India
| |
Collapse
|
35
|
Newman JRB, Long SA, Speake C, Greenbaum CJ, Cerosaletti K, Rich SS, Onengut-Gumuscu S, McIntyre LM, Buckner JH, Concannon P. Shifts in isoform usage underlie transcriptional differences in regulatory T cells in type 1 diabetes. Commun Biol 2023; 6:988. [PMID: 37758901 PMCID: PMC10533491 DOI: 10.1038/s42003-023-05327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Genome-wide association studies have identified numerous loci with allelic associations to Type 1 Diabetes (T1D) risk. Most disease-associated variants are enriched in regulatory sequences active in lymphoid cell types, suggesting that lymphocyte gene expression is altered in T1D. Here we assay gene expression between T1D cases and healthy controls in two autoimmunity-relevant lymphocyte cell types, memory CD4+/CD25+ regulatory T cells (Treg) and memory CD4+/CD25- T cells, using a splicing event-based approach to characterize tissue-specific transcriptomes. Limited differences in isoform usage between T1D cases and controls are observed in memory CD4+/CD25- T-cells. In Tregs, 402 genes demonstrate differences in isoform usage between cases and controls, particularly RNA recognition and splicing factor genes. Many of these genes are regulated by the variable inclusion of exons that can trigger nonsense mediated decay. Our results suggest that dysregulation of gene expression, through shifts in alternative splicing in Tregs, contributes to T1D pathophysiology.
Collapse
Affiliation(s)
- Jeremy R B Newman
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32601, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32601, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Carla J Greenbaum
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Karen Cerosaletti
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Lauren M McIntyre
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32601, USA
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32601, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Patrick Concannon
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32601, USA.
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32601, USA.
| |
Collapse
|
36
|
Bogers L, Kuiper KL, Smolders J, Rip J, van Luijn MM. Epstein-Barr virus and genetic risk variants as determinants of T-bet + B cell-driven autoimmune diseases. Immunol Lett 2023; 261:66-74. [PMID: 37451321 DOI: 10.1016/j.imlet.2023.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
B cells expressing the transcription factor T-bet are found to have a protective role in viral infections, but are also considered major players in the onset of different types of autoimmune diseases. Currently, the exact mechanisms driving such 'atypical' memory B cells to contribute to protective immunity or autoimmunity are unclear. In addition to general autoimmune-related factors including sex and age, the ways T-bet+ B cells instigate autoimmune diseases may be determined by the close interplay between genetic risk variants and Epstein-Barr virus (EBV). The impact of EBV on T-bet+ B cells likely relies on the type of risk variants associated with each autoimmune disease, which may affect their differentiation, migratory routes and effector function. In this hypothesis-driven review, we discuss the lines of evidence pointing to such genetic and/or EBV-mediated influence on T-bet+ B cells in a range of autoimmune diseases, including systemic lupus erythematosus (SLE) and multiple sclerosis (MS). We provide examples of how genetic risk variants can be linked to certain signaling pathways and are differentially affected by EBV to shape T-bet+ B-cells. Finally, we propose options to improve current treatment of B cell-related autoimmune diseases by more selective targeting of pathways that are critical for pathogenic T-bet+ B-cell formation.
Collapse
Affiliation(s)
- Laurens Bogers
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Kirsten L Kuiper
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Joost Smolders
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands; MS Center ErasMS, Department of Neurology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 CN, The Netherlands; Netherlands Institute for Neuroscience, Neuroimmunology research group, Amsterdam 1105 BA, The Netherlands
| | - Jasper Rip
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Marvin M van Luijn
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands.
| |
Collapse
|
37
|
Dashti M, Nizam R, Jacob S, Al-Kandari H, Al Ozairi E, Thanaraj TA, Al-Mulla F. Association between alleles, haplotypes, and amino acid variations in HLA class II genes and type 1 diabetes in Kuwaiti children. Front Immunol 2023; 14:1238269. [PMID: 37638053 PMCID: PMC10457110 DOI: 10.3389/fimmu.2023.1238269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Type 1 diabetes (T1D) is a complex autoimmune disorder that is highly prevalent globally. The interactions between genetic and environmental factors may trigger T1D in susceptible individuals. HLA genes play a significant role in T1D pathogenesis, and specific haplotypes are associated with an increased risk of developing the disease. Identifying risk haplotypes can greatly improve the genetic scoring for early diagnosis of T1D in difficult to rank subgroups. This study employed next-generation sequencing to evaluate the association between HLA class II alleles, haplotypes, and amino acids and T1D, by recruiting 95 children with T1D and 150 controls in the Kuwaiti population. Significant associations were identified for alleles at the HLA-DRB1, HLA-DQA1, and HLA-DQB1 loci, including DRB1*03:01:01, DQA1*05:01:01, and DQB1*02:01:01, which conferred high risk, and DRB1*11:04:01, DQA1*05:05:01, and DQB1*03:01:01, which were protective. The DRB1*03:01:01~DQA1*05:01:01~DQB1*02:01:01 haplotype was most strongly associated with the risk of developing T1D, while DRB1*11:04-DQA1*05:05-DQB1*03:01 was the only haplotype that rendered protection against T1D. We also identified 66 amino acid positions across the HLA-DRB1, HLA-DQA1, and HLA-DQB1 genes that were significantly associated with T1D, including novel associations. These results validate and extend our knowledge on the associations between HLA genes and T1D in Kuwaiti children. The identified risk alleles, haplotypes, and amino acid variations may influence disease development through effects on HLA structure and function and may allow early intervention via population-based screening efforts.
Collapse
Affiliation(s)
- Mohammed Dashti
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheeba Nizam
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sindhu Jacob
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Hessa Al-Kandari
- Department of Population Health, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Pediatrics, Farwaniya Hospital, Ministry of Health, Sabah Al Nasser, Kuwait
| | - Ebaa Al Ozairi
- Clinical Care Research and Trials, Dasman Diabetes Institute, Dasman, Kuwait
- Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | | | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
38
|
Sharma S, Tan X, Boyer J, Clarke D, Costanzo A, Abe B, Kain L, Holt M, Armstrong A, Rihanek M, Su A, Speake C, Gottlieb P, Gottschalk M, Pettus J, Teyton L. Measuring anti-islet autoimmunity in mouse and human by profiling peripheral blood antigen-specific CD4 T cells. Sci Transl Med 2023; 15:eade3614. [PMID: 37406136 PMCID: PMC10495123 DOI: 10.1126/scitranslmed.ade3614] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/16/2023] [Indexed: 07/07/2023]
Abstract
The endocrine pancreas is one of the most inaccessible organs of the human body. Its autoimmune attack leads to type 1 diabetes (T1D) in a genetically susceptible population and a lifelong need for exogenous insulin replacement. Monitoring disease progression by sampling peripheral blood would provide key insights into T1D immune-mediated mechanisms and potentially change preclinical diagnosis and the evaluation of therapeutic interventions. This effort has been limited to the measurement of circulating anti-islet antibodies, which despite a recognized diagnostic value, remain poorly predictive at the individual level for a fundamentally CD4 T cell-dependent disease. Here, peptide-major histocompatibility complex tetramers were used to profile blood anti-insulin CD4 T cells in mice and humans. While percentages of these were not directly informative, the state of activation of anti-insulin T cells measured by RNA and protein profiling was able to distinguish the absence of autoimmunity versus disease progression. Activated anti-insulin CD4 T cell were detected not only at time of diagnosis but also in patients with established disease and in some at-risk individuals. These results support the concept that antigen-specific CD4 T cells might be used to monitor autoimmunity in real time. This advance can inform our approach to T1D diagnosis and therapeutic interventions in the preclinical phase of anti-islet autoimmunity.
Collapse
Affiliation(s)
- Siddhartha Sharma
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xuqian Tan
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
- School of Biological Science, University of California San Diego, La Jolla, CA 92093, USA
| | - Josh Boyer
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Don Clarke
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anne Costanzo
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Brian Abe
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lisa Kain
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marie Holt
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adrienne Armstrong
- Division of Endocrinology, University of California San Diego, San Diego, CA 92123, USA
| | - Marynette Rihanek
- Barbara Davis Center, University of Colorado, Boulder, CO 80045, USA
| | - Andrew Su
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Cate Speake
- Diabetes Clinical Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA,98101, USA
- Center for Interventional Immunology, Diabetes Clinical Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - Peter Gottlieb
- Barbara Davis Center, University of Colorado, Boulder, CO 80045, USA
| | - Michael Gottschalk
- Division of Pediatric Endocrinology, University of California San Diego, School of Medicine, Rady Children's Hospital, San Diego, CA 92123, USA
| | - Jeremy Pettus
- Division of Endocrinology, University of California San Diego, San Diego, CA 92123, USA
| | - Luc Teyton
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
39
|
Inaba H, Morita S, Kosugi D, Asai Y, Kaido Y, Ito S, Hirobata T, Inoue G, Yamamoto Y, Jinnin M, Kimura H, Ota M, Okudaira Y, Nakatani H, Kobayashi T, Iwama S, Arima H, Matsuoka T. Amino acid polymorphisms in human histocompatibility leukocyte antigen class II and proinsulin epitope have impacts on type 1 diabetes mellitus induced by immune-checkpoint inhibitors. Front Immunol 2023; 14:1165004. [PMID: 37114039 PMCID: PMC10128036 DOI: 10.3389/fimmu.2023.1165004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
IntroductionImmune-checkpoint inhibitors are effective in various advanced cancers. Type 1 diabetes mellitus induced by them (ICI-T1DM) is a serious complication requiring prompt insulin treatment, but the immunological mechanism behind it is unclear.MethodsWe examined amino acid polymorphisms in human histocompatibility leukocyte antigen (HLA) molecules and investigated proinsulin epitope binding affinities to HLA molecules.Results and DiscussionTwelve patients with ICI-T1DM and 35 patients in a control group without ICI-T1DM were enrolled in the study. Allele and haplotype frequencies of HLA-DRB1*04:05, DQB1*04:01, and most importantly DPB1*05:01 were significantly increased in patients with ICI-T1DM. In addition, novel amino acid polymorphisms in HLA-DR (4 polymorphisms), in DQ (12 polymorphisms), and in DP molecules (9 polymorphisms) were identified. These amino acid polymorphisms might be associated with the development of ICI-T1DM. Moreover, novel human proinsulin epitope clusters in insulin A and B chains were discovered in silico and in vitro peptide binding assays to HLA-DP5. In conclusion, significant amino acid polymorphisms in HLA-class II molecules, and conformational alterations in the peptide-binding groove of the HLA-DP molecules were considered likely to influence the immunogenicity of proinsulin epitopes in ICI-T1DM. These amino acid polymorphisms and HLA-DP5 may be predictive genetic factors for ICI-T1DM.
Collapse
Affiliation(s)
- Hidefumi Inaba
- Department of Diabetes and Endocrinology, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
- *Correspondence: Hidefumi Inaba,
| | - Shuhei Morita
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Daisuke Kosugi
- Department of Diabetes and Endocrinology, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Yuki Asai
- Department of Diabetes and Endocrinology, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Yosuke Kaido
- Department of Diabetes and Endocrinology, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Saya Ito
- Department of Diabetes and Endocrinology, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Tomonao Hirobata
- Department of Diabetes and Endocrinology, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Gen Inoue
- Department of Diabetes and Endocrinology, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Yuki Yamamoto
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| | - Masatoshi Jinnin
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| | - Hiroaki Kimura
- Department of Pharmaceutical Health Sciences, Kyushu University of Health and Welfare, Nobeoka, Miyazaki, Japan
| | - Masao Ota
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuko Okudaira
- HLA Typing Section, GenoDive Pharma Inc., Kanagawa, Japan
| | | | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takaaki Matsuoka
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
40
|
Stadinski BD, Cleveland SB, Brehm MA, Greiner DL, Huseby PG, Huseby ES. I-A g7 β56/57 polymorphisms regulate non-cognate negative selection to CD4 + T cell orchestrators of type 1 diabetes. Nat Immunol 2023; 24:652-663. [PMID: 36807641 PMCID: PMC10623581 DOI: 10.1038/s41590-023-01441-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/20/2023] [Indexed: 02/22/2023]
Abstract
Genetic susceptibility to type 1 diabetes is associated with homozygous expression of major histocompatibility complex class II alleles that carry specific beta chain polymorphisms. Why heterozygous expression of these major histocompatibility complex class II alleles does not confer a similar predisposition is unresolved. Using a nonobese diabetic mouse model, here we show that heterozygous expression of the type 1 diabetes-protective allele I-Ag7 β56P/57D induces negative selection to the I-Ag7-restricted T cell repertoire, including beta-islet-specific CD4+ T cells. Surprisingly, negative selection occurs despite I-Ag7 β56P/57D having a reduced ability to present beta-islet antigens to CD4+ T cells. Peripheral manifestations of non-cognate negative selection include a near complete loss of beta-islet-specific CXCR6+ CD4+ T cells, an inability to cross-prime islet-specific glucose-6-phosphatase catalytic subunit-related protein and insulin-specific CD8+ T cells and disease arrest at the insulitis stage. These data reveal that negative selection on non-cognate self-antigens in the thymus can promote T cell tolerance and protection from autoimmunity.
Collapse
Affiliation(s)
- Brian D Stadinski
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sarah B Cleveland
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael A Brehm
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dale L Greiner
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Priya G Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Eric S Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
41
|
Jores RD, Baldera D, Schirru E, Muntoni S, Rossino R, Manchinu MF, Marongiu MF, Caria CA, Ripoli C, Ricciardi MR, Cucca F, Congia M. Peripheral blood mononuclear cells reactivity in recent-onset type I diabetes patients is directed against the leader peptide of preproinsulin, GAD65 271-285 and GAD65 431-450. Front Immunol 2023; 14:1130019. [PMID: 36969220 PMCID: PMC10034372 DOI: 10.3389/fimmu.2023.1130019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction T cell reactivity against pancreatic autoantigens is considered one of the main contributors to the destruction of insulin-producing cells in type 1 diabetes (T1D). Over the years, peptide epitopes derived from these autoantigens have been described in NOD mice and in both HLA class II transgenic mice and humans. However, which ones are involved in the early onset or in the progressive phases of the disease is still unclear. Methods In this work we have investigated, in early-onset T1D pediatric patients and HLA-matched controls from Sardinia, the potential of preproinsulin (PPI) and glutamate decarboxylase 65 (GAD65)-derived peptides to induce spontaneous T cell proliferation responses of peripheral blood mononuclear cells (PBMCs). Results Significant T cell responses against PPI1-18, PPI7-19 and PPI31-49, the first two belonging to the leader sequence of PPI, and GAD65271-285 and GAD65431-450, were found in HLA-DR4, -DQ8 and -DR3, -DQ2 T1D children. Conclusions These data show that cryptic epitopes from the leader sequence of the PPI and GAD65271-285 and GAD65431-450 peptides might be among the critical antigenic epitopes eliciting the primary autoreactive responses in the early phases of the disease. These results may have implications in the design of immunogenic PPI and GAD65 peptides for peptide-based immunotherapy.
Collapse
Affiliation(s)
- Rita D. Jores
- Department Outpatient Clinic, ASL8 Outpatient Clinic Quartu Sant’Elena, Cagliari, Italy
| | - Davide Baldera
- Centro Servizi di Ateneo per gli Stabulari (CeSaSt), University of Cagliari, Monserrato, Italy
| | - Enrico Schirru
- Centro Servizi di Ateneo per gli Stabulari (CeSaSt), University of Cagliari, Monserrato, Italy
| | - Sandro Muntoni
- Department of Biomedical Science, University of Cagliari, Monserrato, Italy
| | - Rossano Rossino
- Department of Pediatrics, Clinic of Pediatric and Rare Diseases, Microcitemico Pediatric Hospital, A.Cao, ASL8, Cagliari, Italy
- Department of Medical Science and Public Health, University of Cagliari, Monserrato, Italy
| | - Maria F. Manchinu
- Department of Biomedical Sciences, Institute for Genetic and Biomedical Research, Monserrato, Italy
| | - Maria F. Marongiu
- Department of Biomedical Sciences, Institute for Genetic and Biomedical Research, Monserrato, Italy
| | - Cristian A. Caria
- Department of Biomedical Sciences, Institute for Genetic and Biomedical Research, Monserrato, Italy
| | - Carlo Ripoli
- Department of Pediatric, Diabetologic Unit, Microcitemico Pediatric Hospital, A.Cao, ASL8, Cagliari, Italy
| | - Maria R. Ricciardi
- Department of Pediatric, Diabetologic Unit, Microcitemico Pediatric Hospital, A.Cao, ASL8, Cagliari, Italy
| | - Francesco Cucca
- Department of Biomedical Sciences, Institute for Genetic and Biomedical Research, Monserrato, Italy
- Department of Biomedical Science, University of Sassari, Sassari, Italy
| | - Mauro Congia
- Department of Pediatrics, Clinic of Pediatric and Rare Diseases, Microcitemico Pediatric Hospital, A.Cao, ASL8, Cagliari, Italy
- Department of Biomedical Sciences, Institute for Genetic and Biomedical Research, Monserrato, Italy
| |
Collapse
|
42
|
Lichti CF, Wan X. Using mass spectrometry to identify neoantigens in autoimmune diseases: The type 1 diabetes example. Semin Immunol 2023; 66:101730. [PMID: 36827760 PMCID: PMC10324092 DOI: 10.1016/j.smim.2023.101730] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
In autoimmune diseases, recognition of self-antigens presented by major histocompatibility complex (MHC) molecules elicits unexpected attack of tissue by autoantibodies and/or autoreactive T cells. Post-translational modification (PTM) may alter the MHC-binding motif or TCR contact residues in a peptide antigen, transforming the tolerance to self to autoreactivity. Mass spectrometry-based immunopeptidomics provides a valuable mechanism for identifying MHC ligands that contain PTMs and can thus provide valuable insights into pathogenesis and therapeutics of autoimmune diseases. A plethora of PTMs have been implicated in this process, and this review highlights their formation and identification.
Collapse
Affiliation(s)
- Cheryl F Lichti
- Department of Pathology and Immunology, Division of Immunobiology, The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8118, St. Louis, MO 63110, USA.
| | - Xiaoxiao Wan
- Department of Pathology and Immunology, Division of Immunobiology, The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8118, St. Louis, MO 63110, USA.
| |
Collapse
|
43
|
Stankey CT, Lee JC. Translating non-coding genetic associations into a better understanding of immune-mediated disease. Dis Model Mech 2023; 16:dmm049790. [PMID: 36897113 PMCID: PMC10040244 DOI: 10.1242/dmm.049790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Genome-wide association studies have identified hundreds of genetic loci that are associated with immune-mediated diseases. Most disease-associated variants are non-coding, and a large proportion of these variants lie within enhancers. As a result, there is a pressing need to understand how common genetic variation might affect enhancer function and thereby contribute to immune-mediated (and other) diseases. In this Review, we first describe statistical and experimental methods to identify causal genetic variants that modulate gene expression, including statistical fine-mapping and massively parallel reporter assays. We then discuss approaches to characterise the mechanisms by which these variants modulate immune function, such as clustered regularly interspaced short palindromic repeats (CRISPR)-based screens. We highlight examples of studies that, by elucidating the effects of disease variants within enhancers, have provided important insights into immune function and uncovered key pathways of disease.
Collapse
Affiliation(s)
- Christina T. Stankey
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - James C. Lee
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Institute of Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| |
Collapse
|
44
|
Pantoja BTDS, Carvalho RC, Miglino MA, Carreira ACO. The Canine Pancreatic Extracellular Matrix in Diabetes Mellitus and Pancreatitis: Its Essential Role and Therapeutic Perspective. Animals (Basel) 2023; 13:ani13040684. [PMID: 36830471 PMCID: PMC9952199 DOI: 10.3390/ani13040684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 02/18/2023] Open
Abstract
Diabetes mellitus and pancreatitis are common pancreatic diseases in dogs, affecting the endocrine and exocrine portions of the organ. Dogs have a significant role in the history of research related to genetic diseases, being considered potential models for the study of human diseases. This review discusses the importance of using the extracellular matrix of the canine pancreas as a model for the study of diabetes mellitus and pancreatitis, in addition to focusing on the importance of using extracellular matrix in new regenerative techniques, such as decellularization and recellularization. Unlike humans, rabbits, mice, and pigs, there are no reports in the literature characterizing the healthy pancreatic extracellular matrix in dogs, in addition to the absence of studies related to matrix components that are involved in triggering diabetes melittus and pancreatitis. The extracellular matrix plays the role of physical support for the cells and allows the regulation of various cellular processes. In this context, it has already been demonstrated that physiologic and pathologic pancreatic changes lead to ECM remodeling, highlighting the importance of an in-depth study of the changes associated with pancreatic diseases.
Collapse
Affiliation(s)
- Bruna Tássia dos Santos Pantoja
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil
| | - Rafael Cardoso Carvalho
- Department of Animal Science, Center for Agricultural and Environmental Sciences, Federal University of Maranhao, Chapadinha 65500-000, MA, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre 09280-550, SP, Brazil
- Correspondence: or ; Tel.: +55-11-983229615
| |
Collapse
|
45
|
Chatenoud L, Marquet C, Valette F, Scott L, Quan J, Bu CH, Hildebrand S, Moresco EMY, Bach JF, Beutler B. Modulation of autoimmune diabetes by N-ethyl-N-nitrosourea- induced mutations in non-obese diabetic mice. Dis Model Mech 2022; 15:275575. [PMID: 35502705 PMCID: PMC9178510 DOI: 10.1242/dmm.049484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/21/2022] [Indexed: 11/20/2022] Open
Abstract
Genetic association studies of type 1 diabetes (T1D) in humans, and in congenic non-obese diabetic (NOD) mice harboring DNA segments from T1D-resistant mice, face the challenge of assigning causation to specific gene variants among many within loci that affect disease risk. Here, we created random germline mutations in NOD/NckH mice and used automated meiotic mapping to identify mutations modifying T1D incidence and age of onset. In contrast with association studies in humans or congenic NOD mice, we analyzed a relatively small number of genetic changes in each pedigree, permitting implication of specific mutations as causative. Among 844 mice from 14 pedigrees bearing 594 coding/splicing changes, we identified seven mutations that accelerated T1D development, and five that delayed or suppressed T1D. Eleven mutations affected genes not previously known to influence T1D (Xpnpep1, Herc1, Srrm2, Rapgef1, Ppl, Zfp583, Aldh1l1, Col6a1, Ccdc13, Cd200r1, Atrnl1). A suppressor mutation in Coro1a validated the screen. Mutagenesis coupled with automated meiotic mapping can detect genes in which allelic variation influences T1D susceptibility in NOD mice. Variation of some of the orthologous/paralogous genes may influence T1D susceptibility in humans.
Collapse
Affiliation(s)
- Lucienne Chatenoud
- Université Paris Cité, Institut Necker Enfants Malades, F-75015 Paris, France.,INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Cindy Marquet
- Université Paris Cité, Institut Necker Enfants Malades, F-75015 Paris, France.,INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Fabrice Valette
- Université Paris Cité, Institut Necker Enfants Malades, F-75015 Paris, France.,INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Lindsay Scott
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiexia Quan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chun Hui Bu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara Hildebrand
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jean-François Bach
- Université Paris Cité, Institut Necker Enfants Malades, F-75015 Paris, France.,INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
46
|
Wang K, Li L, Jin J, An Y, Wang Z, Zhou S, Zhang J, Abuduaini B, Cheng C, Li N. Fatty acid synthase (Fasn) inhibits the expression levels of immune response genes via alteration of alternative splicing in islet cells. J Diabetes Complications 2022; 36:108159. [PMID: 35210136 DOI: 10.1016/j.jdiacomp.2022.108159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/17/2021] [Accepted: 02/11/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Increasing evidence has shown that fatty acid synthase (Fasn) is associated with diabetes mellitus (DM) and insulin resistance, however, it remains unclear how Fasn upregulation leads to dysregulation of energy homeostasis in islet cells. Consequently, uncovering the function of Fasn in islet cells. Consequently, uncovering the function of FASN in islet cells is immensely important for finding a treatment target. AIM In this study, we elucidated the biological function of Fasn on the target genes in a rat insulinoma INS-1 cell line. METHODS We created a Fasn overexpressing rat insulinoma cell line (Fasn-OE), and performed bulk RNA-sequencing (RNA-seq) experiments on Fasn-OE and INS-1 (control) cells. We first identified differentially expressed genes (DEGs) using Bioconductor package edgeR, and then discovered enriched gene ontology terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways using the KEGG Orthology Based Annotation System (KOBAS) 2.0 web server. Furthermore, we identified alternative splicing events (ASEs) and regulated alternative splicing events (RASEs) by applying the ABLas pipeline. The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used for validation of selected differentially expressed genes (DEGs) and Fasn-regulated alternative splicing genes (RASGs). RESULTS In this study we found that Fasn overexpression led to significant changes of gene expression profiles, including downregulations of mRNA levels of immune related genes, including Bst2, Ddit3, Isg15, Mx2, Oas1a, Oasl, and RT1-S3 in INS-1 cell line. Furthermore, Fasn positively regulated the expression of transcription factors such as Fat1 and Ncl diabetes-related genes. Importantly, Fasn overexpression to result in alternative splicing events including in a metabolism-associated ATP binding protein mRNA Abcc5. In Gene Ontology analysis, the downregulated genes in Fasn-OE cells were mainly enriched in inflammatory response and innate immune response. In Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the downregulated genes were mainly enriched in TNF signaling pathway and cytokine-mediated signaling pathways. CONCLUSIONS Our findings showed that upregulation of Fasn may play a critical role in islet cell immunmetabolism via modifications of immune/inflammatory related genes on transcription and alternative splicing level, which provide novel insights into characterizing the function of Fasn in islet cell immunity and for the development of chemo/immune therapies.
Collapse
Affiliation(s)
- Kunling Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, PR China
| | - Lin Li
- Department of Molecular Biology, Xinjiang Medical University, Urumqi, Xinjiang 830054, PR China
| | - Jing Jin
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, PR China
| | - Yanli An
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, PR China
| | - Zhongjuan Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, PR China
| | - Shiying Zhou
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, PR China
| | - Jiyuan Zhang
- The First Clinical Institute of Xinjiang Medical University
| | - Buzukela Abuduaini
- Department of Intensive Care Unit, The First Affiliated Hospital of Xinjiang Medical University.
| | - Chao Cheng
- ABLife BioBigData Institute, Wuhan, Hubei, 430075, China
| | - Ning Li
- ABLife BioBigData Institute, Wuhan, Hubei, 430075, China
| |
Collapse
|
47
|
Krovi SH, Kuchroo VK. Activation pathways that drive CD4 + T cells to break tolerance in autoimmune diseases . Immunol Rev 2022; 307:161-190. [PMID: 35142369 PMCID: PMC9255211 DOI: 10.1111/imr.13071] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/11/2022]
Abstract
Autoimmune diseases are characterized by dysfunctional immune systems that misrecognize self as non-self and cause tissue destruction. Several cell types have been implicated in triggering and sustaining disease. Due to a strong association of major histocompatibility complex II (MHC-II) proteins with various autoimmune diseases, CD4+ T lymphocytes have been thoroughly investigated for their roles in dictating disease course. CD4+ T cell activation is a coordinated process that requires three distinct signals: Signal 1, which is mediated by antigen recognition on MHC-II molecules; Signal 2, which boosts signal 1 in a costimulatory manner; and Signal 3, which helps to differentiate the activated cells into functionally relevant subsets. These signals are disrupted during autoimmunity and prompt CD4+ T cells to break tolerance. Herein, we review our current understanding of how each of the three signals plays a role in three different autoimmune diseases and highlight the genetic polymorphisms that predispose individuals to autoimmunity. We also discuss the drawbacks of existing therapies and how they can be addressed to achieve lasting tolerance in patients.
Collapse
Affiliation(s)
- Sai Harsha Krovi
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
48
|
Kissler S. Genetic Modifiers of Thymic Selection and Central Tolerance in Type 1 Diabetes. Front Immunol 2022; 13:889856. [PMID: 35464420 PMCID: PMC9021641 DOI: 10.3389/fimmu.2022.889856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/21/2022] [Indexed: 02/02/2023] Open
Abstract
Type 1 diabetes (T1D) is caused by the T cell-driven autoimmune destruction of insulin-producing cells in the pancreas. T1D served as the prototypical autoimmune disease for genome wide association studies (GWAS) after having already been the subject of many linkage and association studies prior to the development of GWAS technology. Of the many T1D-associated gene variants, a minority appear disease-specific, while most are shared with one or more other autoimmune condition. Shared disease variants suggest defects in fundamental aspects of immune tolerance. The first layer of protective tolerance induction is known as central tolerance and takes place during the thymic selection of T cells. In this article, we will review candidate genes for type 1 diabetes whose function implicates them in central tolerance. We will describe examples of gene variants that modify the function of T cells intrinsically and others that indirectly affect thymic selection. Overall, these insights will show that a significant component of the genetic risk for T1D - and autoimmunity in general - pertains to the earliest stages of tolerance induction, at a time when protective intervention may not be feasible.
Collapse
Affiliation(s)
- Stephan Kissler
- Section for Immunobiology, Joslin Diabetes Center, Boston, MA, United States,Department of Medicine, Harvard Medical School, Boston, MA, United States,*Correspondence: Stephan Kissler,
| |
Collapse
|
49
|
A previously unappreciated polymorphism in the beta chain of I-A s expressed in autoimmunity-prone SJL mice: Combined impact on antibody, CD4 T cell recognition and MHC class II dimer structural stability. Mol Immunol 2022; 143:17-26. [PMID: 34995990 PMCID: PMC9261112 DOI: 10.1016/j.molimm.2021.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/13/2021] [Accepted: 12/26/2021] [Indexed: 01/14/2023]
Abstract
In the process of structure-function studies on the MHC class II molecule expressed in autoimmunity prone SJL mice, I-As, we discovered a disparity from the reported sequence of the MHC class II beta chain. The variant is localized at a highly conserved site of the beta chain, at residue 58. Our studies revealed that this single amino acid substitution of Pro for Ala at this residue, found in I-As, changes the structure of the MHC class II molecule, as evidenced by a loss of recognition by two monoclonal antibodies, and elements of MHC class II conformational stability identified through molecular dynamics simulation. Two other rare polymorphisms in I-As involved in hydrogen bonding potential between the alpha chain and the peptide main chain are located at the same end of the MHC class II binding pocket, studied in parallel may impact the consequences of the β chain variant. Despite striking changes in MHC class II structure, CD4 T cell recognition of influenza-derived peptides was preserved. These disparate findings were reconciled by discovering, through monoclonal antibody blocking approaches, that CD4 T cell recognition by I-As restricted CD4 T cells focused more on the region of MHC class II at the peptide's amino terminus. These studies argue that the conformational variability or flexibility of the MHC class II molecule in that region of I-As select a CD4 T cell repertoire that deviates from the prototypical docking mode onto MHC class II peptide complexes. Overall, our results are consistent with the view that naturally occurring MHC class II molecules can possess polymorphisms that destabilize prototypical features of the MHC class II molecule but that can maintain T cell recognition of the MHC class II:peptide ligand via alternate docking modes.
Collapse
|
50
|
Lombard-Vadnais F, Collin R, Daudelin JF, Chabot-Roy G, Labrecque N, Lesage S. The Idd2 Locus Confers Prominent Resistance to Autoimmune Diabetes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:898-909. [PMID: 35039332 DOI: 10.4049/jimmunol.2100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Type 1 diabetes is an autoimmune disease characterized by pancreatic β cell destruction. It is a complex genetic trait driven by >30 genetic loci with parallels between humans and mice. The NOD mouse spontaneously develops autoimmune diabetes and is widely used to identify insulin-dependent diabetes (Idd) genetic loci linked to diabetes susceptibility. Although many Idd loci have been extensively studied, the impact of the Idd2 locus on autoimmune diabetes susceptibility remains to be defined. To address this, we generated a NOD congenic mouse bearing B10 resistance alleles on chromosome 9 in a locus coinciding with part of the Idd2 locus and found that NOD.B10-Idd2 congenic mice are highly resistant to diabetes. Bone marrow chimera and adoptive transfer experiments showed that the B10 protective alleles provide resistance in an immune cell-intrinsic manner. Although no T cell-intrinsic differences between NOD and NOD.B10-Idd2 mice were observed, we found that the Idd2 resistance alleles limit the formation of spontaneous and induced germinal centers. Comparison of B cell and dendritic cell transcriptome profiles from NOD and NOD.B10-Idd2 mice reveal that resistance alleles at the Idd2 locus affect the expression of specific MHC molecules, a result confirmed by flow cytometry. Altogether, these data demonstrate that resistance alleles at the Idd2 locus impair germinal center formation and influence MHC expression, both of which likely contribute to reduced diabetes incidence.
Collapse
Affiliation(s)
- Félix Lombard-Vadnais
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Roxanne Collin
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and
| | - Jean-François Daudelin
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Geneviève Chabot-Roy
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Nathalie Labrecque
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and
- Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Sylvie Lesage
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada;
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and
| |
Collapse
|