1
|
Deb W, Rosenfelt C, Vignard V, Papendorf JJ, Möller S, Wendlandt M, Studencka-Turski M, Cogné B, Besnard T, Ruffier L, Toutain B, Poirier L, Cuinat S, Kritzer A, Crunk A, diMonda J, Vengoechea J, Mercier S, Kleinendorst L, van Haelst MM, Zuurbier L, Sulem T, Katrínardóttir H, Friðriksdóttir R, Sulem P, Stefansson K, Jonsdottir B, Zeidler S, Sinnema M, Stegmann APA, Naveh N, Skraban CM, Gray C, Murrell JR, Isikay S, Pehlivan D, Calame DG, Posey JE, Nizon M, McWalter K, Lupski JR, Isidor B, Bolduc FV, Bézieau S, Krüger E, Küry S, Ebstein F. PSMD11 loss-of-function variants correlate with a neurobehavioral phenotype, obesity, and increased interferon response. Am J Hum Genet 2024; 111:1352-1369. [PMID: 38866022 PMCID: PMC11267520 DOI: 10.1016/j.ajhg.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Primary proteasomopathies have recently emerged as a new class of rare early-onset neurodevelopmental disorders (NDDs) caused by pathogenic variants in the PSMB1, PSMC1, PSMC3, or PSMD12 proteasome genes. Proteasomes are large multi-subunit protein complexes that maintain cellular protein homeostasis by clearing ubiquitin-tagged damaged, misfolded, or unnecessary proteins. In this study, we have identified PSMD11 as an additional proteasome gene in which pathogenic variation is associated with an NDD-causing proteasomopathy. PSMD11 loss-of-function variants caused early-onset syndromic intellectual disability and neurodevelopmental delay with recurrent obesity in 10 unrelated children. Our findings demonstrate that the cognitive impairment observed in these individuals could be recapitulated in Drosophila melanogaster with depletion of the PMSD11 ortholog Rpn6, which compromised reversal learning. Our investigations in subject samples further revealed that PSMD11 loss of function resulted in impaired 26S proteasome assembly and the acquisition of a persistent type I interferon (IFN) gene signature, mediated by the integrated stress response (ISR) protein kinase R (PKR). In summary, these data identify PSMD11 as an additional member of the growing family of genes associated with neurodevelopmental proteasomopathies and provide insights into proteasomal biology in human health.
Collapse
Affiliation(s)
- Wallid Deb
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Cory Rosenfelt
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Virginie Vignard
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Jonas Johannes Papendorf
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Sophie Möller
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Martin Wendlandt
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Maja Studencka-Turski
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Benjamin Cogné
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Thomas Besnard
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Léa Ruffier
- Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Bérénice Toutain
- Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Léa Poirier
- Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Silvestre Cuinat
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Amy Kritzer
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA, USA
| | | | - Janette diMonda
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Jaime Vengoechea
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Sandra Mercier
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Lotte Kleinendorst
- Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Mieke M van Haelst
- Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Human Genetics, Amsterdam UMC, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands
| | - Linda Zuurbier
- Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Human Genetics, Amsterdam UMC, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands
| | - Telma Sulem
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
| | | | | | | | | | - Berglind Jonsdottir
- Childrens Hospital Hringurinn, National University Hospital of Iceland, Reykjavik, Iceland
| | - Shimriet Zeidler
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Margje Sinnema
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Natali Naveh
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cara M Skraban
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Departments of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher Gray
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jill R Murrell
- Department of Pathology and Laboratory Medicine, Children's Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Sedat Isikay
- Division of Pediatric Neurology, Department of Pediatrics, Gaziantep Islam, Science and Technology University Faculty of Medicine, Gaziantep, Türkiye
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Daniel G Calame
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mathilde Nizon
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | | | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - François V Bolduc
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Elke Krüger
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany.
| | - Sébastien Küry
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Frédéric Ebstein
- Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France; Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany.
| |
Collapse
|
2
|
Zhou X, Xu R, Wu Y, Zhou L, Xiang T. The role of proteasomes in tumorigenesis. Genes Dis 2024; 11:101070. [PMID: 38523673 PMCID: PMC10958230 DOI: 10.1016/j.gendis.2023.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/10/2023] [Accepted: 06/27/2023] [Indexed: 03/26/2024] Open
Abstract
Protein homeostasis is the basis of normal life activities, and the proteasome family plays an extremely important function in this process. The proteasome 20S is a concentric circle structure with two α rings and two β rings overlapped. The proteasome 20S can perform both ATP-dependent and non-ATP-dependent ubiquitination proteasome degradation by binding to various subunits (such as 19S, 11S, and 200 PA), which is performed by its active subunit β1, β2, and β5. The proteasome can degrade misfolded, excess proteins to maintain homeostasis. At the same time, it can be utilized by tumors to degrade over-proliferate and unwanted proteins to support their growth. Proteasomes can affect the development of tumors from several aspects including tumor signaling pathways such as NF-κB and p53, cell cycle, immune regulation, and drug resistance. Proteasome-encoding genes have been found to be overexpressed in a variety of tumors, providing a potential novel target for cancer therapy. In addition, proteasome inhibitors such as bortezomib, carfilzomib, and ixazomib have been put into clinical application as the first-line treatment of multiple myeloma. More and more studies have shown that it also has different therapeutic effects in other tumors such as hepatocellular carcinoma, non-small cell lung cancer, glioblastoma, and neuroblastoma. However, proteasome inhibitors are not much effective due to their tolerance and singleness in other tumors. Therefore, further studies on their mechanisms of action and drug interactions are needed to investigate their therapeutic potential.
Collapse
Affiliation(s)
- Xiangyi Zhou
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Ruqing Xu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Wu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Tingxiu Xiang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
3
|
Is RNA the working genome in eukaryotes ? The 60 year evolution of a conceptual challenge. Exp Cell Res 2023; 424:113493. [PMID: 36746314 DOI: 10.1016/j.yexcr.2023.113493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
About 80 years ago, in 1943, after a century of biochemical and genetic research, DNA was established as the carrier of genetic information. At the onset of Molecular Biology around 1960, the genome of living organisms embodied 3 basic, still unknown paradigms: its composition, organisation and expression. Between 1980 and 1990, its replication was understood, and ideas about its 3D-organisation were suggested and finally confirmed by 2010. The basic mechanisms of gene expression in higher organisms, the synthesis of precursor RNAs and their processing into functional RNAs, were also discovered about 60 years ago in 1961/62. However, some aspects were then, and are still now debated, although the latest results in post-genomic research have confirmed the basic principles. When my history-essay was published in 2003, describing the discovery of RNA processing 40 years earlier, the main facts were not yet generally confirmed or acknowledged. The processing of pre-rRNA to 28 S and 18 S rRNA was clearly demonstrated, confirmed by others and generally accepted as a fact. However, the "giant" size of pre-mRNA 10-100 kb-long and pervasive DNA transcription were still to be confirmed by post-genomic methods. It was found, surprisingly, that up to 90% of DNA is transcribed in the life cycle of eukaryotic organisms thus showing that pervasive transcription was the general rule. In this essay, we shall take a journey through the 60-year history of evolving paradigms of gene expression which followed the emergence of Molecular Biology, and we will also evoke some of the "folklore" in research throughout this period. Most important was the growing recognition that although the genome is encoded in DNA, the Working Genome in eukaryotic organisms is RNA.
Collapse
|
4
|
Ignatz-Hoover JJ, Murphy EV, Driscoll JJ. Targeting Proteasomes in Cancer and Infectious Disease: A Parallel Strategy to Treat Malignancies and Microbes. Front Cell Infect Microbiol 2022; 12:925804. [PMID: 35873166 PMCID: PMC9302482 DOI: 10.3389/fcimb.2022.925804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023] Open
Abstract
Essential core pathways of cellular biology are preserved throughout evolution, highlighting the importance of these pathways for both bacteria and human cancer cells alike. Cell viability requires a proper balance between protein synthesis and degradation in order to maintain integrity of the proteome. Proteasomes are highly intricate, tightly regulated multisubunit complexes that are critical to achieve protein homeostasis (proteostasis) through the selective degradation of misfolded, redundant and damaged proteins. Proteasomes function as the catalytic core of the ubiquitin-proteasome pathway (UPP) which regulates a myriad of essential processes including growth, survival, differentiation, drug resistance and apoptosis. Proteasomes recognize and degrade proteins that have been marked by covalently attached poly-ubiquitin chains. Deregulation of the UPP has emerged as an essential etiology of many prominent diseases, including cancer. Proteasome inhibitors selectively target cancer cells, including those resistant to chemotherapy, while sparing healthy cells. Proteasome inhibition has emerged as a transformative anti-myeloma strategy that has extended survival for certain patient populations from 3 to 8 years. The structural architecture and functional activity of proteasomes is conserved from Archaea to humans to support the concept that proteasomes are actionable targets that can be inhibited in pathogenic organisms to improve the treatment of infectious diseases. Proteasomes have an essential role during all stages of the parasite life cycle and features that distinguish proteasomes in pathogens from human forms have been revealed. Advancement of inhibitors that target Plasmodium and Mycobacterial proteasomes is a means to improve treatment of malaria and tuberculosis. In addition, PIs may also synergize with current frontline agents support as resistance to conventional drugs continues to increase. The proteasome represents a highly promising, actionable target to combat infectious diseases that devastate lives and livelihoods around the globe.
Collapse
Affiliation(s)
- James J. Ignatz-Hoover
- Division of Hematology & Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Elena V. Murphy
- Case Western Reserve University, Department of Biochemistry, Cleveland, OH, United States
| | - James J. Driscoll
- Division of Hematology & Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
5
|
The Function of Immunoproteasomes-An Immunologists' Perspective. Cells 2021; 10:cells10123360. [PMID: 34943869 PMCID: PMC8699091 DOI: 10.3390/cells10123360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/02/2023] Open
Abstract
Proteasomes are responsible for intracellular proteolysis and play an important role in cellular protein homeostasis. Cells of the immune system assemble a specialized form of proteasomes, known as immunoproteasomes, in which the constitutive catalytic sites are replaced for cytokine-inducible homologues. While immunoproteasomes may fulfill all standard proteasome’ functions, they seem specially adapted for a role in MHC class I antigen processing and CD8+ T-cell activation. In this way, they may contribute to CD8+ T-cell-mediated control of intracellular infections, but also to the immunopathogenesis of autoimmune diseases. Starting at the discovery of its catalytic subunits in the genome, here, we review the observations shaping our current understanding of immunoproteasome function, and the consequential novel opportunities for immune intervention.
Collapse
|
6
|
Role of Proteasome Inhibitors in Relapsed and/or Refractory Multiple Myeloma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 19:9-22. [DOI: 10.1016/j.clml.2018.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/21/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2022]
|
7
|
Scherrer K. Primary transcripts: From the discovery of RNA processing to current concepts of gene expression - Review. Exp Cell Res 2018; 373:1-33. [PMID: 30266658 DOI: 10.1016/j.yexcr.2018.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022]
Abstract
The main purpose of this review is to recall for investigators - and in particular students -, some of the early data and concepts in molecular genetics and biology that are rarely cited in the current literature and are thus invariably overlooked. There is a growing tendency among editors and reviewers to consider that only data produced in the last 10-20 years or so are pertinent. However this is not the case. In exact science, sound data and lucid interpretation never become obsolete, and even if forgotten, will resurface sooner or later. In the field of gene expression, covered in the present review, recent post-genomic data have indeed confirmed many of the earlier results and concepts developed in the mid-seventies, well before the start of the recombinant DNA revolution. Human brains and even the most powerful computers, have difficulty in handling and making sense of the overwhelming flow of data generated by recent high-throughput technologies. This was easier when low throughput, more integrative methods based on biochemistry and microscopy dominated biological research. Nowadays, the need for organising concepts is ever more important, otherwise the mass of available data can generate only "building ruins" - the bricks without an architect. Concepts such as pervasive transcription of genomes, large genomic domains, full domain transcripts (FDTs) up to 100 kb long, the prevalence of post-transcriptional events in regulating eukaryotic gene expression, and the 3D-genome architecture, were all developed and discussed before 1990, and are only now coming back into vogue. Thus, to review the impact of earlier concepts on later developments in the field, I will confront former and current data and ideas, including a discussion of old and new methods. Whenever useful, I shall first briefly report post-genomic developments before addressing former results and interpretations. Equally important, some of the terms often used sloppily in scientific discussions will be clearly defined. As a basis for the ensuing discussion, some of the issues and facts related to eukaryotic gene expression will first be introduced. In chapter 2 the evolution in perception of biology over the last 60 years and the impact of the recombinant DNA revolution will be considered. Then, in chapter 3 data and theory concerning the genome, gene expression and genetics will be reviewed. The experimental and theoretical definition of the gene will be discussed before considering the 3 different types of genetic information - the "Triad" - and the importance of post-transcriptional regulation of gene expression in the light of the recent finding that 90% of genomic DNA seems to be transcribed. Some previous attempts to provide a conceptual framework for these observations will be recalled, in particular the "Cascade Regulation Hypothesis" (CRH) developed in 1967-85, and the "Gene and Genon" concept proposed in 2007. A knowledge of the size of primary transcripts is of prime importance, both for experimental and theoretical reasons, since these molecules represent the primary units of the "RNA genome" on which most of the post-transcriptional regulation of gene expression occurs. In chapter 4, I will first discuss some current post-genomic topics before summarising the discovery of the high Mr-RNA transcripts, and the investigation of their processing spanning the last 50 years. Since even today, a consensus concerning the real form of primary transcripts in eukaryotic cells has not yet been reached, I will refer to the viral and specialized cellular models which helped early on to understand the mechanisms of RNA processing and differential splicing which operate in cells and tissues. As a well-studied example of expression and regulation of a specific cellular gene in relation to differentiation and pathology, I will discuss the early and recent work on expression of the globin genes in nucleated avian erythroblasts. An important concept is that the primary transcript not only embodies protein-coding information and regulation of its expression, but also the 3D-structure of the genomic DNA from which it was derived. The wealth of recent post-genomic data published in this field emphasises the importance of a fundamental principle of genome organisation and expression that has been overlooked for years even though it was already discussed in the 1970-80ties. These issues are addressed in chapter 5 which focuses on the involvement of the nuclear matrix and nuclear architecture in DNA and RNA biology. This section will make reference to the Unified Matrix Hypothesis (UMH), which was the first molecular model of the 3D organisation of DNA and RNA. The chapter on the "RNA-genome and peripheral memories" discusses experimental data on the ribonucleoprotein complexes containing pre-mRNA (pre-mRNPs) and mRNA (mRNPs) which are organised in nuclear and cytoplasmic spaces respectively. Finally, "Outlook " will enumerate currently unresolved questions in the field, and will propose some ideas that may encourage further investigation, and comprehension of available experimental data still in need of interpretation. In chapter 8, some propositions and paradigms basic to the authors own analysis are discussed. "In conclusion" the raison d'être of this review is recalled and positioned within the overall framework of scientific endeavour.
Collapse
Affiliation(s)
- Klaus Scherrer
- Institute Jacques Monod, CNRS, University Paris Diderot, Paris, France.
| |
Collapse
|
8
|
Abstract
The ubiquitin-proteasome system (UPS) and associated signaling pathways are regarded today as an exciting area of development for novel therapeutics. However, two decades ago, following the discovery and elucidation of ubiquitin and the 26S proteasome as key mediators of protein turnover, the concept of inhibiting the UPS was not even considered a feasible therapeutic approach due to the assumption that inhibition of this pathway would have widespread deleterious effects. Subsequent clinical developments with the first-in-class proteasome inhibitor bortezomib have radically overturned that view, with the proteasome now recognized as a validated target and proteasome inhibition demonstrated to be a highly successful treatment for a number of hematologic malignancies. Here we provide a historic perspective on the emergence of proteasome inhibition, sharing some of the lessons learned along the way. We describe the development of bortezomib and the elucidation of the effects of its novel mechanism of action, and place the cutting-edge work described elsewhere in this issue in the context of these historic developments.
Collapse
Affiliation(s)
- Dixie-Lee Esseltine
- Oncology Clinical Research, Millennium Pharmaceuticals, Inc, Cambridge, MA 02139, USA.
| | | |
Collapse
|
9
|
Kwak J, Workman JL, Lee D. The proteasome and its regulatory roles in gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1809:88-96. [PMID: 20723625 DOI: 10.1016/j.bbagrm.2010.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 07/30/2010] [Accepted: 08/07/2010] [Indexed: 12/21/2022]
Abstract
Cumulative evidence indicates that the proteasome, which is mainly known as a protein-degrading machine, is very essential for gene expression. Destructive functions of the proteasome, i.e., ubiquitin-dependent proteolytic activity, are significant for activator localization, activator destruction, co-activator/repressor destruction and PIC disassembly. Non-proteolytic functions of the proteasome are important for recruitment of activators and co-activators to promoters, ubiquitin-dependent histone modification, transcription elongation and possibly maturation of mRNA via the facilitation of mRNA export from the nucleus to the cytoplasm. In this review, we discuss how the proteasome regulates transcription at numerous stages during gene expression. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!
Collapse
Affiliation(s)
- Jaechan Kwak
- Department of Biological Sciences, KAIST, Yuseong-Gu, Daejeon, 305-701, Korea
| | | | | |
Collapse
|
10
|
Marques AJ, Palanimurugan R, Matias AC, Ramos PC, Dohmen RJ. Catalytic mechanism and assembly of the proteasome. Chem Rev 2009; 109:1509-36. [PMID: 19265443 DOI: 10.1021/cr8004857] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- António J Marques
- Institute for Genetics, University of Cologne, Zulpicher Strasse 47, D-50674 Cologne, Germany
| | | | | | | | | |
Collapse
|
11
|
Markham K, Bai Y, Schmitt-Ulms G. Co-immunoprecipitations revisited: an update on experimental concepts and their implementation for sensitive interactome investigations of endogenous proteins. Anal Bioanal Chem 2007; 389:461-73. [PMID: 17583802 DOI: 10.1007/s00216-007-1385-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 05/14/2007] [Accepted: 05/22/2007] [Indexed: 10/23/2022]
Abstract
The study of protein-protein interactions involving endogenous proteins frequently relies on the immunoaffinity capture of a protein of interest followed by mass spectrometry-based identification of co-purifying interactors. A notorious problem with this approach is the difficulty of distinguishing physiological interactors from unspecific binders. Additional challenges pose the need to employ a strategy that is compatible with downstream mass spectrometry and minimizes sample losses during handling steps. Finally, the complexity of data sets demands solutions for data filtering. Here we present an update on co-immunoprecipitation procedures for sensitive interactome mapping applications. We define the relevant terminology, review methodological advances that reduce sample losses, and discuss experimental strategies that facilitate recognition of candidate interactors through a combination of informative controls and data filtering. Finally, we provide starting points for initial validation experiments and propose conventions for manuscripts which report on co-immunoprecipitation work.
Collapse
Affiliation(s)
- Kelly Markham
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Tanz Neuroscience Building, 6 Queen's Park Crescent West, Toronto, ON M5S 3H2, Canada
| | | | | |
Collapse
|
12
|
Grune T, Jung T, Merker K, Davies KJA. Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and 'aggresomes' during oxidative stress, aging, and disease. Int J Biochem Cell Biol 2005; 36:2519-30. [PMID: 15325589 DOI: 10.1016/j.biocel.2004.04.020] [Citation(s) in RCA: 488] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Protein aggregation seems to be a common feature of several neurodegenerative diseases and to some extent of physiological aging. It is not always clear why protein aggregation takes place, but a disturbance in the homeostasis between protein synthesis and protein degradation seems to be important. The result is the accumulation of modified proteins, which tend to form high molecular weight aggregates. Such aggregates are also called inclusion bodies, plaques, lipofuscin, ceroid, or 'aggresomes' depending on their location and composition. Such aggregates are not inert metabolic end products, but actively influence the metabolism of cells, in particular proteasomal activity and protein turnover. In this review we focus on the influence of oxidative stress on protein turnover, protein aggregate formation and the various interactions of protein aggregates with the proteasome. Furthermore, the formation and effects of protein aggregates during aging and neurodegeneration will be highlighted.
Collapse
Affiliation(s)
- Tilman Grune
- Research Institute of Environmental Medicine, Heinrich Heine University Düsseldorf, Auf'm Hennekamp 50, 40225 Dusseldorf, Germany.
| | | | | | | |
Collapse
|
13
|
Affiliation(s)
- Wolfgang Baumeister
- Department of Structural Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
14
|
Wolf DH, Hilt W. The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1695:19-31. [PMID: 15571806 DOI: 10.1016/j.bbamcr.2004.10.007] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The final destination of the majority of proteins that have to be selectively degraded in eukaryotic cells is the proteasome, a highly sophisticated nanomachine essential for life. 26S proteasomes select target proteins via their modification with polyubiquitin chains or, in rare cases, by the recognition of specific motifs. They are made up of different subcomplexes, a 20S core proteasome harboring the proteolytic active sites hidden within its barrel-like structure and two 19S caps that execute regulatory functions. Similar complexes equipped with PA28 regulators instead of 19S caps are a variation of this theme specialized for the production of antigenic peptides required in immune response. Structure analysis as well as extensive biochemical and genetic studies of the 26S proteasome and the ubiquitin system led to a basic model of substrate recognition and degradation. Recent work raised new concepts. Additional factors involved in substrate acquisition and delivery to the proteasome have been discovered. Moreover, first insights in the tasks of individual subunits or subcomplexes of the 19S caps in substrate recognition and binding as well as release and recycling of polyubiquitin tags have been obtained.
Collapse
Affiliation(s)
- Dieter H Wolf
- Institut für Biochemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.
| | | |
Collapse
|
15
|
Burger AM, Seth AK. The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications. Eur J Cancer 2004; 40:2217-29. [PMID: 15454246 DOI: 10.1016/j.ejca.2004.07.006] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 06/16/2004] [Accepted: 07/06/2004] [Indexed: 12/29/2022]
Abstract
The highly conserved eukaryotic ubiquitin-proteasome system (UP-S) plays a pivotal role in protein homeostasis and is critical in regulating normal and cancer-related cellular processes. The hierarchical nature of the UP-S provides a rich source of molecular targets for specific intervention and has therefore arisen as a promising approach to innovative anticancer therapies. The first in class proteasome inhibitory agent Bortezomib (Velcade) has recently obtained regulatory approval for the treatment of multiple myeloma. Ubiquitin-mediated degradation is a complex process that is comprised of well defined steps involving ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s) and ubiquitin ligases (E3s). Although a single E1 activates the ubiquitin conjugation machinery, a large number of E2 conjugating enzymes and E3 ligases are now known to exist. Proteins tagged with ubiquitin are subsequently recognised by the proteasome for digestion and fragmentation. The enzymatic nature, multitude of E3s and their specific substrate recognition predestines them as therapeutic targets. This article will review known inhibitors of the proteasome and their molecular mechanisms as well as ongoing developments and promising avenues for targeting substrate-specific E3 ligases that are likely to yield a new class of therapeutics that will serve and complement the armamentarium of anticancer drugs.
Collapse
Affiliation(s)
- Angelika M Burger
- Laboratory of Molecular Pathology, Department of Anatomic Pathology, Division of Molecular and Cellular Biology, Sunnybrook and Women's College Health Sciences Centre, S-224, 2075 Bayview Avenue, Toronto, Ont., Canada M4N 3M5.
| | | |
Collapse
|
16
|
Abstract
Metabolic processes and environmental conditions cause the constant formation of oxidizing species over the lifetime of cells and organisms. This leads to a continuous oxidation of intracellular components, including lipids, DNA and proteins. During the extensively studied process of lipid peroxidation, several reactive low-molecular weight products are formed, including reactive aldehydes as 4-hydroxynonenal (HNE). These aldehydic lipid peroxidation products in turn are able to modify proteins. The degradation of oxidized and oxidatively modified proteins is an essential part of the oxidant defenses of cells. The major proteolytic system responsible for the removal of oxidized cytosolic and nuclear proteins is the proteasomal system. The proteasomal system by itself is a multicomponent system responsible for the degradation of the majority of intracellular proteins. It has been shown that some, mildly cross-linked, HNE-modified proteins are preferentially degraded by the proteasome, but extensive modification with this cross-linking aldehyde leads to the formation of protein aggregates, that can actually inhibit the proteasome. This review summarizes our knowledge of the interactions between lipid peroxidation products, proteins, and the proteasomal system.
Collapse
Affiliation(s)
- Tilman Grune
- Neuroscience Research Center, Medical Faculty (Charité), Humboldt University, Schumannstrasse 20/21, 10117 Berlin, Germany.
| | | |
Collapse
|
17
|
Maupin-Furlow JA, Kaczowka SJ, Ou MS, Wilson HL. Archaeal proteasomes: proteolytic nanocompartments of the cell. ADVANCES IN APPLIED MICROBIOLOGY 2002; 50:279-338. [PMID: 11677686 DOI: 10.1016/s0065-2164(01)50008-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- J A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA
| | | | | | | |
Collapse
|
18
|
Abstract
Some of the most fundamental yet important cellular activities such as cell division and gene expression are controlled by short-lived regulatory proteins. The levels of these proteins are controlled by their rates of degradation. Similarly, protein catabolism plays a crucial role in prolonging cellular life by destroying damaged proteins that are potentially cytotoxic. A major player in these catabolic reactions is the ubiquitin-proteasome system, a novel proteolytic system that has become the primary proteolytic pathway in eukaryotic cells. Ubiquitin-mediated proteolysis is now regarded as the major pathway by which most intracellular proteins are destroyed. Equally important, from a toxicological standpoint, is that the ubiquitin-proteasome system is also widely considered to be a cellular defense mechanism, since it is involved in the removal of damaged proteins generated by adduct formation and oxidative stress. This review describes the history and the components of the ubiquitin-proteasome system, its regulation and its role in pathological states, with the major emphasis on ethanol-induced organ injury. The available literature cited here deals mainly with the effects of ethanol consumption on the ubiquitin-proteasome pathway in the liver. However, since this proteolytic system is an essential pathway in all cells it is an attractive experimental model and therapeutic target in extrahepatic organs such as the brain and heart that are also affected by excessive alcohol consumption.
Collapse
Affiliation(s)
- Terrence M Donohue
- Liver Study Unit, Department of Veterans Affairs Medical Center and the Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68105, USA.
| |
Collapse
|
19
|
Abstract
It is often the case in biology that research into breaking things down lags behind research into synthesizing them, and this is certainly true for intracellular proteolysis. Now that we recognize that intracellular proteolysis, triggered by attaching multiple copies of a small protein called ubiquitin to target proteins, is fundamental to life, it is hard to believe that 20 years ago this field was little more than a backwater of biochemistry studied by a handful of laboratories. Among the few were Avram Hershko, Aaron Ciechanover and Alexander Varshavsky, who were recently awarded the Albert Lasker award for basic medical research for discovering the importance of protein degradation in cellular physiology. This Timeline traces how they and their collaborators triggered the rapid movement of ubiquitin-mediated proteolysis to centre stage.
Collapse
Affiliation(s)
- R J Mayer
- Laboratory for Intracellular Proteolysis, School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
20
|
Voges D, Zwickl P, Baumeister W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 2000; 68:1015-68. [PMID: 10872471 DOI: 10.1146/annurev.biochem.68.1.1015] [Citation(s) in RCA: 1396] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In eukaryotic cells, most proteins in the cytosol and nucleus are degraded via the ubiquitin-proteasome pathway. The 26S proteasome is a 2.5-MDa molecular machine built from approximately 31 different subunits, which catalyzes protein degradation. It contains a barrel-shaped proteolytic core complex (the 20S proteasome), capped at one or both ends by 19S regulatory complexes, which recognize ubiquitinated proteins. The regulatory complexes are also implicated in unfolding and translocation of ubiquitinated targets into the interior of the 20S complex, where they are degraded to oligopeptides. Structure, assembly and enzymatic mechanism of the 20S complex have been elucidated, but the functional organization of the 19S complex is less well understood. Most subunits of the 19S complex have been identified, however, specific functions have been assigned to only a few. A low-resolution structure of the 26S proteasome has been obtained by electron microscopy, but the precise arrangement of subunits in the 19S complex is unclear.
Collapse
Affiliation(s)
- D Voges
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | |
Collapse
|
21
|
Mykles DL. Intracellular proteinases of invertebrates: calcium-dependent and proteasome/ubiquitin-dependent systems. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 184:157-289. [PMID: 9697313 DOI: 10.1016/s0074-7696(08)62181-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cytosolic proteinases carry out a variety of regulatory functions by controlling protein levels and/or activities within cells. Calcium-dependent and ubiquitin/proteasome-dependent pathways are common to all eukaryotes. The former pathway consists of a diverse group of Ca(2+)-dependent cysteine proteinases (CDPs; calpains in vertebrate tissues). The latter pathway is highly conserved and consists of ubiquitin, ubiquitin-conjugating enzymes, deubiquitinases, and the proteasome. This review summarizes the biochemical properties and genetics of invertebrate CDPs and proteasomes and their roles in programmed cell death, stress responses (heat shock and anoxia), skeletal muscle atrophy, gametogenesis and fertilization, development and pattern formation, cell-cell recognition, signal transduction and learning, and photoreceptor light adaptation. These pathways carry out bulk protein degradation in the programmed death of the intersegmental and flight muscles of insects and of individuals in a colonial ascidian; molt-induced atrophy of crustacean claw muscle; and responses of brine shrimp, mussels, and insects to environmental stress. Selective proteolysis occurs in response to specific signals, such as in modulating protein kinase A activity in sea hare and fruit fly associated with learning; gametogenesis, differentiation, and development in sponge, echinoderms, nematode, ascidian, and insects; and in light adaptation of photoreceptors in the eyes of squid, insects, and crustaceans. Proteolytic activities and specificities are regulated through proteinase gene expression (CDP isozymes and proteasomal subunits), allosteric regulators, and posttranslational modifications, as well as through specific targeting of protein substrates by a diverse assemblage of ubiquitin-conjugases and deubiquitinases. Thus, the regulation of intracellular proteolysis approaches the complexity and versatility of transcriptional and translational mechanisms.
Collapse
Affiliation(s)
- D L Mykles
- Department of Biology, Colorado State University, Fort Collins 80523, USA
| |
Collapse
|
22
|
Petit F, Jarrousse AS, Dahlmann B, Sobek A, Hendil KB, Buri J, Briand Y, Schmid HP. Involvement of proteasomal subunits zeta and iota in RNA degradation. Biochem J 1997; 326 ( Pt 1):93-8. [PMID: 9337855 PMCID: PMC1218641 DOI: 10.1042/bj3260093] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have identified two distinct subunits of 20 S proteasomes that are associated with RNase activity. Proteasome subunits zeta and iota, eluted from two-dimensional Western blots, hydrolysed tobacco mosaic virus RNA, whereas none of the other subunits degraded this substrate under the same conditions. Additionally, proteasomes were dissociated by 6 M urea, and subunit zeta, containing the highest RNase activity, was isolated by anion-exchange chromatography and gel filtration. Purified subunit zeta migrated as a single spot on two-dimensional PAGE with a molecular mass of approx. 28 kDa. Addition of anti-(subunit zeta) antibodies led to the co-precipitation of this proteasome subunit and nuclease activity. This is the first evidence that proteasomal alpha-type subunits are associated with an enzymic activity, and our results provide further evidence that proteasomes may be involved in cellular RNA metabolism.
Collapse
Affiliation(s)
- F Petit
- Université Blaise Pascal, Clermont-Ferrand II, Aubière, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Baz A, Henry L, Caravano R, Scherrer K, Bureau JP. Changes in the subunit distribution of prosomes (MCP-proteasomes) during the differentiation of human leukemic cells. Int J Cancer 1997; 72:467-76. [PMID: 9247291 DOI: 10.1002/(sici)1097-0215(19970729)72:3<467::aid-ijc15>3.0.co;2-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The subunit composition of cell-internal and surface prosomes during phorbol myristate acetate (PMA)-induced differentiation of human leukemic T lymphocytes (CCRF-CEM cell line) was studied in relation to clusters of differentiation (CD) markers. PMA inhibited cell growth and decreased the amounts of CD1a and CD4 while CD3, CD8, CD25, CD45, CD57 and MHCI increased it; the p53 anti-oncogene increased while actin levels remained constant. Cells incubated with the inducer PMA for 3 days and placed in fresh inhibitor-free medium resumed growth at a low rate, while the CD values slowly reverted to those of the initial phenotype. The presence and relative amounts of prosome subunits were analyzed by flow cytometry, light and fluorescent microscopy and Western blotting using 3 monoclonal antibodies (p25K, p27K and p30-33K MAbs). The decrease in cytoplasmic antigens on day 3 was remarkable (cells followed for 7 days) while increased surface antigens were observed. Changes in the subcellular distributions of prosome antigens, particularly the p25K and p30-33K subunit, were correlated with a partial arrest of the cell cycle. Interestingly, the composition of cell internal and surface prosomes showed different patterns of change.
Collapse
Affiliation(s)
- A Baz
- Laboratoire de Biologie Cellulaire et Cytogénétique Moléculaire (UPRES-JE 1952), Faculté de Médecine Montpellier-Nîmes, Nîmes, France
| | | | | | | | | |
Collapse
|
24
|
Hutson MR, Rhodes MR, Kirby ML. Differential expression of a proteasomal subunit during chick development. Biochem Biophys Res Commun 1997; 234:216-23. [PMID: 9168992 DOI: 10.1006/bbrc.1997.6505] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Removal of cardiac neural crest disrupts normal development of the heart and pharynx. Subtractive hybridization was used to identify differentially expressed messages after neural crest ablation in chick embryos. A 1 kb clone, homologous to PROS-28, a 28 kD alpha subunit of a Drosophila proteasome, was differentially expressed in embryos lacking neural crest. An increase of GPROS-28 expression in the head and pharyngeal arches of stages 12-21 chick embryos without cardiac neural crest accompanied generalized low-level expression throughout experimental and normal embryos. In addition, high levels of GPROS-28 expression were detected in normal embryos at particular sites and times in development in the limb buds, mesonephros, heart, liver, neural tube, dorsal root ganglia, and lung buds, when the cells in these regions were undergoing intense proliferation.
Collapse
Affiliation(s)
- M R Hutson
- Developmental Biology Program, Medical College of Georgia, Augusta 30912-2640, USA
| | | | | |
Collapse
|
25
|
Affiliation(s)
- D L Mykles
- Department of Biology, Cell and Molecular Biology Program, Colorado State University, Fort Collins 80523, USA
| |
Collapse
|
26
|
Grune T, Reinheckel T, Davies KJ. Degradation of oxidized proteins in K562 human hematopoietic cells by proteasome. J Biol Chem 1996; 271:15504-9. [PMID: 8663134 DOI: 10.1074/jbc.271.26.15504] [Citation(s) in RCA: 257] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Exposure to various forms of oxidative stress (H2O2 and O2.-) significantly increased the intracellular degradation of both "short-lived" and "long-lived" cellular proteins in the human hematopoietic cell line K562. Oxidatively modified hemoglobin and superoxide dismutase used as purified proteolytic substrates were also selectively degraded by K562 cell lysates, but exposure of these protein substrates to very high hydrogen peroxide concentrations actually decreased their proteolytic susceptibility. Our studies found little or no change in the overall capacity of cells and cell lysates to degrade "foreign" oxidized proteins after treatment of K562 cells with hydrogen peroxide or paraquat, a finding supported by proteasome Western blots and unchanged capacity of cell lysates to degrade the fluorogenic peptide succinyl-leucine-leucine-valine-tyrosine-4-methylcoumarin-7-amide. Six days of daily treatment of K562 cells with an antisense oligodeoxynucleotide directed against the initiation codon region of the human proteasome C2 subunit gene dramatically depressed hydrogen peroxide-induced degradation of metabolically radiolabeled intracellular proteins. The actual amount of proteasome in antisense-treated K562 cells was also severely depressed, as revealed by Western blots and by measurements of the degradation of the fluorogenic peptide succinyl-leucine-leucine-valine-tyrosine-4-methylcoumarin-7-amide. The degradation of oxidatively modified foreign protein substrates was also markedly depressed in lysates prepared from K562 cells treated with the proteasome C2 antisense dideoxynucleotide. The inhibitor profile for the degradation of H2O2-modified hemoglobin by K562 cell lysates was consistent with a major role for the ATP-independent 20 S "core" proteasome complex. We conclude that proteasome, probably the 20 S core proteasome complex, is primarily responsible for the selective degradation of oxidatively damaged proteins in human hematopoietic cells. Since "oxidative marking" of cellular proteins by lipoxygenase has been proposed as an important step in red blood cell maturation, it is important to determine which protease or proteases could recognize and degrade such modified substrates. Our results provide evidence that proteasome can, indeed, conduct such selective degradation and appears to be the major cellular protease capable of fulfilling such a role in maturation.
Collapse
Affiliation(s)
- T Grune
- Department of Biochemistry and Molecular Biology, The Albany Medical College, Albany New York 12208, USA
| | | | | |
Collapse
|
27
|
Pal JK, Murakami K. Comparative analysis of prosomes and multicatalytic proteinases from rabbit erythrocytes. J Biosci 1995. [DOI: 10.1007/bf02703268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Grune T, Reinheckel T, Joshi M, Davies KJ. Proteolysis in cultured liver epithelial cells during oxidative stress. Role of the multicatalytic proteinase complex, proteasome. J Biol Chem 1995; 270:2344-51. [PMID: 7836468 DOI: 10.1074/jbc.270.5.2344] [Citation(s) in RCA: 324] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Exposure to various forms of mild oxidative stress significantly increased the intracellular degradation of both "short-lived" and "long-lived," metabolically radiolabeled, cell proteins in cultures of Clone 9 liver cells (normal liver epithelia). The oxidative stresses employed were bolus H2O2 addition; continuous H2O2 flux; the redox cycling quinones, menadione and paraquat; and the aldehydic products of lipid peroxidation, 4-hydroxynonenal, malonyldialdehyde, and hexenal. In general, exposure to more severe oxidative stress produced a concentration-dependent decline in intracellular proteolysis, in some cases to below baseline levels. Oxidatively modified "foreign" proteins (superoxide dismutase and hemoglobin) were also selectively degraded, in comparison with untreated foreign proteins, when added to lysates of Clone 9 liver cells. As with intracellular proteolysis, the degradation of foreign proteins added to cell lysates was greatly increased by mild oxidative modification, but depressed by more severe oxidative modification. The proteinase activity was recovered in > 300-kDa cell fractions, and inhibitor profiles and immunoprecipitation studies indicated that the multicatalytic proteinase complex, proteasome, was responsible for most of the selective degradation observed with mild oxidative stress; up to approximately 95% for intracellular proteolysis and 65-80% for degradation of foreign modified proteins. Seven days of daily treatment with an antisense oligodeoxynucleotide, directed against the initiation codon region of the proteasome C2 subunit gene, severely depressed the intracellular levels of several proteasome subunit polypeptides (by Western blot analysis), and also depressed the H2O2 induced increase in intracellular proteolysis by approximately 95%, without significantly affecting baseline proteolytic rates. Extensive studies revealed only small or no increases in the overall capacity of oxidatively stressed cells to degrade oxidatively modified protein substrates; a finding supported by both Western blot and Northern blot analyses which revealed no significant increase in the levels of proteasome subunit polypeptides or mRNA transcripts. We conclude that mild oxidative stress increases intracellular proteolysis by modifying cellular proteins, thus increasing their proteolytic susceptibility. In contrast, severe oxidative stress diminishes intracellular proteolysis, probably by generating severely damaged cell proteins that cannot be easily degraded (e.g. cross-linked/aggregated proteins), and by damaging proteolytic enzymes. We further conclude that the multicatalytic proteinase complex proteasome is responsible for most of the recognition and selective degradation of oxidatively modified proteins in Clone 9 liver cells.
Collapse
Affiliation(s)
- T Grune
- Department of Biochemistry and Molecular Biology, Albany Medical College, New York 12208
| | | | | | | |
Collapse
|
29
|
Dawson SP, Arnold JE, Mayer NJ, Reynolds SE, Billett MA, Gordon C, Colleaux L, Kloetzel PM, Tanaka K, Mayer RJ. Developmental changes of the 26 S proteasome in abdominal intersegmental muscles of Manduca sexta during programmed cell death. J Biol Chem 1995; 270:1850-8. [PMID: 7829521 DOI: 10.1074/jbc.270.4.1850] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
cDNA clone MS73 codes for an ATPase that is a regulatory subunit of the 26 S proteasome. Reverse transcriptase polymerase chain reaction analysis demonstrates that the expression of the gene dramatically increases in the pre-eclosion period. Western analyses show increases in other related. ATPases including MS73, MSS1, and mts2 but not TBP1. A similar increase in the 30-kDa subunit of the 20 S proteasome occurs. There are accompanying large changes in the peptidase activities of the 26 S proteasome. Relative to the 30-kDa subunit, there is no change in MSS1 and MS73, a 3-fold increase in mts2, and a 5-fold decline in TBP1. A large increase in the concentration of 26 S proteasomes together with extensive regulatory reprogramming may facilitate rapid muscular proteolysis.
Collapse
Affiliation(s)
- S P Dawson
- Department of Biochemistry, University of Nottingham Medical School, Queen's Medical Centre, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dahlmann B, Kuehn L. The 20S/26S proteasomal pathway of protein degradation in muscle tissue. Mol Biol Rep 1995; 21:57-62. [PMID: 7565666 DOI: 10.1007/bf00990972] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Similar to all other eukaryotic cells and tissues muscle tissue contains the proteolytic system of 20S/26S proteasomes with the 20S proteasome existing predominantly in a latent state. Unlike with the mammalian enzyme in vitro transition from the latent to the activated state of the 20S proteasomes isolated from muscle of several fish species and from lobster can be achieved by heat shock. It is very likely that the activated state of the 20S proteasome corresponds to the physiologically active form of the enzyme since only that one is able to attack sarcoplasmic and myofibrillar proteins to any significant extent. As perfusion of rat hindquarters with presumptive low molecular mass activators like free fatty acids does not result in an activation of the muscle proteasome other--possibly protein activators--may serve this purpose in vivo. The 26S proteasome complex may be regarded as such a proteasome/activator complex. The 26S proteasome complex has the ability to degrade protein (-ubiquitin-conjugates) by an ATP-consuming reaction. Since increased amounts of ubiquitinated proteins as well as an enhanced activity of the ATP (-ubiquitin)-dependent proteolytic system have been measured in rat muscle tissue during various catabolic conditions, it is not unlikely that this pathway is responsible for catalysis of muscle protein breakdown.
Collapse
Affiliation(s)
- B Dahlmann
- Diabetes Forschungsinstitut, Düsseldorf, Germany
| | | |
Collapse
|
31
|
Schmid HP, Pouch MN, Petit F, Dadet MH, Badaoui S, Boissonnet G, Buri J, Norris V, Briand Y. Relationships between proteasomes and RNA. Mol Biol Rep 1995; 21:43-7. [PMID: 7565663 DOI: 10.1007/bf00990969] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The 20S proteasome (prosome) is a highly organized multi-protein complex with approximate molecular weight of about 700 kDa. Whilst the role of the proteasome in the processing and turnover of cellular proteins is becoming clearer, its relationship with RNA remains obscure. Over the last decade the possibility of association of proteasomes with specific RNAs or mRNPs have been particularly controversial. Proteasomes were reported to inhibit translation of viral mRNAs and to be tightly associated with RNase activity. It is possible that proteasomes are also involved in cellular RNA breakdown and RNA processing like prokaryotic RNase E.
Collapse
Affiliation(s)
- H P Schmid
- Université Blaise Pascal, Clermont-Ferrand II, Aubière, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pamnani V, Haas B, Pühler G, Sänger HL, Baumeister W. Proteasome-associated RNAs are non-specific. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 225:511-9. [PMID: 7525280 DOI: 10.1111/j.1432-1033.1994.00511.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The RNA isolated from RNase-treated proteasome preparations from human erythrocytes, HeLa cells, the archaeon Thermoplasma acidophilum and also from recombinant proteasomes of T. acidophilum expressed in Escherichia coli was characterized. The RNA associated with structurally similar protein particles, namely with the two molecular chaperones, groEL from E. coli and with the thermosome from T. acidophilum, served as controls. Electrophoretic analysis on polyacrylamide gels of the radioactively end-labelled RNA revealed a very similar size distribution pattern, irrespectively of the protein particles from which they had been isolated. The predominant RNA species were in the size ranges 80 nucleotides and 120 nucleotides, respectively. Partial sequencing of their terminal regions by mobility-shift analysis revealed that, of the proteasomes from human erythrocytes, the approximately 80-nucleotide-long RNA consists of a heterogenous population of mostly tRNA species because they carried the tRNA-specific 3'-terminal sequence motif 5'-CCA-3'. The RNA in the size range 120 nucleotides isolated from the proteasomes of human erythrocytes and of T. acidophilum was also heterogeneous and displayed, in the terminal regions, a remarkable sequence similarity to the corresponding regions of the 5S rRNA from the same and different organisms. The total content of RNA of all the protein particles was quantified and found to be consistently sub-stoichiometric. All these findings strongly suggest that RNA associated with the proteasomes and with the molecular chaperones originate from the abundant cellular pool of the tRNAs and 5S rRNAs which bind non-specifically to these large protein particles.
Collapse
Affiliation(s)
- V Pamnani
- Max-Planck-Institut für Biochemie, Abteilung für Molekulare Strukturbiologie, Martinsried, Germany
| | | | | | | | | |
Collapse
|
33
|
Masaki T, Ishiura S, Sugita H, Kwak S. Multicatalytic proteinase is associated with characteristic oval structures in cortical Lewy bodies: an immunocytochemical study with light and electron microscopy. J Neurol Sci 1994; 122:127-34. [PMID: 8021694 DOI: 10.1016/0022-510x(94)90288-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The ATP-ubiquitin-dependent proteolytic pathway (ubiquitin pathway) is believed to be involved in the formation of various neuronal inclusion bodies including Lewy bodies (LBs), a pathological hallmark of Parkinson disease and diffuse Lewy body disease (DLBD). Since multicatalytic proteinase (MCP) is involved in the ubiquitin pathway, an investigation of whether MCP is involved in neuronal inclusion bodies would provide a clue to the mechanism underlying the formation of neuronal inclusion bodies as well as to the pathogenesis of degenerative neurological disorders. In this study, we investigated detailed immunolocalization of MCP in LBs in DLBD brains using light and electron microscopy. We raised three different monoclonal antibodies against purified human MCP. Each of them recognized different sets of MCP subunits on Western blotting. Immunohistochemically, anti-MCP antibodies recognized all ubiquitin-positive cortical LBs in situ as well as those isolated from frozen DLBD cortices, suggesting that MCP is present in LBs as a whole molecule exhibiting protease activity. In electron microscopy, MCP immunoreactivity (MCP-IR) was exclusively localized on a characteristic oval structure with an approximate diameter of 100 nm. This structure was distributed throughout the LBs and was devoid of ubiquitin immunoreactivity. Treatment of isolated LBs with 2% SDS, but not with 0.5% Triton X-100, removed this structure from LBs in which fibrous materials predominated. Ubiquitin immunoreactivity was also decreased in isolated LBs treated with 2% SDS, suggesting that the fibrous structures in LBs were not ubiquitinated in situ. Thus, it is suggested that LBs are subjected to a proteolytic process in which MCP plays a role via processing of specific components of LBs.
Collapse
Affiliation(s)
- T Masaki
- National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | | | | | | |
Collapse
|
34
|
Mamroud-Kidron E, Rosenberg-Hasson Y, Rom E, Kahana C. The 20S proteasome mediates the degradation of mouse and yeast ornithine decarboxylase in yeast cells. FEBS Lett 1994; 337:239-42. [PMID: 8293806 DOI: 10.1016/0014-5793(94)80199-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ornithine decarboxylase (ODC), a key enzyme in the biosynthesis of polyamines, is one of the most rapidly degraded proteins in mammalian cells. Recently it has been demonstrated that mammalian ODC is degraded in vitro by the 26S protease that contains the 20S proteasome as its catalytic core, in a reaction that does not require ubiquitin. Here, we show that yeast and mouse ODC are both rapidly degraded in yeast cells and that their degradation severely inhibited in a mutant yeast cell line defective in the chymotryptic activity of proteinase yscE, the yeast 20S proteasome. These results provide compelling genetic support to previous biochemical studies suggesting the involvement of the 20S proteasome in the degradation of ornithine decarboxylase.
Collapse
Affiliation(s)
- E Mamroud-Kidron
- Department of Molecular Genetics and Virology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
35
|
Scherrer K, Bey F. The prosomes (multicatalytic proteinases; proteasomes) and their relationship to the untranslated messenger ribonucleoproteins, the cytoskeleton, and cell differentiation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 49:1-64. [PMID: 7863004 DOI: 10.1016/s0079-6603(08)60047-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- K Scherrer
- Institute Jacques Monod CNRS, Paris, France
| | | |
Collapse
|
36
|
Homma S, Horsch A, Pouch MN, Petit F, Briand Y, Schmid HP. Proteasomes (prosomes) inhibit the translation of tobacco mosaic virus RNA by preventing the formation of initiation complexes. Mol Biol Rep 1994; 20:57-61. [PMID: 7715610 DOI: 10.1007/bf00996354] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Proteasomes (prosomes) are large multiprotein complexes. They are involved in protein degradation of ubiquitin-conjugated proteins and in the generation of MHC class I peptides. We gave further evidence that they interfere with in vitro protein synthesis. Proteasomes inhibit the translation of Tobacco mosaic virus RNA. Analysis of cell-free systems by sucrose gradient centrifugation revealed that they prevent the formation of 80S initiation complexes but not the early phase of initiation.
Collapse
Affiliation(s)
- S Homma
- Biologisches Institut University of Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- A J Rivett
- Department of Biochemistry, University of Leicester, United Kingdom
| | | | | |
Collapse
|
38
|
Hydrophobicity as the signal for selective degradation of hydroxyl radical-modified hemoglobin by the multicatalytic proteinase complex, proteasome. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82272-4] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
39
|
Purification and characterization of a multiprotein component of the Drosophila 26 S (1500 kDa) proteolytic complex. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)52977-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
40
|
Affiliation(s)
- A J Rivett
- Department of Biochemistry, University of Leicester, U.K
| |
Collapse
|
41
|
Hilt W, Enenkel C, Gruhler A, Singer T, Wolf D. The PRE4 gene codes for a subunit of the yeast proteasome necessary for peptidylglutamyl-peptide-hydrolyzing activity. Mutations link the proteasome to stress- and ubiquitin-dependent proteolysis. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53719-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
42
|
Bey F, Silva Pereira I, Coux O, Viegas-Péquignot E, Recillas Targa F, Nothwang HG, Dutrillaux B, Scherrer K. The prosomal RNA-binding protein p27K is a member of the alpha-type human prosomal gene family. MOLECULAR & GENERAL GENETICS : MGG 1993; 237:193-205. [PMID: 7681138 DOI: 10.1007/bf00282801] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Monoclonal antibodies demonstrated high conservation during evolution of a prosomal protein of M(r) 27,000 and differentiation--specific expression of the epitope. More than 90% of the reacting antigen was found as a p27K protein in the free messenger ribonucleoprotein (mRNP) fraction but another protein of M(r) 38,000, which shared protease fingerprint patterns with the p27K polypeptide, was also labelled in the nuclear and polyribosomal fractions. Sequencing of cDNA recombinant clones encoding the p27/38K protein and comparison with another prosomal protein, p30-33K, demonstrated the existence of a common characteristic sequence pattern containing three highly conserved segments. The genes Hs PROS-27 and Hs PROS-30 were mapped to chromosomes 14 (14q13) and 11 (11p15.1), respectively. The structure of the p27K protein shows multiple potential phosphorylation sites, an NTP-binding fold and an RNA-binding consensus sequence. The Hs PROS-27/beta-galactosidase fusion protein binds a single RNA of about 120 nucleotides from total HeLa cell RNA. Sequence comparisons show that the Hs PROS-27 and Hs PROS-30 genes belong to the gene family that encodes the prosome--MCP (multicatalytic proteinase)--proteasome proteins. Comparison with other members of the family from various species allowed us to show that the tripartite consensus sequence characteristic of the alpha-type sub-family is conserved from archeobacteria to man. The members of this gene family are characterised by very high evolutionary conservation of amino acid sequences of homologous genes and 20%-35% sequence similarity, between different family member within the same species and are clearly distinct from the beta-type family.
Collapse
Affiliation(s)
- F Bey
- Institut Jacques Monod du CNRS, Université Paris 7, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Schmid HP, Vallon R, Tomek W, Kreutzer-Schmid C, Pouch MN, Badaoui S, Boissonnet G, Briand M, Briand Y, Buri J. Glycosylation and deglycosylation of proteasomes (prosomes) from calf-liver cells: high abundance of neuraminic acid. Biochimie 1993; 75:905-10. [PMID: 8312394 DOI: 10.1016/0300-9084(93)90047-v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Proteasomes (prosomes) of calf-liver cells were probed with three different biotinylated lectins: Limulus polyphemus agglutinin (LPA), specific for neuraminic acid; Solanum tuberosum agglutinin (STA), specific for GlcNac; and concanavalin A (Con A), specific for Man/Glc. While only one proteasomal protein reacted with STA, most of the proteasomal proteins reacted with LPA and several with Con A. Deglycosylation with N-glycosidase F showed that the detected glycan residues were asparagine-linked. Finally we demonstrate an alternative method for the isolation of proteasomes based on the affinity of certain proteasomal proteins to Con A.
Collapse
Affiliation(s)
- H P Schmid
- Université Blaise Pascal, Clermont-Fd II, Aubière, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
A number of critical regulatory proteins in both prokaryotic and eukaryotic cells are subject to rapid, energy-dependent proteolysis. Rapid degradation combined with control over biosynthesis provides a mechanism by which the availability of a protein can be limited both temporally and spatially. Highly unstable regulatory proteins are involved in numerous biological functions, particularly at the commitment steps in developmental pathways and in emergency responses. The proteases involved in energy-dependent proteolysis are large proteins with the ability to use ATP to scan for appropriate targets and degrade complete proteins in a processive manner. These cytoplasmic proteases are also able to degrade many abnormal proteins in the cell.
Collapse
Affiliation(s)
- S Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892
| | | |
Collapse
|
45
|
Nothwang HG, Coux O, Bey F, Scherrer K. Disruption of prosomes by some bivalent metal ions results in the loss of their multicatalytic proteinase activity and cancels the nuclease resistance of prosomal RNA. Biochem J 1992; 287 ( Pt 3):733-9. [PMID: 1445237 PMCID: PMC1133069 DOI: 10.1042/bj2870733] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prosomes are ribonucleoprotein particles constituted by a variable set of about 20 proteins found associated with untranslated mRNA. In addition, they contain a small RNA, the presence of which has been an issue of controversy for a long time. The intact particles have a multicatalytic proteinase (MCP) activity and are very stable; we have never observed autodigestion of the particle by its intrinsic proteinase activity. Surprisingly it was found that Zn2+ and Cu2+ ions at concentrations of 0.1-1 mM disrupt the prosome particles isolated from HeLa cells and duck erythroblasts and abolish instantaneously its MCP activity, without altering the two-dimensional electrophoretic pattern of the constituent proteins. Fe2+, however, seems to induce autodegradation rather than dissociation of the prosome constituents. Most interestingly, protein or oligopeptide substrates protect the particle and its proteinase activity from disruption by Zn2+ or Cu2+. Nuclease-digestion assays reveal that the prosomal RNA, which is largely resistant in the intact particle, becomes digestible after dissociation of prosomes by Zn2+. These data give, for the first time, unambiguous proof of the presence of an RNA in the particle. Furthermore, they demonstrate a structure-function relationship between the complex and its enzyme activity, which seems to be based on the particle as an entity and not on the single constituent proteins.
Collapse
Affiliation(s)
- H G Nothwang
- Institut Jacques Monod, Université Paris, France
| | | | | | | |
Collapse
|
46
|
Schwartz AL, Ciechanover A. Ubiquitin-mediated protein modification and degradation. Am J Respir Cell Mol Biol 1992; 7:463-8. [PMID: 1329865 DOI: 10.1165/ajrcmb/7.5.463] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ubiquitin is a small, 8 kD protein found in all eukaryotic cells. It is involved in a wide variety of regulatory roles within the cell, including gene expression, ribosome biosynthesis, receptor expression, and the stress response. The best understood of these is that of ubiquitin-mediated proteolysis, in which ubiquitin is covalently attached to specific protein target substrates that are then recognized and degraded by a high molecular weight protease.
Collapse
Affiliation(s)
- A L Schwartz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110
| | | |
Collapse
|
47
|
Silva Pereira I, Bey F, Coux O, Scherrer K. Two mRNAs exist for the Hs PROS-30 gene encoding a component of human prosomes. Gene X 1992; 120:235-42. [PMID: 1398136 DOI: 10.1016/0378-1119(92)90098-a] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Screening of a lambda gt11 cDNA expression library of the HeLa cell genome with a monoclonal antibody that specifically recognizes prosomal 30-33-kDa proteins, allowed isolation of a 1264-nucleotide (nt) recombinant cDNA containing a 327-nt untranslated 5'-end. The amino acid (aa) sequence deduced from this cDNA revealed a protein of 269 aa (M(r) of 30,227) that includes a consensus box characteristic for Tyr phosphorylation, also observed in other prosomal proteins. Comparison with another prosomal 27-kDa protein, cloned in our laboratory, indicated the presence of three prosome-specific homology boxes observed in these proteins from archaebacteria to man. Interestingly, except for the untranslated 5'-end, as well as the sequence coding for the N-terminal six aa, this cDNA is identical to two recently published cDNAs encoding subunit C2 of human liver proteasome [Tamura et al., Biochim. Biophys. Acta 1089 (1991) 95-102] and subunit NU of human erythrocyte macropain [DeMartino et al., Biochim. Biophys. Acta 1079 (1991) 29-38]. Primer extension and Northern blot analysis using two specific 18-mer oligodeoxyribonucleotides indicated the presence of two mRNAs that have divergent 5'-ends. These results, as confirmed by the polymerase chain reaction, establish the existence of two distinct Hs PROS-30 mRNAs, differing in their 5'-noncoding regions and in the N-terminal six aa of their protein products.
Collapse
|
48
|
Purification and initial characterization of the proteasome from the higher plant Spinacia oleracea. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)36665-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
49
|
Genschik P, Philipps G, Gigot C, Fleck J. Cloning and sequence analysis of a cDNA clone from Arabidopsis thaliana homologous to a proteasome alpha subunit from Drosophila. FEBS Lett 1992; 309:311-5. [PMID: 1516703 DOI: 10.1016/0014-5793(92)80796-j] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A cDNA clone isolated from an Arabidopsis thaliana cell suspension culture library showed considerable similarities to the proteasome 28 kDa alpha subunit of Drosophila [(1990) Gene 90, 235-241]. The 250 amino acid-long protein encoded by Arabidopsis TAS-g64 clone has important homologies in its primary structure and in the predicted secondary structure with the PROS-28.1 clone from Drosophila. The only divergence observed between the two sequences is for the 20 C-terminal amino acids. This subunit might share important functions in both kingdoms, as revealed by the important conservation between plants and animals. In plant cells it is encoded by a single-copy gene and probably regulated by stress and/of division.
Collapse
Affiliation(s)
- P Genschik
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, Strasbourg, France
| | | | | | | |
Collapse
|
50
|
Beyette JR, Mykles DL. Immunocytochemical localization of the multicatalytic proteinase (proteasome) in crustacean striated muscles. Muscle Nerve 1992; 15:1023-35. [PMID: 1518511 DOI: 10.1002/mus.880150907] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multicatalytic proteinase (MCP) is thought to play a central role in the processing and turnover of intracellular proteins in eukaryotic cells. Immunocytochemistry was used to determine the intracellular distribution of the MCP in the claw muscles of the land crab, Gecarcinus lateralis, and the claw and abdominal muscles of the American lobster, Homarus americanus. Cryosections were stained with an affinity-purified polyclonal antibody to lobster MCP that cross-reacted with the land crab enzyme. Two types of staining were observed: a diffuse cytoplasmic staining, and a dense aggregate staining primarily associated with invaginations of the cell membrane. The cytoplasmic staining appeared reticulated in favorable transverse sections due to a preferential localization of MCP to the intermyofibrillar space. The aggregate staining was associated with neither nuclei nor mitochondria, since stains specific for these organelles (Hoechst stain and nicotinamide adenine dinucleotide diaphorase histochemistry, respectively) did not colocalize with the aggregates. Trypsinlike peptidase activities of isolated microsomal and postmicrosomal fractions indicated that less than 1% of the total MCP was associated with the microsomal fraction. Immunoprecipitation of the same fractions confirmed the presence of MCP in the microsomes as well as in the cytosol. These results suggest that the MCP is primarily associated with cytoplasmic components; the aggregate staining may result from the association of the MCP with cellular membrane systems.
Collapse
Affiliation(s)
- J R Beyette
- Department of Biology, Colorado State University, Fort Collins 80523
| | | |
Collapse
|